From d80751c1e7ee9637a3438851006a6135d5931961 Mon Sep 17 00:00:00 2001 From: Helge Gehring <42973196+HelgeGehring@users.noreply.github.com> Date: Wed, 11 Oct 2023 17:56:46 -0700 Subject: [PATCH] remove stderr in example --- docs/julia/thermal_simple.jl | 20 +++++++++++++------- 1 file changed, 13 insertions(+), 7 deletions(-) diff --git a/docs/julia/thermal_simple.jl b/docs/julia/thermal_simple.jl index f58f9d83..f5c47b12 100644 --- a/docs/julia/thermal_simple.jl +++ b/docs/julia/thermal_simple.jl @@ -17,7 +17,7 @@ # %% [markdown] # # Match theoretical model for electro-optic simulation -# %% tags=["hide-input", "thebe-init"] +# %% tags=["hide-input", "thebe-init", "remove-stderr"] using Gridap using Gridap.Geometry using GridapMakie, CairoMakie @@ -31,7 +31,7 @@ using Femwell.Thermal # Furthermore, we create a function which returns 1 indipendent of the tag which is the parameter to descrie the constants of the simplified model. # %% tags=["hide-output", "remove-stderr"] -domain = (0, 1.0, 0, 1.0) +domain = (-1.0, 1.0, -1.0, 1.0) partition = (20, 20) model = simplexify(CartesianDiscreteModel(domain, partition)) labels = get_face_labeling(model) @@ -41,7 +41,7 @@ tags = get_face_tag(labels, num_cell_dims(model)) Ω = Triangulation(model) dΩ = Measure(Ω, 1) τ = CellField(tags, Ω) -constant_7 = tag -> 42 +constant_21 = tag -> 21 constant_42 = tag -> 42 # %% [markdown] @@ -57,11 +57,11 @@ constant_42 = tag -> 42 # This would mean the average of the potential over the domain should be # # $$ -# \int ϕ dA / \int 1 dA = 0.5 +# \int ϕ dA / \int 1 dA = 0 # $$ # %% tags=[] -p0 = compute_potential(constant_42 ∘ τ, Dict("left" => 0.0, "right" => 1.0)) +p0 = compute_potential(constant_42 ∘ τ, Dict("left" => -1.0, "right" => 1.0)) fig, _, plt = plot(Ω, potential(p0), colormap = :cool) Colorbar(fig[1, 2], plt) display(fig) @@ -97,14 +97,20 @@ println("The computed value for the average current density is $average_power_de # ## Thermal steady scatter # Now we calculate the thermal steady state based on the previously calculated locally applied power. -# For this we chose the thermal conductivity to be $k_{thermal}=7$ and set the boundaries to 0. +# For this we chose the thermal conductivity to be $k_{thermal}=21$ and set the boundaries to 0. # # $$ # -\nabla(k_{thermal}\nabla T) = Q # $$ +# +# being solved by +# +# $$ +# T = \frac{-x^2 - y^2}{2} +# $$ # %% tags=[] -T0 = calculate_temperature(constant_7 ∘ τ, power_density(p0), Dict("boundary" => 0.0)) +T0 = calculate_temperature(constant_21 ∘ τ, power_density(p0), Dict("boundary" => 0.0)) # %% tags=["hide-input"] writevtk(