package java.util;
import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;
public class HashMap<K, V> extends AbstractMap<K, V>
implements Map<K, V>, Cloneable, Serializable {
//序列化ID
private static final long serialVersionUID = 362498820763181265L;
//哈希桶数组的默认容量
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//网上很多文章都说这个值是哈希桶数组能够达到的最大容量,其实这样说并不准确
//从 resize() 方法的扩容机制可以看出来,HashMap 每次扩容都是将数组的现有容量增大一倍
//如果现有容量已大于或等于 MAXIMUM_CAPACITY ,则不允许再次扩容
//否则即使此次扩容会导致容量超出 MAXIMUM_CAPACITY ,那也是允许的
static final int MAXIMUM_CAPACITY = 1 << 30;
//装载因子的默认值
//装载因子用于规定数组在自动扩容之前可以数据占有其容量的最高比例,即当数据量占有数组的容量达到这个比例后,数组将自动扩容
//装载因子衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小
//对于使用链表的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,则对空间的利用程度更高,相对应的是查找效率的降低
//如果负载因子太小,那么数组的数据将过于稀疏,对空间的利用率低
//官方默认的负载因子为0.75,是平衡空间利用率和运行效率两者之后的结果
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//为了提高效率,当链表的长度超出这个值时,就将链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
static final int UNTREEIFY_THRESHOLD = 6;
//哈希桶数组,在第一次使用时才初始化
//容量值应是2的整数倍
transient Node<K, V>[] table;
/**
* Holds cached entrySet(). Note that AbstractMap fields are used
* for keySet() and values().
*/
transient Set<Map.Entry<K, V>> entrySet;
//Map的大小
transient int size;
//每当Map的结构发生变化时,此参数就会递增
//当在对Map进行迭代操作时,迭代器会检查此参数值
//如果检查到此参数的值发生变化,就说明在迭代的过程中Map的结构发生了变化,因此会直接抛出异常
transient int modCount;
//数组的扩容临界点,当数组的数据量达到这个值时就会进行扩容操作
//计算方法:当前容量 x 装载因子
int threshold;
//使用的装载因子值
final float loadFactor;
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
*/
static final int MIN_TREEIFY_CAPACITY = 64;
//结点
static class Node<K, V> implements Map.Entry<K, V> {
//当前结点的 key 的哈希值
final int hash;
//键
final K key;
//值
V value;
//下一个结点
Node<K, V> next;
Node(int hash, K key, V value, Node<K, V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() {
return key;
}
public final V getValue() {
return value;
}
public final String toString() {
return key + "=" + value;
}
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
//计算哈希值
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
/**
* Returns x's Class if it is of the form "class C implements
* Comparable<C>", else null.
*/
static Class<?> comparableClassFor(Object x) {
if (x instanceof Comparable) {
Class<?> c;
Type[] ts, as;
Type t;
ParameterizedType p;
if ((c = x.getClass()) == String.class) // bypass checks
return c;
if ((ts = c.getGenericInterfaces()) != null) {
for (int i = 0; i < ts.length; ++i) {
if (((t = ts[i]) instanceof ParameterizedType) &&
((p = (ParameterizedType) t).getRawType() ==
Comparable.class) &&
(as = p.getActualTypeArguments()) != null &&
as.length == 1 && as[0] == c) // type arg is c
return c;
}
}
}
return null;
}
/**
* Returns k.compareTo(x) if x matches kc (k's screened comparable
* class), else 0.
*/
@SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparable
static int compareComparables(Class<?> kc, Object k, Object x) {
return (x == null || x.getClass() != kc ? 0 :
((Comparable) k).compareTo(x));
}
//根据参数 cap 获取与之相近的2的幂次方数, 因为 HashMap 要求数组的容量必须为2的幂次方
//返回值不一定会是与 cap 最近的偶数值
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
//设置Map的初始化大小和装载因子
public HashMap(int initialCapacity, float loadFactor) {
//检查参数合法性
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
//设置Map的初始化大小
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//都使用默认值
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
}
//传入初始数据
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
/**
* Implements Map.putAll and Map constructor
*
* @param m the map
* @param evict false when initially constructing this map, else
* true (relayed to method afterNodeInsertion).
*/
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
//还未进行过初始化
if (table == null) {
float ft = ((float) s / loadFactor) + 1.0F;
int t = ((ft < (float) MAXIMUM_CAPACITY) ?
