-
Notifications
You must be signed in to change notification settings - Fork 0
/
search.py
799 lines (733 loc) · 43.1 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
import argparse
import datetime
import numpy as np
import time
import torch
import torch.distributed as dist
import torch.backends.cudnn as cudnn
import json
from apex import amp
from pathlib import Path
from os.path import exists
from timm.data import Mixup
from timm.models import create_model
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from datasets import build_dataset
from engine import evaluate, search_one_epoch
from losses import DistillationLoss, OFBSearchLOSS
from samplers import RASampler
import utils
from utils import NativeScalerWithGradNormCount as NativeScaler
from utils import ModelEma
from models.layers import LayerNorm
from optim import AdamW
from lr_sched import create_scheduler
def get_args_parser():
parser = argparse.ArgumentParser('DeiT Searching script', add_help=False)
parser.add_argument('--batch-size', default=128, type=int)
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--accum-iter', default=2, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='deit_small_patch16_224', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--mae', action='store_true')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--mask-ratio', default=1.0, type=float, help='mask ratio')
parser.add_argument('--fuse_point', default=50, type=int)
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--resume', action='store_true')
parser.add_argument('--checkpoint', default='', type=str,
help='path of resuming from checkpoint model.')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.set_defaults(model_ema=False)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--use-amp', action='store_true')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-eps-arch', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-eps-decoder', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=(0.9, 0.999), type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--opt-betas-arch', default=(0.5, 0.999), type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--opt-betas-decoder', default=(0.9, 0.999), type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--momentum-decoder', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=1e-3,
help='weight decay (default: 1e-3)')
parser.add_argument('--weight-decay-arch', type=float, default=1e-3,
help='weight decay (default: 1e-3)')
parser.add_argument('--weight-decay-decoder', type=float, default=1e-3,
help='weight decay (default: 1e-3)')
# Learning rate schedule parameters (if sched is none, warmup and min dont matter)
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "none"')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr_decoder', type=float, default=None, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr_arch', type=float, default=None, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--blr', type=float, default=2.5e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--blr_decoder', type=float, default=2.5e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--blr_arch', type=float, default=2.5e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=20, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.0,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=0.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Distillation parameters
parser.add_argument('--teacher-model', default='regnety_160', type=str, metavar='MODEL',
help='Name of teacher model to train (default: "regnety_160"')
parser.add_argument('--teacher-path', type=str, default='')
parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="")
parser.add_argument('--distillation-alpha', default=0.5, type=float, help="")
parser.add_argument('--distillation-tau', default=1.0, type=float, help="")
