forked from alibaba/TinyNeuralNetwork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolov4.py
1020 lines (1010 loc) · 118 KB
/
yolov4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import torch.nn
import torch.functional
import torch.nn.functional
class YOLO_V4(torch.nn.Module):
def __init__(self):
super().__init__()
self.tensor_1 = torch.tensor(8.0, dtype=torch.float32)
self.tensor_2 = torch.tensor([[0.5, 0.625], [0.875, 1.125], [1.125, 1.625]], dtype=torch.float32)
self.tensor_3 = torch.tensor(16.0, dtype=torch.float32)
self.tensor_4 = torch.tensor([[0.75, 0.9375], [0.875, 1.125], [1.0625, 1.3125]], dtype=torch.float32)
self.tensor_5 = torch.tensor(32.0, dtype=torch.float32)
self.tensor_6 = torch.tensor([[0.625, 0.78125], [0.8125, 1.03125], [1.09375, 1.46875]], dtype=torch.float32)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_0_0 = torch.nn.modules.conv.Conv2d(3, 32, 3, 2, 1, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_0_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_0 = torch.nn.modules.conv.Conv2d(32, 32, 3, 1, 1, groups=32, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_3 = torch.nn.modules.conv.Conv2d(32, 16, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(16)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_0 = torch.nn.modules.conv.Conv2d(16, 96, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(96)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_3 = torch.nn.modules.conv.Conv2d(96, 96, 3, 2, 1, groups=96, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_6 = torch.nn.modules.conv.Conv2d(96, 24, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(24)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_0 = torch.nn.modules.conv.Conv2d(24, 144, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(144)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_3 = torch.nn.modules.conv.Conv2d(144, 144, 3, 1, 1, groups=144, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(144)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_6 = torch.nn.modules.conv.Conv2d(144, 24, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(24)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_qadd_0_activation_post_process = torch.nn.modules.linear.Identity()
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_0 = torch.nn.modules.conv.Conv2d(24, 144, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(144)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_3 = torch.nn.modules.conv.Conv2d(144, 144, 3, 2, 1, groups=144, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(144)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_6 = torch.nn.modules.conv.Conv2d(144, 32, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_0 = torch.nn.modules.conv.Conv2d(32, 192, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_3 = torch.nn.modules.conv.Conv2d(192, 192, 3, 1, 1, groups=192, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_6 = torch.nn.modules.conv.Conv2d(192, 32, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_qadd_0_activation_post_process = torch.nn.modules.linear.Identity()
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_0 = torch.nn.modules.conv.Conv2d(32, 192, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_3 = torch.nn.modules.conv.Conv2d(192, 192, 3, 1, 1, groups=192, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_6 = torch.nn.modules.conv.Conv2d(192, 32, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_qadd_0_activation_post_process = torch.nn.modules.linear.Identity()
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_0 = torch.nn.modules.conv.Conv2d(32, 192, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_3 = torch.nn.modules.conv.Conv2d(192, 192, 3, 2, 1, groups=192, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_6 = torch.nn.modules.conv.Conv2d(192, 64, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_0 = torch.nn.modules.conv.Conv2d(64, 384, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_3 = torch.nn.modules.conv.Conv2d(384, 384, 3, 1, 1, groups=384, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_6 = torch.nn.modules.conv.Conv2d(384, 64, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_qadd_0_activation_post_process = torch.nn.modules.linear.Identity()
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_0 = torch.nn.modules.conv.Conv2d(64, 384, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_3 = torch.nn.modules.conv.Conv2d(384, 384, 3, 1, 1, groups=384, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_6 = torch.nn.modules.conv.Conv2d(384, 64, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_qadd_0_activation_post_process = torch.nn.modules.linear.Identity()
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_0 = torch.nn.modules.conv.Conv2d(64, 384, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_3 = torch.nn.modules.conv.Conv2d(384, 384, 3, 1, 1, groups=384, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_6 = torch.nn.modules.conv.Conv2d(384, 64, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_qadd_0_activation_post_process = torch.nn.modules.linear.Identity()
self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_0 = torch.nn.modules.conv.Conv2d(64, 384, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_3 = torch.nn.modules.conv.Conv2d(384, 384, 3, 1, 1, groups=384, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_6 = torch.nn.modules.conv.Conv2d(384, 64, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_backbone_features_mnv3part_0_qadd_0_activation_post_process = torch.nn.modules.linear.Identity()
self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_0 = torch.nn.modules.conv.Conv2d(64, 384, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_3 = torch.nn.modules.conv.Conv2d(384, 384, 3, 1, 1, groups=384, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_6 = torch.nn.modules.conv.Conv2d(384, 64, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_backbone_features_mnv3part_1_qadd_0_activation_post_process = torch.nn.modules.linear.Identity()
self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_0 = torch.nn.modules.conv.Conv2d(64, 384, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_3 = torch.nn.modules.conv.Conv2d(384, 384, 3, 1, 1, groups=384, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_6 = torch.nn.modules.conv.Conv2d(384, 64, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_backbone_features_mnv3part_2_qadd_0_activation_post_process = torch.nn.modules.linear.Identity()
self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_0 = torch.nn.modules.conv.Conv2d(64, 384, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_3 = torch.nn.modules.conv.Conv2d(384, 384, 3, 2, 1, groups=384, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_6 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(96)
self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_0 = torch.nn.modules.conv.Conv2d(96, 576, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(576)
self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_3 = torch.nn.modules.conv.Conv2d(576, 576, 3, 1, 1, groups=576, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(576)
self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_6 = torch.nn.modules.conv.Conv2d(576, 96, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(96)
self._Build_Model__yolov4_backbone_features_mnv3part_4_qadd_0_activation_post_process = torch.nn.modules.linear.Identity()
self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_0 = torch.nn.modules.conv.Conv2d(96, 576, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(576)
self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_3 = torch.nn.modules.conv.Conv2d(576, 576, 3, 1, 1, groups=576, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(576)
self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_5 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_6 = torch.nn.modules.conv.Conv2d(576, 96, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_7 = torch.nn.modules.batchnorm.BatchNorm2d(96)
self._Build_Model__yolov4_backbone_features_mnv3part_5_qadd_0_activation_post_process = torch.nn.modules.linear.Identity()
self._Build_Model__yolov4_backbone_conv_0 = torch.nn.modules.conv.Conv2d(96, 160, 1, 1, 0, bias=False)
self._Build_Model__yolov4_backbone_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(160)
self._Build_Model__yolov4_backbone_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_spp_head_conv_0_conv_0 = torch.nn.modules.conv.Conv2d(160, 160, 3, 1, 1, groups=160, bias=False)
self._Build_Model__yolov4_spp_head_conv_0_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(160)
self._Build_Model__yolov4_spp_head_conv_0_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_spp_head_conv_0_conv_3 = torch.nn.modules.conv.Conv2d(160, 80, 1, 1, 0, bias=False)
self._Build_Model__yolov4_spp_head_conv_0_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(80)
self._Build_Model__yolov4_spp_head_conv_1_conv_0 = torch.nn.modules.conv.Conv2d(80, 80, 3, 1, 1, groups=80, bias=False)
self._Build_Model__yolov4_spp_head_conv_1_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(80)
self._Build_Model__yolov4_spp_head_conv_1_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_spp_head_conv_1_conv_3 = torch.nn.modules.conv.Conv2d(80, 160, 1, 1, 0, bias=False)
self._Build_Model__yolov4_spp_head_conv_1_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(160)
self._Build_Model__yolov4_spp_head_conv_2_conv_0 = torch.nn.modules.conv.Conv2d(160, 160, 3, 1, 1, groups=160, bias=False)
self._Build_Model__yolov4_spp_head_conv_2_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(160)
self._Build_Model__yolov4_spp_head_conv_2_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_spp_head_conv_2_conv_3 = torch.nn.modules.conv.Conv2d(160, 80, 1, 1, 0, bias=False)
self._Build_Model__yolov4_spp_head_conv_2_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(80)
self._Build_Model__yolov4_spp_maxpools_0 = torch.nn.modules.pooling.MaxPool2d(5, 1, 2)
self._Build_Model__yolov4_spp_maxpools_1 = torch.nn.modules.pooling.MaxPool2d(9, 1, 4)
self._Build_Model__yolov4_spp_maxpools_2 = torch.nn.modules.pooling.MaxPool2d(13, 1, 6)
self._Build_Model__yolov4_panet_feature_transform3_conv_0 = torch.nn.modules.conv.Conv2d(32, 32, 3, 1, 1, groups=32, bias=False)
self._Build_Model__yolov4_panet_feature_transform3_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_feature_transform3_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_feature_transform3_conv_3 = torch.nn.modules.conv.Conv2d(32, 16, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_feature_transform3_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(16)
self._Build_Model__yolov4_panet_feature_transform4_conv_0 = torch.nn.modules.conv.Conv2d(64, 64, 3, 1, 1, groups=64, bias=False)
self._Build_Model__yolov4_panet_feature_transform4_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_panet_feature_transform4_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_feature_transform4_conv_3 = torch.nn.modules.conv.Conv2d(64, 32, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_feature_transform4_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_downstream_conv5_0_conv_0 = torch.nn.modules.conv.Conv2d(320, 320, 3, 1, 1, groups=320, bias=False)
self._Build_Model__yolov4_panet_downstream_conv5_0_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(320)
self._Build_Model__yolov4_panet_downstream_conv5_0_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_downstream_conv5_0_conv_3 = torch.nn.modules.conv.Conv2d(320, 80, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_downstream_conv5_0_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(80)
self._Build_Model__yolov4_panet_downstream_conv5_1_conv_0 = torch.nn.modules.conv.Conv2d(80, 80, 3, 1, 1, groups=80, bias=False)
