From 1b17ca2ea34016a9ed264d635424dfc15105da1b Mon Sep 17 00:00:00 2001 From: Helge Gehring <42973196+HelgeGehring@users.noreply.github.com> Date: Wed, 11 Oct 2023 16:20:07 -0700 Subject: [PATCH] improve thermal_simple --- docs/julia/thermal_simple.jl | 15 ++++++++++++--- 1 file changed, 12 insertions(+), 3 deletions(-) diff --git a/docs/julia/thermal_simple.jl b/docs/julia/thermal_simple.jl index 7a3aec88..c046a236 100644 --- a/docs/julia/thermal_simple.jl +++ b/docs/julia/thermal_simple.jl @@ -44,22 +44,31 @@ constant = tag -> 1 # %% [markdown] # ## Electrostatic -# The first step ist to calculate the potential. +# The first step ist to calculate the potential (assuming the electrical resistivity / conductivity to be ρ=1). # For this we solve the electrostatic equation $Δϕ = 0$ and define the voltage at two oppositing boundaries to 0V at $x=0$ and 1V at $x=1$. # The theoretical solution of this function is a linear function. # $$ ϕ(x)=x $$ # This would mean the average of the potential over the domain should be -# $$ \int ϕ dA = 0.5 $$ +# $$ \int ϕ dA / \int 1 dA = 0.5 $$ -# %% tags=["hide-input"] +# %% tags=[] p0 = compute_potential(constant ∘ τ, Dict("left" => 0.0, "right" => 1.0)) average_potential = ∑(∫(potential(p0))dΩ) / ∑(∫(1)dΩ) println("The computed value for the average potential is $average_potential") +# %% [markdown] +# The current density can be calculated as +# $$ i = ρ \frac{\mathrm{d}ϕ}{\mathrm{d}ϕ} = 1 $$ +# and thus the averaged current density over the domain to be also 1. + +average_current_density = ∑(∫(current_density(p0))dΩ) / ∑(∫(1)dΩ) +println("The computed value for the average current density is $average_current_density") + # %% tags=["hide-input"] T0 = calculate_temperature(constant ∘ τ, power_density(p0), Dict("boundary" => 0.0)) +# %% tags=["hide-input"] writevtk( Ω, "results",