-
Notifications
You must be signed in to change notification settings - Fork 21
/
single-machine-and-multi-GPU-DataParallel.py
87 lines (72 loc) · 2.91 KB
/
single-machine-and-multi-GPU-DataParallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
from model import NeuralNetwork
def train(dataloader, model, loss_fn, optimizer, device):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device) # copy data from cpu to gpu
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn, device):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device) # copy data from cpu to gpu
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
if __name__ == '__main__':
# initialize dataset
training_data = datasets.FashionMNIST(root="data", train=True, download=True, transform=ToTensor())
test_data = datasets.FashionMNIST(root="data", train=False, download=True, transform=ToTensor())
# initialize data loader
batch_size = 64
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
# [*] Get multiple GPU device for training.
n_gpu = torch.cuda.device_count()
device = torch.device('cuda:0' if n_gpu > 0 else 'cpu')
device_ids = list(range(n_gpu))
print("n_gpu: {}".format(n_gpu))
# initialize model
model = NeuralNetwork().to(device) # copy model from cpu to gpu
# [*] copy model to multi-GPU
if len(device_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=device_ids)
print(model)
# initialize optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
# train on multiple-GPU
epochs = 5
for t in range(epochs):
print(f"Epoch {t + 1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer, device)
test(test_dataloader, model, loss_fn, device)
print("Done!")
# save model
# [*] save model with multi-GPU
if isinstance(model, torch.nn.DataParallel):
model_state_dict = model.module.state_dict()
else:
model_state_dict = model.state_dict()
torch.save(model_state_dict, "model.pth")
print("Saved PyTorch Model State to model.pth")