self._Build_Model__yolov4_panet_downstream_conv5_1_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(80)
self._Build_Model__yolov4_panet_downstream_conv5_1_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_downstream_conv5_1_conv_3 = torch.nn.modules.conv.Conv2d(80, 160, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_downstream_conv5_1_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(160)
self._Build_Model__yolov4_panet_downstream_conv5_2_conv_0 = torch.nn.modules.conv.Conv2d(160, 160, 3, 1, 1, groups=160, bias=False)
self._Build_Model__yolov4_panet_downstream_conv5_2_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(160)
self._Build_Model__yolov4_panet_downstream_conv5_2_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_downstream_conv5_2_conv_3 = torch.nn.modules.conv.Conv2d(160, 80, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_downstream_conv5_2_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(80)
self._Build_Model__yolov4_panet_resample5_4_upsample_0_conv_0 = torch.nn.modules.conv.Conv2d(80, 32, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_resample5_4_upsample_0_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_resample5_4_upsample_0_conv_2 = torch.nn.modules.activation.LeakyReLU()
self._Build_Model__yolov4_panet_resample5_4_upsample_1 = torch.nn.modules.upsampling.Upsample(scale_factor=2)
self._Build_Model__yolov4_panet_downstream_conv4_0_conv_0 = torch.nn.modules.conv.Conv2d(64, 64, 3, 1, 1, groups=64, bias=False)
self._Build_Model__yolov4_panet_downstream_conv4_0_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_panet_downstream_conv4_0_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_downstream_conv4_0_conv_3 = torch.nn.modules.conv.Conv2d(64, 32, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_downstream_conv4_0_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_downstream_conv4_1_conv_0 = torch.nn.modules.conv.Conv2d(32, 32, 3, 1, 1, groups=32, bias=False)
self._Build_Model__yolov4_panet_downstream_conv4_1_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_downstream_conv4_1_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_downstream_conv4_1_conv_3 = torch.nn.modules.conv.Conv2d(32, 64, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_downstream_conv4_1_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_panet_downstream_conv4_2_conv_0 = torch.nn.modules.conv.Conv2d(64, 64, 3, 1, 1, groups=64, bias=False)
self._Build_Model__yolov4_panet_downstream_conv4_2_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_panet_downstream_conv4_2_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_downstream_conv4_2_conv_3 = torch.nn.modules.conv.Conv2d(64, 32, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_downstream_conv4_2_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_downstream_conv4_3_conv_0 = torch.nn.modules.conv.Conv2d(32, 32, 3, 1, 1, groups=32, bias=False)
self._Build_Model__yolov4_panet_downstream_conv4_3_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_downstream_conv4_3_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_downstream_conv4_3_conv_3 = torch.nn.modules.conv.Conv2d(32, 64, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_downstream_conv4_3_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_panet_downstream_conv4_4_conv_0 = torch.nn.modules.conv.Conv2d(64, 64, 3, 1, 1, groups=64, bias=False)
self._Build_Model__yolov4_panet_downstream_conv4_4_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_panet_downstream_conv4_4_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_downstream_conv4_4_conv_3 = torch.nn.modules.conv.Conv2d(64, 32, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_downstream_conv4_4_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_resample4_3_upsample_0_conv_0 = torch.nn.modules.conv.Conv2d(32, 16, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_resample4_3_upsample_0_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(16)
self._Build_Model__yolov4_panet_resample4_3_upsample_0_conv_2 = torch.nn.modules.activation.LeakyReLU()
self._Build_Model__yolov4_panet_resample4_3_upsample_1 = torch.nn.modules.upsampling.Upsample(scale_factor=2)
self._Build_Model__yolov4_panet_downstream_conv3_0_conv_0 = torch.nn.modules.conv.Conv2d(32, 32, 3, 1, 1, groups=32, bias=False)
self._Build_Model__yolov4_panet_downstream_conv3_0_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_downstream_conv3_0_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_downstream_conv3_0_conv_3 = torch.nn.modules.conv.Conv2d(32, 16, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_downstream_conv3_0_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(16)
self._Build_Model__yolov4_panet_downstream_conv3_1_conv_0 = torch.nn.modules.conv.Conv2d(16, 16, 3, 1, 1, groups=16, bias=False)
self._Build_Model__yolov4_panet_downstream_conv3_1_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(16)
self._Build_Model__yolov4_panet_downstream_conv3_1_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_downstream_conv3_1_conv_3 = torch.nn.modules.conv.Conv2d(16, 32, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_downstream_conv3_1_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_downstream_conv3_2_conv_0 = torch.nn.modules.conv.Conv2d(32, 32, 3, 1, 1, groups=32, bias=False)
self._Build_Model__yolov4_panet_downstream_conv3_2_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_downstream_conv3_2_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_downstream_conv3_2_conv_3 = torch.nn.modules.conv.Conv2d(32, 16, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_downstream_conv3_2_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(16)
self._Build_Model__yolov4_panet_downstream_conv3_3_conv_0 = torch.nn.modules.conv.Conv2d(16, 16, 3, 1, 1, groups=16, bias=False)
self._Build_Model__yolov4_panet_downstream_conv3_3_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(16)
self._Build_Model__yolov4_panet_downstream_conv3_3_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_downstream_conv3_3_conv_3 = torch.nn.modules.conv.Conv2d(16, 32, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_downstream_conv3_3_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_downstream_conv3_4_conv_0 = torch.nn.modules.conv.Conv2d(32, 32, 3, 1, 1, groups=32, bias=False)
self._Build_Model__yolov4_panet_downstream_conv3_4_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_downstream_conv3_4_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_downstream_conv3_4_conv_3 = torch.nn.modules.conv.Conv2d(32, 16, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_downstream_conv3_4_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(16)
self._Build_Model__yolov4_panet_resample3_4_downsample_conv_0 = torch.nn.modules.conv.Conv2d(16, 32, 3, 2, 1, bias=False)
self._Build_Model__yolov4_panet_resample3_4_downsample_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_resample3_4_downsample_conv_2 = torch.nn.modules.activation.LeakyReLU()
self._Build_Model__yolov4_panet_upstream_conv4_0_conv_0 = torch.nn.modules.conv.Conv2d(64, 64, 3, 1, 1, groups=64, bias=False)
self._Build_Model__yolov4_panet_upstream_conv4_0_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_panet_upstream_conv4_0_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_upstream_conv4_0_conv_3 = torch.nn.modules.conv.Conv2d(64, 32, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_upstream_conv4_0_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_upstream_conv4_1_conv_0 = torch.nn.modules.conv.Conv2d(32, 32, 3, 1, 1, groups=32, bias=False)
self._Build_Model__yolov4_panet_upstream_conv4_1_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_upstream_conv4_1_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_upstream_conv4_1_conv_3 = torch.nn.modules.conv.Conv2d(32, 64, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_upstream_conv4_1_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_panet_upstream_conv4_2_conv_0 = torch.nn.modules.conv.Conv2d(64, 64, 3, 1, 1, groups=64, bias=False)
self._Build_Model__yolov4_panet_upstream_conv4_2_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_panet_upstream_conv4_2_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_upstream_conv4_2_conv_3 = torch.nn.modules.conv.Conv2d(64, 32, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_upstream_conv4_2_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_upstream_conv4_3_conv_0 = torch.nn.modules.conv.Conv2d(32, 32, 3, 1, 1, groups=32, bias=False)
self._Build_Model__yolov4_panet_upstream_conv4_3_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_upstream_conv4_3_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_upstream_conv4_3_conv_3 = torch.nn.modules.conv.Conv2d(32, 64, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_upstream_conv4_3_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_panet_upstream_conv4_4_conv_0 = torch.nn.modules.conv.Conv2d(64, 64, 3, 1, 1, groups=64, bias=False)
self._Build_Model__yolov4_panet_upstream_conv4_4_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_panet_upstream_conv4_4_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_upstream_conv4_4_conv_3 = torch.nn.modules.conv.Conv2d(64, 32, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_upstream_conv4_4_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_panet_resample4_5_downsample_conv_0 = torch.nn.modules.conv.Conv2d(32, 80, 3, 2, 1, bias=False)
self._Build_Model__yolov4_panet_resample4_5_downsample_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(80)
self._Build_Model__yolov4_panet_resample4_5_downsample_conv_2 = torch.nn.modules.activation.LeakyReLU()
self._Build_Model__yolov4_panet_upstream_conv5_0_conv_0 = torch.nn.modules.conv.Conv2d(160, 160, 3, 1, 1, groups=160, bias=False)
self._Build_Model__yolov4_panet_upstream_conv5_0_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(160)
self._Build_Model__yolov4_panet_upstream_conv5_0_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_upstream_conv5_0_conv_3 = torch.nn.modules.conv.Conv2d(160, 80, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_upstream_conv5_0_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(80)
self._Build_Model__yolov4_panet_upstream_conv5_1_conv_0 = torch.nn.modules.conv.Conv2d(80, 80, 3, 1, 1, groups=80, bias=False)
self._Build_Model__yolov4_panet_upstream_conv5_1_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(80)
self._Build_Model__yolov4_panet_upstream_conv5_1_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_upstream_conv5_1_conv_3 = torch.nn.modules.conv.Conv2d(80, 160, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_upstream_conv5_1_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(160)
self._Build_Model__yolov4_panet_upstream_conv5_2_conv_0 = torch.nn.modules.conv.Conv2d(160, 160, 3, 1, 1, groups=160, bias=False)
self._Build_Model__yolov4_panet_upstream_conv5_2_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(160)
self._Build_Model__yolov4_panet_upstream_conv5_2_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_upstream_conv5_2_conv_3 = torch.nn.modules.conv.Conv2d(160, 80, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_upstream_conv5_2_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(80)
self._Build_Model__yolov4_panet_upstream_conv5_3_conv_0 = torch.nn.modules.conv.Conv2d(80, 80, 3, 1, 1, groups=80, bias=False)
self._Build_Model__yolov4_panet_upstream_conv5_3_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(80)
self._Build_Model__yolov4_panet_upstream_conv5_3_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_upstream_conv5_3_conv_3 = torch.nn.modules.conv.Conv2d(80, 160, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_upstream_conv5_3_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(160)
self._Build_Model__yolov4_panet_upstream_conv5_4_conv_0 = torch.nn.modules.conv.Conv2d(160, 160, 3, 1, 1, groups=160, bias=False)
