diff --git a/coq/QLearn/jaakkola_vector.v b/coq/QLearn/jaakkola_vector.v index e65fdc28..1e59034e 100644 --- a/coq/QLearn/jaakkola_vector.v +++ b/coq/QLearn/jaakkola_vector.v @@ -700,14 +700,17 @@ Proof. Qed. Lemma Rvector_max_abs_const {n : nat} (c : R) : - Rvector_max_abs (vector_const c n) = Rabs c. + Rvector_max_abs (vector_const c (S n)) = Rabs c. Proof. - Admitted. + destruct (Rvector_max_abs_nth_in (vector_const c (S n))) as [?[? eqq]]. + rewrite eqq. + now rewrite vector_nth_const. +Qed. -Lemma delta_eps_bound (eps : posreal) (C : posreal) {N} (delta : vector R N) : +Lemma delta_eps_bound (eps : posreal) (C : posreal) {N} (delta : vector R (S N)) : 0 < gamma -> Rvector_max_abs delta > C * eps -> - gamma * Rvector_max_abs (Rvector_plus delta (vector_const (pos eps) N)) <= + gamma * Rvector_max_abs (Rvector_plus delta (vector_const (pos eps) (S N))) <= gamma * (C + 1)/ C * Rvector_max_abs delta. Proof. intros.