-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsuspect2.f
10512 lines (10125 loc) · 360 KB
/
suspect2.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c
c The program SUSPECT for the calculation of the SUSY Spectrum
c
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
c Written by: Abdelhak Djouadi, Jean-Loic Kneur and Gilbert Moultaka
c (LPMT, CNRS & Universite de Montpellier II).
c VERSION 2.34
c Last modifications : May 13, 2005 by the SuSpect authors
c Last modifications : October 24, 2007 by M.M.Muehlleitner.
c The reference to be used for the program is: hep-ph/0211331
c 2-loop corrections to the Higgs spectrum are from Pietro Slavich et al.
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
c This program calculates the SUSY and Higgs particle spectrum in the
c unconstrained Minimal Supersymmetric Standard Model (MSSM), as well as
c constrained models such as the minimal Supergravity (mSUGRA), the
c gauge mediated SUSY (GMSB) and anomaly mediated SUSY (AMSB) breaking
c models. All important features are included:
c - Renormalization Group evolution between low and high energy scales.
c - Consistent implementation of radiative electroweak symmetry breaking.
c - Calculation of the physical masses with radiative corrections.
c This new version includes now all radiative corrections to the Higgs masses
c a la Brignole, Degrassi, Slavich and Zwirner and presently the tadpole
c corrections a la Dedes and Slavich are also included.
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
c For the users manual, updated information, changes, maintenance, see
c Home page: http://w3.lpta.univ-montp2.fr/~kneur/Suspect/
c
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c
SUBROUTINE SUSPECT2(iknowl,input,ichoice,errmess)
c
c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
cc This is the MAIN routine of the program, to be used as it is or to be
c called by any other routine (such as SuSpect2_call.f),as discussed below.
c The routine has the following four important input control parameters:
c
c IKNOWL: which sets the degree of control on the various parts of
c the algorithm. It has two possible values:
c -- IKNOWL=0: blind use of the program, no warning and other messages.
c default values are set for the control parameters and the program
c gives just the results from the physical input.
c -- IKNOWL=1:
c some warning/error messages are collected in the SuSpect2.out file
c (this is the recommended choice).
c
c INPUT: is for the physical input setting and works in three modes:
c -- INPUT=0: the model and option parameters ichoice(1)-(11) as well as the
c values of the physical input parameters are read from the file SuSpect.in
c -- INPUT=1: when you want to define yourself all the relevant input choices
c and parameters within your calling program. The required list of parameters
c to be defined (with consistent names, etc...), can be found in the commons
c given below, and their meaning is explained in the SuSpect2.in file.
c -- INPUT=11: same as input=1, but with no output file SuSpect.out generated
c (this option is appropriate e.g. for multiple successive calls, e.g to
c perform scans on the input parameter space).
c ICHOICE: initializes the various options for the models to be considered,
c the degree of accuracy to be required, the features to be
c included, etc. There are 10 possible choice at present and the
c options are described in more details in the input file:
c -- ICHOICE(1): Choice of the model to be considered.
c -- ICHOICE(2): For the perturbative order (1 or 2 loop) of the RGEs.
c -- ICHOICE(3): To impose or not the GUT scale.
c -- ICHOICE(4): For the accuracy of the RGEs.
c -- ICHOICE(5): To impose or not the radiative EWSB.
c -- ICHOICE(6): To chose different input in the pMSSM.
c -- ICHOICE(7): For the radiative corrections to the (s)particles masses.
c -- ICHOICE(8): To set the value of the EWSB scale.
c -- ICHOICE(9): For the number of (long: RGE + full spectrum) iterations.
c -- ICHOICE(10): For choosing the calculation of the Higgs boson masses.
c -- ICHOICE(11): (!New v2.3 option) running/pole H masses used in loops.
c
c ERRMESS: which provides a useful set of warning/error message flags,
c that are automatically written in the output file SUSPECT2.OUT:
c -- ERRMESS(i)= 0: Everything is fine.