self._Build_Model__yolov4_panet_upstream_conv5_4_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(160)
self._Build_Model__yolov4_panet_upstream_conv5_4_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_panet_upstream_conv5_4_conv_3 = torch.nn.modules.conv.Conv2d(160, 80, 1, 1, 0, bias=False)
self._Build_Model__yolov4_panet_upstream_conv5_4_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(80)
self._Build_Model__yolov4_predict_net_predict_conv_0_0_conv_0 = torch.nn.modules.conv.Conv2d(16, 16, 3, 1, 1, groups=16, bias=False)
self._Build_Model__yolov4_predict_net_predict_conv_0_0_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(16)
self._Build_Model__yolov4_predict_net_predict_conv_0_0_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_predict_net_predict_conv_0_0_conv_3 = torch.nn.modules.conv.Conv2d(16, 32, 1, 1, 0, bias=False)
self._Build_Model__yolov4_predict_net_predict_conv_0_0_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_predict_net_predict_conv_0_1 = torch.nn.modules.conv.Conv2d(32, 18, 1)
self._Build_Model__yolov4_predict_net_predict_conv_1_0_conv_0 = torch.nn.modules.conv.Conv2d(32, 32, 3, 1, 1, groups=32, bias=False)
self._Build_Model__yolov4_predict_net_predict_conv_1_0_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self._Build_Model__yolov4_predict_net_predict_conv_1_0_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_predict_net_predict_conv_1_0_conv_3 = torch.nn.modules.conv.Conv2d(32, 64, 1, 1, 0, bias=False)
self._Build_Model__yolov4_predict_net_predict_conv_1_0_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self._Build_Model__yolov4_predict_net_predict_conv_1_1 = torch.nn.modules.conv.Conv2d(64, 18, 1)
self._Build_Model__yolov4_predict_net_predict_conv_2_0_conv_0 = torch.nn.modules.conv.Conv2d(80, 80, 3, 1, 1, groups=80, bias=False)
self._Build_Model__yolov4_predict_net_predict_conv_2_0_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(80)
self._Build_Model__yolov4_predict_net_predict_conv_2_0_conv_2 = torch.nn.modules.activation.ReLU6(inplace=True)
self._Build_Model__yolov4_predict_net_predict_conv_2_0_conv_3 = torch.nn.modules.conv.Conv2d(80, 160, 1, 1, 0, bias=False)
self._Build_Model__yolov4_predict_net_predict_conv_2_0_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(160)
self._Build_Model__yolov4_predict_net_predict_conv_2_1 = torch.nn.modules.conv.Conv2d(160, 18, 1)
def forward(self, input_1):
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_0_0 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_0_0(input_1)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_0_1 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_0_1(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_0_0)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_0_2 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_0_2(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_0_1)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_0 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_0(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_0_2)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_1 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_1(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_0)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_2 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_2(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_1)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_3 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_3(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_2)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_4 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_4(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_3)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_0 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_0(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_1_conv_4)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_1 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_1(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_0)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_2 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_2(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_1)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_3 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_3(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_2)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_4 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_4(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_3)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_5 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_5(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_4)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_6 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_6(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_5)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_7 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_7(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_6)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_0 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_0(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_7)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_1 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_1(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_0)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_2 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_2(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_1)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_3 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_3(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_2)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_4 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_4(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_3)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_5 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_5(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_4)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_6 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_6(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_5)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_7 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_7(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_6)
add_1 = torch.add(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_2_conv_7, _Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_conv_7)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_qadd_0_activation_post_process = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_qadd_0_activation_post_process(add_1)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_0 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_0(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_3_qadd_0_activation_post_process)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_1 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_1(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_0)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_2 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_2(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_1)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_3 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_3(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_2)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_4 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_4(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_3)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_5 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_5(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_4)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_6 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_6(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_5)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_7 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_7(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_6)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_0 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_0(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_7)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_1 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_1(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_0)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_2 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_2(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_1)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_3 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_3(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_2)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_4 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_4(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_3)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_5 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_5(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_4)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_6 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_6(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_5)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_7 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_7(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_6)
add_2 = torch.add(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_4_conv_7, _Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_conv_7)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_qadd_0_activation_post_process = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_qadd_0_activation_post_process(add_2)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_0 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_0(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_qadd_0_activation_post_process)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_1 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_1(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_0)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_2 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_2(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_1)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_3 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_3(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_2)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_4 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_4(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_3)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_5 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_5(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_4)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_6 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_6(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_5)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_7 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_7(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_6)
