forked from ZouJiu1/Mask_face_recognitionZ
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsoftnms_pytorch.py
108 lines (86 loc) · 3.45 KB
/
softnms_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# -*- coding:utf-8 -*-
# Author:Richard Fang
import time
import numpy as np
import torch
def soft_nms_pytorch(dets, box_scores, sigma=0.5, thresh=0.001, cuda=0):
"""
Build a pytorch implement of Soft NMS algorithm.
# Augments
dets: boxes coordinate tensor (format:[y1, x1, y2, x2])
box_scores: box score tensors
sigma: variance of Gaussian function
thresh: score thresh
cuda: CUDA flag
# Return
the index of the selected boxes
"""
# Indexes concatenate boxes with the last column
N = dets.shape[0]
if cuda:
indexes = torch.arange(0, N, dtype=torch.float).cuda().view(N, 1)
else:
indexes = torch.arange(0, N, dtype=torch.float).view(N, 1)
dets = torch.cat((dets, indexes), dim=1)
# The order of boxes coordinate is [y1,x1,y2,x2]
y1 = dets[:, 0]
x1 = dets[:, 1]
y2 = dets[:, 2]
x2 = dets[:, 3]
scores = box_scores
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
for i in range(N):
# intermediate parameters for later parameters exchange
tscore = scores[i].clone()
pos = i + 1
if i != N - 1:
maxscore, maxpos = torch.max(scores[pos:], dim=0)
if tscore < maxscore:
dets[i], dets[maxpos.item() + i + 1] = dets[maxpos.item() + i + 1].clone(), dets[i].clone()
scores[i], scores[maxpos.item() + i + 1] = scores[maxpos.item() + i + 1].clone(), scores[i].clone()
areas[i], areas[maxpos + i + 1] = areas[maxpos + i + 1].clone(), areas[i].clone()
# IoU calculate
yy1 = np.maximum(dets[i, 0].to("cpu").numpy(), dets[pos:, 0].to("cpu").numpy())
xx1 = np.maximum(dets[i, 1].to("cpu").numpy(), dets[pos:, 1].to("cpu").numpy())
yy2 = np.minimum(dets[i, 2].to("cpu").numpy(), dets[pos:, 2].to("cpu").numpy())
xx2 = np.minimum(dets[i, 3].to("cpu").numpy(), dets[pos:, 3].to("cpu").numpy())
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = torch.tensor(w * h).cuda() if cuda else torch.tensor(w * h)
ovr = torch.div(inter, (areas[i] + areas[pos:] - inter))
# Gaussian decay
weight = torch.exp(-(ovr * ovr) / sigma)
scores[pos:] = weight * scores[pos:]
# select the boxes and keep the corresponding indexes
keep = dets[:, 4][scores > thresh].int()
return keep
def speed():
boxes = 1000 * torch.rand((1000, 100, 4), dtype=torch.float)
boxscores = torch.rand((1000, 100), dtype=torch.float)
# cuda flag
cuda = 1 if torch.cuda.is_available() else 0
if cuda:
boxes = boxes.cuda()
boxscores = boxscores.cuda()
start = time.time()
for i in range(1000):
soft_nms_pytorch(boxes[i], boxscores[i], cuda=cuda)
end = time.time()
print("Average run time: %f ms" % (end - start))
def test():
# boxes and boxscores
boxes = torch.tensor([[200, 200, 400, 400],
[220, 220, 420, 420],
[200, 240, 400, 440],
[240, 200, 440, 400],
[1, 1, 2, 2]], dtype=torch.float)
boxscores = torch.tensor([0.8, 0.7, 0.6, 0.5, 0.9], dtype=torch.float)
# cuda flag
cuda = 1 if torch.cuda.is_available() else 0
if cuda:
boxes = boxes.cuda()
boxscores = boxscores.cuda()
print(soft_nms_pytorch(boxes, boxscores, cuda=cuda))
if __name__ == '__main__':
test()
# speed()