-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode_classification.py
74 lines (61 loc) · 2.89 KB
/
node_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import argparse
import numpy as np
from sklearn.linear_model import RidgeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import torch
from preprocessing.graph_construction import _get_graph
from preprocessing.simplicial_construction import get_boundary_matrices,_get_laplacians,_get_simplex_features, _get_transition_matrix
from model.scattering import scattering_transform
import warnings
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description='SSN')
parser.add_argument('--data', type=str, default='contact-high-school', help='Name of dataset.')
parser.add_argument('--gpu', type=int, default=0, help='GPU index.')
parser.add_argument('--dim', type=int, default=3, help='Order of the simplicial complex.')
parser.add_argument('--J', type=int, default=4, help='Maximum scale')
parser.add_argument('--split', type=float, default=0.2, help='Test data size')
parser.add_argument('--include_boundary', type=bool, default=True, help='If boundary information should be included or not')
args = parser.parse_args()
if args.gpu != -1 and torch.cuda.is_available():
args.device = 'cuda:{}'.format(args.gpu)
else:
args.device = 'cpu'
if __name__ == '__main__':
print(args)
simplex_tree, sc, boundry_matrices, labels = get_boundary_matrices(args.data, args.dim)
lower_laplacians, upper_laplacians = _get_laplacians(boundry_matrices)
P_B, P_L, P_U = _get_transition_matrix(boundry_matrices, lower_laplacians, upper_laplacians)
index = {'B':0, 'C':1, 'L':2, 'U':3}
g, netxG = _get_graph(sc[1])
try:
g.ndata['features'] = torch.load('features/'+args.data+'.pt')
print('Loaded pre computed node embeddings')
except:
pass
netxG.add_nodes_from(np.setdiff1d(np.arange(1,max(list(netxG.nodes()))), np.array(list(netxG.nodes()))))
g = g.to(args.device)
X = _get_simplex_features(sc[1:], g.ndata['features'])
Psi = scattering_transform(X, P_B, P_L, P_U, index, args.J, args.include_boundary)
Psi_Psi = []
for PsiX in Psi:
Psi_Psi.append(scattering_transform(PsiX, P_B, P_L, P_U, index, args.J, args.include_boundary))
Phi = []
for k in range(len(X)):
Phi_k = X[k]
for j in range(args.J):
Phi_k = torch.cat((Phi_k, Psi[j][k]),axis=1)
for j in range(args.J):
for _j in range(args.J):
Phi_k = torch.cat((Phi_k, Psi_Psi[j][_j][k]),axis=1)
Phi.append(Phi_k)
X = Phi[0].cpu().detach().numpy()
y = labels
acc = []
for i in range(10):
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = args.split, stratify=labels)
classifier = RidgeClassifier()
classifier.fit(X_train, y_train)
acc.append(accuracy_score(y_test, classifier.predict(X_test))*100)
acc = np.array(acc)
print(f"Accuracy = {acc.mean()}, Standard deviation = {acc.std()}")