-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval.py
121 lines (97 loc) · 4.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import logging
from tqdm import tqdm
from munch import Munch, munchify
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch_geometric.loader import DataLoader
import numpy as np
from GOOD import register
from GOOD.utils.config_reader import load_config
from GOOD.utils.metric import Metric
from GOOD.data.dataset_manager import read_meta_info
from GOOD.utils.evaluation import eval_data_preprocess, eval_score
from GOOD.utils.train import nan2zero_get_mask
from args_parse import args_parser
from exputils import initialize_exp, set_seed, get_dump_path, describe_model, save_model, load_model
from models import MyModel
from dataset import DrugOODDataset
logger = logging.getLogger()
class Runner:
def __init__(self, args, logger_path):
self.args = args
self.device = torch.device(f'cuda')
if args.dataset.startswith('GOOD'):
# for GOOD, load Config
cfg_path = os.path.join(args.config_path, args.dataset, args.domain, args.shift, 'base.yaml')
cfg, _, _ = load_config(path=cfg_path)
cfg = munchify(cfg)
cfg.device = self.device
dataset, meta_info = register.datasets[cfg.dataset.dataset_name].load(dataset_root=args.data_root,
domain=cfg.dataset.domain,
shift=cfg.dataset.shift_type,
generate=cfg.dataset.generate)
read_meta_info(meta_info, cfg)
# cfg.dropout
# cfg.bs
# update dropout & bs
cfg.model.dropout_rate = args.dropout
cfg.train.train_bs = args.bs
cfg.random_seed = args.random_seed
loader = register.dataloader[cfg.dataset.dataloader_name].setup(dataset, cfg)
self.train_loader = loader['train']
self.valid_loader = loader['val']
self.test_loader = loader['test']
self.metric = Metric()
self.metric.set_score_func(dataset['metric'] if type(dataset) is dict else getattr(dataset, 'metric'))
self.metric.set_loss_func(dataset['task'] if type(dataset) is dict else getattr(dataset, 'task'))
cfg.metric = self.metric
else:
# DrugOOD
dataset = DrugOODDataset(name=args.dataset, root=args.data_root)
self.train_set = dataset[dataset.train_index]
self.valid_set = dataset[dataset.valid_index]
self.test_set = dataset[dataset.test_index]
self.train_loader = DataLoader(self.train_set, batch_size=args.bs, shuffle=True, drop_last=True)
self.valid_loader = DataLoader(self.valid_set, batch_size=args.bs, shuffle=False)
self.test_loader = DataLoader(self.test_set, batch_size=args.bs, shuffle=False)
self.metric = Metric()
self.metric.set_loss_func(task_name='Binary classification')
self.metric.set_score_func(metric_name='ROC-AUC')
cfg = Munch()
cfg.metric = self.metric
cfg.model = Munch()
cfg.model.model_level = 'graph'
self.model = MyModel(args=args, config=cfg).to(self.device)
self.model.load_state_dict(load_model(args.load_path, map_location=self.device))
self.logger_path = logger_path
self.cfg = cfg
def run(self):
train_score = self.test_step(self.train_loader)
val_score = self.test_step(self.valid_loader)
test_score = self.test_step(self.test_loader)
logger.info(f"TRAIN={train_score:.5f}, VAL={val_score:.5f}, TEST={test_score:.5f}")
@torch.no_grad()
def test_step(self, loader):
self.model.eval()
y_pred, y_gt = [], []
for data in loader:
data = data.to(self.device)
logit, _, _, _, _ = self.model(data)
mask, _ = nan2zero_get_mask(data, 'None', self.cfg)
pred, target = eval_data_preprocess(data.y, logit, mask, self.cfg)
y_pred.append(pred)
y_gt.append(target)
score = eval_score(y_pred, y_gt, self.cfg)
return score
def main():
args = args_parser()
torch.cuda.set_device(int(args.gpu))
logger = initialize_exp(args)
set_seed(args.random_seed)
logger_path = get_dump_path(args)
runner = Runner(args, logger_path)
runner.run()
if __name__ == '__main__':
main()