forked from valeoai/LearningByCheating
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_agent.py
139 lines (117 loc) · 4.69 KB
/
benchmark_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
import time
# There is a known issue with carla and torch (or torchvision)
# https://www.google.com/url?q=https://github.com/carla-simulator
# /carla/issues/2132&sa=D&source=hangouts&ust=1584205287893000&u
# sg=AFQjCNHYKEjQVb0NQYvsQd3BNMw0smQbyg
# That's why we import torchvision there before anything else
# Note that we found this was freezing when using cuda9.0
# Probably if you encounter freeze, you should comment next line
import torchvision.models as models
from pathlib import Path
from benchmark import make_suite, get_suites, ALL_SUITES
from benchmark.run_benchmark import run_benchmark
import torch
import random
import os
def run(args, model_path, port, suite, seed, resume, max_run):
log_dir = model_path
total_time = 0.0
for suite_name in get_suites(suite):
tick = time.time()
benchmark_dir = log_dir / "benchmark" / ("%s_seed%d" % (suite_name, seed))
benchmark_dir.mkdir(parents=True, exist_ok=True)
with make_suite(suite_name, port=port, crop_sky=args.crop_sky) as env:
from bird_view.models import agent_IAs_RL
agent_class = agent_IAs_RL.AgentIAsRL
agent_maker = lambda: agent_class(args)
run_benchmark(agent_maker, env, benchmark_dir, seed, resume, max_run=max_run)
elapsed = time.time() - tick
total_time += elapsed
print("%s: %.3f hours." % (suite_name, elapsed / 3600))
print("Total time: %.3f hours." % (total_time / 3600))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--path-folder-model",
required=True,
type=str,
help="Folder containing all models, ie the supervised Resnet18 and the RL models",
)
parser.add_argument("--port", type=int, default=2000)
parser.add_argument("--suite", choices=ALL_SUITES, default="town1")
parser.add_argument("--seed", type=int, default=2020)
parser.add_argument("--resume", action="store_true")
parser.add_argument("--max-run", type=int, default=100)
parser.add_argument(
"--nb_action_steering",
type=int,
default=27,
help="How much different steering values in the action (should be odd)",
)
parser.add_argument(
"--max_steering", type=float, default=0.6, help="Max steering value possible in action"
)
parser.add_argument(
"--nb_action_throttle",
type=int,
default=3,
help="How much different throttle values in the action",
)
parser.add_argument(
"--max_throttle", type=float, default=1, help="Max throttle value possible in action"
)
parser.add_argument("--front-camera-width", type=int, default=288)
parser.add_argument("--front-camera-height", type=int, default=288)
parser.add_argument("--front-camera-fov", type=int, default=100)
parser.add_argument(
"--crop-sky",
action="store_true",
default=False,
help="if using CARLA challenge model, let sky, we cropped "
"it for the models trained only on Town01/train weather",
)
parser.add_argument("--render", action="store_true", help="Display screen (testing only)")
parser.add_argument("--disable-cuda", action="store_true", help="disable cuda")
parser.add_argument("--disable-cudnn", action="store_true", help="disable cuDNN")
# IQN parameters
parser.add_argument("--kappa", default=1.0, type=float, help="kappa for Huber Loss in IQN")
parser.add_argument(
"--num-tau-samples", default=8, type=int, help="N in equation 3 in IQN paper"
)
parser.add_argument(
"--num-tau-prime-samples", default=8, type=int, help="N' in equation 3 in IQN paper"
)
parser.add_argument(
"--num-quantile-samples", default=32, type=int, help="K in equation 3 in IQN paper"
)
parser.add_argument(
"--quantile-embedding-dim", default=64, type=int, help="n in equation 4 in IQN paper"
)
args = parser.parse_args()
# We take a frame 1 sec before, and the other
# are 0.2, 0.1 and 0 second before (ORDER IS TAKEN INTO ACCOUNT HERE)
args.steps_image = [
-10,
-2,
-1,
0,
]
if torch.cuda.is_available() and not args.disable_cuda:
args.device = torch.device("cuda")
torch.cuda.manual_seed(random.randint(1, 10000))
torch.backends.cudnn.enabled = not args.disable_cudnn
else:
args.device = torch.device("cpu")
args.path_folder_model = os.path.join(
os.path.dirname(os.path.realpath(__file__)), args.path_folder_model
)
run(
args,
Path(args.path_folder_model),
args.port,
args.suite,
args.seed,
args.resume,
max_run=args.max_run,
)