forked from laekov/fastmoe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
570 lines (523 loc) · 24.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
# coding: utf-8
import argparse
import time
import math
import os, sys
import itertools
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from data_utils import get_lm_corpus
from mem_transformer import MemTransformerLM
from utils.exp_utils import create_exp_dir
from utils.data_parallel import BalancedDataParallel
parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model')
parser.add_argument('--data', type=str, default='../data/wikitext-103',
help='location of the data corpus')
parser.add_argument('--dataset', type=str, default='wt103',
choices=['wt103', 'lm1b', 'enwik8', 'text8'],
help='dataset name')
parser.add_argument('--n_layer', type=int, default=12,
help='number of total layers')
parser.add_argument('--n_head', type=int, default=10,
help='number of heads')
parser.add_argument('--d_head', type=int, default=50,
help='head dimension')
parser.add_argument('--d_embed', type=int, default=-1,
help='embedding dimension')
parser.add_argument('--d_model', type=int, default=500,
help='model dimension')
parser.add_argument('--d_inner', type=int, default=1000,
help='inner dimension in FF')
parser.add_argument('--dropout', type=float, default=0.0,
help='global dropout rate')
parser.add_argument('--dropatt', type=float, default=0.0,
help='attention probability dropout rate')
parser.add_argument('--init', default='normal', type=str,
help='parameter initializer to use.')
parser.add_argument('--emb_init', default='normal', type=str,
help='parameter initializer to use.')
parser.add_argument('--init_range', type=float, default=0.1,
help='parameters initialized by U(-init_range, init_range)')
parser.add_argument('--emb_init_range', type=float, default=0.01,
help='parameters initialized by U(-init_range, init_range)')
parser.add_argument('--init_std', type=float, default=0.02,
help='parameters initialized by N(0, init_std)')
parser.add_argument('--proj_init_std', type=float, default=0.01,
help='parameters initialized by N(0, init_std)')
parser.add_argument('--optim', default='adam', type=str,
choices=['adam', 'sgd', 'adagrad'],
help='optimizer to use.')
parser.add_argument('--lr', type=float, default=0.00025,
help='initial learning rate (0.00025|5 for adam|sgd)')
parser.add_argument('--mom', type=float, default=0.0,
help='momentum for sgd')
parser.add_argument('--scheduler', default='cosine', type=str,
choices=['cosine', 'inv_sqrt', 'dev_perf', 'constant'],
help='lr scheduler to use.')
parser.add_argument('--warmup_step', type=int, default=0,
help='upper epoch limit')
parser.add_argument('--decay_rate', type=float, default=0.5,
help='decay factor when ReduceLROnPlateau is used')
parser.add_argument('--lr_min', type=float, default=0.0,
help='minimum learning rate during annealing')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
parser.add_argument('--clip_nonemb', action='store_true',
help='only clip the gradient of non-embedding params')
parser.add_argument('--max_step', type=int, default=100000,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=60,
help='batch size')
parser.add_argument('--batch_chunk', type=int, default=1,
help='split batch into chunks to save memory')
parser.add_argument('--tgt_len', type=int, default=70,
help='number of tokens to predict')
parser.add_argument('--eval_tgt_len', type=int, default=50,
help='number of tokens to predict for evaluation')
parser.add_argument('--ext_len', type=int, default=0,
help='length of the extended context')
parser.add_argument('--mem_len', type=int, default=0,
help='length of the retained previous heads')
parser.add_argument('--not_tied', action='store_true',
help='do not tie the word embedding and softmax weights')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--adaptive', action='store_true',
help='use adaptive softmax')
parser.add_argument('--div_val', type=int, default=1,
help='divident value for adapative input and softmax')
parser.add_argument('--pre_lnorm', action='store_true',
help='apply LayerNorm to the input instead of the output')
parser.add_argument('--varlen', action='store_true',
help='use variable length')
parser.add_argument('--multi_gpu', action='store_true',
help='use multiple GPU')
parser.add_argument('--log-interval', type=int, default=200,
help='report interval')
parser.add_argument('--eval-interval', type=int, default=4000,
help='evaluation interval')
parser.add_argument('--work_dir', default='LM-TFM', type=str,
help='experiment directory.')
