From 6d8e328a945eba82c70025f45f1907773b0426e1 Mon Sep 17 00:00:00 2001 From: Barry Trager Date: Thu, 5 Dec 2024 13:45:52 -0500 Subject: [PATCH] scaled norm instead of pos_scaled_Rvector_max_abs --- coq/QLearn/jaakkola_vector.v | 17 ++++++++++------- 1 file changed, 10 insertions(+), 7 deletions(-) diff --git a/coq/QLearn/jaakkola_vector.v b/coq/QLearn/jaakkola_vector.v index 2f28c47a..3cbc0855 100644 --- a/coq/QLearn/jaakkola_vector.v +++ b/coq/QLearn/jaakkola_vector.v @@ -6122,6 +6122,9 @@ Section jaakola_vector2. Definition pos_scaled_Rvector_max_abs {n} (x : vector R n) (y :vector posreal n) : R := Rvector_max_abs (pos_Rvector_mult x y). + Definition scaled_norm {n} (x : vector R n) (y :vector posreal n) : R := + Rvector_max_abs (pos_Rvector_mult x y). + Definition pos_vec {n} (x : vector posreal n) : vector R n := vector_map pos x. Lemma pos_scaled_vec_isfincondexp {n} (W : vector posreal n) (dom2 : SigmaAlgebra Ts) (sub : sa_sub dom2 dom) @@ -6455,8 +6458,8 @@ Section jaakola_vector2. almost prts (fun ω => (forall k, - (pos_scaled_Rvector_max_abs ((vector_FiniteConditionalExpectation _ (filt_sub k) (XF k)) ω) W) < - (γ * (pos_scaled_Rvector_max_abs (X k ω) W)))) -> + (scaled_norm((vector_FiniteConditionalExpectation _ (filt_sub k) (XF k)) ω) W) < + (γ * (scaled_norm(X k ω) W)))) -> (forall i pf, is_lim_seq'_uniform_almost (fun n ω => sum_n (fun k => rvsqr (vecrvnth i pf (α k)) ω) n) (fun ω => Lim_seq (sum_n (fun k => rvsqr (vecrvnth i pf (α k)) ω)))) -> @@ -6469,7 +6472,7 @@ Section jaakola_vector2. (fun ω => (forall k i pf, ((FiniteConditionalVariance_new prts (filt_sub k) (vecrvnth i pf (XF k))) ω) - <= (C * (1 + pos_scaled_Rvector_max_abs (X k ω) W)^2)))) -> + <= (C * (1 + scaled_norm(X k ω) W)^2)))) -> (forall k, rv_eq (X (S k)) (vecrvplus (vecrvminus (X k) (vecrvmult (α k) (X k))) (vecrvmult (β k) (XF k) ))) -> almost prts (fun ω => @@ -6801,7 +6804,7 @@ Proof. { unfold rvscale, const. apply Rmult_le_compat_l with (r := (vector_nth i pf W)²) in H4. - - replace (pos_scaled_Rvector_max_abs (X k x) W) with + - replace (scaled_norm(X k x) W) with (Rvector_max_abs (X' k x)) in H4 by reflexivity. rewrite (Rmult_comm C), Rmult_assoc. eapply Rle_trans; cycle 1. @@ -7022,8 +7025,8 @@ Proof. almost prts (fun ω => (forall k, - (pos_scaled_Rvector_max_abs ((vector_FiniteConditionalExpectation prts (filt_sub k) (XF k) (rv := vec_rvXF_I filt_sub XF k) (isfe := vec_isfe XF (vec_rvXF_I := vec_rvXF_I filt_sub XF) k)) ω) W) < - (γ * (pos_scaled_Rvector_max_abs (X k ω) W))))) -> + (scaled_norm((vector_FiniteConditionalExpectation prts (filt_sub k) (XF k) (rv := vec_rvXF_I filt_sub XF k) (isfe := vec_isfe XF (vec_rvXF_I := vec_rvXF_I filt_sub XF) k)) ω) W) < + (γ * (scaled_norm(X k ω) W))))) -> (**r sum of α^2 converges almost always uniformly *) (forall i pf, @@ -7042,7 +7045,7 @@ Proof. (fun ω => (forall k i pf, ((FiniteConditionalVariance_new prts (filt_sub k) (vecrvnth i pf (XF k)) (rv := vecrvnth_rv i pf (XF k) (rv := vec_rvXF_I filt_sub XF k))) ω) - <= (C * (1 + pos_scaled_Rvector_max_abs (X k ω) W)^2)))) -> + <= (C * (1 + scaled_norm(X k ω) W)^2)))) -> (**r X (k + 1) = (1 - α_κ) * Χ (k) + β_k * XF (k) *) (forall k, rv_eq (X (S k))