-
Notifications
You must be signed in to change notification settings - Fork 9
/
ChatBot.py
162 lines (137 loc) · 5.66 KB
/
ChatBot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
import numpy
import tflearn
import random
import tensorflow
import json
import pickle
import autocorrect
from autocorrect import spell
import speech_recognition as sr
import pyttsx3
from DbConnect import PnrStatus
with open("intents.json") as file:
data = json.load(file)
try:
with open("data.pickle" , "rb") as f:
words , labels , training , output = pickle.load(f)
except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w not in "?"]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x , doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
with open("data.pickle" , "wb") as f:
pickle.dump((words , labels , training , output),f)
tensorflow.reset_default_graph()
net = tflearn.input_data(shape = [None , len(training[0])])
net = tflearn.fully_connected(net,8)
net = tflearn.fully_connected(net ,8)
net = tflearn.fully_connected(net,len(output[0]), activation="softmax" , name='my_output')
net = tflearn.regression(net,optimizer="adam")
model = tflearn.DNN(net)
try:
model.load("model.tflearn")
except:
model.fit(training , output , n_epoch=1000 , batch_size=8 , show_metric=True)
model.save("model.tflearn")
def bag_of_words(s,words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(words.lower()) for words in s_words]
for se in s_words:
for i , w in enumerate(words):
if w==se:
bag[i] = 1
return numpy.array(bag)
def chat():
print("start taliking with bot!")
while(True):
r = sr.Recognizer()
with sr.Microphone() as source:
r.adjust_for_ambient_noise(source,duration=1)
print("Say Something")
audio = r.listen(source)
try:
inp = r.recognize_google(audio)
print("you : "+inp)
except:
chat()
if inp.lower() == "quit":
break
result = model.predict([bag_of_words(inp , words)])[0]
results_index = numpy.argmax(result)
tag = labels[results_index]
if result[results_index] > 0.6:
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg["responses"]
bot_response = random.choice(responses)
print("Railway Support : "+bot_response)
if(bot_response=="Please provide me your PNR" or bot_response=="Can I know your PNR"):
engine = pyttsx3.init()
en_voice_id = "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\TTS_MS_EN-US_ZIRA_11.0"
engine.setProperty('voice',en_voice_id)
engine.say(bot_response)
engine.setProperty('rate',120)
engine.setProperty('volume', 0.9)
engine.runAndWait()
obj = PnrStatus()
obj.getStatus()
elif(bot_response=="Please provide me train number"):
engine = pyttsx3.init()
en_voice_id = "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\TTS_MS_EN-US_ZIRA_11.0"
engine.setProperty('voice',en_voice_id)
engine.say(bot_response)
engine.setProperty('rate',120)
engine.setProperty('volume', 0.9)
engine.runAndWait()
obj1 = PnrStatus()
obj1.getTrainStatus()
else:
engine = pyttsx3.init()
en_voice_id = "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\TTS_MS_EN-US_ZIRA_11.0"
engine.setProperty('voice',en_voice_id)
engine.say(bot_response)
engine.setProperty('rate',120)
engine.setProperty('volume', 0.9)
engine.runAndWait()
else:
engine = pyttsx3.init()
print("I didn't get that , try again,\ Developer is still working on me !!")
en_voice_id = "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\TTS_MS_EN-US_ZIRA_11.0"
engine.setProperty('voice',en_voice_id)
engine.say("I didn't get that , try again, Developer is still working on me !!")
engine.setProperty('rate',120)
engine.setProperty('volume', 0.9)
engine.runAndWait()
chat()