-
Notifications
You must be signed in to change notification settings - Fork 132
/
training_NPM3D.py
executable file
·261 lines (184 loc) · 6.19 KB
/
training_NPM3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Callable script to start a training on NPM3D dataset
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Hugues THOMAS - 11/06/2018
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Imports and global variables
# \**********************************/
#
# Common libs
import time
import os
import sys
import numpy as np
from sklearn.metrics import confusion_matrix
# Custom libs
from utils.config import Config
from utils.trainer import ModelTrainer
from models.KPFCNN_model import KernelPointFCNN
# Dataset
from datasets.NPM3D import NPM3DDataset
# ----------------------------------------------------------------------------------------------------------------------
#
# Config Class
# \******************/
#
class NPM3DConfig(Config):
"""
Override the parameters you want to modify for this dataset
"""
####################
# Dataset parameters
####################
# Dataset name in the format 'ShapeNetPart_Object' to segment an object class independently or 'ShapeNetPart_multi'
# to segment all objects with a single model.
dataset = 'NPM3D'
# Number of classes in the dataset (This value is overwritten by dataset class when initiating input pipeline).
num_classes = None
# Type of task performed on this dataset (also overwritten)
network_model = None
# Number of CPU threads for the input pipeline
input_threads = 8
#########################
# Architecture definition
#########################
# Define layers
architecture = ['simple',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb_strided',
'resnetb_deformable',
'resnetb_deformable_strided',
'resnetb_deformable',
'resnetb_deformable_strided',
'resnetb_deformable',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary']
# KPConv specific parameters
num_kernel_points = 15
first_subsampling_dl = 0.08
in_radius = 4.0
# Density of neighborhoods for deformable convs (which need bigger radiuses). For normal conv we use KP_extent
density_parameter = 5.0
# Behavior of convolutions in ('constant', 'linear', gaussian)
KP_influence = 'linear'
KP_extent = 1.0
# Behavior of convolutions in ('closest', 'sum')
convolution_mode = 'sum'
# Can the network learn modulations
modulated = False
# Offset loss
# 'permissive' only constrains offsets inside the big radius
# 'fitting' helps deformed kernels to adapt to the geometry by penalizing distance to input points
offsets_loss = 'fitting'
offsets_decay = 0.1
# Choice of input features
in_features_dim = 1
# Batch normalization parameters
use_batch_norm = True
batch_norm_momentum = 0.98
#####################
# Training parameters
#####################
# Maximal number of epochs
max_epoch = 600
# Learning rate management
learning_rate = 1e-2
momentum = 0.98
lr_decays = {i: 0.1**(1/100) for i in range(1, max_epoch)}
grad_clip_norm = 100.0
# Number of batch
batch_num = 8
# Number of steps per epochs (cannot be None for this dataset)
epoch_steps = 500
# Number of validation examples per epoch
validation_size = 50
# Number of epoch between each snapshot
snapshot_gap = 50
# Augmentations
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = 'vertical'
augment_scale_min = 0.9
augment_scale_max = 1.1
augment_noise = 0.01
augment_occlusion = 'none'
augment_color = 1.0
# Whether to use loss averaged on all points, or averaged per batch.
batch_averaged_loss = False
# Do we nee to save convergence
saving = True
saving_path = None
# ----------------------------------------------------------------------------------------------------------------------
#
# Main Call
# \***************/
#
if __name__ == '__main__':
##########################
# Initiate the environment
##########################
# Choose which gpu to use
GPU_ID = '0'
# Set GPU visible device
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
# Enable/Disable warnings (set level to '0'/'3')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0'
###########################
# Load the model parameters
###########################
config = NPM3DConfig()
##############
# Prepare Data
##############
print()
print('Dataset Preparation')
print('*******************')
# Initiate dataset configuration
dataset = NPM3DDataset(config.input_threads, load_test=False)
# Create subsampled input clouds
dl0 = config.first_subsampling_dl
dataset.load_subsampled_clouds(dl0)
# Initialize input pipelines
dataset.init_input_pipeline(config)
# Test the input pipeline alone with this debug function
# dataset.check_input_pipeline_timing(config)
##############
# Define Model
##############
print('Creating Model')
print('**************\n')
t1 = time.time()
# Model class
model = KernelPointFCNN(dataset.flat_inputs, config)
# Trainer class
trainer = ModelTrainer(model)
t2 = time.time()
print('\n----------------')
print('Done in {:.1f} s'.format(t2 - t1))
print('----------------\n')
################
# Start training
################
print('Start Training')
print('**************\n')
trainer.train(model, dataset)