-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprimal_svm.m
executable file
·376 lines (323 loc) · 13 KB
/
primal_svm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
function [sol,b,obj] = primal_svm(linear,Y,lambda,opt)
% [SOL, B] = PRIMAL_SVM(LINEAR,Y,LAMBDA,OPT)
% Solves the SVM optimization problem in the primal (with quatratic
% penalization of the training errors).
%
% If LINEAR is 1, a global variable X containing the training inputs
% should be defined. X is an n x d matrix (n = number of points).
% If LINEAR is 0, a global variable K (the n x n kernel matrix) should be defined.
% Y is the target vector (+1 or -1, length n).
% LAMBDA is the regularization parameter ( = 1/C)
%
% IF LINEAR is 0, SOL is the expansion of the solution (vector beta of length n).
% IF LINEAR is 1, SOL is the hyperplane w (vector of length d).
% B is the bias
% The outputs on the training points are either K*SOL+B or X*SOL+B
% OBJ is the objective function value
%
% OPT is a structure containing the options (in brackets default values):
% cg: Do not use Newton, but nonlinear conjugate gradients [0]
% lin_cg: Compute the Newton step with linear CG
% [0 unless solving sparse linear SVM]
% iter_max_Newton: Maximum number of Newton steps [20]
% prec: Stopping criterion
% cg_prec and cg_it: stopping criteria for the linear CG.
% Copyright Olivier Chapelle, [email protected]
% Last modified 25/08/2006
if nargin < 4 % Assign the options to their default values
opt = [];
end;
if ~isfield(opt,'cg'), opt.cg = 0; end;
if ~isfield(opt,'lin_cg'), opt.lin_cg = 0; end;
if ~isfield(opt,'iter_max_Newton'), opt.iter_max_Newton = 20; end;
if ~isfield(opt,'prec'), opt.prec = 1e-6; end;
if ~isfield(opt,'cg_prec'), opt.cg_prec = 1e-4; end;
if ~isfield(opt,'cg_it'), opt.cg_it = 20; end;
% Call the right function depending on problem type and CG / Newton
% Also check that X / K exists and that the dimension of Y is correct
if linear
global X;
if isempty(X), error('Global variable X undefined'); end;
[n,d] = size(X);
if issparse(X), opt.lin_cg = 1; end;
if size(Y,1)~=n, error('Dimension error'); end;
if ~opt.cg
[sol,obj] = primal_svm_linear (Y,lambda,opt);
else
[sol,obj] = primal_svm_linear_cg(Y,lambda,opt);
end;
else
global K;
if isempty(K), error('Global variable K undefined'); end;
n = size(Y,1);
if any(size(K)~=n), error('Dimension error'); end;
if ~opt.cg
[sol,obj] = primal_svm_nonlinear (Y,lambda,opt);
else
[sol,obj] = primal_svm_nonlinear_cg(Y,lambda,opt);
end;
end;
% The last component of the solution is the bias b.
b = sol(end);
sol = sol(1:end-1);
fprintf('\n');
function [w,obj] = primal_svm_linear(Y,lambda,opt)
% -------------------------------
% Train a linear SVM using Newton
% -------------------------------
global X;
[n,d] = size(X);
w = zeros(d+1,1); % The last component of w is b.
iter = 0;
out = ones(n,1); % Vector containing 1-Y.*(X*w)
while 1
iter = iter + 1;
if iter > opt.iter_max_Newton;
warning(sprintf(['Maximum number of Newton steps reached.' ...
'Try larger lambda']));
break;
end;
[obj, grad, sv] = obj_fun_linear(w,Y,lambda,out);
% Compute the Newton direction either exactly or by linear CG
if opt.lin_cg
% Advantage of linear CG when using sparse input: the Hessian is never
% computed explicitly.
[step, foo, relres] = minres(@hess_vect_mult, -grad,...
opt.cg_prec,opt.cg_it,[],[],[],sv,lambda);
else
Xsv = X(sv,:);
hess = lambda*diag([ones(d,1); 0]) + ... % Hessian
[[Xsv'*Xsv sum(Xsv,1)']; [sum(Xsv) length(sv)]];
step = - hess \ grad; % Newton direction
end;
% Do an exact line search
[t,out] = line_search_linear(w,step,out,Y,lambda);
w = w + t*step;
fprintf(['Iter = %d, Obj = %f, Nb of sv = %d, Newton decr = %.3f, ' ...
'Line search = %.3f'],iter,obj,length(sv),-step'*grad/2,t);
if opt.lin_cg
fprintf(', Lin CG acc = %.4f \n',relres);
else
fprintf(' \n');
end;
if -step'*grad < opt.prec * obj
% Stop when the Newton decrement is small enough
break;
end;
end;
function [w, obj] = primal_svm_linear_cg(Y,lambda,opt)
% -----------------------------------------------------
% Train a linear SVM using nonlinear conjugate gradient
% -----------------------------------------------------
global X;
[n,d] = size(X);
w = zeros(d+1,1); % The last component of w is b.
iter = 0;
out = ones(n,1); % Vector containing 1-Y.*(X*w)
go = [X'*Y; sum(Y)]; % -gradient at w=0
s = go; % The first search direction is given by the gradient
while 1
iter = iter + 1;
if iter > opt.cg_it * min(n,d)
warning(sprintf(['Maximum number of CG iterations reached. ' ...