add_3 = torch.add(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_5_qadd_0_activation_post_process, _Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_conv_7)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_qadd_0_activation_post_process = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_qadd_0_activation_post_process(add_3)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_0 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_0(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_qadd_0_activation_post_process)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_1 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_1(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_0)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_2 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_2(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_1)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_3 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_3(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_2)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_4 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_4(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_3)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_5 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_5(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_4)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_6 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_6(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_5)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_7 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_7(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_6)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_0 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_0(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_7)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_1 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_1(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_0)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_2 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_2(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_1)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_3 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_3(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_2)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_4 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_4(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_3)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_5 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_5(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_4)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_6 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_6(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_5)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_7 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_7(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_6)
add_4 = torch.add(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_7_conv_7, _Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_conv_7)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_qadd_0_activation_post_process = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_qadd_0_activation_post_process(add_4)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_0 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_0(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_qadd_0_activation_post_process)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_1 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_1(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_0)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_2 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_2(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_1)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_3 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_3(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_2)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_4 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_4(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_3)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_5 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_5(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_4)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_6 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_6(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_5)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_7 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_7(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_6)
add_5 = torch.add(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_8_qadd_0_activation_post_process, _Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_conv_7)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_qadd_0_activation_post_process = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_qadd_0_activation_post_process(add_5)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_0 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_0(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_qadd_0_activation_post_process)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_1 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_1(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_0)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_2 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_2(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_1)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_3 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_3(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_2)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_4 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_4(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_3)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_5 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_5(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_4)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_6 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_6(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_5)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_7 = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_7(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_6)
add_6 = torch.add(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_9_qadd_0_activation_post_process, _Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_conv_7)
_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_qadd_0_activation_post_process = self._Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_qadd_0_activation_post_process(add_6)
_Build_Model__yolov4_backbone_features_mnv3part_0_conv_0 = self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_0(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_qadd_0_activation_post_process)
_Build_Model__yolov4_backbone_features_mnv3part_0_conv_1 = self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_1(_Build_Model__yolov4_backbone_features_mnv3part_0_conv_0)
_Build_Model__yolov4_backbone_features_mnv3part_0_conv_2 = self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_2(_Build_Model__yolov4_backbone_features_mnv3part_0_conv_1)
_Build_Model__yolov4_backbone_features_mnv3part_0_conv_3 = self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_3(_Build_Model__yolov4_backbone_features_mnv3part_0_conv_2)
_Build_Model__yolov4_backbone_features_mnv3part_0_conv_4 = self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_4(_Build_Model__yolov4_backbone_features_mnv3part_0_conv_3)
_Build_Model__yolov4_backbone_features_mnv3part_0_conv_5 = self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_5(_Build_Model__yolov4_backbone_features_mnv3part_0_conv_4)
_Build_Model__yolov4_backbone_features_mnv3part_0_conv_6 = self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_6(_Build_Model__yolov4_backbone_features_mnv3part_0_conv_5)
_Build_Model__yolov4_backbone_features_mnv3part_0_conv_7 = self._Build_Model__yolov4_backbone_features_mnv3part_0_conv_7(_Build_Model__yolov4_backbone_features_mnv3part_0_conv_6)
add_7 = torch.add(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_qadd_0_activation_post_process, _Build_Model__yolov4_backbone_features_mnv3part_0_conv_7)
_Build_Model__yolov4_backbone_features_mnv3part_0_qadd_0_activation_post_process = self._Build_Model__yolov4_backbone_features_mnv3part_0_qadd_0_activation_post_process(add_7)
_Build_Model__yolov4_backbone_features_mnv3part_1_conv_0 = self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_0(_Build_Model__yolov4_backbone_features_mnv3part_0_qadd_0_activation_post_process)
_Build_Model__yolov4_backbone_features_mnv3part_1_conv_1 = self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_1(_Build_Model__yolov4_backbone_features_mnv3part_1_conv_0)
_Build_Model__yolov4_backbone_features_mnv3part_1_conv_2 = self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_2(_Build_Model__yolov4_backbone_features_mnv3part_1_conv_1)
_Build_Model__yolov4_backbone_features_mnv3part_1_conv_3 = self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_3(_Build_Model__yolov4_backbone_features_mnv3part_1_conv_2)
_Build_Model__yolov4_backbone_features_mnv3part_1_conv_4 = self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_4(_Build_Model__yolov4_backbone_features_mnv3part_1_conv_3)
_Build_Model__yolov4_backbone_features_mnv3part_1_conv_5 = self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_5(_Build_Model__yolov4_backbone_features_mnv3part_1_conv_4)
_Build_Model__yolov4_backbone_features_mnv3part_1_conv_6 = self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_6(_Build_Model__yolov4_backbone_features_mnv3part_1_conv_5)
_Build_Model__yolov4_backbone_features_mnv3part_1_conv_7 = self._Build_Model__yolov4_backbone_features_mnv3part_1_conv_7(_Build_Model__yolov4_backbone_features_mnv3part_1_conv_6)
add_8 = torch.add(_Build_Model__yolov4_backbone_features_mnv3part_0_qadd_0_activation_post_process, _Build_Model__yolov4_backbone_features_mnv3part_1_conv_7)
_Build_Model__yolov4_backbone_features_mnv3part_1_qadd_0_activation_post_process = self._Build_Model__yolov4_backbone_features_mnv3part_1_qadd_0_activation_post_process(add_8)
_Build_Model__yolov4_backbone_features_mnv3part_2_conv_0 = self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_0(_Build_Model__yolov4_backbone_features_mnv3part_1_qadd_0_activation_post_process)
_Build_Model__yolov4_backbone_features_mnv3part_2_conv_1 = self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_1(_Build_Model__yolov4_backbone_features_mnv3part_2_conv_0)
_Build_Model__yolov4_backbone_features_mnv3part_2_conv_2 = self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_2(_Build_Model__yolov4_backbone_features_mnv3part_2_conv_1)
_Build_Model__yolov4_backbone_features_mnv3part_2_conv_3 = self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_3(_Build_Model__yolov4_backbone_features_mnv3part_2_conv_2)
_Build_Model__yolov4_backbone_features_mnv3part_2_conv_4 = self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_4(_Build_Model__yolov4_backbone_features_mnv3part_2_conv_3)
_Build_Model__yolov4_backbone_features_mnv3part_2_conv_5 = self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_5(_Build_Model__yolov4_backbone_features_mnv3part_2_conv_4)
_Build_Model__yolov4_backbone_features_mnv3part_2_conv_6 = self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_6(_Build_Model__yolov4_backbone_features_mnv3part_2_conv_5)
_Build_Model__yolov4_backbone_features_mnv3part_2_conv_7 = self._Build_Model__yolov4_backbone_features_mnv3part_2_conv_7(_Build_Model__yolov4_backbone_features_mnv3part_2_conv_6)
add_9 = torch.add(_Build_Model__yolov4_backbone_features_mnv3part_1_qadd_0_activation_post_process, _Build_Model__yolov4_backbone_features_mnv3part_2_conv_7)
_Build_Model__yolov4_backbone_features_mnv3part_2_qadd_0_activation_post_process = self._Build_Model__yolov4_backbone_features_mnv3part_2_qadd_0_activation_post_process(add_9)
_Build_Model__yolov4_backbone_features_mnv3part_3_conv_0 = self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_0(_Build_Model__yolov4_backbone_features_mnv3part_2_qadd_0_activation_post_process)
_Build_Model__yolov4_backbone_features_mnv3part_3_conv_1 = self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_1(_Build_Model__yolov4_backbone_features_mnv3part_3_conv_0)