parser.add_argument('--restart', action='store_true',
help='restart training from the saved checkpoint')
parser.add_argument('--restart_dir', type=str, default='',
help='restart dir')
parser.add_argument('--debug', action='store_true',
help='run in debug mode (do not create exp dir)')
parser.add_argument('--same_length', action='store_true',
help='use the same attn length for all tokens')
parser.add_argument('--attn_type', type=int, default=0,
help='attention type. 0 for ours, 1 for Shaw et al,'
'2 for Vaswani et al, 3 for Al Rfou et al.')
parser.add_argument('--clamp_len', type=int, default=-1,
help='use the same pos embeddings after clamp_len')
parser.add_argument('--eta_min', type=float, default=0.0,
help='min learning rate for cosine scheduler')
parser.add_argument('--gpu0_bsz', type=int, default=-1,
help='batch size on gpu 0')
parser.add_argument('--max_eval_steps', type=int, default=-1,
help='max eval steps')
parser.add_argument('--sample_softmax', type=int, default=-1,
help='number of samples in sampled softmax')
parser.add_argument('--patience', type=int, default=0,
help='patience')
parser.add_argument('--finetune_v2', action='store_true',
help='finetune v2')
parser.add_argument('--finetune_v3', action='store_true',
help='finetune v3')
parser.add_argument('--fp16', action='store_true',
help='Run in pseudo-fp16 mode (fp16 storage fp32 math).')
parser.add_argument('--static-loss-scale', type=float, default=1,
help='Static loss scale, positive power of 2 values can '
'improve fp16 convergence.')
parser.add_argument('--dynamic-loss-scale', action='store_true',
help='Use dynamic loss scaling. If supplied, this argument'
' supersedes --static-loss-scale.')
parser.add_argument('--moe', action='store_true',
help='replace position-wise ffn with moe position-wise ffn')
parser.add_argument('--moe-num-expert', type=int, default=64,
help='number of experts in MoE')
parser.add_argument('--moe-top-k', type=int, default=2,
help='top_k experts in hard gate of moe')
args = parser.parse_args()
args.tied = not args.not_tied
assert args.moe_num_expert >= args.moe_top_k, "must have moe-num-expert >= moe-top_k"
if args.d_embed < 0:
args.d_embed = args.d_model
assert args.ext_len >= 0, 'extended context length must be non-negative'
assert args.batch_size % args.batch_chunk == 0
args.work_dir = '{}-{}'.format(args.work_dir, args.dataset)
args.work_dir = os.path.join(args.work_dir, time.strftime('%Y%m%d-%H%M%S'))
logging = create_exp_dir(args.work_dir,
scripts_to_save=['train.py', 'mem_transformer.py'], debug=args.debug)
# Set the random seed manually for reproducibility.
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print('WARNING: You have a CUDA device, so you should probably run with --cuda')
else:
torch.cuda.manual_seed_all(args.seed)
# Validate `--fp16` option
if args.fp16:
if not args.cuda:
print('WARNING: --fp16 requires --cuda, ignoring --fp16 option')
args.fp16 = False
else:
try:
from apex.fp16_utils import FP16_Optimizer
except:
print('WARNING: apex not installed, ignoring --fp16 option')
args.fp16 = False
device = torch.device('cuda' if args.cuda else 'cpu')
###############################################################################
# Load data
###############################################################################
corpus = get_lm_corpus(args.data, args.dataset)
ntokens = len(corpus.vocab)
args.n_token = ntokens
eval_batch_size = 10
tr_iter = corpus.get_iterator('train', args.batch_size, args.tgt_len,
device=device, ext_len=args.ext_len)
va_iter = corpus.get_iterator('valid', eval_batch_size, args.eval_tgt_len,
device=device, ext_len=args.ext_len)
te_iter = corpus.get_iterator('test', eval_batch_size, args.eval_tgt_len,
device=device, ext_len=args.ext_len)
# adaptive softmax / embedding
cutoffs, tie_projs = [], [False]
if args.adaptive:
assert args.dataset in ['wt103', 'lm1b']
if args.dataset == 'wt103':
cutoffs = [20000, 40000, 200000]
tie_projs += [True] * len(cutoffs)
elif args.dataset == 'lm1b':
cutoffs = [60000, 100000, 640000]
tie_projs += [False] * len(cutoffs)
###############################################################################
# Build the model
###############################################################################
def init_weight(weight):
if args.init == 'uniform':
nn.init.uniform_(weight, -args.init_range, args.init_range)
elif args.init == 'normal':
nn.init.normal_(weight, 0.0, args.init_std)
def init_bias(bias):
nn.init.constant_(bias, 0.0)