c -- ERRMESS(1)=-1: tachyon 3rd gen. sfermion from RGE
c -- ERRMESS(2)=-1: tachyon 1,2 gen. sfermion from RGE
c -- ERRMESS(3)=-1: tachyon A (maybe temporary: see final mass)
c -- ERRMESS(4)=-1: tachyon 3rd gen. sfermion from mixing
c -- ERRMESS(5)=-1: mu inconsistent (or unstable) after many iterations
c -- ERRMESS(6)=-1: non-convergent mu from EWSB
c -- ERRMESS(7)=-1: EWSB maybe inconsistent (!but RG-improved only check)
c -- ERRMESS(8)=-1: V_Higgs maybe UFB or CCB (!but RG-improved only check)
c -- ERRMESS(9)=-1: Higgs boson masses are NaN
c -- ERRMESS(10)=-1: RGE problems (non-pert and/or Landau poles)
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
c The program starts here:
c==========================
c
implicit real*8(a-h,m,o-z)
real*8 nf,nl,nq
logical su_isNaN
parameter(ni=87,nout=88,ninlha=85,noutlha=86)
parameter(n=31)
dimension ichoice(11),errmess(10),imod(1:2)
dimension y(n),ysave(n),ygut(n),yewsb(n),ysav2(n)
dimension U(2,2),VV(2,2),Z(4,4),dxmn(4)
dimension gcen(2,2),gctb(2,2),glee(2,2),gltt(2,2),
. glbb(2,2),ghee(2,2),ghtt(2,2),ghbb(2,2)
dimension ac1(2,2),ac2(2,2),ac3(2,2),an1(4,4),an2(4,4),an3(4,4),
. acnl(2,4),acnr(2,4)
dimension gmn(4),xmn(4),gmc(2),gmst(2),msb(2),gmsl(2),
. gmsu(2),gmsd(2),gmse(2),gmsn(4)
dimension bsgchm(2), ubsg(2,2),vbsg(2,2)
c
c ****************************************************************
c INPUT parameters for interface with other codes:
c
c NB: the parameters defined in the commons below in the INPUT/OUTPUT
c section are necessary (and sufficient in most situations!) for
c interface with other codes.
c ****************************************************************
c "Standard model" INPUT parameters (couplings and fermion masses):
COMMON/SU_smpar/dalfinv,dsw2,dalphas,dmt,dmb,dmc,dmtau
c !!NEW!! dmt,dmtau are pole masses but dmb is mb(mb)_MSbar !
c RG evolution scale parameters EWSB scale, high and low RGE ends):
COMMON/SU_rgscal/dqewsb,dehigh,delow
c MSSM parameters of the scalar sector:
COMMON/SU_mssmhpar/dmhu2,dmhd2,dma,dmu
c The U(1), SU(2), SU(3) soft SUSY-breaking gaugino masses:
COMMON/SU_mssmgpar/dm1,dm2,dm3
c The soft-SUSY breaking slepton mass terms (3d and then 1/2 gen.):
COMMON/SU_mssmslep/dmsl,dmtaur,dmel,dmer
c The soft-SUSY breaking squark mass terms (3d and then 1/2 gen.):
COMMON/SU_mssmsqua/dmsq,dmtr,dmbr,dmuq,dmur,dmdr
c The soft-SUSY breaking trilinear couplings (3d and then 1/2 gen.):
COMMON/SU_atri3/dal,dau,dad
COMMON/SU_atri12/dal1,dau1,dad1
c
c GUT scale MSSM parameters output:
COMMON/SU_mssmhgut/mhu2gut,mhd2gut,magut,mugut
COMMON/SU_mssmggut/m1gut,m2gut,m3gut
COMMON/SU_mssmslgut/mslgut,mtaurgut,melgut,mergut
COMMON/SU_mssmsqgut/msqgut,mtrgut,mbrgut,muqgut,murgut,mdrgut
COMMON/SU_A3gut/algut,augut,adgut
COMMON/SU_A12gut/al1gut,au1gut,ad1gut
c tan(beta) and sign(mu)
COMMON/SU_radewsb/sgnmu0,tgbeta
c mSUGRA case input parameters:
COMMON/SU_msugra/m0,mhalf,a0
c GMSB case input parameters:
COMMON/SU_gmsb/mgmmess,mgmsusy,nl,nq
c AMSB case input parameters:
COMMON/SU_amsb/m32,am0,cq,cu,cd,cl,ce,chu,chd
c ****************************************************************
c COMMONS for OUTPUT masses and mixing angles:
c
c !! However some of the INPUT parameters above can also be OUTPUT
c at the end of the run: typically the soft terms like mu,mhu2, etc ..