# Dataset parameters
parser.add_argument('--data-path', default='/root/data/ILSVRC2015/Data/CLS-LOC/', type=str,
help='dataset path')
parser.add_argument('--data-set', default='IMNET', choices=['CIFAR10', 'CIFAR100', 'IMNET', 'INAT', 'INAT19', 'IMNET100'],
type=str, help='Image Net dataset path')
# parser.add_argument('--proxy-ratio', type=float, default=1.0,
# help='Probability of sampling proxy dataset')
parser.add_argument('--inat-category', default='name',
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
type=str, help='semantic granularity')
parser.add_argument('--output_dir', default='runs/test',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--gpu', default='0',
help='devices to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
# searching parameters
parser.add_argument('--w_head', default=0.5, type=float, help='weightage to attn head dimension')
parser.add_argument('--w_embedding', default=0.5, type=float, help='weightage to patch embedding dimension')
parser.add_argument('--w_mlp', default=0.5, type=float, help='weightage to mlp channel dimension')
parser.add_argument('--w_patch', default=0, type=float, help='weightage to patch number dimension')
parser.add_argument('--w_flops', default=5, type=float, help='weightage to the flops loss')
parser.add_argument('--w_decoder', default=1, type=float, help='weightage to the decoder loss')
parser.add_argument('--target_flops', default=1.0, type=float)
parser.add_argument('--max_ratio', default=0.95, type=float)
parser.add_argument('--min_ratio', default=0.75, type=float)
parser.add_argument('--pretrained_path', default='', type=str)
parser.add_argument('--head_search', action='store_true', help='whether to search the head number')
parser.add_argument('--channel_search', action='store_true', help='whether to search the qkv channel number')
parser.add_argument('--attn_search', action='store_true', help='whether to search the attn number')
parser.add_argument('--mlp_search', action='store_true', help='whether to search the mlp number')
parser.add_argument('--embed_search', action='store_true', help='whether to search the embed number')
parser.add_argument('--patch_search', action='store_true', help='whether to search the patch number')
parser.add_argument('--freeze_weights', action='store_true')
parser.add_argument('--no-progressive', action='store_true')
parser.add_argument('--no-entropy', action='store_true')
parser.add_argument('--no-var', action='store_true')
parser.add_argument('--no-norm', action='store_true')
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=True)
parser.add_argument('--vis-score', action='store_true')
return parser
def intersect(model, pretrained_model):
state = pretrained_model.state_dict()
counted = []
for k, v in list(model.named_modules()):
have_layers = [i.isdigit() for i in k.split('.')]
if any(have_layers):
model_id = []
for i, ele in enumerate(k.split('.')):
if have_layers[i]:
model_id[-1] = model_id[-1] + f'[{ele}]'
else:
model_id.append(ele)
model_id = '.'.join(model_id)
else:
model_id = k
if hasattr(v, 'weight') and f'{k}.weight' in state.keys():
layer = eval(f'model.{model_id}')
layer.weight = torch.nn.Parameter(state[f'{k}.weight'].data.clone())
if hasattr(layer, 'out_channels'):
layer.out_channels = layer.weight.shape[0]
layer.in_channels = layer.weight.shape[1]
if hasattr(layer, 'out_features'):
layer.out_features = layer.weight.shape[0]
layer.in_features = layer.weight.shape[1]
if layer.bias is not None:
layer.bias = torch.nn.Parameter(state[f'{k}.bias'].data.clone())
if isinstance(layer, torch.nn.BatchNorm2d):
layer.num_features = layer.weight.shape[0]
layer.running_mean = state[f'{k}.running_mean'].data.clone()
layer.running_var = state[f'{k}.running_var'].data.clone()
layer.num_batches_tracked = state[f'{k}.num_batches_tracked'].data.clone()