(int) ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
} else if (s > threshold) //如果已超如极限扩容值,则进行扩容
resize();
//依次遍历存值
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
//获取Map的大小
public int size() {
return size;
}
//Map是否为空
public boolean isEmpty() {
return size == 0;
}
//根据 key 值获取 Value
public V get(Object key) {
Node<K, V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
//查找指定结点
final Node<K, V> getNode(int hash, Object key) {
Node<K, V>[] tab;
Node<K, V> first, e;
int n;
K k;
//只有当 table 不为空且 hash 对应的位置不为 null 才有可获取的元素值
if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) {
//如果头结点的 hash 值与 Key 与待插入数据相等的话,则说明找到了对应值
if (first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k))))
return first;
// != null 说明存在哈希冲突
if ((e = first.next) != null) {
//如果是由红黑树来处理哈希冲突,则由此查找相应结点
if (first instanceof TreeNode)
return ((TreeNode<K, V>) first).getTreeNode(hash, key);
//遍历链表
do {
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
//判断Map是否包含键值 Key
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}
//插入数据
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent 为 true 表示不会覆盖有相同 key 的非 null value,否则会覆盖原有值
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
Node<K, V>[] tab;
Node<K, V> p;
int n, i;
//如果 table 还未初始化,则调用 resize 方法进行初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//判断要存入的 key 是否存在哈希冲突,等于 null 说明不存在冲突
if ((p = tab[i = (n - 1) & hash]) == null)
//直接在索引 i 处构建包含待存入元素的结点
tab[i] = newNode(hash, key, value, null);
else { //走入本分支,说明待存入的 key 存在哈希冲突
Node<K, V> e;
K k;
//p 值已在上一个 if 语句中赋值了,此处就直接来判断 key 值之间的相等性
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
//指向冲突的头结点
e = p;
//如果头结点的 key 与待插入的 key 不相等,且头结点是 TreeNode 类型,说明该 hash 值是采用红黑树来处理冲突
else if (p instanceof TreeNode)
//如果红黑数中包含有相同 key 的结点,则返回该结点,否则返回 null
e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);
else { //采用链表来处理 hash 值冲突
for (int binCount = 0; ; ++binCount) {
//当遍历到链表尾部时
if ((e = p.next) == null) {
//构建一个新的结点添加到链表尾部
p.next = newNode(hash, key, value, null);
//如果链表的长度已达到允许的最大长度 TREEIFY_THRESHOLD - 1 时,就将链表转换为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//当 e 指向的结点的 key 值与待插入的 key 相等时则跳出循环
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//如果 e != null,说明原先已存在相同 key 的键
if (e != null) {
V oldValue = e.value;
//只有当 onlyIfAbsent 为 true 且 oldValue 不为 null 时才不会覆盖原有值
if (!onlyIfAbsent || oldValue == null)
e.value = value;
//用于 LinkedHashMap ,在 HashMap 中是空实现
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//当元素数量达到扩容临界点时,需要进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
//用于初始化 table 或者对之进行扩容
//并返回新的数组
final Node<K, V>[] resize() {
//扩容前的数组
Node<K, V>[] oldTab = table;
//扩容前数组的容量
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//扩容前Map的扩容临界值
int oldThr = threshold;
//扩容后数组的容量和扩容临界值
int newCap, newThr = 0;
if (oldCap > 0) {
//oldCap > 0 对应的是 table 已被初始化的情况,此时是来判断是否需要进行扩容
//如果数组已达到最大容量,则不再进行扩容,并将扩容临界点 threshold 提升到 Integer.MAX_VALUE,结束
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
} else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) {
//如果将数组的现有容量提升到现在的两倍依然小于允许的最大容量,而且现有容量大于或等于默认容量
//则将数组的容量和扩容临界值均提升为原先的两倍
newThr = oldThr << 1;
}
//此处应该还有一种情况
//即将数组的现有容量提升到现在的两倍后大于 MAXIMUM_CAPACITY 的情况
//此时 newThr 等于 0,newCap 等于 oldCap 的两倍值
//此处并没有对 newCap 的数值进行还原,说明 HashMap 是允许扩容后容量超出 MAXIMUM_CAPACITY 的
//只是在现有容量超出 MAXIMUM_CAPACITY 后,不允许再次进行扩容
} else if (oldThr > 0) {
//oldCap <= 0 && oldThr > 0 对应的是 table 还未被初始化,且在调用构造函数时有传入初始化大小 initialCapacity 或者包含原始数据的 Map 的情况
//这导致了 threshold 被赋值 (tableSizeFor 方法)
//此时就直接将Map的容量提升为 threshold,在后边重新计算新的扩容临界值
newCap = oldThr;
} else {
//oldCap <= 0 && oldThr <= 0 对应的是 table 还未被初始化,且调用的是无参数的构造函数
//此时就将 table 的容量扩充到默认值大小,并使用默认的装载因子值来计算扩容临界值
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float) newCap * loadFactor;
//计算扩容后新的扩容临界值
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ? (int) ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes", "unchecked"})
Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap];
table = newTab;
//如果旧数组中存在值,则需要将其中的数据复制到新数组中
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K, V> e;
if ((e = oldTab[j]) != null) {
//将旧数组中的引用切换,帮助GC回收
oldTab[j] = null;
//e.next == null 说明元素 e 没有产生 hash 冲突,因此可以直接转移该元素
if (e.next == null)
//计算元素 e 在新数组中的位置
newTab[e.hash & (newCap - 1)] = e;
//e instanceof TreeNode 说明元素 e 有产生 hash 冲突,且使用红黑树管理冲突的元素
else if (e instanceof TreeNode)
((TreeNode<K, V>) e).split(this, newTab, j, oldCap);
//走入如下分支,说明元素 e 有产生 hash 冲突,且使用链表结构来管理冲突的元素
else {
Node<K, V> loHead = null, loTail = null;
Node<K, V> hiHead = null, hiTail = null;
Node<K, V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
} else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
/**
* Replaces all linked nodes in bin at index for given hash unless
* table is too small, in which case resizes instead.
*/
final void treeifyBin(Node<K, V>[] tab, int hash) {
int n, index;
Node<K, V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K, V> hd = null, tl = null;
do {
TreeNode<K, V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
/**
* Copies all of the mappings from the specified map to this map.
* These mappings will replace any mappings that this map had for
* any of the keys currently in the specified map.
*
* @param m mappings to be stored in this map
* @throws NullPointerException if the specified map is null
*/
public void putAll(Map<? extends K, ? extends V> m) {
putMapEntries(m, true);
}
/**
* Removes the mapping for the specified key from this map if present.