c ****************************************************************
COMMON/SU_outhiggs/dml,dmh,dmch,alfa
c light, heavy, charged Higgs masses, neutral (h,H) mix angle alpha
COMMON/SU_outginos/dmc1,dmc2,dmn1,dmn2,dmn3,dmn4,mgluino
c charginos 1,2 masses, neutralinos 1-4 masses, gluino mass
COMMON/SU_outsqu/dmst1,dmst2,dmsu1,dmsu2
c stop 1,2 and sup 1,2 = scharm 1,2 masses
COMMON/SU_outsqd/dmsb1,dmsb2,dmsd1,dmsd2
c sbottom 1,2 and sdown 1,2 = sstrange 1,2 masses
COMMON/SU_outslep/dmsl1,dmsl2,dmse1,dmse2,dmsn1,dmsntau
c stau 1,2 ; selectron (=smuon) 1,2; sneut_e,mu, sneut_tau masses
COMMON/SU_outmix/thet,theb,thel
c stop, sbottom, stau mixing angles
c low-energy contrained parameter values: rho-1, g_mu-2, Br(b->s gamma):
COMMON/SU_lowen/crho,gmuon,brsg
c ****************************************************************
c COMMONs INTERNAL to the routine
c
c ("internal" means that normally the user does not have to care
c about the parameters defined by the commons etc below. )
c ****************************************************************
COMMON/SU_strc/irge,irgmax,ifix,isfrc,inorc
COMMON/SU_stepwi/wistep,h1,kpole
COMMON/SU_stegut/ifirst,jfirst,ygut
COMMON/SU_errsf/sterr,sberr,stauerr,stnuerr
COMMON/SU_qcdflag/nnlo,idrflag
COMMON/SU_hflag/ihflag
COMMON/SU_tachyrc/tachsqrc
COMMON/SU_good/iflop
COMMON/SU_sthresh/rmtop,susym,egut
COMMON/SU_gunif/kunif
COMMON/SU_param/gf,alpha,mz,mw
COMMON/SU_cte/nf,cpi,zm,wm,tbeta
COMMON/SU_als/xlambda,mc0,mb0,mt0,n0
COMMON/SU_fmasses/mtau,mbpole,mtpole
COMMON/SU_runmasses/mtaurun,mbrun,mtrun
COMMON/SU_yuka/ytau,yb,ytop
COMMON/SU_yukaewsb/ytauewsb,ybewsb,ytewsb,alsewsb,g2ewsb,g1ewsb
COMMON/SU_tbewsb/vuewsb,vdewsb
common/su_allewsb/yewsb
COMMON/SU_treesfer/msbtr1,msbtr2,msttr1,msttr2
COMMON/SU_hmass/ma,ml,mh,mch,marun
COMMON/SU_break/msl,mtaur,msq,mtr,mbr,al,au,ad,
. mu,m1,m2,m3
COMMON/SU_break2/mel,mer,muq,mur,mdr
COMMON/SU_smass/gmn,xmn,gmc,gmst,msb,gmsl,gmsu,gmsd,gmse,gmsn
COMMON/SU_hcoup/bcoup,a,gat,gab,glt,glb,ght,ghb,ghvv,glvv
COMMON/SU_HMIX/BETA,Adum
COMMON/SU_cplhsf/gcen,gctb,glee,gltt,glbb,ghee,ghtt,ghbb,
. gatt,gabb,gaee
COMMON/SU_cplhino/ac1,ac2,ac3,an1,an2,an3,acnl,acnr
COMMON/SU_cteloop/vu,vd,atop,ab,atau,rmllt,rmllb,rmlltau,
. rmrrt,rmrrb,rmrrtau
COMMON/SU_soft/rmtaur,rml,rmbr,rmtr,rmq
COMMON/SU_cpl/g12,g22,sw2
COMMON/SU_sgnm123/sgnm1,sgnm2,sgnm3
COMMON/SU_matino/u,vv,z,dxmn
common/su_MAinput/piaa,tadba,D2MA,kMAflag
c (!! add for MA input case)
common/su_errma/errma2z ! added for ma^2(mz) <0 control
common/su_mbmb/mbmb,imbmb ! added for mb(mb) input
common/su_nonpert/inonpert ! added for non-pert problems
COMMON/run_p/pizzp
COMMON/pietro/mApole,mCHpole
common/su_polemz/ipolemz
COMMON/SU_renscale/scale
common/SU_ftune/czmu,czbmu,ctmu,ctbmu
c
c ****************************************************************
external su_deriv1,su_deriv2,su_rkqc
sgn(x)=dsign(x,x)/dabs(x)
c ****************************************************************
c
c Here comes the initialisation and reading part:
c ==============================================
c reinitialize various control parameters + other parameters:
do ierr=1,10
errmess(ierr)=0.d0
enddo
errnogo=0.d0
irge=0
iflop=0
irpb=0
tachsqrc=0.d0
icount=0
do irg=1,31
y(irg)=0.d0
enddo
c
ml=0.d0
ytauewsb=0.d0
ybewsb=0.d0
ytewsb=0.d0
pizz_mz=0.d0
pizzp =0.d0
inorc=0
inonpert=0 ! added for non-pert pbs control
bup=0.d0
sterr=0.d0
sberr=0.d0
stauerr=0.d0
stnuerr=0.d0
errma2z=0.d0
c%%% further reinitializations added
alsewsb=0.d0
g2ewsb=0.d0
g1ewsb=0.d0
vuewsb=0.d0
vdewsb=0.d0
c
mh=0.d0
