-
Notifications
You must be signed in to change notification settings - Fork 61
/
infer.py
184 lines (151 loc) · 5.48 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import logging
import os
import time
from argparse import ArgumentParser
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim
import torch.utils.data
import yaml
from PIL import Image
from tqdm import tqdm
from u2pl.models.model_helper import ModelBuilder
from u2pl.utils.utils import (
AverageMeter,
check_makedirs,
colorize,
convert_state_dict,
intersectionAndUnion,
)
# Setup Parser
def get_parser():
parser = ArgumentParser(description="PyTorch Evaluation")
parser.add_argument("--config", type=str, default="config.yaml")
parser.add_argument(
"--model_path",
type=str,
default="checkpoints/psp_best.pth",
help="evaluation model path",
)
parser.add_argument(
"--save_folder", type=str, default="viewer", help="results save folder"
)
return parser
def get_logger():
logger_name = "main-logger"
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
fmt = "[%(asctime)s %(levelname)s %(filename)s line %(lineno)d %(process)d] %(message)s"
handler.setFormatter(logging.Formatter(fmt))
logger.addHandler(handler)
return logger
def main():
global args, logger, cfg
args = get_parser().parse_args()
cfg = yaml.load(open(args.config, "r"), Loader=yaml.Loader)
logger = get_logger()
logger.info(args)
cfg_dset = cfg["dataset"]
mean, std = cfg_dset["mean"], cfg_dset["std"]
num_classes = cfg["net"]["num_classes"]
crop_size = cfg_dset["val"]["crop"]["size"]
crop_h, crop_w = crop_size
assert num_classes > 1
os.makedirs(args.save_folder, exist_ok=True)
gray_folder = os.path.join(args.save_folder, "gray")
os.makedirs(gray_folder, exist_ok=True)
color_folder = os.path.join(args.save_folder, "color")
os.makedirs(color_folder, exist_ok=True)
cfg_dset = cfg["dataset"]
data_root, f_data_list = cfg_dset["val"]["data_root"], cfg_dset["val"]["data_list"]
data_list = []
if "cityscapes" in data_root:
for line in open(f_data_list, "r"):
arr = [
line.strip(),
"gtFine/" + line.strip()[12:-15] + "gtFine_labelTrainIds.png",
]
arr = [os.path.join(data_root, item) for item in arr]
data_list.append(arr)
else:
for line in open(f_data_list, "r"):
arr = [
"JPEGImages/{}.jpg".format(line.strip()),
"SegmentationClassAug/{}.png".format(line.strip()),
]
arr = [os.path.join(data_root, item) for item in arr]
data_list.append(arr)
# Create network.
args.use_auxloss = True if cfg["net"].get("aux_loss", False) else False
logger.info("=> creating model from '{}' ...".format(args.model_path))
cfg["net"]["sync_bn"] = False
model = ModelBuilder(cfg["net"])
checkpoint = torch.load(args.model_path)
key = "teacher_state" if "teacher_state" in checkpoint.keys() else "model_state"
logger.info(f"=> load checkpoint[{key}]")
saved_state_dict = convert_state_dict(checkpoint[key])
model.load_state_dict(saved_state_dict, strict=False)
model.cuda()
logger.info("Load Model Done!")
input_scale = [769, 769] if "cityscapes" in data_root else [513, 513]
colormap = create_pascal_label_colormap()
model.eval()
for image_path, label_path in tqdm(data_list):
image_name = image_path.split("/")[-1]
image = Image.open(image_path).convert("RGB")
image = np.asarray(image).astype(np.float32)
h, w, _ = image.shape
image = (image - mean) / std
image = torch.Tensor(image).permute(2, 0, 1)
image = image.unsqueeze(dim=0)
image = F.interpolate(image, input_scale, mode="bilinear", align_corners=True)
output = net_process(model, image)
output = F.interpolate(output, (h, w), mode="bilinear", align_corners=True)
mask = torch.argmax(output, dim=1).squeeze().cpu().numpy()
color_mask = Image.fromarray(colorful(mask, colormap))
color_mask.save(os.path.join(color_folder, image_name))
mask = Image.fromarray(mask)
mask.save(os.path.join(gray_folder, image_name))
def colorful(mask, colormap):
color_mask = np.zeros([mask.shape[0], mask.shape[1], 3])
for i in np.unique(mask):
color_mask[mask == i] = colormap[i]
return np.uint8(color_mask)
def create_pascal_label_colormap():
"""Creates a label colormap used in Pascal segmentation benchmark.
Returns:
A colormap for visualizing segmentation results.
"""
colormap = 255 * np.ones((256, 3), dtype=np.uint8)
colormap[0] = [0, 0, 0]
colormap[1] = [128, 0, 0]
colormap[2] = [0, 128, 0]
colormap[3] = [128, 128, 0]
colormap[4] = [0, 0, 128]
colormap[5] = [128, 0, 128]
colormap[6] = [0, 128, 128]
colormap[7] = [128, 128, 128]
colormap[8] = [64, 0, 0]
colormap[9] = [192, 0, 0]
colormap[10] = [64, 128, 0]
colormap[11] = [192, 128, 0]
colormap[12] = [64, 0, 128]
colormap[13] = [192, 0, 128]
colormap[14] = [64, 128, 128]
colormap[15] = [192, 128, 128]
colormap[16] = [0, 64, 0]
colormap[17] = [128, 64, 0]
colormap[18] = [0, 192, 0]
colormap[19] = [128, 192, 0]
colormap[20] = [0, 64, 128]
return colormap
@torch.no_grad()
def net_process(model, image):
input = image.cuda()
output = model(input)["pred"]
return output
if __name__ == "__main__":
main()