diff --git a/coq/QLearn/jaakkola_vector.v b/coq/QLearn/jaakkola_vector.v index fac3b189..52161e33 100644 --- a/coq/QLearn/jaakkola_vector.v +++ b/coq/QLearn/jaakkola_vector.v @@ -6940,18 +6940,6 @@ Proof. now apply (RandomVariable_sa_sub (filt_sub (S k))). Qed. - Instance rvXF_I - {F : nat -> SigmaAlgebra Ts} - (filt_sub : forall k, sa_sub (F k) dom) - (XF : nat -> Ts -> vector R (S N)) - {rvXF : forall k, RandomVariable (F (S k)) (Rvector_borel_sa (S N)) (XF k)} : - forall k i pf, RandomVariable dom borel_sa (vecrvnth i pf (XF k)). - Proof. - intros. - apply (RandomVariable_sa_sub (filt_sub (S k))). - now apply vecrvnth_rv. - Qed. - Instance vec_isfe (XF : nat -> Ts -> vector R (S N)) {isl2 : forall k i pf, IsLp prts 2 (vecrvnth i pf (XF k))} {vec_rvXF_I : forall k, RandomVariable dom (Rvector_borel_sa (S N)) (XF k)} : @@ -7006,7 +6994,7 @@ Proof. almost prts (fun ω => (forall k i pf, - ((FiniteConditionalVariance_new prts (filt_sub k) (vecrvnth i pf (XF k)) (rv := rvXF_I filt_sub XF k i pf)) ω) + ((FiniteConditionalVariance_new prts (filt_sub k) (vecrvnth i pf (XF k)) (rv := vecrvnth_rv i pf (XF k) (rv := vec_rvXF_I filt_sub XF k))) ω) <= (C * (1 + pos_scaled_Rvector_max_abs (X k ω) W)^2)))) -> (forall k, rv_eq (X (S k)) (vecrvplus (vecrvminus (X k) (vecrvmult (α k) (X k))) (vecrvmult (β k) (XF k) ))) -> @@ -7015,37 +7003,8 @@ Proof. is_lim_seq (fun m => vector_nth i pf (X m ω)) 0). Proof. intros. - apply (Jaakkola_alpha_beta_unbounded_uniformly_W W γ X XF α β isfilt filt_sub) + now apply (Jaakkola_alpha_beta_unbounded_uniformly_W W γ X XF α β isfilt filt_sub) with (isl2 := isl2) (vec_rvXF_I := vec_rvXF_I filt_sub XF) (vec_isfe := vec_isfe XF (vec_rvXF_I := vec_rvXF_I filt_sub XF)). - - trivial. - - trivial. - - trivial. - - trivial. - - trivial. - - trivial. - - trivial. - - trivial. - - trivial. - - trivial. - - trivial. - - trivial. - - trivial. - - trivial. - - trivial. - - destruct H10 as [C [??]]. - exists C. - split. - + trivial. - + revert H12. - apply almost_impl; apply all_almost; intros ??. - intros. - specialize (H12 k i pf). - eapply Rle_trans; cycle 1. - apply H12. - right. - f_equal. - apply proof_irrelevance. - - trivial. Qed. End jaakola_vector2.