mch=0.d0
marun=0.d0
c
piaa=0.d0
tadba=0.d0
D2MA=0.d0
kMAflag=0
imbmb =0
c
dmc1=0.d0
dmc2=0.d0
dmn1=0.d0
dmn2=0.d0
dmn3=0.d0
dmn4=0.d0
mgluino=0.d0
c
dmst1=0.d0
dmst2=0.d0
dmsu1=0.d0
dmsu2=0.d0
dmsb1=0.d0
dmsb2=0.d0
dmsd1=0.d0
dmsd2=0.d0
dmsl1=0.d0
dmsl2=0.d0
dmse1=0.d0
dmse2=0.d0
dmsn1=0.d0
dmsntau=0.d0
c
thet=0.d0
theb=0.d0
thel=0.d0
c
dml=0.d0
dmh=0.d0
dmch=0.d0
alfa=0.d0
c%%%%%%
c open OUTPUT file:
if(input.ne.11) then
OPEN(NOUT,FILE='suspect2.out',status='unknown')
endif
c Read input:
c Physical input parameters:
if(input.eq.0) then
c Read all relevant physical parameters from the input file:)
OPEN(NI,FILE='suspect2.in',status='unknown')
do i=1,9
read(ni,*)
enddo
read(ni,*) ichoice(1)
c
do i=1,3
read(ni,*)
enddo
read(ni,*) ichoice(2)
c
do i=1,3
read(ni,*)
enddo
read(ni,*) ichoice(3)
c
do i=1,3
read(ni,*)
enddo
read(ni,*) ichoice(4)
c
do i=1,3
read(ni,*)
enddo
read(ni,*) ichoice(5)
c
do i=1,3
read(ni,*)
enddo
read(ni,*) ichoice(6)
c
do i=1,5
read(ni,*)
enddo
read(ni,*) ichoice(7)
c
do i=1,3
read(ni,*)
enddo
read(ni,*) ichoice(8)
c
read(ni,*)
read(ni,*)
read(ni,*) ichoice(9)
c
do i=1,5
read(ni,*)
enddo
read(ni,*) ichoice(10)
c
do i=1,5
read(ni,*)
enddo
read(ni,*) ichoice(11)
c
do i=1,3
read(ni,*)
enddo
read(ni,*) alfinv, alphas, mt, mbmb, mtau !now mb(mb)
c
read(ni,*)
read(ni,*)
read(ni,*) Ehigh, qewsb
c
read(ni,*)
read(ni,*)
read(ni,*)
c Minimal supergravity input
if(ichoice(1).eq.10) then
read(ni,*) rm0, rmhalf, a0, tgbeta, sgnmu0
else if(ichoice(1).eq.11) then
c Gauge Mediated Supersymmetry Breaking input:
do i=1,4
read(ni,*)
enddo
read(ni,*) mgmmess, mgmsusy, tgbeta, sgnmu0, nl, nq
else if(ichoice(1).eq.12) then
c Anomaly Mediated Supersymmetry Breaking input:
do i=1,8
read(ni,*)
enddo
read(ni,*) m32,am0,tgbeta,sgnmu0,cq,cu,cd,cl,ce,chu,chd
else
c i.e. non-universal arbitrary input case
do i=1,12
read(ni,*)
enddo
read(ni,*) mhu2, mhd2, tgbeta, sgnmu0
read(ni,*)
read(ni,*) m1, m2, m3
read(ni,*)
read(ni,*) msl, mtaur, msq, mtr, mbr
read(ni,*)
read(ni,*) mel, mer, muq, mur, mdr
read(ni,*)
read(ni,*) al, au, ad, al1, au1, ad1
read(ni,*)
read(ni,*)
read(ni,*) ma, mu
mu = sgnmu0*dabs(mu) ! add to avoid inconsistent user's input
endif
close(ni)
c simple renaming for SLHA output purpose:
dalfinv = alfinv
dalphas = alphas
dmt = mt
dmb = mbmb
dmc =mc
dmtau =mtau
dqewsb= qewsb
dehigh = ehigh
dMHU2 = mhu2
dMHD2 = mhd2
dM1 = m1
dM2 = m2
dM3 = m3
dMSL = msl
dMTAUR = mtaur
dMSQ = msq
dMTR = mtr
dMBR = mbr
dMEL = mel
dMER = mer
dMUQ = muq
dMUR = mur
dMDR = mdr
dAL = al
dAU = au
dAD = ad
dAL1 = al1
dAU1 = au1
dAD1 = ad1
dMU = mu
dma = ma
call SU_read_leshouches(input,ninlha,ichoice,imod)
c
else if(input.eq.2) then
c this is the case where input file is read in SLHA format:
open(ninlha,FILE='suspect2_lha.in',status='unknown')
call SU_read_leshouches(input,ninlha,ichoice,imod)
close(ninlha)
endif
if(input.ne.0) then
alfinv =dalfinv
cc sw2 =dsw2
alphas =dalphas
c
mt =dmt
mbmb = dmb ! mbmb is mb(mb)_MSbar input
mtau = dmtau
c
qewsb = dqewsb
ehigh = dehigh
c
if(ichoice(1).eq.10) then
rm0 = m0
else if(ichoice(1).eq.12) then
rm0 = am0
endif
rmhalf = mhalf
c (nb parameters a0 and sgnmu already defined via common)
c
mhu2 = dmhu2
mhd2 = dmhd2
c
m1 = dm1
m2 = dm2
m3 = dm3
c
msl = dmsl
mtaur = dmtaur
msq = dmsq
mtr = dmtr
mbr = dmbr
mel = dmel
mer = dmer
muq = dmuq
mur = dmur
mdr = dmdr
c
al = dal
au = dau
ad = dad
c
al1 = dal1
au1 = dau1
ad1 = dad1
c
ma = dma
mu = dmu
if(sgnmu0.ne.1.d0.and.sgnmu0.ne.-1.d0) then
sgnmu0 = mu/dabs(mu)
else
mu = sgnmu0*dabs(mu) !added to avoid inconsistent user's input
