diff --git a/coq/QLearn/jaakkola_vector.v b/coq/QLearn/jaakkola_vector.v index 611f3d05..a0c5e357 100644 --- a/coq/QLearn/jaakkola_vector.v +++ b/coq/QLearn/jaakkola_vector.v @@ -2593,7 +2593,6 @@ Section jaakola_vector2. (vecrvscalerv (rvmaxabs (X n)) (vecrvscale γ (β n)))) (pos_to_nneg C))) -> - (* almost prts (fun ω => Lim_seq (fun n => rvmaxabs (X n) ω) = 0). *) almost prts (fun ω => is_lim_seq (fun n => rvmaxabs (X n) ω) 0). Proof. intros. @@ -4926,7 +4925,6 @@ Section jaakola_vector2. ((FiniteConditionalVariance prts (filt_sub k) (vecrvnth i pf (XF k))) ω) <= (C * (1 + Rvector_max_abs (X k ω))^2)))) -> (exists (C : Ts -> R), -(* (RandomVariable (F 0%nat) borel_sa C) /\ *) almost prts (fun ω => forall k, Rvector_max_abs (X k ω) <= C ω)) -> (forall k, rv_eq (X (S k)) (vecrvplus (vecrvminus (X k) (vecrvmult (α k) (X k))) (vecrvmult (β k) (XF k) ))) -> @@ -5190,10 +5188,7 @@ Section jaakola_vector2. almost prts (fun ω => forall k i pf, 0 <= vector_nth i pf (α k ω)) -> almost prts (fun ω => forall k i pf, 0 <= vector_nth i pf (β k ω)) -> -(* - eventually (fun k => almost prts (fun ω => forall i pf, vector_nth i pf (α k ω) <= 1)) -> - eventually (fun k => almost prts (fun ω => forall i pf, vector_nth i pf (β k ω) <= 1)) -> -*) + almost prts (fun ω => forall k i pf, vector_nth i pf (β k ω) <= vector_nth i pf (α k ω)) -> @@ -5220,7 +5215,6 @@ Section jaakola_vector2. ((FiniteConditionalVariance prts (filt_sub k) (vecrvnth i pf (XF k))) ω) <= (C * (1 + Rvector_max_abs (X k ω))^2)))) -> (exists (C : Ts -> R), -(* (RandomVariable (F 0%nat) borel_sa C) /\ *) almost prts (fun ω => forall k, Rvector_max_abs (X k ω) <= C ω)) -> (forall k, rv_eq (X (S k)) (vecrvplus (vecrvminus (X k) (vecrvmult (α k) (X k))) (vecrvmult (β k) (XF k) ))) -> @@ -5456,11 +5450,7 @@ Section jaakola_vector2. (forall k i pf, ((FiniteConditionalVariance prts (filt_sub k) (vecrvnth i pf (XF k))) ω) <= (C * (1 + Rvector_max_abs (X k ω))^2)))) -> -(* - (exists (C : Ts -> R), - (RandomVariable (F 0%nat) borel_sa C) /\ - almost prts (fun ω => forall k, Rvector_max_abs (X k ω) <= C ω)) -> -*) + (forall k, rv_eq (X (S k)) (vecrvplus (vecrvminus (X k) (vecrvmult (α k) (X k))) (vecrvmult (β k) (XF k)))) -> (exists epsilon : posreal, @@ -5705,10 +5695,7 @@ Section jaakola_vector2. (forall k i pf, ((FiniteConditionalVariance prts (filt_sub k) (vecrvnth i pf (XF k))) ω) <= (C * (1 + Rvector_max_abs (X k ω))^2)))) -> -(* - (exists (C : Ts -> R), - almost prts (fun ω => forall k, Rvector_max_abs (X k ω) <= C ω)) -> -*) + (forall k, rv_eq (X (S k)) (vecrvplus (vecrvminus (X k) (vecrvmult (α k) (X k))) (vecrvmult (β k) (XF k) ))) -> (exists epsilon : posreal, @@ -5960,10 +5947,7 @@ Section jaakola_vector2. almost prts (fun ω => forall k i pf, 0 <= vector_nth i pf (α k ω)) -> almost prts (fun ω => forall k i pf, 0 <= vector_nth i pf (β k ω)) -> -(* - eventually (fun k => almost prts (fun ω => forall i pf, vector_nth i pf (α k ω) <= 1)) -> - eventually (fun k => almost prts (fun ω => forall i pf, vector_nth i pf (β k ω) <= 1)) -> -*) + almost prts (fun ω => forall k i pf, vector_nth i pf (β k ω) <= vector_nth i pf (α k ω)) ->