*
* @param key key whose mapping is to be removed from the map
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V remove(Object key) {
Node<K, V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
/**
* Implements Map.remove and related methods
*
* @param hash key 的哈希值
* @param key the key
* @param value key对应的值,只有当 matchValue 为 true 时才需要使用到,否则忽略该值
* @param matchValue 如果为 true ,则只有当 Map 中存在某个键 equals key 且 value 相等时才会移除该元素,否则只要 key 的 hash 值相等就直接移除该元素
* @param movable if false do not move other nodes while removing
* @return the node, or null if none
*/
final Node<K, V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K, V>[] tab;
Node<K, V> p;
int n, index;
//只有当 table 不为空且 hash 对应的索引位置存在值时才有可移除的对象
if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) {
Node<K, V> node = null, e;
K k;
V v;
//如果与头结点的 key 相等
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) { //存在哈希冲突
//用红黑树来处理哈希冲突
if (p instanceof TreeNode)
//查找对应结点
node = ((TreeNode<K, V>) p).getTreeNode(hash, key);
else { //用链表来处理哈希冲突
do {
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
//node != null 说明存在相应结点
//如果 matchValue 为 false ,则通过之前的判断可知查找到的结点的 key 与 参数 key 的哈希值一定相等,此处就可以直接移除结点 node
//如果 matchValue 为 true ,则当 value 相等时才需要移除该结点
if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) {
if (node instanceof TreeNode) //对应红黑树
((TreeNode<K, V>) node).removeTreeNode(this, tab, movable);
else if (node == p) //对应 key 与头结点相等的情况,此时直接将指针移向下一位即可
tab[index] = node.next;
else //对应的是链表的情况
p.next = node.next;
++modCount;
--size;
//用于 LinkedHashMap ,在 HashMap 中是空实现
afterNodeRemoval(node);
return node;
}
}
return null;
}
//清空数据
public void clear() {
Node<K, V>[] tab;
modCount++;
if ((tab = table) != null && size > 0) {
size = 0;
for (int i = 0; i < tab.length; ++i)
tab[i] = null;
}
}
//判断Map中是否包含值为 value 的结点
public boolean containsValue(Object value) {
Node<K, V>[] tab;
V v;
if ((tab = table) != null && size > 0) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K, V> e = tab[i]; e != null; e = e.next) {
if ((v = e.value) == value ||
(value != null && value.equals(v)))
return true;
}
}
}
return false;
}
/**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own <tt>remove</tt> operation), the results of
* the iteration are undefined. The set supports element removal,
* which removes the corresponding mapping from the map, via the
* <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
* <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
* operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
* operations.
*
* @return a set view of the keys contained in this map
*/
public Set<K> keySet() {
Set<K> ks = keySet;
if (ks == null) {
ks = new KeySet();
keySet = ks;
}
return ks;
}
final class KeySet extends AbstractSet<K> {
public final int size() {
return size;
}
public final void clear() {
HashMap.this.clear();
}
public final Iterator<K> iterator() {
return new KeyIterator();
}
public final boolean contains(Object o) {
return containsKey(o);
}
public final boolean remove(Object key) {
return removeNode(hash(key), key, null, false, true) != null;
}
public final Spliterator<K> spliterator() {
return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super K> action) {
Node<K, V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K, V> e = tab[i]; e != null; e = e.next)
action.accept(e.key);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}
/**
* Returns a {@link Collection} view of the values contained in this map.
* The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa. If the map is
* modified while an iteration over the collection is in progress
* (except through the iterator's own <tt>remove</tt> operation),
* the results of the iteration are undefined. The collection
* supports element removal, which removes the corresponding
* mapping from the map, via the <tt>Iterator.remove</tt>,
* <tt>Collection.remove</tt>, <tt>removeAll</tt>,
* <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
* support the <tt>add</tt> or <tt>addAll</tt> operations.
*
* @return a view of the values contained in this map
*/
public Collection<V> values() {
Collection<V> vs = values;
if (vs == null) {
vs = new Values();
values = vs;
}
return vs;
}
final class Values extends AbstractCollection<V> {
public final int size() {
return size;
}
public final void clear() {
HashMap.this.clear();
}
public final Iterator<V> iterator() {
return new ValueIterator();
}
public final boolean contains(Object o) {
return containsValue(o);
}
public final Spliterator<V> spliterator() {
return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super V> action) {
Node<K, V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K, V> e = tab[i]; e != null; e = e.next)
action.accept(e.value);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}
/**
* Returns a {@link Set} view of the mappings contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own <tt>remove</tt> operation, or through the
* <tt>setValue</tt> operation on a map entry returned by the
* iterator) the results of the iteration are undefined. The set
* supports element removal, which removes the corresponding
* mapping from the map, via the <tt>Iterator.remove</tt>,
* <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
* <tt>clear</tt> operations. It does not support the
* <tt>add</tt> or <tt>addAll</tt> operations.