endif
if(input.eq.1) call SU_read_leshouches(input,ninlha,ichoice,imod)
endif
c
c ! added reinitialization of mhu2,mhd2 for scans:
if(ichoice(6).eq.0) then
mhu2=1.d4
mhd2=1.d4
c (nb ichoice(6)=0 -> MA,MU input thus these mhu2,mhd2 values are
c irrelevant but only initialized for convergence of iteration control)
endif
ihflag= ichoice(10)
ipolemz=ichoice(11)
tgbet0 = tgbeta
beta_z = datan(tgbet0)
if(ichoice(1).eq.12) rm0 = am0
c blind use: assign protection default values to control parameters:
if(ichoice(2).eq.0) ichoice(2)=11
c (i.e. 1-loop RGE at first run by default, if 2-loop not chosen)
if(ichoice(3).eq.0.and.ichoice(1).ne.2) ichoice(3)=1
c (i.e. GUT scale always consitently recalculated as g1(gut)=g2(gut)
if(ichoice(4).ne.1.and.ichoice(4).ne.2) ichoice(4)=1
iaccsave=ichoice(4)
c (i.e. protections against wrong or undefined rge accuracy setup)
if(ichoice(5).ne.1) ichoice(5)=1
c (i.e. always EWSB)
if(ichoice(1).ge.10) ichoice(6)=1
c (protection agains wrong input use:
c in msugra case M_Hu(GUT)=M_Hd(GUt) = m0 necesseraly as input
if(ichoice(8).ne.0) ichoice(8) = 1
c (i.e to be sure that not choosing default EWSB scale
c =(m_t_L*m_t_R)^(1/2) is on purpose)
c choose frozen scale in RGE parameters:
kpole = ichoice(8)
c for some NO RGE purposes:
inorge = ichoice(1)
c for special case where MA(pole) is really input:
kmaflag=ichoice(6)
c choose susy R.C. options:
if(ichoice(7).eq.1) then
c only mt,mb,mtau susy R.C.
isfrc = 0
else if(ichoice(7).eq.2) then
c mt,mb,mtau + (all) squarks + (all) gaugino susy RC:
isfrc = 1
endif
c
c optimize number of long (RG+ Full spectrum) iterations
irgmax = 50
irgsave=irgmax
c
if (ichoice(1) .le. 2 ) then
c one could have arbitrary m1,m2,m3 signs
sgnm1 = m1/dabs(m1)
sgnm2 = m2/dabs(m2)
sgnm3 = m3/dabs(m3)
else if(ichoice(1) .eq. 10 .or. ichoice(1).eq.11) then
c msugra (or gmsb) case
sgnm1 = 1.d0
sgnm2 = 1.d0
sgnm3 = 1.d0
else if(ichoice(1) .eq. 12) then
c amsb case
sgnm1 = 1.d0
sgnm2 = 1.d0
sgnm3 = -1.d0
endif
c
c save input parameters again for some special purpose
c
mhu20 = mhu2
mhd20 = mhd2
c
msl0=msl
mtaur0=mtaur
msq0=msq
mtr0=mtr
mbr0=mbr
c
mel0=mel
mer0=mer
muq0=muq
mur0=mur
mdr0=mdr
c
al0=al
au0=au
ad0=ad
al10=al1
au10=au1
ad10=ad1
mu0=mu
c
m10=m1
m20=m2
m30=m3
beta = datan(tgbeta)
c
c some other basic parameter definitions
pi = 4*datan(1.d0)
cpi = 1.d0/(16*pi*pi)
gf = 1.16639d-5
sw2 = .2221d0 ! only starting value! sw2_DRbar calculated below
fermi=gf
mz = 91.187d0
zm = mz
c guess starting point for susym , elow, ehigh scales:
elow = mz
if(ichoice(3).ne.0) ehigh = 1.d17
if(ichoice(1).eq.10.or.ichoice(1).eq.12) then
susym = .5*(rm0+rmhalf) +mz
else if(ichoice(1).eq.11) then
susym = mz
rm0 = susym
c NB this "rm0" is not m0, only used at 1rst iter to guess mu(0),b(0)
c
else if(ichoice(1).eq.1) then
rm0= (msl+mtaur+msq+mtr+mbr+mel+mer+muq+mur+mdr)/10
susym = .5*(rm0+(m1+m2+m3)/3) +mz
endif
gut=ehigh
kunif=ichoice(3)
wistep= 1.d2
nf = 6.d0
c
c mw, sw^2 msbar at Z scale (values may be changed):
cw2= 1.d0-sw2
sw=dsqrt(sw2)
cw =dsqrt(cw2)
mw = mz*cw
wm = mw
mc=1.40d0
rmtau=mtau
rmtau2=rmtau**2
c
c Some saving
mc0=mc
c mb0=mb
mb0=4.9d0 ! value just used for very first initialization
mb=mb0
mt0=mt
mbpole=mb
mtpole=mt
mtaurun=mtau
mbrun=mb0
mtrun=mt0
c (initial values only! at 1st iter mrun = mpole)
c passing from alpha_S(MZ) MSbar to alpha_S(MZ) DRbar:
alphas0=alphas
g32=4*pi*alphas0/(1.d0-(1.d0/2)*alphas0/(2*pi) )
alphas=g32/4/pi
c (NB value in fact used at first RG only, does not include SUSY etc R.C.)