if isinstance(layer, LayerNorm):
layer.normalized_shape[0] = layer.weight.shape[-1]
exec('m = layer', {'m': f'model.{model_id}', 'layer': layer})
counted.append(model_id)
print(f'Update model.{model_id}: {eval(f"model.{model_id}")}')
elif isinstance(v, torch.Tensor):
layer = eval(f'model.{model_id}')
assert isinstance(layer, torch.nn.Parameter)
layer = torch.nn.Parameter(state[f'{k}'].data.clone())
exec('m = layer', {'m': f'model.{model_id}', 'layer': layer})
counted.append(model_id)
print(f'Update model.{model_id}: {eval(f"model.{model_id}")}')
elif hasattr(v, 'num_heads'):
layer = eval(f'model.{model_id}')
try:
layer.num_heads = eval(f'pretrained_model.{model_id}.head_num')
except:
layer.num_heads = eval(f'pretrained_model.{model_id}.num_heads')
layer.qk_scale = eval(f'pretrained_model.{model_id}.qk_scale')
exec('m = layer', {'m': f'model.{model_id}', 'layer': layer})
counted.append(model_id)
print(f'Update model.{model_id}: {eval(f"model.{model_id}")}')
if hasattr(v, 'alpha'):
layer = eval(f'model.{model_id}')
layer.finish_search = eval(f'pretrained_model.{model_id}.finish_search')
layer.weighted_mask = eval(f'pretrained_model.{model_id}.weighted_mask')
layer.switch_cell = eval(f'pretrained_model.{model_id}.switch_cell')
layer.alpha = eval(f'pretrained_model.{model_id}.alpha')
layer.mask = eval(f'pretrained_model.{model_id}.mask')
layer.score = eval(f'pretrained_model.{model_id}.score')
exec('m = layer', {'m': f'model.{model_id}', 'layer': layer})
print(f'Update the search results of model.{model_id}: {eval(f"model.{model_id}")}')
model.cls_token = torch.nn.Parameter(state['cls_token'].data.clone())
model.pos_embed = torch.nn.Parameter(state['pos_embed'].data.clone())
model.mask_token = torch.nn.Parameter(state['mask_token'].data.clone())
model.finish_search = pretrained_model.finish_search
model.weighted_mask = pretrained_model.weighted_mask
model.switch_cell_patch = pretrained_model.switch_cell_patch
model.alpha_patch = pretrained_model.alpha_patch
model.patch_search_mask = pretrained_model.patch_search_mask
print(f'Update total {len(counted) + 3} parameters.') # cls_token, pos_embed, mask_token
return model
def resume(args, checkpoint_path, model_ema, device):
print(f'Loading from {checkpoint_path}')
checkpoint = torch.load(checkpoint_path, map_location='cpu')
model = checkpoint['model'].to(device)
finish_search = model.finish_search
decay_params, no_decay_params, decay_decoder, no_decay_decoder, archs = [], [], [], [], []
decay_params_name, no_decay_params_name, decay_decoder_name, no_decay_decoder_name, archs_name = [], [], [], [], []
skip = model.no_weight_decay() if hasattr(model, 'no_weight_decay') else {}
for name, p in model.named_parameters():
if not p.requires_grad:
continue # frozen weights
if len(p.shape) == 1 or name.endswith(".bias") or any([ele in name for ele in skip]):
if 'decoder' not in name:
no_decay_params.append(p)
no_decay_params_name.append(name)
else:
no_decay_decoder.append(p)
no_decay_decoder_name.append(name)
elif "alpha" in name:
archs.append(p)
archs_name.append(name)
else:
if 'decoder' not in name:
decay_params.append(p)
decay_params_name.append(name)
else:
decay_decoder.append(p)
decay_decoder_name.append(name)
kwargs_optim = dict(lr=args.lr)
if getattr(args, 'opt_eps', None) is not None: kwargs_optim['eps'] = args.opt_eps
if getattr(args, 'opt_betas', None) is not None: kwargs_optim['betas'] = args.opt_betas
if getattr(args, 'opt_args', None) is not None: kwargs_optim.update(args.opt_args)
kwargs_optim_arch = dict(lr=args.lr_arch)
if getattr(args, 'opt_eps_arch', None) is not None: kwargs_optim_arch['eps'] = args.opt_eps_arch
if getattr(args, 'opt_betas_arch', None) is not None: kwargs_optim_arch['betas'] = args.opt_betas_arch
if getattr(args, 'opt_args_arch', None) is not None: kwargs_optim_arch.update(args.opt_args_arch)