_Build_Model__yolov4_backbone_features_mnv3part_3_conv_2 = self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_2(_Build_Model__yolov4_backbone_features_mnv3part_3_conv_1)
_Build_Model__yolov4_backbone_features_mnv3part_3_conv_3 = self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_3(_Build_Model__yolov4_backbone_features_mnv3part_3_conv_2)
_Build_Model__yolov4_backbone_features_mnv3part_3_conv_4 = self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_4(_Build_Model__yolov4_backbone_features_mnv3part_3_conv_3)
_Build_Model__yolov4_backbone_features_mnv3part_3_conv_5 = self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_5(_Build_Model__yolov4_backbone_features_mnv3part_3_conv_4)
_Build_Model__yolov4_backbone_features_mnv3part_3_conv_6 = self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_6(_Build_Model__yolov4_backbone_features_mnv3part_3_conv_5)
_Build_Model__yolov4_backbone_features_mnv3part_3_conv_7 = self._Build_Model__yolov4_backbone_features_mnv3part_3_conv_7(_Build_Model__yolov4_backbone_features_mnv3part_3_conv_6)
_Build_Model__yolov4_backbone_features_mnv3part_4_conv_0 = self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_0(_Build_Model__yolov4_backbone_features_mnv3part_3_conv_7)
_Build_Model__yolov4_backbone_features_mnv3part_4_conv_1 = self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_1(_Build_Model__yolov4_backbone_features_mnv3part_4_conv_0)
_Build_Model__yolov4_backbone_features_mnv3part_4_conv_2 = self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_2(_Build_Model__yolov4_backbone_features_mnv3part_4_conv_1)
_Build_Model__yolov4_backbone_features_mnv3part_4_conv_3 = self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_3(_Build_Model__yolov4_backbone_features_mnv3part_4_conv_2)
_Build_Model__yolov4_backbone_features_mnv3part_4_conv_4 = self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_4(_Build_Model__yolov4_backbone_features_mnv3part_4_conv_3)
_Build_Model__yolov4_backbone_features_mnv3part_4_conv_5 = self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_5(_Build_Model__yolov4_backbone_features_mnv3part_4_conv_4)
_Build_Model__yolov4_backbone_features_mnv3part_4_conv_6 = self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_6(_Build_Model__yolov4_backbone_features_mnv3part_4_conv_5)
_Build_Model__yolov4_backbone_features_mnv3part_4_conv_7 = self._Build_Model__yolov4_backbone_features_mnv3part_4_conv_7(_Build_Model__yolov4_backbone_features_mnv3part_4_conv_6)
add_10 = torch.add(_Build_Model__yolov4_backbone_features_mnv3part_3_conv_7, _Build_Model__yolov4_backbone_features_mnv3part_4_conv_7)
_Build_Model__yolov4_backbone_features_mnv3part_4_qadd_0_activation_post_process = self._Build_Model__yolov4_backbone_features_mnv3part_4_qadd_0_activation_post_process(add_10)
_Build_Model__yolov4_backbone_features_mnv3part_5_conv_0 = self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_0(_Build_Model__yolov4_backbone_features_mnv3part_4_qadd_0_activation_post_process)
_Build_Model__yolov4_backbone_features_mnv3part_5_conv_1 = self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_1(_Build_Model__yolov4_backbone_features_mnv3part_5_conv_0)
_Build_Model__yolov4_backbone_features_mnv3part_5_conv_2 = self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_2(_Build_Model__yolov4_backbone_features_mnv3part_5_conv_1)
_Build_Model__yolov4_backbone_features_mnv3part_5_conv_3 = self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_3(_Build_Model__yolov4_backbone_features_mnv3part_5_conv_2)
_Build_Model__yolov4_backbone_features_mnv3part_5_conv_4 = self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_4(_Build_Model__yolov4_backbone_features_mnv3part_5_conv_3)
_Build_Model__yolov4_backbone_features_mnv3part_5_conv_5 = self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_5(_Build_Model__yolov4_backbone_features_mnv3part_5_conv_4)
_Build_Model__yolov4_backbone_features_mnv3part_5_conv_6 = self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_6(_Build_Model__yolov4_backbone_features_mnv3part_5_conv_5)
_Build_Model__yolov4_backbone_features_mnv3part_5_conv_7 = self._Build_Model__yolov4_backbone_features_mnv3part_5_conv_7(_Build_Model__yolov4_backbone_features_mnv3part_5_conv_6)
add_11 = torch.add(_Build_Model__yolov4_backbone_features_mnv3part_4_qadd_0_activation_post_process, _Build_Model__yolov4_backbone_features_mnv3part_5_conv_7)
_Build_Model__yolov4_backbone_features_mnv3part_5_qadd_0_activation_post_process = self._Build_Model__yolov4_backbone_features_mnv3part_5_qadd_0_activation_post_process(add_11)
_Build_Model__yolov4_backbone_conv_0 = self._Build_Model__yolov4_backbone_conv_0(_Build_Model__yolov4_backbone_features_mnv3part_5_qadd_0_activation_post_process)
_Build_Model__yolov4_backbone_conv_1 = self._Build_Model__yolov4_backbone_conv_1(_Build_Model__yolov4_backbone_conv_0)
_Build_Model__yolov4_backbone_conv_2 = self._Build_Model__yolov4_backbone_conv_2(_Build_Model__yolov4_backbone_conv_1)
_Build_Model__yolov4_spp_head_conv_0_conv_0 = self._Build_Model__yolov4_spp_head_conv_0_conv_0(_Build_Model__yolov4_backbone_conv_2)
_Build_Model__yolov4_spp_head_conv_0_conv_1 = self._Build_Model__yolov4_spp_head_conv_0_conv_1(_Build_Model__yolov4_spp_head_conv_0_conv_0)
_Build_Model__yolov4_spp_head_conv_0_conv_2 = self._Build_Model__yolov4_spp_head_conv_0_conv_2(_Build_Model__yolov4_spp_head_conv_0_conv_1)
_Build_Model__yolov4_spp_head_conv_0_conv_3 = self._Build_Model__yolov4_spp_head_conv_0_conv_3(_Build_Model__yolov4_spp_head_conv_0_conv_2)
_Build_Model__yolov4_spp_head_conv_0_conv_4 = self._Build_Model__yolov4_spp_head_conv_0_conv_4(_Build_Model__yolov4_spp_head_conv_0_conv_3)
_Build_Model__yolov4_spp_head_conv_1_conv_0 = self._Build_Model__yolov4_spp_head_conv_1_conv_0(_Build_Model__yolov4_spp_head_conv_0_conv_4)
_Build_Model__yolov4_spp_head_conv_1_conv_1 = self._Build_Model__yolov4_spp_head_conv_1_conv_1(_Build_Model__yolov4_spp_head_conv_1_conv_0)
_Build_Model__yolov4_spp_head_conv_1_conv_2 = self._Build_Model__yolov4_spp_head_conv_1_conv_2(_Build_Model__yolov4_spp_head_conv_1_conv_1)
_Build_Model__yolov4_spp_head_conv_1_conv_3 = self._Build_Model__yolov4_spp_head_conv_1_conv_3(_Build_Model__yolov4_spp_head_conv_1_conv_2)
_Build_Model__yolov4_spp_head_conv_1_conv_4 = self._Build_Model__yolov4_spp_head_conv_1_conv_4(_Build_Model__yolov4_spp_head_conv_1_conv_3)
_Build_Model__yolov4_spp_head_conv_2_conv_0 = self._Build_Model__yolov4_spp_head_conv_2_conv_0(_Build_Model__yolov4_spp_head_conv_1_conv_4)
_Build_Model__yolov4_spp_head_conv_2_conv_1 = self._Build_Model__yolov4_spp_head_conv_2_conv_1(_Build_Model__yolov4_spp_head_conv_2_conv_0)
_Build_Model__yolov4_spp_head_conv_2_conv_2 = self._Build_Model__yolov4_spp_head_conv_2_conv_2(_Build_Model__yolov4_spp_head_conv_2_conv_1)
_Build_Model__yolov4_spp_head_conv_2_conv_3 = self._Build_Model__yolov4_spp_head_conv_2_conv_3(_Build_Model__yolov4_spp_head_conv_2_conv_2)
_Build_Model__yolov4_spp_head_conv_2_conv_4 = self._Build_Model__yolov4_spp_head_conv_2_conv_4(_Build_Model__yolov4_spp_head_conv_2_conv_3)
_Build_Model__yolov4_spp_maxpools_0 = self._Build_Model__yolov4_spp_maxpools_0(_Build_Model__yolov4_spp_head_conv_2_conv_4)
_Build_Model__yolov4_spp_maxpools_1 = self._Build_Model__yolov4_spp_maxpools_1(_Build_Model__yolov4_spp_head_conv_2_conv_4)
_Build_Model__yolov4_spp_maxpools_2 = self._Build_Model__yolov4_spp_maxpools_2(_Build_Model__yolov4_spp_head_conv_2_conv_4)
cat_1 = torch.cat([_Build_Model__yolov4_spp_head_conv_2_conv_4, _Build_Model__yolov4_spp_maxpools_0, _Build_Model__yolov4_spp_maxpools_1, _Build_Model__yolov4_spp_maxpools_2], dim=1)
_Build_Model__yolov4_panet_feature_transform3_conv_0 = self._Build_Model__yolov4_panet_feature_transform3_conv_0(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_6_qadd_0_activation_post_process)
_Build_Model__yolov4_panet_feature_transform3_conv_1 = self._Build_Model__yolov4_panet_feature_transform3_conv_1(_Build_Model__yolov4_panet_feature_transform3_conv_0)
_Build_Model__yolov4_panet_feature_transform3_conv_2 = self._Build_Model__yolov4_panet_feature_transform3_conv_2(_Build_Model__yolov4_panet_feature_transform3_conv_1)
_Build_Model__yolov4_panet_feature_transform3_conv_3 = self._Build_Model__yolov4_panet_feature_transform3_conv_3(_Build_Model__yolov4_panet_feature_transform3_conv_2)
_Build_Model__yolov4_panet_feature_transform3_conv_4 = self._Build_Model__yolov4_panet_feature_transform3_conv_4(_Build_Model__yolov4_panet_feature_transform3_conv_3)
_Build_Model__yolov4_panet_feature_transform4_conv_0 = self._Build_Model__yolov4_panet_feature_transform4_conv_0(_Build_Model__yolov4_backbone__MobilenetV2Lite__submodule_features_10_qadd_0_activation_post_process)
_Build_Model__yolov4_panet_feature_transform4_conv_1 = self._Build_Model__yolov4_panet_feature_transform4_conv_1(_Build_Model__yolov4_panet_feature_transform4_conv_0)
_Build_Model__yolov4_panet_feature_transform4_conv_2 = self._Build_Model__yolov4_panet_feature_transform4_conv_2(_Build_Model__yolov4_panet_feature_transform4_conv_1)
_Build_Model__yolov4_panet_feature_transform4_conv_3 = self._Build_Model__yolov4_panet_feature_transform4_conv_3(_Build_Model__yolov4_panet_feature_transform4_conv_2)
_Build_Model__yolov4_panet_feature_transform4_conv_4 = self._Build_Model__yolov4_panet_feature_transform4_conv_4(_Build_Model__yolov4_panet_feature_transform4_conv_3)
_Build_Model__yolov4_panet_downstream_conv5_0_conv_0 = self._Build_Model__yolov4_panet_downstream_conv5_0_conv_0(cat_1)
_Build_Model__yolov4_panet_downstream_conv5_0_conv_1 = self._Build_Model__yolov4_panet_downstream_conv5_0_conv_1(_Build_Model__yolov4_panet_downstream_conv5_0_conv_0)
_Build_Model__yolov4_panet_downstream_conv5_0_conv_2 = self._Build_Model__yolov4_panet_downstream_conv5_0_conv_2(_Build_Model__yolov4_panet_downstream_conv5_0_conv_1)
_Build_Model__yolov4_panet_downstream_conv5_0_conv_3 = self._Build_Model__yolov4_panet_downstream_conv5_0_conv_3(_Build_Model__yolov4_panet_downstream_conv5_0_conv_2)
_Build_Model__yolov4_panet_downstream_conv5_0_conv_4 = self._Build_Model__yolov4_panet_downstream_conv5_0_conv_4(_Build_Model__yolov4_panet_downstream_conv5_0_conv_3)
_Build_Model__yolov4_panet_downstream_conv5_1_conv_0 = self._Build_Model__yolov4_panet_downstream_conv5_1_conv_0(_Build_Model__yolov4_panet_downstream_conv5_0_conv_4)
_Build_Model__yolov4_panet_downstream_conv5_1_conv_1 = self._Build_Model__yolov4_panet_downstream_conv5_1_conv_1(_Build_Model__yolov4_panet_downstream_conv5_1_conv_0)
_Build_Model__yolov4_panet_downstream_conv5_1_conv_2 = self._Build_Model__yolov4_panet_downstream_conv5_1_conv_2(_Build_Model__yolov4_panet_downstream_conv5_1_conv_1)
_Build_Model__yolov4_panet_downstream_conv5_1_conv_3 = self._Build_Model__yolov4_panet_downstream_conv5_1_conv_3(_Build_Model__yolov4_panet_downstream_conv5_1_conv_2)
_Build_Model__yolov4_panet_downstream_conv5_1_conv_4 = self._Build_Model__yolov4_panet_downstream_conv5_1_conv_4(_Build_Model__yolov4_panet_downstream_conv5_1_conv_3)
_Build_Model__yolov4_panet_downstream_conv5_2_conv_0 = self._Build_Model__yolov4_panet_downstream_conv5_2_conv_0(_Build_Model__yolov4_panet_downstream_conv5_1_conv_4)
_Build_Model__yolov4_panet_downstream_conv5_2_conv_1 = self._Build_Model__yolov4_panet_downstream_conv5_2_conv_1(_Build_Model__yolov4_panet_downstream_conv5_2_conv_0)
_Build_Model__yolov4_panet_downstream_conv5_2_conv_2 = self._Build_Model__yolov4_panet_downstream_conv5_2_conv_2(_Build_Model__yolov4_panet_downstream_conv5_2_conv_1)
_Build_Model__yolov4_panet_downstream_conv5_2_conv_3 = self._Build_Model__yolov4_panet_downstream_conv5_2_conv_3(_Build_Model__yolov4_panet_downstream_conv5_2_conv_2)
_Build_Model__yolov4_panet_downstream_conv5_2_conv_4 = self._Build_Model__yolov4_panet_downstream_conv5_2_conv_4(_Build_Model__yolov4_panet_downstream_conv5_2_conv_3)