c
c passing from alpha(MZ) MSbar to alpha(MZ) DRbar:
alpha =1.d0/(alfinv -1.d0/pi/6) ! corrected 1/(6 Pi) term
c (NB value used at first RG iteration only, does not include SUSY etc R.C.)
e2=4*pi*alpha
sw20=sw2
cw20=1.d0-sw20
g12= e2/cw20
g22=e2/sw20
g120=g12
g220=g22
c
acc=1.d-8
nloop=2
nnlo = 1
idrflag =0
xlambda=xitla(nloop,alphas0,acc) ! alphas0 is MSbar
n0 = 5
CALL alsini(acc)
imbmb=0 ! (just reinitialization)
rmbms=runm(mz,5)
mb=mbpole
mb0=mb
c write(*,*)'check: rmb(mb)ms,Mbpole: ',runm(mbmb,5),mbpole
c rmbms is mb running(MZ) in MSbar scheme
mc=runm(mz,4)
c
c Now defining running quark masses in DRbar at Z scale:
rmb = rmbms*(1.d0-alphas/(3*pi) -23*alphas**2/(72*pi**2)
. +3*g22/(128*pi**2) +13*g12/(1152*pi**2))
c rmb is mb running(MZ) in DRbar scheme (what is mostly used after)
c
c xlambda=xitla(nloop,alphas0,acc)
c CALL alsini(acc)
c
rmb2=rmb**2
rmtop = runm(mt,6)
rmt2=rmtop**2
c
c ****************************************************************
c Long iteration (on RGE + spectrum once defined) starts here:
c ****************************************************************
c
44 irge=irge+1
c reinitialize error messages until last iteration:
if(irge.le.irgmax) then
do i=1,10
errmess(i) =0.d0
enddo
endif
c
tbeta=tgbet0
c
c calculating s^2_W_DRbar(MZ), g1_DRbar(MZ), g2_DRbar(MZ) incl. SUSY R.C.:
if(irge.ge.2) then
c (because at first call no susy physical masses etc are defined)
c first need to compute PIzz(Q=mz), PIww(Q=mz):
scale = mz
call SU_PIXX(sw2,dsqrt(g22),dsqrt(g12),tbeta,pizz,piww,piww0
$ ,0d0) ! PiXX with pole mt
pizz_mz=pizz
c Now the more complete calculation of g1,g2,sw2 (MZ) in DRbar:
call su_runningcp(alphas0,mt,rmtop,m3z,tbeta,pizz,piww,piww0,
. alphadr,alphas,sw2)
e2=4*pi*alphadr
cw2=1.d0-sw2
c!!!following redef of sw etc added
sw=dsqrt(sw2)
cw =dsqrt(cw2)
mw = sqrt((mz**2+pizz)*cw2 - piww)
wm = mw
g12= e2/cw2
g22=e2/sw2
g32=4*pi*alphas
endif
c - higgs vev at Z scale: tbeta = vu/vd
c (NB in our normalization MZ = (g12+g22)/2*(vu2+vd2), and there
c are no factors of sqrt(2) in the Higgs doublet components
c (cf Ramond et al PRD49(1994) 4882)
if(irge.eq.1) then
pizz =0.d0
else
call SU_PIXX(sw2,dsqrt(g22),dsqrt(g12),tbeta,pizz,piww,piww0
$ ,rmtop) ! PiZZ with running mt
pizz_mz=pizz
endif
c
if(su_isNaN(pizz).or.mz**2+pizz.le.0.d0) then
c !!! protections added
c non-pert or NaN pb, uses tree-level values temporarily:
pizz = 0.d0
if(irge.eq.irgmax) inonpert=-1
endif
c
vd2 = 2*(mz**2+pizz)/(g12+g22)/(1.d0+tbeta**2)
cbeta= 1.d0/dsqrt(1.d0+tbeta**2)
sbeta=tbeta*cbeta
vu2 = vd2*tbeta**2
vd= dsqrt(vd2)
vu= dsqrt(vu2)
v= dsqrt(vu2+vd2)
vd_mz=vd
vu_mz=vu
c
c defining Yukawa couplings at Z scale:
if(irge.eq.1) then
y(4) = mtau/vd
c QCD corrections to mt(mz) (yt(mz)=y(6)) in DRbar including Logs:
mtlog = dlog((mt/mz)**2)
delmt = alphas/pi*(5.d0/3 -mtlog)
. +alphas**2*(0.876d0 -0.384*mtlog +0.038*mtlog**2)
c
y(6) = mt/vu*(1.d0-delmt)
y(5) = rmb/vd
endif
c - higgs vev at Z scale: y(7)=Ln vu, y(8)=Ln vd
y(7) = .5*log(vu2)
y(8) = .5*log(vd2)