kwargs_optim_decoder = dict(lr=args.lr_decoder)
if getattr(args, 'opt_eps_decoder', None) is not None: kwargs_optim_decoder['eps'] = args.opt_eps_decoder
if getattr(args, 'opt_betas_decoder', None) is not None: kwargs_optim_decoder['betas'] = args.opt_betas_decoder
if getattr(args, 'opt_args_decoder', None) is not None: kwargs_optim_decoder.update(args.opt_args_decoder)
param_names = {0: no_decay_params_name, 1: decay_params_name}
optimizer_param = AdamW([{'params': no_decay_params, 'weight_decay': 0.},
{'params': decay_params, 'weight_decay': args.weight_decay}], param_names, **kwargs_optim)
if len(decay_decoder):
decoder_names = {0: no_decay_decoder_name, 1: decay_decoder_name}
optimizer_decoder = AdamW([{'params': no_decay_decoder, 'weight_decay': 0.},
{'params': decay_decoder, 'weight_decay': args.weight_decay_decoder}], decoder_names,
**kwargs_optim_decoder)
else: optimizer_decoder = None
if len(archs):
archs_names = {0: archs_name}
optimizer_arch = AdamW(archs, archs_names, **kwargs_optim_arch, weight_decay=1e-3)
else: optimizer_arch = None
loss_scaler = NativeScaler()
try:
optimizer_param.load_state_dict(checkpoint['optimizer_param'])
if 'optimizer_decoder' in checkpoint and optimizer_decoder is not None and checkpoint['optimizer_decoder'] is not None:
optimizer_decoder.load_state_dict(checkpoint['optimizer_decoder'])
if 'optimizer_arch' in checkpoint and optimizer_arch is not None and checkpoint['optimizer_arch'] is not None:
optimizer_arch.load_state_dict(checkpoint['optimizer_arch'])
if model_ema is not None and checkpoint['model_ema'] is not None:
utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
except: pass
args.start_epoch = checkpoint['epoch'] + 1
return model, model_ema, finish_search, optimizer_param, optimizer_arch, optimizer_decoder
def main(args):
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
dataset_val, _ = build_dataset(is_train=False, args=args)
print(f"Creating model: {args.model}")
model = create_model(
args.model,
pretrained=True,
mae=args.mae,
pretrained_strict=False,
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None,
method='search',
head_search=args.head_search,
channel_search=args.channel_search,
norm_pix_loss=args.norm_pix_loss,
attn_search=args.attn_search,
mlp_search=args.mlp_search,
embed_search=args.embed_search,
patch_search=args.patch_search,
mask_ratio=args.mask_ratio
)
if args.pretrained_path != '':
print(f'Loading from {args.pretrained_path}')
assert exists(args.pretrained_path)
state_dict = torch.load(args.pretrained_path, map_location='cpu')['model']
model = intersect(model, state_dict)
model.to(device)
model.correct_require_grad(args.w_head, args.w_mlp, args.w_patch, args.w_embedding)
if args.freeze_weights:
for name, p in model.named_parameters():
if any([key in name for key in ['alpha', 'score', 'norm', 'token', 'decoder', 'mask', 'head']]):
p.requires_grad = True
else:
p.requires_grad = False
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
finish_search = model.finish_search
if True: # args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if args.repeated_aug:
sampler_train = RASampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False, )
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(1.5 * args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
decay_params, no_decay_params, decay_decoder, no_decay_decoder, archs = [], [], [], [], []
decay_params_name, no_decay_params_name, decay_decoder_name, no_decay_decoder_name, archs_name = [], [], [], [], []
skip = model.no_weight_decay() if hasattr(model, 'no_weight_decay') else {}
for name, p in model.named_parameters():
if not p.requires_grad:
continue # frozen weights
if len(p.shape) == 1 or name.endswith(".bias") or any([ele in name for ele in skip]):
if 'decoder' not in name:
no_decay_params.append(p)
