From 3497e43fd5e66cd88a5628a8ac42a73d19c1a4ea Mon Sep 17 00:00:00 2001 From: Barry Trager Date: Wed, 4 Dec 2024 17:27:15 -0500 Subject: [PATCH] wip --- coq/QLearn/jaakkola_vector.v | 123 ++++++++++++++++++++++++++++++++++- 1 file changed, 122 insertions(+), 1 deletion(-) diff --git a/coq/QLearn/jaakkola_vector.v b/coq/QLearn/jaakkola_vector.v index 4daadec8..a0d98acf 100644 --- a/coq/QLearn/jaakkola_vector.v +++ b/coq/QLearn/jaakkola_vector.v @@ -6928,5 +6928,126 @@ Proof. + unfold XF', pos_Rvector_mult. now rewrite Rvector_mult_assoc. Qed. - + + Instance vec_rvXF_I + {F : nat -> SigmaAlgebra Ts} + (filt_sub : forall k, sa_sub (F k) dom) + (XF : nat -> Ts -> vector R (S N)) + {rvXF : forall k, RandomVariable (F (S k)) (Rvector_borel_sa (S N)) (XF k)} : + forall k, RandomVariable dom (Rvector_borel_sa (S N)) (XF k). + Proof. + intros. + now apply (RandomVariable_sa_sub (filt_sub (S k))). + Qed. + + Instance rvXF_I + {F : nat -> SigmaAlgebra Ts} + (filt_sub : forall k, sa_sub (F k) dom) + (XF : nat -> Ts -> vector R (S N)) + {rvXF : forall k, RandomVariable (F (S k)) (Rvector_borel_sa (S N)) (XF k)} : + forall k i pf, RandomVariable dom borel_sa (vecrvnth i pf (XF k)). + Proof. + intros. + apply (RandomVariable_sa_sub (filt_sub (S k))). + now apply vecrvnth_rv. + Qed. + + Instance vec_isfe (XF : nat -> Ts -> vector R (S N)) + {isl2 : forall k i pf, IsLp prts 2 (vecrvnth i pf (XF k))} + {vec_rvXF_I : forall k, RandomVariable dom (Rvector_borel_sa (S N)) (XF k)} : + forall k, vector_IsFiniteExpectation prts (XF k). + Proof. + intros. + apply vector_nth_IsFiniteExpectation. + intros. + specialize (isl2 k i pf). + assert (RandomVariable dom borel_sa (vecrvnth i pf (XF k))). + { + now apply vecrvnth_rv. + } + now apply IsL2_Finite. + Qed. + + Theorem Jaakkola_alpha_beta_unbounded_uniformly_W_alt (W : vector posreal (S N)) + (γ : R) + (X XF α β : nat -> Ts -> vector R (S N)) + {F : nat -> SigmaAlgebra Ts} + (isfilt : IsFiltration F) + (filt_sub : forall k, sa_sub (F k) dom) + (adapt_alpha : IsAdapted (Rvector_borel_sa (S N)) α F) + (adapt_beta : IsAdapted (Rvector_borel_sa (S N)) β F) + {rvX0 : RandomVariable (F 0%nat) (Rvector_borel_sa (S N)) (X 0%nat)} + {isl2 : forall k i pf, IsLp prts 2 (vecrvnth i pf (XF k))} + {rvXF : forall k, RandomVariable (F (S k)) (Rvector_borel_sa (S N)) (XF k)} +(* should be able to remove following *) + {vec_rvXF_I : forall k, RandomVariable dom (Rvector_borel_sa (S N)) (XF k)} +(* {vec_isfe : forall k, vector_IsFiniteExpectation prts (XF k)} *) : + + 0 < γ < 1 -> + + almost prts (fun ω => forall k i pf, 0 <= vector_nth i pf (α k ω)) -> + almost prts (fun ω => forall k i pf, 0 <= vector_nth i pf (β k ω)) -> + + almost prts (fun ω => forall k i pf, vector_nth i pf (β k ω) <= vector_nth i pf (α k ω)) -> + + almost prts (fun ω => forall i pf, is_lim_seq (sum_n (fun k => vector_nth i pf (α k ω))) p_infty) -> + almost prts (fun ω => forall i pf, is_lim_seq (sum_n (fun k => vector_nth i pf (β k ω))) p_infty) -> + (forall i pf, almost prts (fun ω => ex_series (fun n => Rsqr (vector_nth i pf (α n ω))))) -> + (forall i pf, almost prts (fun ω => ex_series (fun n => Rsqr (vector_nth i pf (β n ω))))) -> + almost prts + (fun ω => + (forall k, + (pos_scaled_Rvector_max_abs ((vector_FiniteConditionalExpectation _ (filt_sub k) (XF k) (* (rv := vec_rvXF_I filt_sub XF k) *)) ω) W) < + (γ * (pos_scaled_Rvector_max_abs (X k ω) W)))) -> + (forall i pf, + is_lim_seq'_uniform_almost (fun n ω => sum_n (fun k => rvsqr (vecrvnth i pf (α k)) ω) n) + (fun ω => Lim_seq (sum_n (fun k => rvsqr (vecrvnth i pf (α k)) ω)))) -> + (forall i pf, + is_lim_seq'_uniform_almost (fun n ω => sum_n (fun k => rvsqr (vecrvnth i pf (β k)) ω) n) + (fun ω => Lim_seq (sum_n (fun k => rvsqr (vecrvnth i pf (β k)) ω)))) -> + (exists (C : R), + (0 < C) /\ + almost prts + (fun ω => + (forall k i pf, + ((FiniteConditionalVariance_new prts (filt_sub k) (vecrvnth i pf (XF k)) (rv := rvXF_I filt_sub XF k i pf)) ω) + <= (C * (1 + pos_scaled_Rvector_max_abs (X k ω) W)^2)))) -> + (forall k, rv_eq (X (S k)) + (vecrvplus (vecrvminus (X k) (vecrvmult (α k) (X k))) (vecrvmult (β k) (XF k) ))) -> + almost prts (fun ω => + forall i pf, + is_lim_seq (fun m => vector_nth i pf (X m ω)) 0). + Proof. + intros. + apply (Jaakkola_alpha_beta_unbounded_uniformly_W W γ X XF α β isfilt filt_sub) with (isl2 := isl2) (vec_rvXF_I := vec_rvXF_I) (vec_isfe := vec_isfe XF). + - trivial. + - trivial. + - trivial. + - trivial. + - trivial. + - trivial. + - trivial. + - trivial. + - trivial. + - trivial. + - trivial. + - trivial. + - trivial. + - trivial. + - trivial. + - destruct H10 as [C [??]]. + exists C. + split. + + trivial. + + revert H12. + apply almost_impl; apply all_almost; intros ??. + intros. + specialize (H12 k i pf). + eapply Rle_trans; cycle 1. + apply H12. + right. + admit. + - trivial. +Admitted. + End jaakola_vector2.