_Build_Model__yolov4_panet_resample5_4_upsample_0_conv_0 = self._Build_Model__yolov4_panet_resample5_4_upsample_0_conv_0(_Build_Model__yolov4_panet_downstream_conv5_2_conv_4)
_Build_Model__yolov4_panet_resample5_4_upsample_0_conv_1 = self._Build_Model__yolov4_panet_resample5_4_upsample_0_conv_1(_Build_Model__yolov4_panet_resample5_4_upsample_0_conv_0)
_Build_Model__yolov4_panet_resample5_4_upsample_0_conv_2 = self._Build_Model__yolov4_panet_resample5_4_upsample_0_conv_2(_Build_Model__yolov4_panet_resample5_4_upsample_0_conv_1)
_Build_Model__yolov4_panet_resample5_4_upsample_1 = self._Build_Model__yolov4_panet_resample5_4_upsample_1(_Build_Model__yolov4_panet_resample5_4_upsample_0_conv_2)
cat_2 = torch.cat([_Build_Model__yolov4_panet_feature_transform4_conv_4, _Build_Model__yolov4_panet_resample5_4_upsample_1], dim=1)
_Build_Model__yolov4_panet_downstream_conv4_0_conv_0 = self._Build_Model__yolov4_panet_downstream_conv4_0_conv_0(cat_2)
_Build_Model__yolov4_panet_downstream_conv4_0_conv_1 = self._Build_Model__yolov4_panet_downstream_conv4_0_conv_1(_Build_Model__yolov4_panet_downstream_conv4_0_conv_0)
_Build_Model__yolov4_panet_downstream_conv4_0_conv_2 = self._Build_Model__yolov4_panet_downstream_conv4_0_conv_2(_Build_Model__yolov4_panet_downstream_conv4_0_conv_1)
_Build_Model__yolov4_panet_downstream_conv4_0_conv_3 = self._Build_Model__yolov4_panet_downstream_conv4_0_conv_3(_Build_Model__yolov4_panet_downstream_conv4_0_conv_2)
_Build_Model__yolov4_panet_downstream_conv4_0_conv_4 = self._Build_Model__yolov4_panet_downstream_conv4_0_conv_4(_Build_Model__yolov4_panet_downstream_conv4_0_conv_3)
_Build_Model__yolov4_panet_downstream_conv4_1_conv_0 = self._Build_Model__yolov4_panet_downstream_conv4_1_conv_0(_Build_Model__yolov4_panet_downstream_conv4_0_conv_4)
_Build_Model__yolov4_panet_downstream_conv4_1_conv_1 = self._Build_Model__yolov4_panet_downstream_conv4_1_conv_1(_Build_Model__yolov4_panet_downstream_conv4_1_conv_0)
_Build_Model__yolov4_panet_downstream_conv4_1_conv_2 = self._Build_Model__yolov4_panet_downstream_conv4_1_conv_2(_Build_Model__yolov4_panet_downstream_conv4_1_conv_1)
_Build_Model__yolov4_panet_downstream_conv4_1_conv_3 = self._Build_Model__yolov4_panet_downstream_conv4_1_conv_3(_Build_Model__yolov4_panet_downstream_conv4_1_conv_2)
_Build_Model__yolov4_panet_downstream_conv4_1_conv_4 = self._Build_Model__yolov4_panet_downstream_conv4_1_conv_4(_Build_Model__yolov4_panet_downstream_conv4_1_conv_3)
_Build_Model__yolov4_panet_downstream_conv4_2_conv_0 = self._Build_Model__yolov4_panet_downstream_conv4_2_conv_0(_Build_Model__yolov4_panet_downstream_conv4_1_conv_4)
_Build_Model__yolov4_panet_downstream_conv4_2_conv_1 = self._Build_Model__yolov4_panet_downstream_conv4_2_conv_1(_Build_Model__yolov4_panet_downstream_conv4_2_conv_0)
_Build_Model__yolov4_panet_downstream_conv4_2_conv_2 = self._Build_Model__yolov4_panet_downstream_conv4_2_conv_2(_Build_Model__yolov4_panet_downstream_conv4_2_conv_1)
_Build_Model__yolov4_panet_downstream_conv4_2_conv_3 = self._Build_Model__yolov4_panet_downstream_conv4_2_conv_3(_Build_Model__yolov4_panet_downstream_conv4_2_conv_2)
_Build_Model__yolov4_panet_downstream_conv4_2_conv_4 = self._Build_Model__yolov4_panet_downstream_conv4_2_conv_4(_Build_Model__yolov4_panet_downstream_conv4_2_conv_3)
_Build_Model__yolov4_panet_downstream_conv4_3_conv_0 = self._Build_Model__yolov4_panet_downstream_conv4_3_conv_0(_Build_Model__yolov4_panet_downstream_conv4_2_conv_4)
_Build_Model__yolov4_panet_downstream_conv4_3_conv_1 = self._Build_Model__yolov4_panet_downstream_conv4_3_conv_1(_Build_Model__yolov4_panet_downstream_conv4_3_conv_0)
_Build_Model__yolov4_panet_downstream_conv4_3_conv_2 = self._Build_Model__yolov4_panet_downstream_conv4_3_conv_2(_Build_Model__yolov4_panet_downstream_conv4_3_conv_1)
_Build_Model__yolov4_panet_downstream_conv4_3_conv_3 = self._Build_Model__yolov4_panet_downstream_conv4_3_conv_3(_Build_Model__yolov4_panet_downstream_conv4_3_conv_2)
_Build_Model__yolov4_panet_downstream_conv4_3_conv_4 = self._Build_Model__yolov4_panet_downstream_conv4_3_conv_4(_Build_Model__yolov4_panet_downstream_conv4_3_conv_3)
_Build_Model__yolov4_panet_downstream_conv4_4_conv_0 = self._Build_Model__yolov4_panet_downstream_conv4_4_conv_0(_Build_Model__yolov4_panet_downstream_conv4_3_conv_4)
_Build_Model__yolov4_panet_downstream_conv4_4_conv_1 = self._Build_Model__yolov4_panet_downstream_conv4_4_conv_1(_Build_Model__yolov4_panet_downstream_conv4_4_conv_0)
_Build_Model__yolov4_panet_downstream_conv4_4_conv_2 = self._Build_Model__yolov4_panet_downstream_conv4_4_conv_2(_Build_Model__yolov4_panet_downstream_conv4_4_conv_1)
_Build_Model__yolov4_panet_downstream_conv4_4_conv_3 = self._Build_Model__yolov4_panet_downstream_conv4_4_conv_3(_Build_Model__yolov4_panet_downstream_conv4_4_conv_2)
_Build_Model__yolov4_panet_downstream_conv4_4_conv_4 = self._Build_Model__yolov4_panet_downstream_conv4_4_conv_4(_Build_Model__yolov4_panet_downstream_conv4_4_conv_3)
_Build_Model__yolov4_panet_resample4_3_upsample_0_conv_0 = self._Build_Model__yolov4_panet_resample4_3_upsample_0_conv_0(_Build_Model__yolov4_panet_downstream_conv4_4_conv_4)
_Build_Model__yolov4_panet_resample4_3_upsample_0_conv_1 = self._Build_Model__yolov4_panet_resample4_3_upsample_0_conv_1(_Build_Model__yolov4_panet_resample4_3_upsample_0_conv_0)
_Build_Model__yolov4_panet_resample4_3_upsample_0_conv_2 = self._Build_Model__yolov4_panet_resample4_3_upsample_0_conv_2(_Build_Model__yolov4_panet_resample4_3_upsample_0_conv_1)
_Build_Model__yolov4_panet_resample4_3_upsample_1 = self._Build_Model__yolov4_panet_resample4_3_upsample_1(_Build_Model__yolov4_panet_resample4_3_upsample_0_conv_2)
cat_3 = torch.cat([_Build_Model__yolov4_panet_feature_transform3_conv_4, _Build_Model__yolov4_panet_resample4_3_upsample_1], dim=1)
_Build_Model__yolov4_panet_downstream_conv3_0_conv_0 = self._Build_Model__yolov4_panet_downstream_conv3_0_conv_0(cat_3)
_Build_Model__yolov4_panet_downstream_conv3_0_conv_1 = self._Build_Model__yolov4_panet_downstream_conv3_0_conv_1(_Build_Model__yolov4_panet_downstream_conv3_0_conv_0)
_Build_Model__yolov4_panet_downstream_conv3_0_conv_2 = self._Build_Model__yolov4_panet_downstream_conv3_0_conv_2(_Build_Model__yolov4_panet_downstream_conv3_0_conv_1)
_Build_Model__yolov4_panet_downstream_conv3_0_conv_3 = self._Build_Model__yolov4_panet_downstream_conv3_0_conv_3(_Build_Model__yolov4_panet_downstream_conv3_0_conv_2)
_Build_Model__yolov4_panet_downstream_conv3_0_conv_4 = self._Build_Model__yolov4_panet_downstream_conv3_0_conv_4(_Build_Model__yolov4_panet_downstream_conv3_0_conv_3)
_Build_Model__yolov4_panet_downstream_conv3_1_conv_0 = self._Build_Model__yolov4_panet_downstream_conv3_1_conv_0(_Build_Model__yolov4_panet_downstream_conv3_0_conv_4)
_Build_Model__yolov4_panet_downstream_conv3_1_conv_1 = self._Build_Model__yolov4_panet_downstream_conv3_1_conv_1(_Build_Model__yolov4_panet_downstream_conv3_1_conv_0)
_Build_Model__yolov4_panet_downstream_conv3_1_conv_2 = self._Build_Model__yolov4_panet_downstream_conv3_1_conv_2(_Build_Model__yolov4_panet_downstream_conv3_1_conv_1)
_Build_Model__yolov4_panet_downstream_conv3_1_conv_3 = self._Build_Model__yolov4_panet_downstream_conv3_1_conv_3(_Build_Model__yolov4_panet_downstream_conv3_1_conv_2)
_Build_Model__yolov4_panet_downstream_conv3_1_conv_4 = self._Build_Model__yolov4_panet_downstream_conv3_1_conv_4(_Build_Model__yolov4_panet_downstream_conv3_1_conv_3)
_Build_Model__yolov4_panet_downstream_conv3_2_conv_0 = self._Build_Model__yolov4_panet_downstream_conv3_2_conv_0(_Build_Model__yolov4_panet_downstream_conv3_1_conv_4)
_Build_Model__yolov4_panet_downstream_conv3_2_conv_1 = self._Build_Model__yolov4_panet_downstream_conv3_2_conv_1(_Build_Model__yolov4_panet_downstream_conv3_2_conv_0)
_Build_Model__yolov4_panet_downstream_conv3_2_conv_2 = self._Build_Model__yolov4_panet_downstream_conv3_2_conv_2(_Build_Model__yolov4_panet_downstream_conv3_2_conv_1)
_Build_Model__yolov4_panet_downstream_conv3_2_conv_3 = self._Build_Model__yolov4_panet_downstream_conv3_2_conv_3(_Build_Model__yolov4_panet_downstream_conv3_2_conv_2)
_Build_Model__yolov4_panet_downstream_conv3_2_conv_4 = self._Build_Model__yolov4_panet_downstream_conv3_2_conv_4(_Build_Model__yolov4_panet_downstream_conv3_2_conv_3)
_Build_Model__yolov4_panet_downstream_conv3_3_conv_0 = self._Build_Model__yolov4_panet_downstream_conv3_3_conv_0(_Build_Model__yolov4_panet_downstream_conv3_2_conv_4)
_Build_Model__yolov4_panet_downstream_conv3_3_conv_1 = self._Build_Model__yolov4_panet_downstream_conv3_3_conv_1(_Build_Model__yolov4_panet_downstream_conv3_3_conv_0)
_Build_Model__yolov4_panet_downstream_conv3_3_conv_2 = self._Build_Model__yolov4_panet_downstream_conv3_3_conv_2(_Build_Model__yolov4_panet_downstream_conv3_3_conv_1)
_Build_Model__yolov4_panet_downstream_conv3_3_conv_3 = self._Build_Model__yolov4_panet_downstream_conv3_3_conv_3(_Build_Model__yolov4_panet_downstream_conv3_3_conv_2)
_Build_Model__yolov4_panet_downstream_conv3_3_conv_4 = self._Build_Model__yolov4_panet_downstream_conv3_3_conv_4(_Build_Model__yolov4_panet_downstream_conv3_3_conv_3)
_Build_Model__yolov4_panet_downstream_conv3_4_conv_0 = self._Build_Model__yolov4_panet_downstream_conv3_4_conv_0(_Build_Model__yolov4_panet_downstream_conv3_3_conv_4)
_Build_Model__yolov4_panet_downstream_conv3_4_conv_1 = self._Build_Model__yolov4_panet_downstream_conv3_4_conv_1(_Build_Model__yolov4_panet_downstream_conv3_4_conv_0)
_Build_Model__yolov4_panet_downstream_conv3_4_conv_2 = self._Build_Model__yolov4_panet_downstream_conv3_4_conv_2(_Build_Model__yolov4_panet_downstream_conv3_4_conv_1)
_Build_Model__yolov4_panet_downstream_conv3_4_conv_3 = self._Build_Model__yolov4_panet_downstream_conv3_4_conv_3(_Build_Model__yolov4_panet_downstream_conv3_4_conv_2)
_Build_Model__yolov4_panet_downstream_conv3_4_conv_4 = self._Build_Model__yolov4_panet_downstream_conv3_4_conv_4(_Build_Model__yolov4_panet_downstream_conv3_4_conv_3)
_Build_Model__yolov4_panet_resample3_4_downsample_conv_0 = self._Build_Model__yolov4_panet_resample3_4_downsample_conv_0(_Build_Model__yolov4_panet_downstream_conv3_4_conv_4)
_Build_Model__yolov4_panet_resample3_4_downsample_conv_1 = self._Build_Model__yolov4_panet_resample3_4_downsample_conv_1(_Build_Model__yolov4_panet_resample3_4_downsample_conv_0)
_Build_Model__yolov4_panet_resample3_4_downsample_conv_2 = self._Build_Model__yolov4_panet_resample3_4_downsample_conv_2(_Build_Model__yolov4_panet_resample3_4_downsample_conv_1)
cat_4 = torch.cat([_Build_Model__yolov4_panet_resample3_4_downsample_conv_2, _Build_Model__yolov4_panet_downstream_conv4_4_conv_4], dim=1)
_Build_Model__yolov4_panet_upstream_conv4_0_conv_0 = self._Build_Model__yolov4_panet_upstream_conv4_0_conv_0(cat_4)
_Build_Model__yolov4_panet_upstream_conv4_0_conv_1 = self._Build_Model__yolov4_panet_upstream_conv4_0_conv_1(_Build_Model__yolov4_panet_upstream_conv4_0_conv_0)
_Build_Model__yolov4_panet_upstream_conv4_0_conv_2 = self._Build_Model__yolov4_panet_upstream_conv4_0_conv_2(_Build_Model__yolov4_panet_upstream_conv4_0_conv_1)
_Build_Model__yolov4_panet_upstream_conv4_0_conv_3 = self._Build_Model__yolov4_panet_upstream_conv4_0_conv_3(_Build_Model__yolov4_panet_upstream_conv4_0_conv_2)
_Build_Model__yolov4_panet_upstream_conv4_0_conv_4 = self._Build_Model__yolov4_panet_upstream_conv4_0_conv_4(_Build_Model__yolov4_panet_upstream_conv4_0_conv_3)
_Build_Model__yolov4_panet_upstream_conv4_1_conv_0 = self._Build_Model__yolov4_panet_upstream_conv4_1_conv_0(_Build_Model__yolov4_panet_upstream_conv4_0_conv_4)
_Build_Model__yolov4_panet_upstream_conv4_1_conv_1 = self._Build_Model__yolov4_panet_upstream_conv4_1_conv_1(_Build_Model__yolov4_panet_upstream_conv4_1_conv_0)
_Build_Model__yolov4_panet_upstream_conv4_1_conv_2 = self._Build_Model__yolov4_panet_upstream_conv4_1_conv_2(_Build_Model__yolov4_panet_upstream_conv4_1_conv_1)