c 1st stage: evolution of gauge + yukawa cpl from Mz to GUT:
c ! for irge=1 (iter. 1) yukawa's determined from QCD corrections only
y(1) = 5.d0*g12/3.d0
c (i.e usual SU(5) normalisation of g1)
y(2) = g22
y(3) = g32
c set RGE accuracy choices (3 different)
if(ichoice(4).eq.0) then
h1=.2d0
eps=1.d-3
else if(ichoice(4).eq.1) then
h1=.06d0
eps=1.d-3
else if(ichoice(4).eq.2) then
h1=.01d0
if(ichoice(1).eq.0.or.ichoice(1).eq.2) h1=.005d0
c ! more precise rge for pmssm
eps=2.d-5
endif
c
if(ichoice(3).ne.0.and.irge.eq.1) ehigh =1.d17
c note ehigh = 1.e17 will be superseded
c by true unification scale (where y(1)=y(2) by def.)):
c
if(ichoice(1).eq.0.or.ichoice(1).eq.2) then
c Case where only mass spectrum at EWSB scale is calculated:
c it is then assumed that all MSSM parameters are defined at EWSB scale,
c except tanbeta(mz). The EWSB scale is an input arbitrarily chosen, and
c the only RGE performed is to calculate the gauge+yukawa +vevs from their
c input values at mz scale to their consistent values at EWSB scale.
c
if(ichoice(8).eq.0) then
if(qewsb.eq.0.d0) qewsb = 1.05*zm
c (protections in case of badly chosen ewsb scale input in this case)
else
if(irge.eq.1) then
qewsb=dsqrt(msq*mtr)
else
qewsb=dsqrt(msttr1*msttr2)
endif
if(qewsb.lt.mz) qewsb=mz+1.d-1 !! added protection
endif
x1 = dlog(zm)
x2 = dlog(qewsb)
else
c means all other cases where RGE is performed from mz to GUT scales
if(ichoice(8).eq.1) then
if(irge.eq.1) then
qewsb= mz
else
qewsb = dsqrt(msttr1*msttr2)
if(qewsb.lt.mz) qewsb=mz+1.d-1 !! added protection
endif
endif
x1 = dlog(zm)
x2 = dlog(1.d20)
endif
c
ifirst=0
jfirst=0
scale = qewsb
c write(*,*) 'INITIAL CONDITIONS:'
c write(*,*) y
c
if(ichoice(2).eq.11) then
CALL SU_ODEINT(y,n,x1,x2,eps,h1,1.d-8,nok,nbad,su_deriv1,su_rkqc)
else if(ichoice(2).eq.21) then
CALL SU_ODEINT(y,n,x1,x2,eps,h1,1.d-8,nok,nbad,su_deriv2,su_rkqc)
endif
c protection against RGE num. pbs (Landau poles, non-perturbativity):
if(iflop.eq.1) then
errmess(10)=-1.d0
goto 801
endif
if(ichoice(1).eq.0.or.ichoice(1).eq.2) then
g1ewsb = dsqrt(3*y(1)/5)
g2ewsb = dsqrt(y(2))
alsewsb = y(3)/4/pi
ytauewsb=y(4)
ybewsb= y(5)
ytewsb= y(6)
vuewsb=dexp(y(7))
vdewsb=dexp(y(8))
tbeta= vuewsb/vdewsb
goto 880
endif
c
c (exact) gauge (g1=g2) unif. if required:
882 if(egut.ne.0.d0) then
ehigh=egut
do irg=1,31
y(irg)=ygut(irg)
enddo
y(2)=y(1)
endif
c
do i=1,8
ysave(i)=y(i)
end do
vu = dexp(y(7))
vd = dexp(y(8))
mtaugut=vd*y(4)
mbgut = vd*y(5)
mtgut=vu*y(6)
if(ichoice(1).eq.2.and.irge.eq.irgmax) then
mhu2gut =y(12)
mhd2gut =y(13)
mtaurgut = dsqrt(y(14))
msLgut = dsqrt(y(15))
mbrgut =dsqrt(y(16))
mtrgut =dsqrt(y(17))
msQgut =dsqrt(y(18))
mergut =dsqrt(y(24))
melgut =dsqrt(y(25))
mdrgut =dsqrt(y(26))
murgut =dsqrt(y(27))
muQgut =dsqrt(y(28))
algut =y(9)
adgut =y(10)
augut =y(11)
al1gut =y(29)
ad1gut =y(30)
au1gut =y(31)
c
Bgut = y(19)
mugut = sgnmu0*dexp(y(23))
M1gut=sgnM1*dexp(y(20))
M2gut=sgnM2*dexp(y(21))
M3gut=sgnM3*dexp(y(22))
endif
c******************************************************************