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
if hasattr(m, 'weight') and m.weight is not None:
init_weight(m.weight)
if hasattr(m, 'bias') and m.bias is not None:
init_bias(m.bias)
elif classname.find('AdaptiveEmbedding') != -1:
if hasattr(m, 'emb_projs'):
for i in range(len(m.emb_projs)):
if m.emb_projs[i] is not None:
nn.init.normal_(m.emb_projs[i], 0.0, args.proj_init_std)
elif classname.find('Embedding') != -1:
if hasattr(m, 'weight'):
init_weight(m.weight)
elif classname.find('ProjectedAdaptiveLogSoftmax') != -1:
if hasattr(m, 'cluster_weight') and m.cluster_weight is not None:
init_weight(m.cluster_weight)
if hasattr(m, 'cluster_bias') and m.cluster_bias is not None:
init_bias(m.cluster_bias)
if hasattr(m, 'out_projs'):
for i in range(len(m.out_projs)):
if m.out_projs[i] is not None:
nn.init.normal_(m.out_projs[i], 0.0, args.proj_init_std)
elif classname.find('LayerNorm') != -1:
if hasattr(m, 'weight'):
nn.init.normal_(m.weight, 1.0, args.init_std)
if hasattr(m, 'bias') and m.bias is not None:
init_bias(m.bias)
elif classname.find('TransformerLM') != -1:
if hasattr(m, 'r_emb'):
init_weight(m.r_emb)
if hasattr(m, 'r_w_bias'):
init_weight(m.r_w_bias)
if hasattr(m, 'r_r_bias'):
init_weight(m.r_r_bias)
if hasattr(m, 'r_bias'):
init_bias(m.r_bias)
def update_dropout(m):
classname = m.__class__.__name__
if classname.find('Dropout') != -1:
if hasattr(m, 'p'):
m.p = args.dropout
def update_dropatt(m):
if hasattr(m, 'dropatt'):
m.dropatt.p = args.dropatt
if args.restart:
with open(os.path.join(args.restart_dir, 'model.pt'), 'rb') as f:
model = torch.load(f)
if not args.fp16:
model = model.float()
model.apply(update_dropout)
model.apply(update_dropatt)
else:
model = MemTransformerLM(ntokens, args.n_layer, args.n_head, args.d_model,
args.d_head, args.d_inner, args.dropout, args.dropatt,
tie_weight=args.tied, d_embed=args.d_embed, div_val=args.div_val,
tie_projs=tie_projs, pre_lnorm=args.pre_lnorm, tgt_len=args.tgt_len,
ext_len=args.ext_len, mem_len=args.mem_len, cutoffs=cutoffs,
same_length=args.same_length, attn_type=args.attn_type,
clamp_len=args.clamp_len, sample_softmax=args.sample_softmax,
moe=args.moe, moe_num_expert=args.moe_num_expert, moe_top_k=args.moe_top_k)
model.apply(weights_init)
model.word_emb.apply(weights_init) # ensure embedding init is not overridden by out_layer in case of weight sharing
args.n_all_param = sum([p.nelement() for p in model.parameters()])
args.n_nonemb_param = sum([p.nelement() for p in model.layers.parameters()])
if args.fp16:
model = model.half()
if args.multi_gpu:
model = model.to(device)
if args.gpu0_bsz >= 0:
para_model = BalancedDataParallel(args.gpu0_bsz // args.batch_chunk,
model, dim=1).to(device)
else:
para_model = nn.DataParallel(model, dim=1).to(device)
else:
para_model = model.to(device)
#### optimizer
if args.optim.lower() == 'sgd':
if args.sample_softmax > 0:
dense_params, sparse_params = [], []
for param in model.parameters():
if param.size() == model.word_emb.weight.size():
sparse_params.append(param)
else:
dense_params.append(param)
optimizer_sparse = optim.SGD(sparse_params, lr=args.lr * 2)
optimizer = optim.SGD(dense_params, lr=args.lr, momentum=args.mom)
else:
optimizer = optim.SGD(model.parameters(), lr=args.lr,
momentum=args.mom)
elif args.optim.lower() == 'adam':
if args.sample_softmax > 0:
dense_params, sparse_params = [], []
for param in model.parameters():
if param.size() == model.word_emb.weight.size():
sparse_params.append(param)
else:
dense_params.append(param)
optimizer_sparse = optim.SparseAdam(sparse_params, lr=args.lr)
optimizer = optim.Adam(dense_params, lr=args.lr)
else:
optimizer = optim.Adam(model.parameters(), lr=args.lr)
elif args.optim.lower() == 'adagrad':
optimizer = optim.Adagrad(model.parameters(), lr=args.lr)
#### scheduler
if args.scheduler == 'cosine':
# here we do not set eta_min to lr_min to be backward compatible
# because in previous versions eta_min is default to 0
# rather than the default value of lr_min 1e-6
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer,
args.max_step, eta_min=args.eta_min) # should use eta_min arg
if args.sample_softmax > 0:
scheduler_sparse = optim.lr_scheduler.CosineAnnealingLR(optimizer_sparse,
args.max_step, eta_min=args.eta_min) # should use eta_min arg
elif args.scheduler == 'inv_sqrt':
# originally used for Transformer (in Attention is all you need)
def lr_lambda(step):
# return a multiplier instead of a learning rate
if step == 0 and args.warmup_step == 0:
return 1.