_Build_Model__yolov4_panet_upstream_conv4_1_conv_3 = self._Build_Model__yolov4_panet_upstream_conv4_1_conv_3(_Build_Model__yolov4_panet_upstream_conv4_1_conv_2)
_Build_Model__yolov4_panet_upstream_conv4_1_conv_4 = self._Build_Model__yolov4_panet_upstream_conv4_1_conv_4(_Build_Model__yolov4_panet_upstream_conv4_1_conv_3)
_Build_Model__yolov4_panet_upstream_conv4_2_conv_0 = self._Build_Model__yolov4_panet_upstream_conv4_2_conv_0(_Build_Model__yolov4_panet_upstream_conv4_1_conv_4)
_Build_Model__yolov4_panet_upstream_conv4_2_conv_1 = self._Build_Model__yolov4_panet_upstream_conv4_2_conv_1(_Build_Model__yolov4_panet_upstream_conv4_2_conv_0)
_Build_Model__yolov4_panet_upstream_conv4_2_conv_2 = self._Build_Model__yolov4_panet_upstream_conv4_2_conv_2(_Build_Model__yolov4_panet_upstream_conv4_2_conv_1)
_Build_Model__yolov4_panet_upstream_conv4_2_conv_3 = self._Build_Model__yolov4_panet_upstream_conv4_2_conv_3(_Build_Model__yolov4_panet_upstream_conv4_2_conv_2)
_Build_Model__yolov4_panet_upstream_conv4_2_conv_4 = self._Build_Model__yolov4_panet_upstream_conv4_2_conv_4(_Build_Model__yolov4_panet_upstream_conv4_2_conv_3)
_Build_Model__yolov4_panet_upstream_conv4_3_conv_0 = self._Build_Model__yolov4_panet_upstream_conv4_3_conv_0(_Build_Model__yolov4_panet_upstream_conv4_2_conv_4)
_Build_Model__yolov4_panet_upstream_conv4_3_conv_1 = self._Build_Model__yolov4_panet_upstream_conv4_3_conv_1(_Build_Model__yolov4_panet_upstream_conv4_3_conv_0)
_Build_Model__yolov4_panet_upstream_conv4_3_conv_2 = self._Build_Model__yolov4_panet_upstream_conv4_3_conv_2(_Build_Model__yolov4_panet_upstream_conv4_3_conv_1)
_Build_Model__yolov4_panet_upstream_conv4_3_conv_3 = self._Build_Model__yolov4_panet_upstream_conv4_3_conv_3(_Build_Model__yolov4_panet_upstream_conv4_3_conv_2)
_Build_Model__yolov4_panet_upstream_conv4_3_conv_4 = self._Build_Model__yolov4_panet_upstream_conv4_3_conv_4(_Build_Model__yolov4_panet_upstream_conv4_3_conv_3)
_Build_Model__yolov4_panet_upstream_conv4_4_conv_0 = self._Build_Model__yolov4_panet_upstream_conv4_4_conv_0(_Build_Model__yolov4_panet_upstream_conv4_3_conv_4)
_Build_Model__yolov4_panet_upstream_conv4_4_conv_1 = self._Build_Model__yolov4_panet_upstream_conv4_4_conv_1(_Build_Model__yolov4_panet_upstream_conv4_4_conv_0)
_Build_Model__yolov4_panet_upstream_conv4_4_conv_2 = self._Build_Model__yolov4_panet_upstream_conv4_4_conv_2(_Build_Model__yolov4_panet_upstream_conv4_4_conv_1)
_Build_Model__yolov4_panet_upstream_conv4_4_conv_3 = self._Build_Model__yolov4_panet_upstream_conv4_4_conv_3(_Build_Model__yolov4_panet_upstream_conv4_4_conv_2)
_Build_Model__yolov4_panet_upstream_conv4_4_conv_4 = self._Build_Model__yolov4_panet_upstream_conv4_4_conv_4(_Build_Model__yolov4_panet_upstream_conv4_4_conv_3)
_Build_Model__yolov4_panet_resample4_5_downsample_conv_0 = self._Build_Model__yolov4_panet_resample4_5_downsample_conv_0(_Build_Model__yolov4_panet_upstream_conv4_4_conv_4)
_Build_Model__yolov4_panet_resample4_5_downsample_conv_1 = self._Build_Model__yolov4_panet_resample4_5_downsample_conv_1(_Build_Model__yolov4_panet_resample4_5_downsample_conv_0)
_Build_Model__yolov4_panet_resample4_5_downsample_conv_2 = self._Build_Model__yolov4_panet_resample4_5_downsample_conv_2(_Build_Model__yolov4_panet_resample4_5_downsample_conv_1)
cat_5 = torch.cat([_Build_Model__yolov4_panet_resample4_5_downsample_conv_2, _Build_Model__yolov4_panet_downstream_conv5_2_conv_4], dim=1)
_Build_Model__yolov4_panet_upstream_conv5_0_conv_0 = self._Build_Model__yolov4_panet_upstream_conv5_0_conv_0(cat_5)
_Build_Model__yolov4_panet_upstream_conv5_0_conv_1 = self._Build_Model__yolov4_panet_upstream_conv5_0_conv_1(_Build_Model__yolov4_panet_upstream_conv5_0_conv_0)
_Build_Model__yolov4_panet_upstream_conv5_0_conv_2 = self._Build_Model__yolov4_panet_upstream_conv5_0_conv_2(_Build_Model__yolov4_panet_upstream_conv5_0_conv_1)
_Build_Model__yolov4_panet_upstream_conv5_0_conv_3 = self._Build_Model__yolov4_panet_upstream_conv5_0_conv_3(_Build_Model__yolov4_panet_upstream_conv5_0_conv_2)
_Build_Model__yolov4_panet_upstream_conv5_0_conv_4 = self._Build_Model__yolov4_panet_upstream_conv5_0_conv_4(_Build_Model__yolov4_panet_upstream_conv5_0_conv_3)
_Build_Model__yolov4_panet_upstream_conv5_1_conv_0 = self._Build_Model__yolov4_panet_upstream_conv5_1_conv_0(_Build_Model__yolov4_panet_upstream_conv5_0_conv_4)
_Build_Model__yolov4_panet_upstream_conv5_1_conv_1 = self._Build_Model__yolov4_panet_upstream_conv5_1_conv_1(_Build_Model__yolov4_panet_upstream_conv5_1_conv_0)
_Build_Model__yolov4_panet_upstream_conv5_1_conv_2 = self._Build_Model__yolov4_panet_upstream_conv5_1_conv_2(_Build_Model__yolov4_panet_upstream_conv5_1_conv_1)
_Build_Model__yolov4_panet_upstream_conv5_1_conv_3 = self._Build_Model__yolov4_panet_upstream_conv5_1_conv_3(_Build_Model__yolov4_panet_upstream_conv5_1_conv_2)
_Build_Model__yolov4_panet_upstream_conv5_1_conv_4 = self._Build_Model__yolov4_panet_upstream_conv5_1_conv_4(_Build_Model__yolov4_panet_upstream_conv5_1_conv_3)
_Build_Model__yolov4_panet_upstream_conv5_2_conv_0 = self._Build_Model__yolov4_panet_upstream_conv5_2_conv_0(_Build_Model__yolov4_panet_upstream_conv5_1_conv_4)
_Build_Model__yolov4_panet_upstream_conv5_2_conv_1 = self._Build_Model__yolov4_panet_upstream_conv5_2_conv_1(_Build_Model__yolov4_panet_upstream_conv5_2_conv_0)
_Build_Model__yolov4_panet_upstream_conv5_2_conv_2 = self._Build_Model__yolov4_panet_upstream_conv5_2_conv_2(_Build_Model__yolov4_panet_upstream_conv5_2_conv_1)
_Build_Model__yolov4_panet_upstream_conv5_2_conv_3 = self._Build_Model__yolov4_panet_upstream_conv5_2_conv_3(_Build_Model__yolov4_panet_upstream_conv5_2_conv_2)
_Build_Model__yolov4_panet_upstream_conv5_2_conv_4 = self._Build_Model__yolov4_panet_upstream_conv5_2_conv_4(_Build_Model__yolov4_panet_upstream_conv5_2_conv_3)
_Build_Model__yolov4_panet_upstream_conv5_3_conv_0 = self._Build_Model__yolov4_panet_upstream_conv5_3_conv_0(_Build_Model__yolov4_panet_upstream_conv5_2_conv_4)
_Build_Model__yolov4_panet_upstream_conv5_3_conv_1 = self._Build_Model__yolov4_panet_upstream_conv5_3_conv_1(_Build_Model__yolov4_panet_upstream_conv5_3_conv_0)
_Build_Model__yolov4_panet_upstream_conv5_3_conv_2 = self._Build_Model__yolov4_panet_upstream_conv5_3_conv_2(_Build_Model__yolov4_panet_upstream_conv5_3_conv_1)
_Build_Model__yolov4_panet_upstream_conv5_3_conv_3 = self._Build_Model__yolov4_panet_upstream_conv5_3_conv_3(_Build_Model__yolov4_panet_upstream_conv5_3_conv_2)
_Build_Model__yolov4_panet_upstream_conv5_3_conv_4 = self._Build_Model__yolov4_panet_upstream_conv5_3_conv_4(_Build_Model__yolov4_panet_upstream_conv5_3_conv_3)
_Build_Model__yolov4_panet_upstream_conv5_4_conv_0 = self._Build_Model__yolov4_panet_upstream_conv5_4_conv_0(_Build_Model__yolov4_panet_upstream_conv5_3_conv_4)
_Build_Model__yolov4_panet_upstream_conv5_4_conv_1 = self._Build_Model__yolov4_panet_upstream_conv5_4_conv_1(_Build_Model__yolov4_panet_upstream_conv5_4_conv_0)
_Build_Model__yolov4_panet_upstream_conv5_4_conv_2 = self._Build_Model__yolov4_panet_upstream_conv5_4_conv_2(_Build_Model__yolov4_panet_upstream_conv5_4_conv_1)
_Build_Model__yolov4_panet_upstream_conv5_4_conv_3 = self._Build_Model__yolov4_panet_upstream_conv5_4_conv_3(_Build_Model__yolov4_panet_upstream_conv5_4_conv_2)
_Build_Model__yolov4_panet_upstream_conv5_4_conv_4 = self._Build_Model__yolov4_panet_upstream_conv5_4_conv_4(_Build_Model__yolov4_panet_upstream_conv5_4_conv_3)
_Build_Model__yolov4_predict_net_predict_conv_0_0_conv_0 = self._Build_Model__yolov4_predict_net_predict_conv_0_0_conv_0(_Build_Model__yolov4_panet_downstream_conv3_4_conv_4)
_Build_Model__yolov4_predict_net_predict_conv_0_0_conv_1 = self._Build_Model__yolov4_predict_net_predict_conv_0_0_conv_1(_Build_Model__yolov4_predict_net_predict_conv_0_0_conv_0)
_Build_Model__yolov4_predict_net_predict_conv_0_0_conv_2 = self._Build_Model__yolov4_predict_net_predict_conv_0_0_conv_2(_Build_Model__yolov4_predict_net_predict_conv_0_0_conv_1)
_Build_Model__yolov4_predict_net_predict_conv_0_0_conv_3 = self._Build_Model__yolov4_predict_net_predict_conv_0_0_conv_3(_Build_Model__yolov4_predict_net_predict_conv_0_0_conv_2)
_Build_Model__yolov4_predict_net_predict_conv_0_0_conv_4 = self._Build_Model__yolov4_predict_net_predict_conv_0_0_conv_4(_Build_Model__yolov4_predict_net_predict_conv_0_0_conv_3)
_Build_Model__yolov4_predict_net_predict_conv_0_1 = self._Build_Model__yolov4_predict_net_predict_conv_0_1(_Build_Model__yolov4_predict_net_predict_conv_0_0_conv_4)
_Build_Model__yolov4_predict_net_predict_conv_1_0_conv_0 = self._Build_Model__yolov4_predict_net_predict_conv_1_0_conv_0(_Build_Model__yolov4_panet_upstream_conv4_4_conv_4)
_Build_Model__yolov4_predict_net_predict_conv_1_0_conv_1 = self._Build_Model__yolov4_predict_net_predict_conv_1_0_conv_1(_Build_Model__yolov4_predict_net_predict_conv_1_0_conv_0)
_Build_Model__yolov4_predict_net_predict_conv_1_0_conv_2 = self._Build_Model__yolov4_predict_net_predict_conv_1_0_conv_2(_Build_Model__yolov4_predict_net_predict_conv_1_0_conv_1)
_Build_Model__yolov4_predict_net_predict_conv_1_0_conv_3 = self._Build_Model__yolov4_predict_net_predict_conv_1_0_conv_3(_Build_Model__yolov4_predict_net_predict_conv_1_0_conv_2)
_Build_Model__yolov4_predict_net_predict_conv_1_0_conv_4 = self._Build_Model__yolov4_predict_net_predict_conv_1_0_conv_4(_Build_Model__yolov4_predict_net_predict_conv_1_0_conv_3)
_Build_Model__yolov4_predict_net_predict_conv_1_1 = self._Build_Model__yolov4_predict_net_predict_conv_1_1(_Build_Model__yolov4_predict_net_predict_conv_1_0_conv_4)
_Build_Model__yolov4_predict_net_predict_conv_2_0_conv_0 = self._Build_Model__yolov4_predict_net_predict_conv_2_0_conv_0(_Build_Model__yolov4_panet_upstream_conv5_4_conv_4)
_Build_Model__yolov4_predict_net_predict_conv_2_0_conv_1 = self._Build_Model__yolov4_predict_net_predict_conv_2_0_conv_1(_Build_Model__yolov4_predict_net_predict_conv_2_0_conv_0)
_Build_Model__yolov4_predict_net_predict_conv_2_0_conv_2 = self._Build_Model__yolov4_predict_net_predict_conv_2_0_conv_2(_Build_Model__yolov4_predict_net_predict_conv_2_0_conv_1)
_Build_Model__yolov4_predict_net_predict_conv_2_0_conv_3 = self._Build_Model__yolov4_predict_net_predict_conv_2_0_conv_3(_Build_Model__yolov4_predict_net_predict_conv_2_0_conv_2)
_Build_Model__yolov4_predict_net_predict_conv_2_0_conv_4 = self._Build_Model__yolov4_predict_net_predict_conv_2_0_conv_4(_Build_Model__yolov4_predict_net_predict_conv_2_0_conv_3)
_Build_Model__yolov4_predict_net_predict_conv_2_1 = self._Build_Model__yolov4_predict_net_predict_conv_2_1(_Build_Model__yolov4_predict_net_predict_conv_2_0_conv_4)
shape_1 = _Build_Model__yolov4_predict_net_predict_conv_0_1.shape
view_1 = _Build_Model__yolov4_predict_net_predict_conv_0_1.view(shape_1[0], 3, 6, shape_1[3], shape_1[3])
permute_1 = view_1.permute(0, 3, 4, 1, 2)
clone_1 = permute_1.clone()
shape_2 = clone_1.shape
device_1 = clone_1.device
to_1 = self.tensor_1.to(device_1)
mul_1 = self.tensor_2.__rmul__(1.0)
to_2 = mul_1.to(device_1)
getitem_1 = clone_1[:, :, :, :, 0:2]
getitem_2 = clone_1[:, :, :, :, 2:4]
getitem_3 = clone_1[:, :, :, :, 4:5]
getitem_4 = clone_1[:, :, :, :, 5:]
arange_1 = torch.arange(0, shape_2[1])
unsqueeze_1 = arange_1.unsqueeze(1)
repeat_1 = unsqueeze_1.repeat(1, shape_2[1])
arange_2 = torch.arange(0, shape_2[1])
unsqueeze_2 = arange_2.unsqueeze(0)
repeat_2 = unsqueeze_2.repeat(shape_2[1], 1)
stack_1 = torch.stack([repeat_2, repeat_1], dim=-1)
unsqueeze_3 = stack_1.unsqueeze(0)
unsqueeze_4 = unsqueeze_3.unsqueeze(3)
repeat_3 = unsqueeze_4.repeat(shape_2[0], 1, 1, 3, 1)
float_1 = repeat_3.float()
to_3 = float_1.to(device_1)
sigmoid_1 = torch.sigmoid(getitem_1)
add_12 = sigmoid_1.__add__(to_3)
mul_2 = add_12.__mul__(to_1)
exp_1 = torch.exp(getitem_2)
mul_3 = exp_1.__mul__(to_2)
mul_4 = mul_3.__mul__(to_1)
cat_6 = torch.cat([mul_2, mul_4], dim=-1)
sigmoid_2 = torch.sigmoid(getitem_3)
sigmoid_3 = torch.sigmoid(getitem_4)
cat_7 = torch.cat([cat_6, sigmoid_2, sigmoid_3], dim=-1)