'Try larger lambda']));
break;
end;
% Do an exact line search
[t,out] = line_search_linear(w,s,out,Y,lambda);
w = w + t*s;
% Compute the new gradient
[obj, gn] = obj_fun_linear(w,Y,lambda,out); gn=-gn;
fprintf('Iter = %d, Obj = %f, Norm of grad = %.3f \n',iter,obj,norm(gn));
% Stop when the relative decrease in the objective function is small
if t*s'*go < opt.prec*obj, break; end;
% Flecher-Reeves update. Change 0 in 1 for Polack-Ribiere
be = (gn'*gn - 0*gn'*go) / (go'*go);
s = be*s+gn;
go = gn;
end;
function [obj, grad, sv] = obj_fun_linear(w,Y,lambda,out)
% Compute the objective function, its gradient and the set of support vectors
% Out is supposed to contain 1-Y.*(X*w)
global X
out = max(0,out);
w0 = w; w0(end) = 0; % Do not penalize b
obj = sum(out.^2)/2 + lambda*w0'*w0/2; % L2 penalization of the errors
grad = lambda*w0 - [((out.*Y)'*X)'; sum(out.*Y)]; % Gradient
sv = find(out>0);
function y = hess_vect_mult(w,sv,lambda)
% Compute the Hessian times a given vector x.
% hess = lambda*diag([ones(d-1,1); 0]) + (X(sv,:)'*X(sv,:));
global X
y = lambda*w;
y(end) = 0;
z = (X*w(1:end-1)+w(end)); % Computing X(sv,:)*x takes more time in Matlab :-(
zz = zeros(length(z),1);
zz(sv)=z(sv);
y = y + [(zz'*X)'; sum(zz)];
function [t,out] = line_search_linear(w,d,out,Y,lambda)
% From the current solution w, do a line search in the direction d by
% 1D Newton minimization
global X
t = 0;
% Precompute some dots products
Xd = X*d(1:end-1)+d(end);
wd = lambda * w(1:end-1)'*d(1:end-1);
dd = lambda * d(1:end-1)'*d(1:end-1);
while 1
out2 = out - t*(Y.*Xd); % The new outputs after a step of length t
sv = find(out2>0);
g = wd + t*dd - (out2(sv).*Y(sv))'*Xd(sv); % The gradient (along the line)
h = dd + Xd(sv)'*Xd(sv); % The second derivative (along the line)
t = t - g/h; % Take the 1D Newton step. Note that if d was an exact Newton
% direction, t is 1 after the first iteration.
if g^2/h < 1e-10, break; end;
% fprintf('%f %f\n',t,g^2/h)
end;
out = out2;
function [beta,obj] = primal_svm_nonlinear(Y,lambda,opt)
% -----------------------------------
% Train a non-linear SVM using Newton
% -----------------------------------
global K
training = find(Y); % The points with 0 are ignored.
n = length(training); % The real number of training points
if n>=1000 % Train a subset first
perm = randperm(n);
ind = training(perm(1:round(.75*n))); % Take a random subset of size n/4
Y2 = Y; Y2(ind) = 0;
beta = primal_svm_nonlinear(Y2,lambda,opt);
sv = find(beta(1:end-1)~=0);
Kb = K(training,sv)*beta(sv); % Kb will always contains K times the current beta
else
sv = training;
beta = zeros(length(Y)+1,1); % The last component of beta is b.
Kb = zeros(n,1);
end;
iter = 0;
% If the set of support vectors has changed, we need to reiterate.
while 1
old_sv = sv;
% Computing the objective function
out = 1 - Y(training) .* (Kb+beta(end));
sv = training(out > 0);
obj = (lambda*beta(training)'*Kb + sum(max(0,out).^2)) / 2;
iter = iter + 1;
% If the set of support vectors doesn't change, we can't improve anymore
if (iter > 1) & isempty(setxor(sv,old_sv)), break; end;
if iter > opt.iter_max_Newton
warning(sprintf(['Maximum number of Newton steps reached. ' ...
'Try larger lambda']));
break;
end;
H = K(sv,sv) + lambda*eye(length(sv));
cte_for_b = mean(diag(K));
H(end+1,:) = cte_for_b; % To take the bias into account
H(:,end+1) = cte_for_b; % The actual value of this constant does not matter.
H(end,end) = 0; % For numerical reasons, take it of the order of K.