c 2d stage: evolution from HIGH (GUT) scale down to low energy
c******************************************************************
c
c check of CCB and UFB at GUT scale (only indicated as a warning flag)
if(irge.eq.irgmax) then
c UFB test:
test2 = y(12)+y(13)+ 2*dexp(2*y(23)) +2*y(19)*sgnmu0*dexp(y(23))
test3 = y(12)+y(13)+ 2*dexp(2*y(23)) -2*y(19)*sgnmu0*dexp(y(23))
if(test2.lt.0.d0.or.test3.lt.0.d0) then
errmess(8)=-1.d0
endif
c CCB test:
ccbt= y(11)**2-3*(y(18) +y(17) +y(12) +dexp(2*y(23)) )
ccbb= y(10)**2-3*(y(18) +y(16) +y(12) +dexp(2*y(23)) )
ccbtau= y(9)**2-3*(y(15) +y(14) +y(12) +dexp(2*y(23)) )
ccbu= y(31)**2-3*(y(28) +y(27) +y(12) +dexp(2*y(23)) )
ccbd= y(30)**2-3*(y(28) +y(26) +y(12) +dexp(2*y(23)) )
ccbl= y(29)**2-3*(y(25) +y(24) +y(12) +dexp(2*y(23)) )
if(ccbt.gt.0.d0.or.ccbb.gt.0.d0.or.ccbtau.gt.0.d0) then
c ! these are points which do not pass those naive CCB constraints
errmess(8)=-1.d0
endif
if(ccbu.gt.0.d0.or.ccbd.gt.0.d0.or.ccbl.gt.0.d0) then
errmess(8)=-1.d0
endif
endif
if(ichoice(1).eq.2) goto 886
c
c Now taking input rmu0,B0 values (!only guess initialization values)
if(ichoice(6).eq.0) then
c mu(0) is really an input then:
rmu0=MU
sgnmu0=rmu0/dabs(rmu0)
c and M^2_Hu, M^2_Hd will be calculated consistently at low-energy
c from EWSB. At high scale just give initialization values:
c a not too bad is the average of non-universal other scalar masses
c (i.e. this is a smooth departure from msugra case)
scalav= (msl+mtaur+msq+mtr+mbr+mel+mer+muq+mur+mdr)/10
mhu2 = scalav**2
mhd2 = scalav**2
else
c guess mu(GUT) value at first time run (later superseeded by EWSB MU)
c this apply in particular in mSUGRA or non-univ cases:
if(irge.eq.1) rmu0 = 1.1*rm0
endif
c
7 rmu0=sgnmu0*dabs(rmu0)
c also guess value for b(GUT):
b0 = 2*rm0
c set up boundary conditions at GUT scale:
c yukawa coupling (eventual) unification at GUT scale:
if(ichoice(3).ge.2) then
y(5)=y(4)
ysave(5)=y(5)
endif
c (tau- b unification)
if(ichoice(3).eq.3) then
y(6)=y(5)
ysave(6)=y(6)
endif
c (tau-b-top unification): ! caution then tanbeta is constrained!
c (!! NOT YET operative !!)
c
c - Higgs initial vev at GUT scale: fixed from evolution
c from Z scale (see above)
2 icount=icount+1
c icount is a counter for things to be done only at first iteration
errhu=1.d3
errhd=1.d3
ifix =0
c errhu,hd,ifix are convergence control parameters for ichoice(6)=0
c if on different high-energy input (msugra, amsb,gmsb,..) starts here:
c
77 if(ichoice(1).eq.1) then
c Unconstrained MSSM: general case
c msl: SUSY breaking mass of left handed stau
c mtaur: SUSY breaking mass of right handed stau
c msq: SUSY breaking mass of left handed stop
c mtr: SUSY breaking mass of right handed stop
c mbr: SUSY breaking mass of right handed sbottom
c mel: SUSY breaking mass of left handed selectron, smuon
c mer: SUSY breaking mass of right handed selectron, smuon
c muq: SUSY breaking mass of left-handed sup, scharm
c mur: SUSY breaking mass of right handed sup, scharm
c mdr: SUSY breaking mass of right handed sdown, sstrange
y(9)=al0
y(10)=ad0
y(11)=au0