no_decay_params_name.append(name)
else:
no_decay_decoder.append(p)
no_decay_decoder_name.append(name)
elif "alpha" in name:
archs.append(p)
archs_name.append(name)
else:
if 'decoder' not in name:
decay_params.append(p)
decay_params_name.append(name)
else:
decay_decoder.append(p)
decay_decoder_name.append(name)
eff_batch_size = args.batch_size * args.accum_iter * utils.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
if args.lr_arch is None: # only base_lr is specified
args.lr_arch = args.blr_arch * eff_batch_size / 256
if args.lr_decoder is None: # only base_lr is specified
args.lr_decoder = args.blr_decoder * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("base arch lr: %.2e" % (args.lr_arch * 256 / eff_batch_size))
print("actual arch lr: %.2e" % args.lr_arch)
print("base decoder lr: %.2e" % (args.lr_decoder * 256 / eff_batch_size))
print("actual decoder lr: %.2e" % args.lr_decoder)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
kwargs_optim = dict(
lr=args.lr)
if getattr(args, 'opt_eps', None) is not None:
kwargs_optim['eps'] = args.opt_eps
if getattr(args, 'opt_betas', None) is not None:
kwargs_optim['betas'] = args.opt_betas
if getattr(args, 'opt_args', None) is not None:
kwargs_optim.update(args.opt_args)
kwargs_optim_arch = dict(lr=args.lr_arch)
if getattr(args, 'opt_eps_arch', None) is not None: kwargs_optim_arch['eps'] = args.opt_eps_arch
if getattr(args, 'opt_betas_arch', None) is not None: kwargs_optim_arch['betas'] = args.opt_betas_arch
if getattr(args, 'opt_args_arch', None) is not None: kwargs_optim_arch.update(args.opt_args_arch)
kwargs_optim_decoder = dict(lr=args.lr_decoder)
if getattr(args, 'opt_eps_decoder', None) is not None: kwargs_optim_decoder['eps'] = args.opt_eps_decoder
if getattr(args, 'opt_betas_decoder', None) is not None: kwargs_optim_decoder['betas'] = args.opt_betas_decoder
if getattr(args, 'opt_args_decoder', None) is not None: kwargs_optim_decoder.update(args.opt_args_decoder)
param_names = {0: no_decay_params_name, 1: decay_params_name}
optimizer_param = AdamW([{'params': no_decay_params, 'weight_decay': 0.},
{'params': decay_params, 'weight_decay': args.weight_decay}], param_names, **kwargs_optim)
if len(decay_decoder):
decoder_names = {0: no_decay_decoder_name, 1: decay_decoder_name}
optimizer_decoder = AdamW([{'params': no_decay_decoder, 'weight_decay': 0.},
{'params': decay_decoder, 'weight_decay': args.weight_decay_decoder}], decoder_names, **kwargs_optim_decoder)
else: optimizer_decoder = None
if len(archs):
archs_names ={0: archs_name}
optimizer_arch = AdamW(archs, archs_names, **kwargs_optim_arch, weight_decay=1e-3)
else: optimizer_arch = None
loss_scaler = NativeScaler()
output_dir = Path(args.output_dir)
sa_dict, sp_dict, ss_dict = {}, {}, {}
if args.resume:
if global_rank == 0 and (output_dir / 'saliency.npy').exists():
sa_dict = np.load(output_dir / 'saliency.npy', allow_pickle=True).item()
sp_dict = np.load(output_dir / 'sparsity.npy', allow_pickle=True).item()
ss_dict = np.load(output_dir / 'joint.npy', allow_pickle=True).item()
model, model_ema, finish_search, optimizer_param, optimizer_arch, optimizer_decoder = resume(args, args.checkpoint, model_ema, device)
model.correct_require_grad(args.w_head, args.w_mlp, args.w_patch, args.w_embedding)
lr_scheduler_params, _ = create_scheduler(args.epochs, args.warmup_epochs, args.warmup_lr,
args.min_lr, args, optimizer_param, len(data_loader_train))
if optimizer_arch is not None: lr_scheduler_arch, _ = create_scheduler(args.epochs, args.warmup_epochs, args.warmup_lr,
args.min_lr, args, optimizer_arch, len(data_loader_train))
else: lr_scheduler_arch = None
if optimizer_decoder is not None: lr_scheduler_decoder, _ = create_scheduler(args.epochs, args.warmup_epochs, args.warmup_lr,
args.min_lr, args, optimizer_decoder, len(data_loader_train))
