Skip to content

Latest commit

 

History

History
191 lines (149 loc) · 6.03 KB

0455.分发饼干.md

File metadata and controls

191 lines (149 loc) · 6.03 KB

欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

455.分发饼干

题目链接:https://leetcode-cn.com/problems/assign-cookies/

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1: 输入: g = [1,2,3], s = [1,1] 输出: 1 解释: 你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。 虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。 所以你应该输出1。

示例 2: 输入: g = [1,2], s = [1,2,3] 输出: 2 解释: 你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。 你拥有的饼干数量和尺寸都足以让所有孩子满足。 所以你应该输出2.

提示:

  • 1 <= g.length <= 3 * 10^4
  • 0 <= s.length <= 3 * 10^4
  • 1 <= g[i], s[j] <= 2^31 - 1

思路

为了了满足更多的小孩,就不要造成饼干尺寸的浪费。

大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。

这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩

可以尝试使用贪心策略,先将饼干数组和小孩数组排序。

然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。

如图:

455.分发饼干

这个例子可以看出饼干9只有喂给胃口为7的小孩,这样才是整体最优解,并想不出反例,那么就可以撸代码了。

C++代码整体如下:

// 时间复杂度:O(nlogn)
// 空间复杂度:O(1)
class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int index = s.size() - 1; // 饼干数组的下表
        int result = 0;
        for (int i = g.size() - 1; i >= 0; i--) {
            if (index >= 0 && s[index] >= g[i]) {
                result++;
                index--;
            }
        }
        return result;
    }
};

从代码中可以看出我用了一个index来控制饼干数组的遍历,遍历饼干并没有再起一个for循环,而是采用自减的方式,这也是常用的技巧。

有的同学看到要遍历两个数组,就想到用两个for循环,那样逻辑其实就复杂了。

也可以换一个思路,小饼干先喂饱小胃口

代码如下:

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(),g.end());
        sort(s.begin(),s.end());
        int index = 0;
        for(int i = 0;i < s.size();++i){
            if(index < g.size() && g[index] <= s[i]){
                index++;
            }
        }
        return index;
    }
};

总结

这道题是贪心很好的一道入门题目,思路还是比较容易想到的。

文中详细介绍了思考的过程,想清楚局部最优,想清楚全局最优,感觉局部最优是可以推出全局最优,并想不出反例,那么就试一试贪心

其他语言版本

Java:

class Solution {
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(g);
        Arrays.sort(s);
        int start = 0;
        int count = 0;
        for (int i = 0; i < s.length && start < g.length; i++) {
            if (s[i] >= g[start]) {
                start++;
                count++;
            }
        }
        return count;
    }
}

Python:

class Solution:
    def findContentChildren(self, g: List[int], s: List[int]) -> int:
        g.sort()
        s.sort()
        res = 0
        for i in range(len(s)):
            if res <len(g) and s[i] >= g[res]:  #小饼干先喂饱小胃口
                res += 1
        return res

Go:

//排序后,局部最优
func findContentChildren(g []int, s []int) int {
  sort.Ints(g)
  sort.Ints(s)

  // 从小到大
  child := 0
  for sIdx := 0; child < len(g) && sIdx < len(s); sIdx++ {
    if s[sIdx] >= g[child] {//如果饼干的大小大于或等于孩子的为空则给与,否则不给予,继续寻找选一个饼干是否符合
      child++
    }
  }

  return child
}


Javascript:
```Javascript

var findContentChildren = function(g, s) {
    g = g.sort((a, b) => a - b)
    s = s.sort((a, b) => a - b)
    let result = 0
    let index = s.length - 1
    for(let i = g.length - 1; i >= 0; i--) {
        if(index >= 0 && s[index] >= g[i]) {
            result++
            index--
        }
    } 
    return result
};