diff --git a/coq/QLearn/jaakkola_vector.v b/coq/QLearn/jaakkola_vector.v index f5cd7d8d..3be13bb8 100644 --- a/coq/QLearn/jaakkola_vector.v +++ b/coq/QLearn/jaakkola_vector.v @@ -3413,28 +3413,6 @@ Section jaakola_vector2. rewrite Rmult_assoc in H. rewrite Rinv_l in H; lra. Qed. - - Lemma lemm3_counter_helper (α : nat -> Ts -> R) (d : posreal) - (rvα : forall n, RandomVariable dom borel_sa (α n)) : - (forall t ω, 0 <= α t ω <= 1) -> - (forall ω, l1_divergent (fun n : nat => α n ω)) -> - (forall t, IsFiniteExpectation prts (α t)) -> - let β := fun t => rvscale d (α t) in - (forall n, RandomVariable dom borel_sa (β n)) /\ - (forall ω, l1_divergent (fun n : nat => β n ω)) /\ - (forall t, IsFiniteExpectation prts (β t)). - Proof. - intros. - split. - - intros. - now apply rvscale_rv. - - split. - + intros. - now apply l1_divergent_scale. - + intros. - now apply IsFiniteExpectation_scale. - Qed. - Lemma isfe_beta (α : R) (d1 d2 : R) (ev : event dom) : let β := rvplus @@ -3459,18 +3437,21 @@ Section jaakola_vector2. Lemma lemma3_counter (α : nat -> R) (C : posreal) : (forall t, 0 <= α t < 1) -> l1_divergent (fun n : nat => α n) -> + ex_series (fun n : nat => Rsqr (α n)) -> (exists (ev : event dom), 0 < ps_P ev <= 0.5) -> exists (β X : nat -> Ts -> R), exists (isfeβ : forall t, IsFiniteExpectation prts (β t)), exists (rvX : forall t, RandomVariable dom borel_sa (X t)), (forall n, RandomVariable dom borel_sa (β n)) /\ - (forall ω, l1_divergent (fun n : nat => β n ω)) /\ + (forall ω, l1_divergent (fun n : nat => β n ω)) /\ + (forall ω, ex_series (fun n : nat => Rsqr (β n ω))) /\ (forall n, rv_eq (X (S n)) (rvplus (rvscale (1 - (α n)) (X n)) (rvscale C (β n)))) /\ + (forall n ω, 0 <= β n ω) /\ (forall n, FiniteExpectation prts (β n) <= FiniteExpectation prts (const (α n))) /\ ps_P (event_le dom (rvlim X) C) < 1. Proof. @@ -3484,7 +3465,7 @@ Section jaakola_vector2. (* destruct (lemma3_counter_prob_choice d1 d2 d1_gt1 d2_lt1) as [p [??]]. *) - destruct H1 as [ev ?]. + destruct H2 as [ev ?]. pose (β := fun n => rvplus (rvscale (d1 * (α n)) @@ -3527,110 +3508,133 @@ Section jaakola_vector2. + now apply rvscale_rv. } exists rvX. - split; trivial. + split;trivial. split. - intros. unfold β. assert (d1 > 0) by lra. assert (d2 > 0) by (compute; lra). - generalize (l1_divergent_scale α (mkposreal _ H3) H0); intros. - generalize (l1_divergent_scale α (mkposreal _ H4) H0); intros. - simpl in H5; simpl in H6. + generalize (l1_divergent_scale α (mkposreal _ H4) H0); intros. + generalize (l1_divergent_scale α (mkposreal _ H5) H0); intros. + simpl in H6; simpl in H7. unfold rvplus, rvscale, EventIndicator, event_complement, pre_event_complement; simpl. repeat match_destr; try tauto. - + revert H5. + + revert H6. apply is_lim_seq_ext; intros ?. apply sum_n_ext; intros ?. lra. - + revert H6. + + revert H7. apply is_lim_seq_ext; intros ?. apply sum_n_ext; intros ?. lra. - split. + intros. - reflexivity. - + split. + unfold β. + unfold rvplus, rvscale, EventIndicator, event_complement, pre_event_complement; simpl. + repeat match_destr; try tauto. + * generalize (ex_series_scal_r (Rsqr d1) _ H1). + apply ex_series_ext. + intros. + unfold Rsqr; lra. + * generalize (ex_series_scal_r (Rsqr d2) _ H1). + apply ex_series_ext. + intros. + unfold Rsqr; lra. + + split; [intros; reflexivity|]. + split. * intros. unfold β. - erewrite FiniteExpectation_plus'. - erewrite FiniteExpectation_scale. - erewrite FiniteExpectation_scale. - erewrite FiniteExpectation_indicator. - erewrite FiniteExpectation_indicator. - rewrite ps_complement. - rewrite FiniteExpectation_const. - assert (ps_P ev*d1 + (1 - ps_P ev)*d2 <= 1). - { - eapply Rle_trans; cycle 1. - apply H2. - replace (ps_P ev * d1 + (1 - ps_P ev) * d2) with - (d2 + (ps_P ev)* ( d1 - d2)) by lra. - replace (p * d1 + (1 - p) * d2) with - (d2 + p * ( d1 - d2)) by lra. - apply