else: lr_scheduler_decoder = None
if mixup_active:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else: criterion = torch.nn.CrossEntropyLoss()
teacher_model = None
if args.distillation_type != 'none':
assert args.teacher_path, 'need to specify teacher-path when using distillation'
print(f"Creating teacher model: {args.teacher_model}")
teacher_model = create_model(
args.teacher_model,
pretrained=False,
num_classes=args.nb_classes,
global_pool='avg',
)
if args.teacher_path.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.teacher_path, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.teacher_path, map_location='cpu')
teacher_model.load_state_dict(checkpoint['model'])
teacher_model.to(device)
teacher_model.eval()
if args.use_amp:
if optimizer_arch is not None and optimizer_decoder is not None:
model, [optimizer_param, optimizer_decoder, optimizer_arch] = amp.initialize(model,
[optimizer_param, optimizer_decoder, optimizer_arch], num_losses=2)
elif optimizer_arch is not None:
model, [optimizer_param, optimizer_arch] = amp.initialize(model, [optimizer_param, optimizer_arch], num_losses=2)
elif optimizer_decoder is not None:
model, [optimizer_param, optimizer_decoder] = amp.initialize(model, [optimizer_param, optimizer_decoder])
# wrap the criterion in our custom DistillationLoss, which
# just dispatches to the original criterion if args.distillation_type is 'none'
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
criterion = DistillationLoss(
criterion, teacher_model, args.distillation_type, args.distillation_alpha, args.distillation_tau
)
criterion = OFBSearchLOSS(
criterion, device, attn_w=args.w_head, mlp_w=args.w_mlp,
patch_w=args.w_patch, embedding_w=args.w_embedding, flops_w=args.w_flops,
entropy=not args.no_entropy, var=not args.no_var, norm=not args.no_norm
)
print(f"Start training for {args.epochs} epochs")
target_flops = args.target_flops
start_time = time.time()
max_soft_accuracy = 0.0
flag = True
execute_prune = False
for epoch in range(args.start_epoch, args.epochs):
if finish_search and flag:
flag = False
if hasattr(model, 'module'):
model.module.reset_mask_ratio(1.0)
model.module.freeze_decoder()
else:
model.reset_mask_ratio(1.0)
model.freeze_decoder()
optimizer_decoder = None
lr_scheduler_decoder = None
mixup_fn = Mixup(
mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
criterion.base_criterion.base_criterion = SoftTargetCrossEntropy()
max_soft_accuracy = 0.0
torch.cuda.synchronize()
if args.distributed: data_loader_train.sampler.set_epoch(epoch)
train_stats, finish_search, execute_prune, optimizer_param, optimizer_decoder, optimizer_arch = search_one_epoch(
model, criterion, target_flops, data_loader_train,
optimizer_param, optimizer_decoder, optimizer_arch,
lr_scheduler_params, lr_scheduler_arch, lr_scheduler_decoder, device, epoch,
args.clip_grad, model_ema, mixup_fn, use_amp=args.use_amp, finish_search=finish_search, args=args,
progressive=not args.no_progressive, max_ratio=args.max_ratio, min_ratio=args.min_ratio
)
torch.cuda.synchronize()
if args.output_dir:
if finish_search and execute_prune:
checkpoint_path = output_dir / 'model_pruned.pth'
utils.save_on_master({
'model': model_without_ddp,
'optimizer_param': optimizer_param.state_dict(),
'optimizer_arch': optimizer_arch.state_dict() if optimizer_arch is not None else None,
'optimizer_decoder': optimizer_decoder.state_dict() if optimizer_decoder is not None else None,
'epoch': epoch,
'model_ema': model_ema.ema.state_dict() if args.model_ema else model_ema,
'scaler': loss_scaler.state_dict(),
'args': args,
}, checkpoint_path)
### save the score map and sparsity map
if (not finish_search or execute_prune) and global_rank == 0 and args.vis_score:
for idx, m in enumerate(model_without_ddp.searchable_modules):
sparsity_score, saliency_score = m.weighted_mask.detach(), torch.sigmoid(m.score.detach())