*
* @return a set view of the mappings contained in this map
*/
public Set<Map.Entry<K, V>> entrySet() {
Set<Map.Entry<K, V>> es;
return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
}
final class EntrySet extends AbstractSet<Map.Entry<K, V>> {
public final int size() {
return size;
}
public final void clear() {
HashMap.this.clear();
}
public final Iterator<Map.Entry<K, V>> iterator() {
return new EntryIterator();
}
public final boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
Object key = e.getKey();
Node<K, V> candidate = getNode(hash(key), key);
return candidate != null && candidate.equals(e);
}
public final boolean remove(Object o) {
if (o instanceof Map.Entry) {
Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
Object key = e.getKey();
Object value = e.getValue();
return removeNode(hash(key), key, value, true, true) != null;
}
return false;
}
public final Spliterator<Map.Entry<K, V>> spliterator() {
return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super Map.Entry<K, V>> action) {
Node<K, V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K, V> e = tab[i]; e != null; e = e.next)
action.accept(e);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}
//获取 key 对应的结点值,如果不存在则返回默认值 defaultValue
@Override
public V getOrDefault(Object key, V defaultValue) {
Node<K, V> e;
return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
}
@Override
public V putIfAbsent(K key, V value) {
return putVal(hash(key), key, value, true, true);
}
@Override
public boolean remove(Object key, Object value) {
return removeNode(hash(key), key, value, true, true) != null;
}
@Override
public boolean replace(K key, V oldValue, V newValue) {
Node<K, V> e;
V v;
if ((e = getNode(hash(key), key)) != null &&
((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
e.value = newValue;
afterNodeAccess(e);
return true;
}
return false;
}
@Override
public V replace(K key, V value) {
Node<K, V> e;
if ((e = getNode(hash(key), key)) != null) {
V oldValue = e.value;
e.value = value;
afterNodeAccess(e);
return oldValue;
}
return null;
}
@Override
public V computeIfAbsent(K key,
Function<? super K, ? extends V> mappingFunction) {
if (mappingFunction == null)
throw new NullPointerException();
int hash = hash(key);
Node<K, V>[] tab;
Node<K, V> first;
int n, i;
int binCount = 0;
TreeNode<K, V> t = null;
Node<K, V> old = null;
if (size > threshold || (tab = table) == null ||
(n = tab.length) == 0)
n = (tab = resize()).length;
if ((first = tab[i = (n - 1) & hash]) != null) {
if (first instanceof TreeNode)
old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
else {
Node<K, V> e = first;
K k;
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
old = e;
break;
}
++binCount;
} while ((e = e.next) != null);
}
V oldValue;
if (old != null && (oldValue = old.value) != null) {
afterNodeAccess(old);
return oldValue;
}
}
V v = mappingFunction.apply(key);
if (v == null) {
return null;
} else if (old != null) {
old.value = v;
afterNodeAccess(old);
return v;
} else if (t != null)
t.putTreeVal(this, tab, hash, key, v);
else {
tab[i] = newNode(hash, key, v, first);
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
}
++modCount;
++size;
afterNodeInsertion(true);
return v;
}
public V computeIfPresent(K key,
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
if (remappingFunction == null)
throw new NullPointerException();
Node<K, V> e;
V oldValue;
int hash = hash(key);
if ((e = getNode(hash, key)) != null &&
(oldValue = e.value) != null) {
V v = remappingFunction.apply(key, oldValue);
if (v != null) {
e.value = v;
afterNodeAccess(e);
return v;
} else
removeNode(hash, key, null, false, true);
}
return null;
}
@Override
public V compute(K key,
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
if (remappingFunction == null)
throw new NullPointerException();
int hash = hash(key);
Node<K, V>[] tab;
Node<K, V> first;
int n, i;
int binCount = 0;
TreeNode<K, V> t = null;
Node<K, V> old = null;
if (size > threshold || (tab = table) == null ||
(n = tab.length) == 0)
n = (tab = resize()).length;
if ((first = tab[i = (n - 1) & hash]) != null) {
if (first instanceof TreeNode)
old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
else {
Node<K, V> e = first;
K k;
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
old = e;
break;
}
++binCount;
} while ((e = e.next) != null);
}
}
V oldValue = (old == null) ? null : old.value;
V v = remappingFunction.apply(key, oldValue);
if (old != null) {
if (v != null) {
old.value = v;
afterNodeAccess(old);
} else
removeNode(hash, key, null, false, true);
} else if (v != null) {
if (t != null)
t.putTreeVal(this, tab, hash, key, v);
else {
tab[i] = newNode(hash, key, v, first);
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
}
++modCount;
++size;
afterNodeInsertion(true);
}
return v;
}
@Override
public V merge(K key, V value,
BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
if (value == null)
throw new NullPointerException();
if (remappingFunction == null)
throw new NullPointerException();
int hash = hash(key);
Node<K, V>[] tab;
Node<K, V> first;
int n, i;
int binCount = 0;
TreeNode<K, V> t = null;
Node<K, V> old = null;
if (size > threshold || (tab = table) == null ||
(n = tab.length) == 0)
n = (tab = resize()).length;
if ((first = tab[i = (n - 1) & hash]) != null) {
if (first instanceof TreeNode)
old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
else {
Node<K, V> e = first;
K k;
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
old = e;
break;
}
++binCount;
} while ((e = e.next) != null);
}
}
if (old != null) {
V v;
if (old.value != null)
v = remappingFunction.apply(old.value, value);
else
v = value;
if (v != null) {
old.value = v;
afterNodeAccess(old);
} else
removeNode(hash, key, null, false, true);
return v;
}
if (value != null) {
if (t != null)
t.putTreeVal(this, tab, hash, key, value);
else {
tab[i] = newNode(hash, key, value, first);
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
}
++modCount;
++size;
afterNodeInsertion(true);
}
return value;
}
@Override
public void forEach(BiConsumer<? super K, ? super V> action) {
Node<K, V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K, V> e = tab[i]; e != null; e = e.next)
action.accept(e.key, e.value);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
@Override
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
Node<K, V>[] tab;
if (function == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K, V> e = tab[i]; e != null; e = e.next) {
e.value = function.apply(e.key, e.value);
}
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
/* ------------------------------------------------------------ */
// Cloning and serialization
/**
* Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
* values themselves are not cloned.
