diff --git a/README.md b/README.md index 0b0d08c..a2ce17d 100644 --- a/README.md +++ b/README.md @@ -171,6 +171,34 @@ The script allows the user to specify variables, their units, plotting style (stacked vs overlaid), as well as the format of the output image. Use `-h` for more information. + +### Data Compression + +The `prmon_compress_output.py` script (Python3) can be used to compress the output file +while keeping the most relevant information. + +The compression algorithm works as follows: +* For the number of processes, threads, and GPUs, only the measurements that are different with respect to the previous ones are kept. +* For all other metrics, only the measurements that satisfy an interpolation condition are kept. + +This latter condition can be summarized as: +* For any three neighboring (and time-ordered) measurements, A, B, and C, B is deleted if the linear interpolation between A and C is consistent with B ± *threshold*. Otherwise, it's retained. The *threshold* can be configured via the `--precision` parameter (default: 0.05, i.e. 5%) + + +The time index of the final output will be the union of the algorithm outputs of the single +time series. Each series will have NA values where a point was deleted at a kept index and, unless otherwise +specified by the `--skip-interpolate` parameter, will be linearly interpolated to maintain a consistent number of data points +and the result will be rounded to the nearest integer for consistency with the original input. + +If the `--skip-interpolate` parameter is passed, deleted values will be written as empty strings in the output file, and will be interpreted +as `NA` values when imported into Pandas. + +Example: +```sh +prmon_compress_output.py --input prmon.txt --precision 0.3 --skip-interpolate +``` + + ## Feedback and Contributions We're very happy to get feedback on prmon as well as suggestions for future diff --git a/package/scripts/prmon_compress_output.py b/package/scripts/prmon_compress_output.py new file mode 100755 index 0000000..5f493b1 --- /dev/null +++ b/package/scripts/prmon_compress_output.py @@ -0,0 +1,161 @@ +#! /usr/bin/env python3 +"""prmon output smart compression script""" + +import argparse +import os +import sys + +try: + import pandas as pd +except ImportError: + print("{0: <8}:: This script needs pandas.".format("ERROR")) + sys.exit(-1) + + +MEMORY_IO_NETWORK_GPU_CPU = [ + "vmem", + "pss", + "rss", + "swap", + "rchar", + "wchar", + "read_bytes", + "write_bytes", + "rx_packets", + "tx_packets", + "rx_bytes", + "tx_bytes", + "gpufbmem", + "gpumempct", + "gpusmpct", + "utime", + "stime", +] + +NPROCS_NTHREADS_NGPUS = ["nprocs", "nthreads", "ngpus"] + + +def interp_drop(p1, p2, p3, eps): + """Computesinterpolation and checks if middle point falls within threshold""" + t = p1[1] + (p3[1] - p1[1]) / (p3[0] - p1[0]) * (p2[0] - p1[0]) + return abs(t - p2[1]) < eps + + +def reduce_changing_metric(df, metric, precision): + """Iteratively compress metric""" + metric_series = df[metric] + metric_redux = metric_series.copy() + dyn_range = metric_series.max() - metric_series.min() + eps = dyn_range * precision + idx = 0 + while True: + metriclen = len(metric_redux) + if idx == metriclen - 2: + break + p1 = (metric_redux.index[idx], metric_redux.iloc[idx]) + p2 = (metric_redux.index[idx + 1], metric_redux.iloc[idx + 1]) + p3 = (metric_redux.index[idx + 2], metric_redux.iloc[idx + 2]) + if interp_drop(p1, p2, p3, eps): + metric_redux = metric_redux.drop(metric_redux.index[idx + 1]) + else: + idx += 1 + return metric_redux + + +def reduce_steady_metric(df, metric): + """For more steady metrics just keep the changing points""" + metric = df[metric] + return metric[metric != metric.shift(1)] + + +def compress_prmon_output(df, precision, skip_interpolate): + """Compress full df. Final index is the union of the compressed series indexes. + Points without values for a series are either linearly interpolated, + for fast-changing metrics, or forward-filled, for steady metrics""" + if len(df) > 2: + present_changing_metrics = [ + metric for metric in MEMORY_IO_NETWORK_GPU_CPU if metric in df.columns + ] + present_steady_metrics = [ + metric for metric in NPROCS_NTHREADS_NGPUS if metric in df.columns + ] + reduced_changing_metrics = [ + reduce_changing_metric(df, metric, precision) + for metric in present_changing_metrics + ] + reduced_steady_metrics = [ + reduce_steady_metric(df, metric) for metric in present_steady_metrics + ] + final_df = pd.concat(reduced_changing_metrics + reduced_steady_metrics, axis=1) + if not skip_interpolate: + final_df[present_changing_metrics] = final_df[ + present_changing_metrics + ].interpolate(method="index") + final_df[present_steady_metrics] = final_df[present_steady_metrics].ffill( + downcast="infer" + ) + final_df = final_df.round(0) + final_df = final_df.astype("Int64", errors="ignore") + return final_df + return df + + +def main(): + """Main compression function""" + parser = argparse.ArgumentParser( + description="Configurable smart compression script" + ) + + parser.add_argument( + "--input", + type=str, + default="prmon.txt", + help="PrMon TXT output that will be used as input", + ) + + parser.add_argument( + "--output", + type=str, + default="prmon_compressed.txt", + help="name of the output compressed text file", + ) + + parser.add_argument( + "--precision", + type=lambda x: float(x) + if 0 < float(x) < 1 + else parser.exit(-1, "Precision must be strictly between 0 and 1"), + default=0.05, + help="precision value for interpolation threshold", + ) + + parser.add_argument( + "--skip-interpolate", + default=False, + action="store_true", + help="""Whether to skip interpolation of the final obtained df, + and leave NAs for the different metrics""", + ) + + parser.add_argument( + "--delete-original", + default=False, + action="store_true", + help="""Add this to delete the original, uncompressed + file""", + ) + + args = parser.parse_args() + + df = pd.read_csv( + args.input, sep="\t", index_col="Time", engine="c", na_filter=False + ) + compressed_df = compress_prmon_output(df, args.precision, args.skip_interpolate) + compressed_df["wtime"] = df[df.index.isin(compressed_df.index)]["wtime"] + compressed_df.to_csv(args.output, sep="\t") + if args.delete_original: + os.remove(args.input) + + +if "__main__" in __name__: + main()