else:
return 1. / (step ** 0.5) if step > args.warmup_step \
else step / (args.warmup_step ** 1.5)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda)
elif args.scheduler == 'dev_perf':
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
factor=args.decay_rate, patience=args.patience, min_lr=args.lr_min)
if args.sample_softmax > 0:
scheduler_sparse = optim.lr_scheduler.ReduceLROnPlateau(optimizer_sparse,
factor=args.decay_rate, patience=args.patience, min_lr=args.lr_min)
elif args.scheduler == 'constant':
pass
if args.cuda and args.fp16:
# If args.dynamic_loss_scale is False, static_loss_scale will be used.
# If args.dynamic_loss_scale is True, it will take precedence over static_loss_scale.
optimizer = FP16_Optimizer(optimizer,
static_loss_scale = args.static_loss_scale,
dynamic_loss_scale = args.dynamic_loss_scale,
dynamic_loss_args = {'init_scale': 2 ** 16})
if args.restart:
if os.path.exists(os.path.join(args.restart_dir, 'optimizer.pt')):
with open(os.path.join(args.restart_dir, 'optimizer.pt'), 'rb') as f:
opt_state_dict = torch.load(f)
optimizer.load_state_dict(opt_state_dict)
else:
print('Optimizer was not saved. Start from scratch.')
logging('=' * 100)
for k, v in args.__dict__.items():
logging(' - {} : {}'.format(k, v))
logging('=' * 100)
logging('#params = {}'.format(args.n_all_param))
logging('#non emb params = {}'.format(args.n_nonemb_param))
###############################################################################
# Training code
###############################################################################
def evaluate(eval_iter):
# Turn on evaluation mode which disables dropout.
model.eval()
# If the model does not use memory at all, make the ext_len longer.
# Otherwise, make the mem_len longer and keep the ext_len the same.
if args.mem_len == 0:
model.reset_length(args.eval_tgt_len,
args.ext_len+args.tgt_len-args.eval_tgt_len, args.mem_len)
else:
model.reset_length(args.eval_tgt_len,
args.ext_len, args.mem_len+args.tgt_len-args.eval_tgt_len)
# Evaluation
total_len, total_loss = 0, 0.
with torch.no_grad():
mems = tuple()
for i, (data, target, seq_len) in enumerate(eval_iter):
if args.max_eval_steps > 0 and i >= args.max_eval_steps:
break
ret = model(data, target, *mems)
loss, mems = ret[0], ret[1:]
loss = loss.mean()
total_loss += seq_len * loss.float().item()
total_len += seq_len
# Switch back to the training mode
model.reset_length(args.tgt_len, args.ext_len, args.mem_len)
model.train()
return total_loss / total_len
def train():
