From 5054ac6eea1f3c2e422e2703f586bfb95398e1b2 Mon Sep 17 00:00:00 2001 From: Barry Trager Date: Mon, 2 Dec 2024 12:02:23 -0500 Subject: [PATCH] wip --- coq/QLearn/Tsitsiklis.v | 61 ++++++++++++++++++++++++++++++----------- 1 file changed, 45 insertions(+), 16 deletions(-) diff --git a/coq/QLearn/Tsitsiklis.v b/coq/QLearn/Tsitsiklis.v index 03ae92b2..51bd69a7 100644 --- a/coq/QLearn/Tsitsiklis.v +++ b/coq/QLearn/Tsitsiklis.v @@ -647,37 +647,66 @@ Proof. Qed. Lemma uniform_converge_sum_sq_tails (α : nat -> Ts -> R) : - (forall (n:nat), almostR2 prts Rle (const 0) (α n)) -> - (forall ω, is_finite (Lim_seq (sum_n (fun k => rvsqr (α k) ω)))) -> + almost prts (fun ω => ex_series (fun k => rvsqr (α k) ω)) -> let A := fun ω => Lim_seq (sum_n (fun k => rvsqr (α k) ω)) in + is_lim_seq'_uniform_almost (fun n => fun ω => sum_n (fun k => rvsqr (α k) ω) n) A -> forall (eps : posreal), eventually (fun n => almostR2 prts Rbar_le (fun ω : Ts => Lim_seq (sum_n (fun n0 : nat => (α (S n + n0)%nat ω)²))) (const eps)). Proof. - intros alpha_pos lim_fin A uniform eps. - assert (0 < eps/2). - { - generalize (cond_pos eps); intros; lra. - } - specialize (uniform (mkposreal _ H)). + intros ex_ser A uniform eps. + specialize (uniform eps). revert uniform. apply eventually_impl. apply all_eventually; intros ?. apply almost_impl. - apply almost_forall in alpha_pos. - revert alpha_pos; apply almost_impl. + revert ex_ser; apply almost_impl. apply all_almost; intros ???. - simpl in H1. rv_unfold'_in_star. - assert (Lim_seq (sum_n (fun n0 : nat => (α (S x + n0)%nat x0)²)) = - Rbar_minus (Lim_seq (sum_n (fun k : nat => (α k x0)²))) - (sum_n (fun k : nat => (α k x0)²) x)). + destruct H. + rewrite series_seq in H. + apply is_lim_seq_unique in H. + assert (Lim_seq (sum_n (fun k : nat => (α k x0)²)) = + Rbar_plus (sum_n (fun k : nat => (α k x0)²) x) + (Lim_seq (sum_n (fun n0 : nat => (α (S x + n0)%nat x0)²)))). { admit. } - rewrite H2. - rewrite <- lim_fin. + assert (is_finite (Lim_seq (sum_n (fun n0 : nat => (α (S x + n0)%nat x0)²)))). + { + apply is_finite_Lim_bounded with (m := 0) (M := x1). + intros. + admit. + } + assert (Lim_seq (sum_n (fun n0 : nat => (α (S x + n0)%nat x0)²)) = + Rbar_minus (A x0) (sum_n (fun k : nat => (α k x0)²) x)). + { + unfold A. + rewrite H1. + rewrite <- H2; simpl. + rewrite Rbar_finite_eq. + lra. + } + rewrite H3. + unfold A. + rewrite H. + simpl. + unfold A in H0. + rewrite H, Rabs_minus_sym, Rabs_right in H0; simpl in H0; try lra. + rewrite <- H. + rewrite H1. + rewrite <- H2. simpl. + ring_simplify. + generalize (Lim_seq_pos (sum_n (fun n0 : nat => (α (S (x + n0)) x0)²))); intros. + rewrite <- H2 in H4. + simpl in H4. + apply Rle_ge. + apply H4. + intros. + apply sum_n_nneg. + intros. + apply Rle_0_sqr. Admitted. Lemma lemma1_alpha_beta_shift (α β w B W : nat -> Ts -> R) (Ca Cb : R)