-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha_preprocess_1.py
40 lines (36 loc) · 1.97 KB
/
a_preprocess_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import sys
import os
sys.path.append(os.getcwd())
import numpy as np
import shutil
from config import config
from a_preprocess.Correction import Do_N4BiasFieldCorrection
def Image_registration(input_folder, output_folter, No_registration='flair', overwrite=False, find_label=True):
All_Pathological_Type = ['HGG', 'LGG']
# 寻找图片文件夹路径
for Pathological_type in All_Pathological_Type:
for img_folder in os.listdir(os.path.join(input_folder, Pathological_type)):
input_img_folder_path = os.path.join(input_folder, Pathological_type, img_folder)
output_img_folder_path = os.path.join(output_folter, Pathological_type, img_folder)
# 是否覆盖
if not os.path.exists(output_img_folder_path) or overwrite:
if not os.path.exists(output_img_folder_path):
os.makedirs(output_img_folder_path)
# 寻找图片路径
for suffix in config["data_file_suffix"]:
input_img_path = os.path.join(input_img_folder_path, "*" + suffix + ".nii.gz")
output_img_path = os.path.join(output_img_folder_path, "*" + suffix + ".nii.gz")
if suffix != No_registration:
print('N4')
# Do_N4BiasFieldCorrection(input_img_path, output_img_path, image_type=sitk.sitkFloat64)
else:
print('copy')
# shutil.copy(input_img_path, output_img_path)
if find_label:
input_img_path = os.path.join(input_img_folder_path, "*seg" + ".nii.gz")
output_img_path = os.path.join(output_img_folder_path, "*seg" + ".nii.gz")
# shutil.copy(input_img_path, output_img_path)
print('label')
pass
if __name__ == '__main__':
Image_registration('f_data/original', 'f_data/preprocessed_N4B', overwrite=True, find_label=True)