*
* @return a shallow copy of this map
*/
@SuppressWarnings("unchecked")
@Override
public Object clone() {
HashMap<K, V> result;
try {
result = (HashMap<K, V>) super.clone();
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
result.reinitialize();
result.putMapEntries(this, false);
return result;
}
// These methods are also used when serializing HashSets
//获取装载因子
final float loadFactor() {
return loadFactor;
}
//获取Map的当前容量
//当 table 已初始化时,返回 table 的数组长度
//当 table 还未初始化时,如果 threshold 大于 0,此时对应的是在调用构造函数时有传入初始化大小,则容量即为 threshold
//如果 threshold 小于 0,容量即为默认值
final int capacity() {
return (table != null) ? table.length : (threshold > 0) ? threshold : DEFAULT_INITIAL_CAPACITY;
}
/**
* Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
* serialize it).
*
* @serialData The <i>capacity</i> of the HashMap (the length of the
* bucket array) is emitted (int), followed by the
* <i>size</i> (an int, the number of key-value
* mappings), followed by the key (Object) and value (Object)
* for each key-value mapping. The key-value mappings are
* emitted in no particular order.
*/
private void writeObject(java.io.ObjectOutputStream s) throws IOException {
int buckets = capacity();
// Write out the threshold, loadfactor, and any hidden stuff
s.defaultWriteObject();
s.writeInt(buckets);
s.writeInt(size);
internalWriteEntries(s);
}
/**
* Reconstitute the {@code HashMap} instance from a stream (i.e.,
* deserialize it).
*/
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException {
// Read in the threshold (ignored), loadfactor, and any hidden stuff
s.defaultReadObject();
reinitialize();
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new InvalidObjectException("Illegal load factor: " +
loadFactor);
s.readInt(); // Read and ignore number of buckets
int mappings = s.readInt(); // Read number of mappings (size)
if (mappings < 0)
throw new InvalidObjectException("Illegal mappings count: " +
mappings);
else if (mappings > 0) { // (if zero, use defaults)
// Size the table using given load factor only if within
// range of 0.25...4.0
float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
float fc = (float) mappings / lf + 1.0f;
int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
DEFAULT_INITIAL_CAPACITY :
(fc >= MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY :
tableSizeFor((int) fc));
float ft = (float) cap * lf;
threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
(int) ft : Integer.MAX_VALUE);
@SuppressWarnings({"rawtypes", "unchecked"})
Node<K, V>[] tab = (Node<K, V>[]) new Node[cap];
table = tab;
// Read the keys and values, and put the mappings in the HashMap
for (int i = 0; i < mappings; i++) {
@SuppressWarnings("unchecked")
K key = (K) s.readObject();
@SuppressWarnings("unchecked")
V value = (V) s.readObject();
putVal(hash(key), key, value, false, false);
}
}
}
/* ------------------------------------------------------------ */
// iterators
abstract class HashIterator {
//current 指向的下一个结点
Node<K, V> next; // next entry to return
//当前结点
Node<K, V> current; // current entry
//用于判断Map的结构是否发生了变化
int expectedModCount; // for fast-fail
//当前索引
int index; // current slot
HashIterator() {
expectedModCount = modCount;
Node<K, V>[] t = table;
current = next = null;
index = 0;
if (t != null && size > 0) { // advance to first entry
do {
} while (index < t.length && (next = t[index++]) == null);
}
}
//是否还有下一个可获取的结点
public final boolean hasNext() {
return next != null;
}
//获取下一个结点
final Node<K, V> nextNode() {
Node<K, V>[] t;
Node<K, V> e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
//如果获取到下一个结点后,再下一个结点为 null
//则移动数组游标,移动到非 null 的元素索引处(table 中的元素并不是一定连续的)
if ((next = (current = e).next) == null && (t = table) != null) {
do {
} while (index < t.length && (next = t[index++]) == null);
}
return e;
}
//移除 current 指向的结点
public final void remove() {
Node<K, V> p = current;
if (p == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = null;
K key = p.key;
removeNode(hash(key), key, null, false, false);
expectedModCount = modCount;
}
}
//用于遍历 Key 的迭代器
final class KeyIterator extends HashIterator
implements Iterator<K> {
public final K next() {
return nextNode().key;
}
}
//用于遍历 value 的迭代器
final class ValueIterator extends HashIterator
implements Iterator<V> {
public final V next() {
return nextNode().value;
}
}
//用于遍历键值对的迭代器
final class EntryIterator extends HashIterator
implements Iterator<Map.Entry<K, V>> {
public final Map.Entry<K, V> next() {
return nextNode();
}
}
/* ------------------------------------------------------------ */
// spliterators
static class HashMapSpliterator<K, V> {
final HashMap<K, V> map;
Node<K, V> current; // current node
int index; // current index, modified on advance/split
int fence; // one past last index
int est; // size estimate
int expectedModCount; // for comodification checks
HashMapSpliterator(HashMap<K, V> m, int origin,
int fence, int est,
int expectedModCount) {
this.map = m;
this.index = origin;
this.fence = fence;
this.est = est;
this.expectedModCount = expectedModCount;
}
final int getFence() { // initialize fence and size on first use
int hi;
if ((hi = fence) < 0) {
HashMap<K, V> m = map;
est = m.size;
expectedModCount = m.modCount;
Node<K, V>[] tab = m.table;
hi = fence = (tab == null) ? 0 : tab.length;
}
return hi;
}
public final long estimateSize() {
getFence(); // force init
return (long) est;
}
}
static final class KeySpliterator<K, V>
extends HashMapSpliterator<K, V>
implements Spliterator<K> {