# Turn on training mode which enables dropout.
global train_step, train_loss, best_val_loss, eval_start_time, log_start_time
model.train()
if args.batch_chunk > 1:
mems = [tuple() for _ in range(args.batch_chunk)]
else:
mems = tuple()
train_iter = tr_iter.get_varlen_iter() if args.varlen else tr_iter
for batch, (data, target, seq_len) in enumerate(train_iter):
model.zero_grad()
if args.batch_chunk > 1:
data_chunks = torch.chunk(data, args.batch_chunk, 1)
target_chunks = torch.chunk(target, args.batch_chunk, 1)
for i in range(args.batch_chunk):
data_i = data_chunks[i].contiguous()
target_i = target_chunks[i].contiguous()
ret = para_model(data_i, target_i, *mems[i])
loss, mems[i] = ret[0], ret[1:]
loss = loss.float().mean().type_as(loss) / args.batch_chunk
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
train_loss += loss.float().item()
else:
ret = para_model(data, target, *mems)
loss, mems = ret[0], ret[1:]
loss = loss.float().mean().type_as(loss)
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
train_loss += loss.float().item()
if args.fp16:
optimizer.clip_master_grads(args.clip)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
if args.sample_softmax > 0:
optimizer_sparse.step()
# step-wise learning rate annealing
train_step += 1
if args.scheduler in ['cosine', 'constant', 'dev_perf']:
# linear warmup stage
if train_step < args.warmup_step:
curr_lr = args.lr * train_step / args.warmup_step
optimizer.param_groups[0]['lr'] = curr_lr
if args.sample_softmax > 0:
optimizer_sparse.param_groups[0]['lr'] = curr_lr * 2
else:
if args.scheduler == 'cosine':
scheduler.step(train_step)
if args.sample_softmax > 0:
scheduler_sparse.step(train_step)
elif args.scheduler == 'inv_sqrt':
scheduler.step(train_step)
if train_step % args.log_interval == 0:
cur_loss = train_loss / args.log_interval
elapsed = time.time() - log_start_time
log_str = '| epoch {:3d} step {:>8d} | {:>6d} batches | lr {:.3g} ' \
'| ms/batch {:5.2f} | loss {:5.2f}'.format(
epoch, train_step, batch+1, optimizer.param_groups[0]['lr'],
elapsed * 1000 / args.log_interval, cur_loss)
if args.dataset in ['enwik8', 'text8']:
log_str += ' | bpc {:9.5f}'.format(cur_loss / math.log(2))
else:
log_str += ' | ppl {:9.3f}'.format(math.exp(cur_loss))
logging(log_str)
train_loss = 0
log_start_time = time.time()
if train_step % args.eval_interval == 0:
val_loss = evaluate(va_iter)
logging('-' * 100)
log_str = '| Eval {:3d} at step {:>8d} | time: {:5.2f}s ' \
'| valid loss {:5.2f}'.format(
train_step // args.eval_interval, train_step,
(time.time() - eval_start_time), val_loss)
if args.dataset in ['enwik8', 'text8']:
log_str += ' | bpc {:9.5f}'.format(val_loss / math.log(2))
else:
log_str += ' | valid ppl {:9.3f}'.format(math.exp(val_loss))
logging(log_str)
logging('-' * 100)
# Save the model if the validation loss is the best we've seen so far.
if not best_val_loss or val_loss < best_val_loss:
if not args.debug:
with open(os.path.join(args.work_dir, 'model.pt'), 'wb') as f:
torch.save(model, f)
with open(os.path.join(args.work_dir, 'optimizer.pt'), 'wb') as f:
torch.save(optimizer.state_dict(), f)
best_val_loss = val_loss
# dev-performance based learning rate annealing
if args.scheduler == 'dev_perf':
scheduler.step(val_loss)
if args.sample_softmax > 0:
scheduler_sparse.step(val_loss)
eval_start_time = time.time()
if train_step == args.max_step:
break
# Loop over epochs.
train_step = 0
train_loss = 0
best_val_loss = None
log_start_time = time.time()
eval_start_time = time.time()
# At any point you can hit Ctrl + C to break out of training early.
try:
for epoch in itertools.count(start=1):
train()
if train_step == args.max_step:
logging('-' * 100)
logging('End of training')
break
except KeyboardInterrupt:
logging('-' * 100)
logging('Exiting from training early')
# Load the best saved model.
with open(os.path.join(args.work_dir, 'model.pt'), 'rb') as f:
model = torch.load(f)
para_model = model.to(device)
# Run on test data.
test_loss = evaluate(te_iter)
logging('=' * 100)
if args.dataset in ['enwik8', 'text8']:
logging('| End of training | test loss {:5.2f} | test bpc {:9.5f}'.format(
test_loss, test_loss / math.log(2)))
else:
logging('| End of training | test loss {:5.2f} | test ppl {:9.3f}'.format(
test_loss, math.exp(test_loss)))
logging('=' * 100)