% Beta_new would be the new vevtor beta is the full Newton step is taken
beta_new = zeros(length(Y)+1,1);
if opt.lin_cg
[beta_new([sv; end]), foo1, relres] = minres(H,[Y(sv);0],opt.cg_prec,opt.cg_it);
else
beta_new([sv; end]) = H\[Y(sv);0];
end;
beta_new(end) = beta_new(end) * cte_for_b;
% Do line search, but with a preference for a full Newton step
step = beta_new - beta;
[t, Kb] = line_search_nonlinear(step([training; end]),Kb,beta(end),Y,lambda,1);
beta = beta + t*step;
fprintf('n = %d, iter = %d, obj = %f, nb of sv = %d, line srch = %.4f',...
[n iter obj length(sv) t]);
if opt.lin_cg
fprintf(', Lin CG acc = %.4f \n',relres);
else
fprintf(' \n');
end;
end;
sol = beta;
function [beta, obj] = primal_svm_nonlinear_cg(Y,lambda,opt)
% -----------------------------------------------------
% Train a linear SVM using nonlinear conjugate gradient
% -----------------------------------------------------
global K;
n = length(K);
beta = zeros(n+1,1); % The last component of beta is b.
iter = 0;
Kb = zeros(n,1); % Kb will always contains K times the current beta
go = [Y; sum(Y)]; % go = -gradient at beta=0
s = go; % Initial search direction
Kgo = [K*Y; sum(Y)]; % We use the preconditioner [[K 0]; [0 1]]
Ks = Kgo(1:end-1); % Ks will always contain K*s(1:end-1)
while 1
iter = iter + 1;
if iter > opt.cg_it * n
warning(sprintf(['Maximum number of CG iterations reached. ' ...
'Try larger lambda']));
break;
end;
% Do an exact line search
[t,Kb] = line_search_nonlinear(s,Kb,beta(end),Y,lambda,0,Ks);
beta = beta + t*s;
% Compute new gradient and objective.
% Note that the gradient is already "divided" by the preconditioner
[obj, grad] = obj_fun_nonlinear(beta,Y,lambda,Kb); gn = -grad;
fprintf('Iter = %d, Obj = %f, Norm grad = %f \n',iter,obj,norm(gn));
% Stop when the relative decrease in the objective function is small
if t*s'*Kgo < opt.prec*obj, break; end;
Kgn = [K*gn(1:end-1); gn(end)]; % Multiply by the preconditioner
% -> Kgn is the real gradient
% Flecher-Reeves update. Change 0 in 1 for Polack-Ribiere
be = (Kgn'*gn - 0*Kgn'*go) / (Kgo'*go);
% be = (gn'*gn - gn'*go) / (go'*go);
s = be*s+gn;
Ks = be*Ks + Kgn(1:end-1);
go = gn;
Kgo = Kgn;
end;
function [t, Kb] = line_search_nonlinear(step,Kb,b,Y,lambda,fullstep,Ks)
% Given the current solution (as given by Kb), do a line sesrch in
% direction step. First try to take a full step if fullstep = 1.
global K;
training = find(Y~=0);
act = find(step(1:end-1)); % The set of points for which beta change
if nargin<7
Ks = K(training,training(act))*step(act);
end;
Kss = step(act)'*Ks(act); % Precompute some dot products
Kbs = step(act)'*Kb(act);
t = 0;
Y = Y(training);
% Compute the objective function for t=1
out = 1-Y.*(Kb+b+Ks+step(end)); sv = out>0;
obj1 = (lambda*(2*Kbs+Kss)+sum(out(sv).^2))/2;
while 1
out = 1-Y.*(Kb+b+t*(Ks+step(end)));
sv = out>0;
% The objective function and the first derivative (along the line)
obj = (lambda*(2*t*Kbs+t^2*Kss)+sum(out(sv).^2))/2;
g = lambda * (Kbs+t*Kss) - (Ks(sv)'+step(end))*(Y(sv).*out(sv));
if fullstep & (t==0) & (obj-obj1 > -0.2*g)
% First check t=1: if it works, keep it -> sparser solution
t = 1;
break;
end;
% The second derivative (along the line)
h = lambda*Kss + norm(Ks(sv)+step(end))^2;
% fprintf('%d %f %f %f\n',length(find(sv)),t,obj,g^2/h);
% Take the 1D Newton step
t = t - g/h;
if g^2/h < 1e-10, break; end;
end;
Kb = Kb + t*Ks;
function [obj, grad] = obj_fun_nonlinear(beta,Y,lambda,Kb)
global K;
out = Kb+beta(end);
sv = find(Y.*out < 1);
% Objective function...
obj = (lambda*beta(1:end-1)'*Kb + sum((1-Y(sv).*out(sv)).^2)) / 2;
% ... and preconditioned gradient
grad = [lambda*beta(1:end-1); sum(out(sv)-Y(sv))];
grad(sv) = grad(sv) + (out(sv)-Y(sv));
% To compute the real gradient, one would have to execute the following line
% grad = [K*grad(1:end-1); grad(end)];