KeySpliterator(HashMap<K, V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}
public KeySpliterator<K, V> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid || current != null) ? null :
new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}
public void forEachRemaining(Consumer<? super K> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
HashMap<K, V> m = map;
Node<K, V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = (tab == null) ? 0 : tab.length;
} else
mc = expectedModCount;
if (tab != null && tab.length >= hi &&
(i = index) >= 0 && (i < (index = hi) || current != null)) {
Node<K, V> p = current;
current = null;
do {
if (p == null)
p = tab[i++];
else {
action.accept(p.key);
p = p.next;
}
} while (p != null || i < hi);
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
}
public boolean tryAdvance(Consumer<? super K> action) {
int hi;
if (action == null)
throw new NullPointerException();
Node<K, V>[] tab = map.table;
if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
K k = current.key;
current = current.next;
action.accept(k);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
return false;
}
public int characteristics() {
return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
Spliterator.DISTINCT;
}
}
static final class ValueSpliterator<K, V>
extends HashMapSpliterator<K, V>
implements Spliterator<V> {
ValueSpliterator(HashMap<K, V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}
public ValueSpliterator<K, V> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid || current != null) ? null :
new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}
public void forEachRemaining(Consumer<? super V> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
HashMap<K, V> m = map;
Node<K, V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = (tab == null) ? 0 : tab.length;
} else
mc = expectedModCount;
if (tab != null && tab.length >= hi &&
(i = index) >= 0 && (i < (index = hi) || current != null)) {
Node<K, V> p = current;
current = null;
do {
if (p == null)
p = tab[i++];
else {
action.accept(p.value);
p = p.next;
}
} while (p != null || i < hi);
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
}
public boolean tryAdvance(Consumer<? super V> action) {
int hi;
if (action == null)
throw new NullPointerException();
Node<K, V>[] tab = map.table;
if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
V v = current.value;
current = current.next;
action.accept(v);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
return false;
}
public int characteristics() {
return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
}
}
static final class EntrySpliterator<K, V>
extends HashMapSpliterator<K, V>
implements Spliterator<Map.Entry<K, V>> {
EntrySpliterator(HashMap<K, V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}
public EntrySpliterator<K, V> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid || current != null) ? null :
new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}
public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
HashMap<K, V> m = map;
Node<K, V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = (tab == null) ? 0 : tab.length;
} else
mc = expectedModCount;
if (tab != null && tab.length >= hi &&
(i = index) >= 0 && (i < (index = hi) || current != null)) {
Node<K, V> p = current;
current = null;
do {
if (p == null)
p = tab[i++];
else {
action.accept(p);
p = p.next;
}
} while (p != null || i < hi);
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
}
public boolean tryAdvance(Consumer<? super Map.Entry<K, V>> action) {
int hi;
if (action == null)
throw new NullPointerException();
Node<K, V>[] tab = map.table;
if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
Node<K, V> e = current;
current = current.next;
action.accept(e);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
return false;
}
public int characteristics() {
return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
Spliterator.DISTINCT;
}
}
/* ------------------------------------------------------------ */
// LinkedHashMap support
//构建结点
Node<K, V> newNode(int hash, K key, V value, Node<K, V> next) {
return new Node<>(hash, key, value, next);
}
// For conversion from TreeNodes to plain nodes
Node<K, V> replacementNode(Node<K, V> p, Node<K, V> next) {
return new Node<>(p.hash, p.key, p.value, next);
}
// Create a tree bin node
TreeNode<K, V> newTreeNode(int hash, K key, V value, Node<K, V> next) {
return new TreeNode<>(hash, key, value, next);
}
// For treeifyBin
TreeNode<K, V> replacementTreeNode(Node<K, V> p, Node<K, V> next) {
return new TreeNode<>(p.hash, p.key, p.value, next);
}
//清空数据,重置到初始状态
//在 clone() 和 readObject() 两个方法中被调用
void reinitialize() {
table = null;
entrySet = null;
keySet = null;
values = null;
modCount = 0;
threshold = 0;
size = 0;
}
// Callbacks to allow LinkedHashMap post-actions
void afterNodeAccess(Node<K, V> p) {
}
void afterNodeInsertion(boolean evict) {
}
void afterNodeRemoval(Node<K, V> p) {
}
// Called only from writeObject, to ensure compatible ordering.
void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
Node<K, V>[] tab;
if (size > 0 && (tab = table) != null) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K, V> e = tab[i]; e != null; e = e.next) {
s.writeObject(e.key);
s.writeObject(e.value);
}
}
}
}
/* ------------------------------------------------------------ */
// Tree bins
/**
* Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
* extends Node) so can be used as extension of either regular or
* linked node.