sp, sa = sparsity_score.squeeze().data.cpu().numpy(), saliency_score.squeeze().data.cpu().numpy()
sa_sorted = np.sort(sa, axis=-1)
if hasattr(m, 'num_heads'):
index = np.argsort(sa_sorted.sum(axis=-1))[::-1]
sa_sorted = sa_sorted[index]
sa_sorted = sa_sorted[:, ::-1]
else:
index = np.argsort(sa_sorted)[::-1]
sa_sorted = sa_sorted[index]
ss = (1 - m.w_p) * sp + m.w_p * sa_sorted
if len(sa_dict) and idx in sa_dict:
if sa_dict[idx][-1].size == sa_sorted.size and (sa_dict[idx][-1] == sa_sorted).all(): continue
sa_dict[idx].append(sa_sorted)
sp_dict[idx].append(sp)
ss_dict[idx].append(ss)
else:
sa_dict[idx] = [sa_sorted]
sp_dict[idx] = [sp]
ss_dict[idx] = [ss]
np.save(output_dir / 'saliency.npy', sa_dict)
np.save(output_dir / 'sparsity.npy', sp_dict)
np.save(output_dir / 'joint.npy', ss_dict)
checkpoint_paths = [output_dir / 'running_ckpt.pth']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp,
'optimizer_param': optimizer_param.state_dict(),
'optimizer_arch': optimizer_arch.state_dict() if optimizer_arch is not None else None,
'optimizer_decoder': optimizer_decoder.state_dict() if optimizer_decoder is not None else None,
'epoch': epoch,
'model_ema': model_ema.ema.state_dict() if args.model_ema else model_ema,
'scaler': loss_scaler.state_dict(),
'args': args,
}, checkpoint_path)
torch.cuda.synchronize()
if global_rank in [-1, 0]:
test_stats = evaluate(data_loader_val, model, device, use_amp=False)
print(f"Soft Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
max_soft_accuracy = max(max_soft_accuracy, test_stats["acc1"])
print(f'Max soft accuracy: {max_soft_accuracy:.2f}%')
if args.output_dir and test_stats["acc1"] >= max_soft_accuracy:
checkpoint_paths = [output_dir / 'best.pth']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp,
'epoch': epoch,
'model_ema': model_ema.ema.state_dict() if args.model_ema else model_ema,
'scaler': loss_scaler.state_dict(),
'args': args,
}, checkpoint_path)
n_parameters_updated = sum(p.numel() for name, p in model.named_parameters()
if p.requires_grad and 'decoder' not in name and 'alpha' not in name and 'score' not in name)
flops = model.module.get_flops()[1].item() if hasattr(model, 'module') else model.get_flops()[1].item()
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'soft_test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters_updated,
'n_gflops': flops}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
if not finish_search:
alphas_attn, alphas_mlp, alphas_patch, alphas_embed = model.module.give_alphas()
if args.mae:
log_alphas = {'epoch': epoch,
'attn': alphas_attn,
'mlp': alphas_mlp,
'patch': alphas_patch,
'embed': alphas_embed
}
else:
log_alphas = {'epoch': epoch,
'attn': alphas_attn,
'mlp': alphas_mlp,
'patch': alphas_patch,
'embed': alphas_embed
}
with open(output_dir / 'alpha.txt', "a") as f:
f.write(json.dumps(log_alphas) + "\n")
torch.cuda.synchronize()
if epoch == args.fuse_point and hasattr(model_without_ddp, 'fused') and not model_without_ddp.fused: break
if utils.is_main_process() and finish_search and not execute_prune and hasattr(model_without_ddp, 'fused') and not model_without_ddp.fused:
best_state = torch.load(output_dir / 'best.pth', map_location='cpu')
best_model = best_state['model']
best_model = best_model.cuda()
best_model.fuse()
test_stats = evaluate(data_loader_val, best_model, device, use_amp=False)
print(f"Soft Accuracy of the fused network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
checkpoint_paths = [output_dir / 'model_fused.pth']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': best_model,
'epoch': best_state['epoch']
}, checkpoint_path)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
dist.destroy_process_group()
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeiT searching script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)