-
Notifications
You must be signed in to change notification settings - Fork 28
/
interpolate_video.py
95 lines (70 loc) · 3.4 KB
/
interpolate_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import argparse
from PIL import Image
import torch
from torchvision import transforms
import models
import os
from torchvision.utils import save_image as imwrite
from torch.autograd import Variable
parser = argparse.ArgumentParser(description='Video Interpolation')
parser.add_argument('--gpu_id', type=int, default=0)
parser.add_argument('--model', type=str, default='adacofnet')
parser.add_argument('--checkpoint', type=str, default='./checkpoint/kernelsize_5/ckpt.pth')
parser.add_argument('--config', type=str, default='./checkpoint/kernelsize_5/config.txt')
parser.add_argument('--kernel_size', type=int, default=5)
parser.add_argument('--dilation', type=int, default=1)
parser.add_argument('--index_from', type=int, default=0, help='when index starts from 1 or 0 or else')
parser.add_argument('--zpad', type=int, default=3, help='zero padding of frame name.')
parser.add_argument('--input_video', type=str, default='./sample_video')
parser.add_argument('--output_video', type=str, default='./interpolated_video')
transform = transforms.Compose([transforms.ToTensor()])
def to_variable(x):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x)
def main():
args = parser.parse_args()
torch.cuda.set_device(args.gpu_id)
config_file = open(args.config, 'r')
while True:
line = config_file.readline()
if not line:
break
if line.find(':') == 0:
continue
else:
tmp_list = line.split(': ')
if tmp_list[0] == 'kernel_size':
args.kernel_size = int(tmp_list[1])
if tmp_list[0] == 'flow_num':
args.flow_num = int(tmp_list[1])
if tmp_list[0] == 'dilation':
args.dilation = int(tmp_list[1])
config_file.close()
model = models.Model(args)
print('Loading the model...')
checkpoint = torch.load(args.checkpoint, map_location=torch.device('cpu'))
model.load(checkpoint['state_dict'])
base_dir = args.input_video
if not os.path.exists(args.output_video):
os.makedirs(args.output_video)
frame_len = len([name for name in os.listdir(base_dir) if os.path.isfile(os.path.join(base_dir, name))])
for idx in range(frame_len - 1):
idx += args.index_from
print(idx, '/', frame_len - 1, end='\r')
frame_name1 = base_dir + '/' + str(idx).zfill(args.zpad) + '.png'
frame_name2 = base_dir + '/' + str(idx + 1).zfill(args.zpad) + '.png'
frame1 = to_variable(transform(Image.open(frame_name1)).unsqueeze(0))
frame2 = to_variable(transform(Image.open(frame_name2)).unsqueeze(0))
model.eval()
frame_out = model(frame1, frame2)
# interpolate
imwrite(frame1.clone(), args.output_video + '/' + str((idx - args.index_from) * 2 + args.index_from).zfill(args.zpad) + '.png', range=(0, 1))
imwrite(frame_out.clone(), args.output_video + '/' + str((idx - args.index_from) * 2 + 1 + args.index_from).zfill(args.zpad) + '.png', range=(0, 1))
# last frame
print(frame_len - 1, '/', frame_len - 1)
frame_name_last = base_dir + '/' + str(frame_len + args.index_from - 1).zfill(args.zpad) + '.png'
frame_last = to_variable(transform(Image.open(frame_name_last)).unsqueeze(0))
imwrite(frame_last.clone(), args.output_video + '/' + str((frame_len - 1) * 2 + args.index_from).zfill(args.zpad) + '.png', range=(0, 1))
if __name__ == "__main__":
main()