Rplus_le_compat_l. - apply Rmult_le_compat_r; try lra. - now unfold p. - } - apply Rmult_le_compat_l with (r := α n) in H3; try lra. - apply H. - -- apply rvscale_rv. - apply EventIndicator_rv. - -- apply rvscale_rv. - apply EventIndicator_rv. - -- apply rvplus_rv. + unfold rvplus, rvscale, EventIndicator, event_complement, pre_event_complement; simpl. + repeat match_destr; try tauto. + -- rewrite Rmult_0_r, Rplus_0_r, Rmult_1_r. + apply Rmult_le_pos; try lra. + apply H. + -- rewrite Rmult_0_r, Rplus_0_l, Rmult_1_r. + apply Rmult_le_pos. + ++ compute; lra. + ++ apply H. + * split. + -- intros. + unfold β. + erewrite FiniteExpectation_plus'. + erewrite FiniteExpectation_scale. + erewrite FiniteExpectation_scale. + erewrite FiniteExpectation_indicator. + erewrite FiniteExpectation_indicator. + rewrite ps_complement. + rewrite FiniteExpectation_const. + assert (ps_P ev*d1 + (1 - ps_P ev)*d2 <= 1). + { + eapply Rle_trans; cycle 1. + apply H3. + replace (ps_P ev * d1 + (1 - ps_P ev) * d2) with + (d2 + (ps_P ev)* ( d1 - d2)) by lra. + replace (p * d1 + (1 - p) * d2) with + (d2 + p * ( d1 - d2)) by lra. + apply Rplus_le_compat_l. + apply Rmult_le_compat_r; try lra. + now unfold p. + } + apply Rmult_le_compat_l with (r := α n) in H4; try lra. + apply H. ++ apply rvscale_rv. - apply EventIndicator_rv. + apply EventIndicator_rv. ++ apply rvscale_rv. - apply EventIndicator_rv. - * assert (forall ω, ev ω -> (rvlim X ω) > C). - { - intros. - unfold rvlim. - pose (XX := fix XX (n : nat) : R := - match n with - | 0%nat => pos C - | S n0 => (1 - α n0) * (XX n0) - + (C * d1 * (α n0)) - end : R). - assert (forall n, - X n ω = XX n). - { - intros. - induction n. - - now simpl. - - simpl. - rv_unfold. - rewrite IHn. - f_equal. - rewrite Rmult_assoc. - f_equal. - unfold β. - unfold event_complement, pre_event_complement; simpl. - repeat match_destr; try tauto. - lra. - } - rewrite (Lim_seq_ext _ _ H4). - generalize (lemma3_helper_iter_conv XX α (d1 * C) H H0); intros. - cut_to H5. - - apply is_lim_seq_unique in H5. - assert (is_finite (Lim_seq (fun n : nat => XX n))). - { - rewrite H5. - now simpl. - } - rewrite <- H6 in H5. - rewrite Rbar_finite_eq in H5. - replace (Lim_seq XX) with (Lim_seq (fun n => XX n)). - + rewrite H5. - generalize (cond_pos C); intros. - apply Rmult_gt_compat_r with (r := C) in d1_gt1; lra. - + apply Lim_seq_ext. - reflexivity. - - intros. - simpl. - rv_unfold. - ring. - } + apply EventIndicator_rv. + ++ apply rvplus_rv. + ** apply rvscale_rv. + apply EventIndicator_rv. + ** apply rvscale_rv. + apply EventIndicator_rv. + -- assert (forall ω, ev ω -> (rvlim X ω) > C). + { + intros. + unfold rvlim. + pose (XX := fix XX (n : nat) : R := + match n with + | 0%nat => pos C + | S n0 => (1 - α n0) * (XX n0) + + (C * d1 * (α n0)) + end : R). + assert (forall n, + X n ω = XX n). + { + intros. + induction n. + - now simpl. + - simpl. + rv_unfold. + rewrite IHn. + f_equal. + rewrite Rmult_assoc. + f_equal. + unfold β. + unfold event_complement, pre_event_complement; simpl. + repeat match_destr; try tauto. + lra. + } + rewrite (Lim_seq_ext _ _ H5). + generalize (lemma3_helper_iter_conv XX α (d1 * C) H H0); intros. + cut_to H6. + - apply is_lim_seq_unique in H6. + assert (is_finite (Lim_seq (fun n : nat => XX n))). + { + rewrite H6. + now simpl. + } + rewrite <- H7 in H6. + rewrite Rbar_finite_eq in H6. + replace (Lim_seq XX) with (Lim_seq (fun n => XX n)). + + rewrite H6. + generalize (cond_pos C); intros. + apply Rmult_gt_compat_r with (r := C) in d1_gt1; lra. + + apply Lim_seq_ext. + reflexivity. + - intros. + simpl. + rv_unfold. + ring. + } cut (ps_P (event_le dom (rvlim X) C) <= ps_P (event_complement ev)). { @@ -3640,7 +3644,7 @@ Section jaakola_vector2. apply ps_sub; intros ?; simpl. unfold pre_event_complement. intros ??. - specialize (H3 _ H5). + specialize (H4 _ H6). lra. Qed.