*/
static final class TreeNode<K, V> extends LinkedHashMap.Entry<K, V> {
//父亲结点
TreeNode<K, V> parent;
//左子树
TreeNode<K, V> left;
//右子树
TreeNode<K, V> right;
TreeNode<K, V> prev; // needed to unlink next upon deletion
//颜色属性
boolean red;
TreeNode(int hash, K key, V val, Node<K, V> next) {
super(hash, key, val, next);
}
/**
* Returns root of tree containing this node.
*/
final TreeNode<K, V> root() {
for (TreeNode<K, V> r = this, p; ; ) {
if ((p = r.parent) == null)
return r;
r = p;
}
}
/**
* Ensures that the given root is the first node of its bin.
*/
static <K, V> void moveRootToFront(Node<K, V>[] tab, TreeNode<K, V> root) {
int n;
if (root != null && tab != null && (n = tab.length) > 0) {
int index = (n - 1) & root.hash;
TreeNode<K, V> first = (TreeNode<K, V>) tab[index];
if (root != first) {
Node<K, V> rn;
tab[index] = root;
TreeNode<K, V> rp = root.prev;
if ((rn = root.next) != null)
((TreeNode<K, V>) rn).prev = rp;
if (rp != null)
rp.next = rn;
if (first != null)
first.prev = root;
root.next = first;
root.prev = null;
}
assert checkInvariants(root);
}
}
/**
* Finds the node starting at root p with the given hash and key.
* The kc argument caches comparableClassFor(key) upon first use
* comparing keys.
*/
final TreeNode<K, V> find(int h, Object k, Class<?> kc) {
TreeNode<K, V> p = this;
do {
int ph, dir;
K pk;
TreeNode<K, V> pl = p.left, pr = p.right, q;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.find(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
return null;
}
/**
* Calls find for root node.
*/
final TreeNode<K, V> getTreeNode(int h, Object k) {
return ((parent != null) ? root() : this).find(h, k, null);
}
/**
* Tie-breaking utility for ordering insertions when equal
* hashCodes and non-comparable. We don't require a total
* order, just a consistent insertion rule to maintain
* equivalence across rebalancings. Tie-breaking further than
* necessary simplifies testing a bit.
*/
static int tieBreakOrder(Object a, Object b) {
int d;
if (a == null || b == null ||
(d = a.getClass().getName().
compareTo(b.getClass().getName())) == 0)
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
-1 : 1);
return d;
}
/**
* Forms tree of the nodes linked from this node.
*
* @return root of tree
*/
final void treeify(Node<K, V>[] tab) {
TreeNode<K, V> root = null;
for (TreeNode<K, V> x = this, next; x != null; x = next) {
next = (TreeNode<K, V>) x.next;
x.left = x.right = null;
if (root == null) {
x.parent = null;
x.red = false;
root = x;
} else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K, V> p = root; ; ) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K, V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
root = balanceInsertion(root, x);
break;
}
}
}
}
moveRootToFront(tab, root);
}
/**
* Returns a list of non-TreeNodes replacing those linked from
* this node.
*/
final Node<K, V> untreeify(HashMap<K, V> map) {
Node<K, V> hd = null, tl = null;
for (Node<K, V> q = this; q != null; q = q.next) {
Node<K, V> p = map.replacementNode(q, null);
if (tl == null)
hd = p;
else
tl.next = p;
tl = p;
}
return hd;
}
/**
* Tree version of putVal.
*/
final TreeNode<K, V> putTreeVal(HashMap<K, V> map, Node<K, V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
TreeNode<K, V> root = (parent != null) ? root() : this;
for (TreeNode<K, V> p = root; ; ) {
int dir, ph;
K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K, V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}
TreeNode<K, V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K, V> xpn = xp.next;
TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K, V>) xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
/**
* Removes the given node, that must be present before this call.
* This is messier than typical red-black deletion code because we
* cannot swap the contents of an interior node with a leaf
* successor that is pinned by "next" pointers that are accessible
* independently during traversal. So instead we swap the tree
* linkages. If the current tree appears to have too few nodes,
* the bin is converted back to a plain bin. (The test triggers
* somewhere between 2 and 6 nodes, depending on tree structure).
*/
final void removeTreeNode(HashMap<K, V> map, Node<K, V>[] tab,
boolean movable) {
int n;
if (tab == null || (n = tab.length) == 0)
return;
int index = (n - 1) & hash;
TreeNode<K, V> first = (TreeNode<K, V>) tab[index], root = first, rl;
TreeNode<K, V> succ = (TreeNode<K, V>) next, pred = prev;
if (pred == null)
tab[index] = first = succ;
else
pred.next = succ;
if (succ != null)
succ.prev = pred;
if (first == null)
return;
if (root.parent != null)
root = root.root();
if (root == null || root.right == null ||
(rl = root.left) == null || rl.left == null) {
tab[index] = first.untreeify(map); // too small
return;
}
TreeNode<K, V> p = this, pl = left, pr = right, replacement;
if (pl != null && pr != null) {
TreeNode<K, V> s = pr, sl;
while ((sl = s.left) != null) // find successor
s = sl;
boolean c = s.red;
s.red = p.red;
p.red = c; // swap colors
TreeNode<K, V> sr = s.right;
TreeNode<K, V> pp = p.parent;
if (s == pr) { // p was s's direct parent
p.parent = s;
s.right = p;
} else {
TreeNode<K, V> sp = s.parent;
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
if ((p.right = sr) != null)
sr.parent = p;
if ((s.left = pl) != null)
pl.parent = s;
if ((s.parent = pp) == null)
root = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
if (sr != null)
replacement = sr;
else
replacement = p;
} else if (pl != null)
replacement = pl;
else if (pr != null)
replacement = pr;
else
replacement = p;
if (replacement != p) {
TreeNode<K, V> pp = replacement.parent = p.parent;
if (pp == null)
root = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
}
TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement);
if (replacement == p) { // detach
TreeNode<K, V> pp = p.parent;
p.parent = null;
if (pp != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
}
}
if (movable)
moveRootToFront(tab, r);
}
/**
* Splits nodes in a tree bin into lower and upper tree bins,
* or untreeifies if now too small. Called only from resize;
* see above discussion about split bits and indices.
