-
Notifications
You must be signed in to change notification settings - Fork 14
/
batch_processor.py
executable file
·148 lines (117 loc) · 5.04 KB
/
batch_processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#!/usr/bin/env python3
import argparse
import os
import pickle
from typing import List, Optional
import numpy as np
import rosbag
import tqdm
from cv_bridge import CvBridge
from moviepy.editor import ImageSequenceClip
from node_config import NodeConfig
from sensor_msgs.msg import Image
from wrapper import DeticWrapper, InferenceRawResult
def bag_to_images(file_path: str, topic_name_extract: Optional[str] = None):
bag = rosbag.Bag(file_path)
image_list_: List[Image] = []
for topic_name, msg, t in bag.read_messages():
if topic_name_extract is None:
if msg.__class__.__name__ == '_sensor_msgs__Image':
image_list_.append(msg)
else:
if topic_name == topic_name_extract:
image_list_.append(msg)
bag.close()
def deep_cast(msg):
# must exist etter way ... but I don't have time
# see:
# https://github.com/ros/ros_comm/issues/769
msg_out = Image()
msg_out.header.seq = msg.header.seq
msg_out.header.stamp = msg.header.stamp
msg_out.header.frame_id = msg.header.frame_id
msg_out.height = msg.height
msg_out.width = msg.width
msg_out.encoding = msg.encoding
msg_out.is_bigendian = msg.is_bigendian
msg_out.step = msg.step
msg_out.data = msg.data
return msg_out
image_list = [deep_cast(msg_) for msg_ in image_list_]
return image_list
def dump_result_as_pickle(
results: List[InferenceRawResult],
images: List[Image],
output_file_name: str):
result_dict = {'image': [], 'seginfo': [], 'debug_image': []} # type: ignore
for result, image in zip(results, images):
seginfo = result.get_segmentation_info()
debug_image = result.get_ros_debug_image()
result_dict['image'].append(image)
result_dict['seginfo'].append(seginfo)
result_dict['debug_image'].append(debug_image)
with open(output_file_name, 'wb') as f:
pickle.dump(result_dict, f)
def dump_result_as_rosbag(
input_bagfile_name: str,
results: List[InferenceRawResult],
output_file_name: str):
bag_out = rosbag.Bag(output_file_name, 'w')
bag_inp = rosbag.Bag(input_bagfile_name)
for topic_name, msg, t in bag_inp.read_messages():
bag_out.write(topic_name, msg, t)
bag_inp.close()
for result in results:
seginfo = result.get_segmentation_info()
debug_image = result.get_ros_debug_image()
bag_out.write('/detic_segmentor/segmentation_info', seginfo, seginfo.header.stamp)
bag_out.write('/detic_segmentor/debug_image', debug_image, debug_image.header.stamp)
bag_out.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('input', type=str, help='input file path')
parser.add_argument('-model', type=str, default='swin', help='model type')
parser.add_argument('-topic', type=str, default='', help='topic name')
parser.add_argument('-n', type=int, default=-1, help='number of image to be processed')
parser.add_argument('-out', type=str, default='', help='out file path')
parser.add_argument('-format', type=str, default='pkl', help='out file format')
parser.add_argument('-th', type=float, default=0.5, help='confidence threshold')
parser.add_argument('-device', type=str, default='auto', help='device name')
args = parser.parse_args()
input_file_path = args.input
model_type = args.model
topic_name = args.topic
output_file_name = args.out
output_format = args.format
confidence_threshold = args.th
device = args.device
n = args.n
assert device in ['cpu', 'cuda', 'auto']
assert output_format in ['bag', 'pkl']
rw, ext_input = os.path.splitext(input_file_path)
assert ext_input == '.bag'
if output_file_name == '':
output_file_name = rw + '_segmented.' + output_format
debug_file_name = rw + '_debug.gif'
topic_name = None if topic_name == '' else topic_name
image_list = bag_to_images(input_file_path, topic_name)
image_list = image_list if n == -1 else image_list[:n]
assert len(image_list) > 0
print('{} images found'.format(len(image_list)))
node_config = NodeConfig.from_args(model_type,
False, True, False, False, False,
confidence_threshold, device)
detic_wrapper = DeticWrapper(node_config)
results = [detic_wrapper.infer(image) for image in tqdm.tqdm(image_list)]
if output_format == 'pkl':
dump_result_as_pickle(results, image_list, output_file_name)
elif output_format == 'bag':
dump_result_as_rosbag(input_file_path, results, output_file_name)
# dump debug gif image
bridge = CvBridge()
def convert(msg) -> np.ndarray:
return bridge.imgmsg_to_cv2(msg, desired_encoding='passthrough')
debug_images = [result.get_ros_debug_image() for result in results]
images = list(map(convert, debug_images))
clip = ImageSequenceClip(images, fps=20)
clip.write_gif(debug_file_name, fps=20)