view_2 = cat_7.view(-1, 6)
shape_3 = _Build_Model__yolov4_predict_net_predict_conv_1_1.shape
view_3 = _Build_Model__yolov4_predict_net_predict_conv_1_1.view(shape_3[0], 3, 6, shape_3[3], shape_3[3])
permute_2 = view_3.permute(0, 3, 4, 1, 2)
clone_2 = permute_2.clone()
shape_4 = clone_2.shape
device_2 = clone_2.device
to_4 = self.tensor_3.to(device_2)
mul_5 = self.tensor_4.__rmul__(1.0)
to_5 = mul_5.to(device_2)
getitem_5 = clone_2[:, :, :, :, 0:2]
getitem_6 = clone_2[:, :, :, :, 2:4]
getitem_7 = clone_2[:, :, :, :, 4:5]
getitem_8 = clone_2[:, :, :, :, 5:]
arange_3 = torch.arange(0, shape_4[1])
unsqueeze_5 = arange_3.unsqueeze(1)
repeat_4 = unsqueeze_5.repeat(1, shape_4[1])
arange_4 = torch.arange(0, shape_4[1])
unsqueeze_6 = arange_4.unsqueeze(0)
repeat_5 = unsqueeze_6.repeat(shape_4[1], 1)
stack_2 = torch.stack([repeat_5, repeat_4], dim=-1)
unsqueeze_7 = stack_2.unsqueeze(0)
unsqueeze_8 = unsqueeze_7.unsqueeze(3)
repeat_6 = unsqueeze_8.repeat(shape_4[0], 1, 1, 3, 1)
float_2 = repeat_6.float()
to_6 = float_2.to(device_2)
sigmoid_4 = torch.sigmoid(getitem_5)
add_13 = sigmoid_4.__add__(to_6)
mul_6 = add_13.__mul__(to_4)
exp_2 = torch.exp(getitem_6)
mul_7 = exp_2.__mul__(to_5)
mul_8 = mul_7.__mul__(to_4)
cat_8 = torch.cat([mul_6, mul_8], dim=-1)
sigmoid_5 = torch.sigmoid(getitem_7)
sigmoid_6 = torch.sigmoid(getitem_8)
cat_9 = torch.cat([cat_8, sigmoid_5, sigmoid_6], dim=-1)
view_4 = cat_9.view(-1, 6)
shape_5 = _Build_Model__yolov4_predict_net_predict_conv_2_1.shape
view_5 = _Build_Model__yolov4_predict_net_predict_conv_2_1.view(shape_5[0], 3, 6, shape_5[3], shape_5[3])
permute_3 = view_5.permute(0, 3, 4, 1, 2)
clone_3 = permute_3.clone()
shape_6 = clone_3.shape
device_3 = clone_3.device
to_7 = self.tensor_5.to(device_3)
mul_9 = self.tensor_6.__rmul__(1.0)
to_8 = mul_9.to(device_3)
getitem_9 = clone_3[:, :, :, :, 0:2]
getitem_10 = clone_3[:, :, :, :, 2:4]
getitem_11 = clone_3[:, :, :, :, 4:5]
getitem_12 = clone_3[:, :, :, :, 5:]
arange_5 = torch.arange(0, shape_6[1])
unsqueeze_9 = arange_5.unsqueeze(1)
repeat_7 = unsqueeze_9.repeat(1, shape_6[1])
arange_6 = torch.arange(0, shape_6[1])
unsqueeze_10 = arange_6.unsqueeze(0)
repeat_8 = unsqueeze_10.repeat(shape_6[1], 1)
stack_3 = torch.stack([repeat_8, repeat_7], dim=-1)
unsqueeze_11 = stack_3.unsqueeze(0)
unsqueeze_12 = unsqueeze_11.unsqueeze(3)
repeat_9 = unsqueeze_12.repeat(shape_6[0], 1, 1, 3, 1)
float_3 = repeat_9.float()
to_9 = float_3.to(device_3)
sigmoid_7 = torch.sigmoid(getitem_9)
add_14 = sigmoid_7.__add__(to_9)
mul_10 = add_14.__mul__(to_7)
exp_3 = torch.exp(getitem_10)
mul_11 = exp_3.__mul__(to_8)
mul_12 = mul_11.__mul__(to_7)
cat_10 = torch.cat([mul_10, mul_12], dim=-1)
sigmoid_8 = torch.sigmoid(getitem_11)
sigmoid_9 = torch.sigmoid(getitem_12)
cat_11 = torch.cat([cat_10, sigmoid_8, sigmoid_9], dim=-1)
view_6 = cat_11.view(-1, 6)
shape_7 = _Build_Model__yolov4_predict_net_predict_conv_0_1.shape
view_7 = _Build_Model__yolov4_predict_net_predict_conv_0_1.view(shape_7[0], 3, 6, shape_7[3], shape_7[3])
permute_4 = view_7.permute(0, 3, 4, 1, 2)
clone_4 = permute_4.clone()
shape_8 = clone_4.shape
device_4 = clone_4.device
to_10 = to_1.to(device_4)
mul_13 = self.tensor_2.__rmul__(1.0)
to_11 = mul_13.to(device_4)
getitem_13 = clone_4[:, :, :, :, 0:2]
getitem_14 = clone_4[:, :, :, :, 2:4]
getitem_15 = clone_4[:, :, :, :, 4:5]
getitem_16 = clone_4[:, :, :, :, 5:]
arange_7 = torch.arange(0, shape_8[1])
unsqueeze_13 = arange_7.unsqueeze(1)
repeat_10 = unsqueeze_13.repeat(1, shape_8[1])
arange_8 = torch.arange(0, shape_8[1])
unsqueeze_14 = arange_8.unsqueeze(0)
repeat_11 = unsqueeze_14.repeat(shape_8[1], 1)
stack_4 = torch.stack([repeat_11, repeat_10], dim=-1)
unsqueeze_15 = stack_4.unsqueeze(0)
unsqueeze_16 = unsqueeze_15.unsqueeze(3)
repeat_12 = unsqueeze_16.repeat(shape_8[0], 1, 1, 3, 1)
float_4 = repeat_12.float()
to_12 = float_4.to(device_4)
sigmoid_10 = torch.sigmoid(getitem_13)
add_15 = sigmoid_10.__add__(to_12)
mul_14 = add_15.__mul__(to_10)
exp_4 = torch.exp(getitem_14)
mul_15 = exp_4.__mul__(to_11)
mul_16 = mul_15.__mul__(to_10)
cat_12 = torch.cat([mul_14, mul_16], dim=-1)
sigmoid_11 = torch.sigmoid(getitem_15)
sigmoid_12 = torch.sigmoid(getitem_16)
cat_13 = torch.cat([cat_12, sigmoid_11, sigmoid_12], dim=-1)
view_8 = cat_13.view(-1, 6)
shape_9 = _Build_Model__yolov4_predict_net_predict_conv_1_1.shape
view_9 = _Build_Model__yolov4_predict_net_predict_conv_1_1.view(shape_9[0], 3, 6, shape_9[3], shape_9[3])
permute_5 = view_9.permute(0, 3, 4, 1, 2)
clone_5 = permute_5.clone()
shape_10 = clone_5.shape
device_5 = clone_5.device
to_13 = to_4.to(device_5)
mul_17 = self.tensor_4.__rmul__(1.0)
to_14 = mul_17.to(device_5)
getitem_17 = clone_5[:, :, :, :, 0:2]
getitem_18 = clone_5[:, :, :, :, 2:4]
getitem_19 = clone_5[:, :, :, :, 4:5]
getitem_20 = clone_5[:, :, :, :, 5:]
arange_9 = torch.arange(0, shape_10[1])
unsqueeze_17 = arange_9.unsqueeze(1)
repeat_13 = unsqueeze_17.repeat(1, shape_10[1])
arange_10 = torch.arange(0, shape_10[1])
unsqueeze_18 = arange_10.unsqueeze(0)
repeat_14 = unsqueeze_18.repeat(shape_10[1], 1)
stack_5 = torch.stack([repeat_14, repeat_13], dim=-1)
unsqueeze_19 = stack_5.unsqueeze(0)
unsqueeze_20 = unsqueeze_19.unsqueeze(3)
repeat_15 = unsqueeze_20.repeat(shape_10[0], 1, 1, 3, 1)
float_5 = repeat_15.float()
to_15 = float_5.to(device_5)
sigmoid_13 = torch.sigmoid(getitem_17)
add_16 = sigmoid_13.__add__(to_15)
mul_18 = add_16.__mul__(to_13)
exp_5 = torch.exp(getitem_18)
mul_19 = exp_5.__mul__(to_14)
mul_20 = mul_19.__mul__(to_13)
cat_14 = torch.cat([mul_18, mul_20], dim=-1)
sigmoid_14 = torch.sigmoid(getitem_19)
sigmoid_15 = torch.sigmoid(getitem_20)
cat_15 = torch.cat([cat_14, sigmoid_14, sigmoid_15], dim=-1)
view_10 = cat_15.view(-1, 6)
shape_11 = _Build_Model__yolov4_predict_net_predict_conv_2_1.shape
view_11 = _Build_Model__yolov4_predict_net_predict_conv_2_1.view(shape_11[0], 3, 6, shape_11[3], shape_11[3])
permute_6 = view_11.permute(0, 3, 4, 1, 2)
clone_6 = permute_6.clone()
shape_12 = clone_6.shape
device_6 = clone_6.device
to_16 = to_7.to(device_6)
mul_21 = self.tensor_6.__rmul__(1.0)
to_17 = mul_21.to(device_6)
getitem_21 = clone_6[:, :, :, :, 0:2]
getitem_22 = clone_6[:, :, :, :, 2:4]
getitem_23 = clone_6[:, :, :, :, 4:5]
getitem_24 = clone_6[:, :, :, :, 5:]
arange_11 = torch.arange(0, shape_12[1])
unsqueeze_21 = arange_11.unsqueeze(1)
repeat_16 = unsqueeze_21.repeat(1, shape_12[1])
arange_12 = torch.arange(0, shape_12[1])
unsqueeze_22 = arange_12.unsqueeze(0)
repeat_17 = unsqueeze_22.repeat(shape_12[1], 1)
stack_6 = torch.stack([repeat_17, repeat_16], dim=-1)
unsqueeze_23 = stack_6.unsqueeze(0)
unsqueeze_24 = unsqueeze_23.unsqueeze(3)
repeat_18 = unsqueeze_24.repeat(shape_12[0], 1, 1, 3, 1)
float_6 = repeat_18.float()
to_18 = float_6.to(device_6)
sigmoid_16 = torch.sigmoid(getitem_21)
add_17 = sigmoid_16.__add__(to_18)
mul_22 = add_17.__mul__(to_16)
exp_6 = torch.exp(getitem_22)
mul_23 = exp_6.__mul__(to_17)
mul_24 = mul_23.__mul__(to_16)
cat_16 = torch.cat([mul_22, mul_24], dim=-1)
sigmoid_17 = torch.sigmoid(getitem_23)
sigmoid_18 = torch.sigmoid(getitem_24)
cat_17 = torch.cat([cat_16, sigmoid_17, sigmoid_18], dim=-1)
view_12 = cat_17.view(-1, 6)
size_1 = _Build_Model__yolov4_predict_net_predict_conv_0_1.size(0)
view_13 = view_8.view(1, -1, 6)
size_2 = _Build_Model__yolov4_predict_net_predict_conv_0_1.size(0)
view_14 = view_10.view(1, -1, 6)
size_3 = _Build_Model__yolov4_predict_net_predict_conv_0_1.size(0)
view_15 = view_12.view(1, -1, 6)
cat_18 = torch.cat([view_13, view_14, view_15], dim=1)
shape_13 = _Build_Model__yolov4_predict_net_predict_conv_0_1.shape
view_16 = _Build_Model__yolov4_predict_net_predict_conv_0_1.view(shape_13[0], 3, 6, shape_13[3], shape_13[3])
permute_7 = view_16.permute(0, 3, 4, 1, 2)
clone_7 = permute_7.clone()
shape_14 = clone_7.shape
device_7 = clone_7.device
to_19 = to_10.to(device_7)
mul_25 = self.tensor_2.__rmul__(1.0)
to_20 = mul_25.to(device_7)
getitem_25 = clone_7[:, :, :, :, 0:2]
getitem_26 = clone_7[:, :, :, :, 2:4]
getitem_27 = clone_7[:, :, :, :, 4:5]
getitem_28 = clone_7[:, :, :, :, 5:]
arange_13 = torch.arange(0, shape_14[1])
unsqueeze_25 = arange_13.unsqueeze(1)
repeat_19 = unsqueeze_25.repeat(1, shape_14[1])
arange_14 = torch.arange(0, shape_14[1])
unsqueeze_26 = arange_14.unsqueeze(0)
repeat_20 = unsqueeze_26.repeat(shape_14[1], 1)
stack_7 = torch.stack([repeat_20, repeat_19], dim=-1)
unsqueeze_27 = stack_7.unsqueeze(0)
unsqueeze_28 = unsqueeze_27.unsqueeze(3)
repeat_21 = unsqueeze_28.repeat(shape_14[0], 1, 1, 3, 1)
float_7 = repeat_21.float()
to_21 = float_7.to(device_7)
sigmoid_19 = torch.sigmoid(getitem_25)
add_18 = sigmoid_19.__add__(to_21)
mul_26 = add_18.__mul__(to_19)
exp_7 = torch.exp(getitem_26)
mul_27 = exp_7.__mul__(to_20)
mul_28 = mul_27.__mul__(to_19)
cat_19 = torch.cat([mul_26, mul_28], dim=-1)
sigmoid_20 = torch.sigmoid(getitem_27)
sigmoid_21 = torch.sigmoid(getitem_28)
cat_20 = torch.cat([cat_19, sigmoid_20, sigmoid_21], dim=-1)
view_17 = cat_20.view(-1, 6)
shape_15 = _Build_Model__yolov4_predict_net_predict_conv_1_1.shape
view_18 = _Build_Model__yolov4_predict_net_predict_conv_1_1.view(shape_15[0], 3, 6, shape_15[3], shape_15[3])
permute_8 = view_18.permute(0, 3, 4, 1, 2)
clone_8 = permute_8.clone()
shape_16 = clone_8.shape
device_8 = clone_8.device
to_22 = to_13.to(device_8)
mul_29 = self.tensor_4.__rmul__(1.0)
to_23 = mul_29.to(device_8)
getitem_29 = clone_8[:, :, :, :, 0:2]
getitem_30 = clone_8[:, :, :, :, 2:4]
getitem_31 = clone_8[:, :, :, :, 4:5]
getitem_32 = clone_8[:, :, :, :, 5:]
arange_15 = torch.arange(0, shape_16[1])
unsqueeze_29 = arange_15.unsqueeze(1)
repeat_22 = unsqueeze_29.repeat(1, shape_16[1])
arange_16 = torch.arange(0, shape_16[1])
unsqueeze_30 = arange_16.unsqueeze(0)
repeat_23 = unsqueeze_30.repeat(shape_16[1], 1)
stack_8 = torch.stack([repeat_23, repeat_22], dim=-1)
unsqueeze_31 = stack_8.unsqueeze(0)
unsqueeze_32 = unsqueeze_31.unsqueeze(3)
repeat_24 = unsqueeze_32.repeat(shape_16[0], 1, 1, 3, 1)
float_8 = repeat_24.float()
to_24 = float_8.to(device_8)
sigmoid_22 = torch.sigmoid(getitem_29)
add_19 = sigmoid_22.__add__(to_24)
mul_30 = add_19.__mul__(to_22)
exp_8 = torch.exp(getitem_30)
mul_31 = exp_8.__mul__(to_23)
mul_32 = mul_31.__mul__(to_22)
cat_21 = torch.cat([mul_30, mul_32], dim=-1)
sigmoid_23 = torch.sigmoid(getitem_31)
sigmoid_24 = torch.sigmoid(getitem_32)
cat_22 = torch.cat([cat_21, sigmoid_23, sigmoid_24], dim=-1)
view_19 = cat_22.view(-1, 6)
shape_17 = _Build_Model__yolov4_predict_net_predict_conv_2_1.shape
view_20 = _Build_Model__yolov4_predict_net_predict_conv_2_1.view(shape_17[0], 3, 6, shape_17[3], shape_17[3])
permute_9 = view_20.permute(0, 3, 4, 1, 2)
clone_9 = permute_9.clone()
shape_18 = clone_9.shape
device_9 = clone_9.device
to_25 = to_16.to(device_9)
mul_33 = self.tensor_6.__rmul__(1.0)
to_26 = mul_33.to(device_9)
getitem_33 = clone_9[:, :, :, :, 0:2]
getitem_34 = clone_9[:, :, :, :, 2:4]
getitem_35 = clone_9[:, :, :, :, 4:5]
getitem_36 = clone_9[:, :, :, :, 5:]
arange_17 = torch.arange(0, shape_18[1])
unsqueeze_33 = arange_17.unsqueeze(1)
repeat_25 = unsqueeze_33.repeat(1, shape_18[1])
arange_18 = torch.arange(0, shape_18[1])
unsqueeze_34 = arange_18.unsqueeze(0)
repeat_26 = unsqueeze_34.repeat(shape_18[1], 1)
stack_9 = torch.stack([repeat_26, repeat_25], dim=-1)
unsqueeze_35 = stack_9.unsqueeze(0)
unsqueeze_36 = unsqueeze_35.unsqueeze(3)
repeat_27 = unsqueeze_36.repeat(shape_18[0], 1, 1, 3, 1)
float_9 = repeat_27.float()
to_27 = float_9.to(device_9)
sigmoid_25 = torch.sigmoid(getitem_33)
add_20 = sigmoid_25.__add__(to_27)
mul_34 = add_20.__mul__(to_25)
exp_9 = torch.exp(getitem_34)
mul_35 = exp_9.__mul__(to_26)
mul_36 = mul_35.__mul__(to_25)
cat_23 = torch.cat([mul_34, mul_36], dim=-1)
sigmoid_26 = torch.sigmoid(getitem_35)
sigmoid_27 = torch.sigmoid(getitem_36)
cat_24 = torch.cat([cat_23, sigmoid_26, sigmoid_27], dim=-1)
view_21 = cat_24.view(-1, 6)