*
* @param map the map
* @param tab the table for recording bin heads
* @param index the index of the table being split
* @param bit the bit of hash to split on
*/
final void split(HashMap<K, V> map, Node<K, V>[] tab, int index, int bit) {
TreeNode<K, V> b = this;
// Relink into lo and hi lists, preserving order
TreeNode<K, V> loHead = null, loTail = null;
TreeNode<K, V> hiHead = null, hiTail = null;
int lc = 0, hc = 0;
for (TreeNode<K, V> e = b, next; e != null; e = next) {
next = (TreeNode<K, V>) e.next;
e.next = null;
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
} else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}
if (loHead != null) {
if (lc <= UNTREEIFY_THRESHOLD)
tab[index] = loHead.untreeify(map);
else {
tab[index] = loHead;
if (hiHead != null) // (else is already treeified)
loHead.treeify(tab);
}
}
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}
/* ------------------------------------------------------------ */
// Red-black tree methods, all adapted from CLR
static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root,
TreeNode<K, V> p) {
TreeNode<K, V> r, pp, rl;
if (p != null && (r = p.right) != null) {
if ((rl = p.right = r.left) != null)
rl.parent = p;
if ((pp = r.parent = p.parent) == null)
(root = r).red = false;
else if (pp.left == p)
pp.left = r;
else
pp.right = r;
r.left = p;
p.parent = r;
}
return root;
}
static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root,
TreeNode<K, V> p) {
TreeNode<K, V> l, pp, lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
}
static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root,
TreeNode<K, V> x) {
x.red = true;
for (TreeNode<K, V> xp, xpp, xppl, xppr; ; ) {
if ((xp = x.parent) == null) {
x.red = false;
return x;
} else if (!xp.red || (xpp = xp.parent) == null)
return root;
if (xp == (xppl = xpp.left)) {
if ((xppr = xpp.right) != null && xppr.red) {
xppr.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
} else {
if (x == xp.right) {
root = rotateLeft(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
} else {
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
} else {
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
}
static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root,
TreeNode<K, V> x) {
for (TreeNode<K, V> xp, xpl, xpr; ; ) {
if (x == null || x == root)
return root;
else if ((xp = x.parent) == null) {
x.red = false;
return x;
} else if (x.red) {
x.red = false;
return root;
} else if ((xpl = xp.left) == x) {
if ((xpr = xp.right) != null && xpr.red) {
xpr.red = false;
xp.red = true;
root = rotateLeft(root, xp);
xpr = (xp = x.parent) == null ? null : xp.right;
}
if (xpr == null)
x = xp;
else {
TreeNode<K, V> sl = xpr.left, sr = xpr.right;
if ((sr == null || !sr.red) &&
(sl == null || !sl.red)) {
xpr.red = true;
x = xp;
} else {
if (sr == null || !sr.red) {
if (sl != null)
sl.red = false;
xpr.red = true;
root = rotateRight(root, xpr);
xpr = (xp = x.parent) == null ?
null : xp.right;
}
if (xpr != null) {
xpr.red = (xp == null) ? false : xp.red;
if ((sr = xpr.right) != null)
sr.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateLeft(root, xp);
}
x = root;
}
}
} else { // symmetric
if (xpl != null && xpl.red) {
xpl.red = false;
xp.red = true;
root = rotateRight(root, xp);
xpl = (xp = x.parent) == null ? null : xp.left;
}
if (xpl == null)
x = xp;
else {
TreeNode<K, V> sl = xpl.left, sr = xpl.right;
if ((sl == null || !sl.red) &&
(sr == null || !sr.red)) {
xpl.red = true;
x = xp;
} else {
if (sl == null || !sl.red) {
if (sr != null)
sr.red = false;
xpl.red = true;
root = rotateLeft(root, xpl);
xpl = (xp = x.parent) == null ?
null : xp.left;
}
if (xpl != null) {
xpl.red = (xp == null) ? false : xp.red;
if ((sl = xpl.left) != null)
sl.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateRight(root, xp);
}
x = root;
}
}
}
}
}
/**
* Recursive invariant check
*/
static <K, V> boolean checkInvariants(TreeNode<K, V> t) {
TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right,
tb = t.prev, tn = (TreeNode<K, V>) t.next;
if (tb != null && tb.next != t)
return false;
if (tn != null && tn.prev != t)
return false;
if (tp != null && t != tp.left && t != tp.right)
return false;
if (tl != null && (tl.parent != t || tl.hash > t.hash))
return false;
if (tr != null && (tr.parent != t || tr.hash < t.hash))
return false;
if (t.red && tl != null && tl.red && tr != null && tr.red)
return false;
if (tl != null && !checkInvariants(tl))
return false;
if (tr != null && !checkInvariants(tr))
return false;
return true;
}
}
}