diff --git a/README.md b/README.md index 5829ddc52..cc8624154 100644 --- a/README.md +++ b/README.md @@ -130,7 +130,7 @@ data List = (List.cons head tail) | (List.nil) ListEx2 = (List.cons 1 (List.cons 2 (List.cons 3 List.nil))) ``` -Match different kinds of terms, both matches are equivalent: +It's possible to match different kinds of terms. These three forms are equivalent: ```rs match list { (List.cons hd tl): (Some hd) @@ -162,7 +162,7 @@ Which is the equivalent of nesting match terms: ```rs match 4 { 0: "zero" - 1+a: match (- a 4) { + 1+a: match (- (+ a (+ 0 1)) 5) { 0: "five" _: ... } @@ -171,9 +171,10 @@ match 4 { Match multiple terms: ```rs -match True, True { - True True: True - _ _: False +λa λb match a, b { + (Some True) (x, y): (Some (x, y)) + (Some False) (x, y): (Some (y, x)) + None *: None } ``` diff --git a/cspell.json b/cspell.json index fca40f4d3..7bd1f52e8 100644 --- a/cspell.json +++ b/cspell.json @@ -42,6 +42,7 @@ "namegen", "nams", "numop", + "nums", "oper", "opre", "oprune", diff --git a/docs/compiler-options.md b/docs/compiler-options.md index 7ae6f75f7..4aaeb2c22 100644 --- a/docs/compiler-options.md +++ b/docs/compiler-options.md @@ -142,20 +142,20 @@ When the `linearize-matches` option is used, linearizes only vars that are used Example: ```rs -λa λb match a { 0: b; +: b } +λa λb match a { 0: b; 1+: b } // Is transformed to -λa λb (match a { 0: λc c; +: λd d } b) +λa λb (match a { 0: λc c; 1+: λd d } b) ``` When the `linearize-matches-extra` option is used, linearizes all vars used in the arms. example: ```rs -λa λb λc match a { 0: b; +: c } +λa λb λc match a { 0: b; 1+: c } // Is transformed to -λa λb λc (match a { 0: λd λ* d; +: λ* λe e } b c) +λa λb λc (match a { 0: λd λ* d; 1+: λ* λe e } b c) ``` ## float-combinators diff --git a/docs/native-numbers.md b/docs/native-numbers.md index 5edf79caa..d464345c5 100644 --- a/docs/native-numbers.md +++ b/docs/native-numbers.md @@ -37,19 +37,19 @@ HVM-lang also includes a `match` syntax for native numbers. The `0` case is chos Number.to_church = λn λf λx match n { 0: x - +: (f (Number.to_church n-1 f x)) + 1+: (f (Number.to_church n-1 f x)) } // Alternative syntax Number.to_church = λn λf λx match n { 0: x - +p: (f (Number.to_church p f x)) + 1+p: (f (Number.to_church p f x)) } // Alternative syntax with name binding Number.to_church = λn λf λx match num = n { 0: x - +: (f (Number.to_church num-1 f x) + 1+: (f (Number.to_church num-1 f x) } ``` @@ -60,14 +60,10 @@ fibonacci = λn // n is the argument match n { // If the number is 0, then return 0 0: 0 - // If the number is greater than 0, bind it predecessor to `a` - +a: - match a { - // If the predecessor is 0, then return 1 - 0: 1 - // Otherwise, bind n-2 to `b` and return the sum of (fib n-1) and (fib n-2) - +b: (+ (fibonacci a) (fibonacci b)) - } + // If the number is 1, then return 1 + 1: 1 + // Otherwise, and return the sum of (fib (n-2 + 1)) and (fib n-2) + 2+: (+ (fibonacci (+ n-2 1)) (fibonacci n-2)) } main = (fibonacci 15) diff --git a/docs/writing-fusing-functions.md b/docs/writing-fusing-functions.md index fbb640cd5..6128033e2 100644 --- a/docs/writing-fusing-functions.md +++ b/docs/writing-fusing-functions.md @@ -130,7 +130,7 @@ not = λboolean (boolean false true) fusing_not = λboolean λt λf (boolean f t) // Creates a Church numeral out of a native number to_church 0 = λf λx x -to_church +p = λf λx (f (to_church p f x)) +to_church 1+p = λf λx (f (to_church p f x)) main = let two = λf λx (f (f x)) let two_pow_512 = ((to_church 512) two) // Composition of church-encoded numbers is equivalent to exponentiation. diff --git a/examples/example.hvm b/examples/example.hvm index 5170f5a92..ca7fe5a40 100644 --- a/examples/example.hvm +++ b/examples/example.hvm @@ -22,7 +22,7 @@ (Num.pred) = λn match n { 0: 0 - +: n-1 + 1+: n-1 } // Write new data types like this diff --git a/examples/fusing_not.hvm b/examples/fusing_not.hvm index af1262d10..0de7599b2 100644 --- a/examples/fusing_not.hvm +++ b/examples/fusing_not.hvm @@ -4,7 +4,7 @@ not = λboolean (boolean false true) fusing_not = λboolean λt λf (boolean f t) // Creates a Church numeral out of a native number to_church 0 = λf λx x -to_church +p = λf λx (f (to_church p f x)) +to_church 1+p = λf λx (f (to_church p f x)) main = let two = λf λx (f (f x)) let two_pow_512 = ((to_church 512) two) // Composition of church-encoded numbers is equivalent to exponentiation.