-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
55 lines (45 loc) · 1.84 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from PIL import Image, ImageOps, ImageFilter
from torch import nn, optim
import torch
import torchvision
import torchvision.transforms as transforms
class BarlowTwins(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.backbone = torchvision.models.wide_resnet50_2(zero_init_residual=True)
self.backbone.fc = nn.Identity()
## Added with RoFormerExp
# projector
sizes = [2048] + list(map(int, args.projector.split('-')))
layers = []
for i in range(len(sizes) - 2):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=False))
layers.append(nn.BatchNorm1d(sizes[i + 1]))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Linear(sizes[-2], sizes[-1], bias=False))
self.projector = nn.Sequential(*layers)
# normalization layer for the representations z1 and z2
self.bn = nn.BatchNorm1d(sizes[-1], affine=False)
def forward(self, y1, y2):
testy = self.backbone(y1)
z1 = self.projector(self.backbone(y1))
z2 = self.projector(self.backbone(y2))
# empirical cross-correlation matrix
c = self.bn(z1).T @ self.bn(z2)#
# sum the cross-correlation matrix between all gpus
c.div_(self.args.batch_size)
if self.args.parallel:
torch.distributed.all_reduce(c)
on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
off_diag = off_diagonal(c).pow_(2).sum()
loss = on_diag + self.args.lambd * off_diag
if not self.args.evaluate:
return loss
else:
return z1, z2, loss
def off_diagonal(x):
# return a flattened view of the off-diagonal elements of a square matrix
n, m = x.shape
assert n == m
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()