diff --git a/coq/ProbTheory/ConditionalExpectation.v b/coq/ProbTheory/ConditionalExpectation.v index 8a1c84c9..7417647e 100644 --- a/coq/ProbTheory/ConditionalExpectation.v +++ b/coq/ProbTheory/ConditionalExpectation.v @@ -6868,6 +6868,31 @@ Section fin_cond_exp. {isl : IsLp prts 2 f} : Ts -> R := FiniteConditionalExpectation (rv := variance_rv f) (isfe:=FiniteConditionalVariance_exp_from_L2 f) _. + Lemma FiniteConditionalVariance_new_ext (f1 f2 : Ts -> R) + {rv1 : RandomVariable dom borel_sa f1} + {rv2 : RandomVariable dom borel_sa f2} + {isl1 : IsLp prts 2 f1} + {isl2 : IsLp prts 2 f2} : + rv_eq f1 f2 -> + rv_eq (FiniteConditionalVariance_new f1) (FiniteConditionalVariance_new f2). + Proof. + intros ??. + unfold FiniteConditionalVariance_new. + apply FiniteConditionalExpectation_ext. + intros ?. + unfold rvsqr, rvminus, rvplus, rvopp, rvscale. + do 3 f_equal. + now apply FiniteConditionalExpectation_ext. + Qed. + + Lemma FiniteVariance_new_eq (f : Ts -> R) + {rv : RandomVariable dom borel_sa f} + {isl : IsLp prts 2 f} : + ConditionalVariance f = (fun x : Ts => FiniteConditionalVariance_new f x). + Proof. + apply FiniteCondexp_eq. + Qed. + Theorem FiniteCondexp_cond_exp (f : Ts -> R) {rv : RandomVariable dom borel_sa f} {isfe:IsFiniteExpectation prts f}