-
Notifications
You must be signed in to change notification settings - Fork 1
/
util.py
executable file
·159 lines (130 loc) · 4.04 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import math
import numpy as np
import cv2
def get_area_from_coord(x1, x2, y1, y2):
if x2 < x1 or y2 < y1:
print("Wrong in GET AREA")
exit()
return (x2 - x1 + 1.0) * (y2 - y1 + 1.0)
def get_area_from_bbx(bbx):
# bbx = [x_left, x_right, y_top, y_bottom]
x1 = bbx[0]
x2 = bbx[1]
y1 = bbx[2]
y2 = bbx[3]
return get_area_from_coord(x1, x2, y1, y2)
def get_mask_area_in_img(img):
return cv2.countNonZero(img)
def get_wh_ratio_from_coord(x1, x2, y1, y2):
w = x2 - x1 + 1
h = y2 - y1 + 1
_max = max(w, h)
_min = min(w, h)
return _max * 1.0 / _min
def vector2d_dis(v1, v2):
return math.sqrt((v1[0] - v2[0]) ** 2 + (v1[1] - v2[1]) ** 2)
def get_centroid_from_bbx(bbx):
x_left, x_right, y_top, y_bottom = bbx
w = x_right - x_left + 1
h = y_bottom - y_top + 1
xc = x_left + w / 2
yc = y_top + h / 2
return [xc, yc]
def dist_btwn_bbx_centroids(bbx1, bbx2):
# when it's from kalman filter, usually bbx1 = predicted_bbx, bbx2 = detected_bbx
c1 = get_centroid_from_bbx(bbx1) # 获取中心点
c2 = get_centroid_from_bbx(bbx2)
return vector2d_dis(c1, c2)
def check_instance_identical(instance1, instance2, threshold):
bbx1 = instance1.get_latest_bbx()
bbx2 = instance2.get_latest_bbx()
dist = np.linalg.norm(np.array(bbx1) - np.array(bbx2))
return dist < threshold
def check_instance_identical_by_iou(instance1, instance2, iou_threshold):
bbx1 = instance1.get_latest_bbx()
bbx2 = instance2.get_latest_bbx()
iou = get_iou(bbx1, bbx2)
if iou >= iou_threshold:
return True
else:
return False
def check_bbxes_identical_by_ios(bbx_ins, bbx_det, ios_threshold):
ios = get_ios(bbx_det, bbx_ins)
if ios >= ios_threshold:
return True
else:
return False
def check_blob_identical_by_ios(blob_ins, blob, ios_threshold):
ios = get_ios(blob, blob_ins)
if ios >= ios_threshold:
return True
else:
return False
def get_iou(bbx1, bbx2):
# bbx = [left, right, top, bottom]
# if there's no intersection
if bbx1[0] > bbx2[1] \
or bbx1[1] < bbx2[0] \
or bbx1[2] > bbx2[3] \
or bbx1[3] < bbx2[2]:
return 0
x_min = max(bbx1[0], bbx2[0])
x_max = min(bbx1[1], bbx2[1])
y_min = max(bbx1[2], bbx2[2])
y_max = min(bbx1[3], bbx2[3])
# area of intersection rectangle
inter_area = (x_max - x_min + 1.0) * (y_max - y_min + 1.0)
# area of two bbxes
bbx1_area = get_area_from_bbx(bbx1)
bbx2_area = get_area_from_bbx(bbx2)
# get iou
iou = inter_area / float(bbx1_area + bbx2_area - inter_area)
return iou
def get_ios(bbx1, bbx2):
# intersection over itSelf
# we return ios for the first argument
# if there's no intersection
if bbx1[0] > bbx2[1] \
or bbx1[1] < bbx2[0] \
or bbx1[2] > bbx2[3] \
or bbx1[3] < bbx2[2]:
return 0
x_min = max(bbx1[0], bbx2[0])
x_max = min(bbx1[1], bbx2[1])
y_min = max(bbx1[2], bbx2[2])
y_max = min(bbx1[3], bbx2[3])
# area of intersection rectangle
inter_area = (x_max - x_min + 1.0) * (y_max - y_min + 1.0)
# area of bbx1
bbx1_area = get_area_from_bbx(bbx1)
# get ios
ios = inter_area * 1.0 / bbx1_area
return ios
def get_sum_still(bbx1, bbx2):
sum = 0
size1 = len(bbx1)
size2 = len(bbx2)
if size1 != size2:
print("Wrong size in GET_SUM_STILL'")
exit(0)
for i in range(0, size1):
sum += abs(bbx1[i] - bbx2[i])
return sum
def get_vector_from_two_points(p1, p2):
# p1: [x1, y1]
# p2: [x2, y2]
vec = [p1[0] - p2[0], p1[1] - p2[1]]
return vec
def get_angle_from_two_vectors(vec1, vec2):
vec = np.dot(np.array(vec1), np.array(vec2)) / np.linalg.norm(vec1) / np.linalg.norm(vec2)
rad = np.arccos(np.clip(vec, -1, 1))
deg = rad * 180 / math.pi
return deg
def get_maxiou_id(id_iou):
iou=[]
for ll in id_iou:
iou.append(ll[1])
if len(iou) !=0:
return(np.argmax(iou))
else :
return None