-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimplicial_closure.py
75 lines (61 loc) · 3.45 KB
/
simplicial_closure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import argparse
import numpy as np
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import average_precision_score, auc, precision_recall_curve
import torch
from preprocessing.graph_construction import _get_graph
from preprocessing.simplicial_construction import get_boundary_matrices,_get_laplacians,_get_simplex_features, _get_transition_matrix, get_simplicies_closure, get_boundary_matrices_from_processed_tree
from model.scattering import scattering_transform
import warnings
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description='SSN')
parser.add_argument('--data', type=str, default='contact-high-school', help='Name of dataset.')
parser.add_argument('--gpu', type=int, default=0, help='GPU index.')
parser.add_argument('--dim', type=int, default=3, help='Order of the simplicial complex.')
parser.add_argument('--J', type=int, default=4, help='Maximum scale')
parser.add_argument('--split', type=float, default=0.2, help='Test data size')
parser.add_argument('--include_boundary', type=bool, default=True, help='If boundary information should be included or not')
args = parser.parse_args()
if args.gpu != -1 and torch.cuda.is_available():
args.device = 'cuda:{}'.format(args.gpu)
else:
args.device = 'cpu'
rb = {'contact-high-school':0.0112, 'contact-primary-school':0.0105, 'email-Enron':0.0537}
if __name__=='__main__':
st_train, sc_train, indices_train, st_test, sc_test, indices_test, train, test = get_simplicies_closure(args.data, args.dim)
st_test, sc_test, B_test = get_boundary_matrices_from_processed_tree(st_test, sc_test, indices_test, 3)
Ll_test, Lu_test = _get_laplacians(B_test)
P_B_test, P_L_test, P_U_test = _get_transition_matrix(B_test, Ll_test, Lu_test)
g, netxG = _get_graph(sc_test[1], num_nodes= len(sc_test[0]))
netxG.add_nodes_from(np.setdiff1d(np.arange(1,max(list(netxG.nodes()))), np.array(list(netxG.nodes()))))
g = g.to(args.device)
index = {'B':0, 'C':1, 'L':2, 'U':3}
X = _get_simplex_features(sc_test[1:], g.ndata['features'])
Psi = scattering_transform(X, P_B_test, P_L_test, P_U_test, index, args.J, args.include_boundary)
Psi_Psi = []
for PsiX in Psi:
Psi_Psi.append(scattering_transform(PsiX, P_B_test, P_L_test, P_U_test, index, args.J, args.include_boundary))
Phi = []
for k in range(len(X)):
Phi_k = X[k]
for j in range(args.J):
Phi_k = torch.cat((Phi_k, Psi[j][k]),axis=1)
for j in range(args.J):
for _j in range(args.J):
Phi_k = torch.cat((Phi_k, Psi_Psi[j][_j][k]),axis=1)
Phi.append(Phi_k)
X = Phi[0].cpu().detach().numpy()[test[:,:-1]].sum(axis=1)
y = test[:,-1]
score = []
for i in range(10):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=args.split, stratify=y)
classifier = SVC(C = 1.2, class_weight={1:len(np.where(y_train)[0])/len(y_train), 0:len(np.where(y_train==0)[0])/len(y_train)}, kernel='rbf', probability=True)
classifier.fit(X_train, y_train)
y_score = classifier.predict_proba(X_test)[:, 1]
average_precision = average_precision_score(y_test, y_score)
precision, recall, thresholds = precision_recall_curve(y_test, y_score)
auc_precision_recall = auc(recall, precision)
score.append(auc_precision_recall/rb[args.data])
score = np.array(score)
print(f"Score = {score.mean()}, Standard deviation = {score.std()}")