forked from kangjianwei/LearningJDK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IntStream.java
1269 lines (1181 loc) · 56 KB
/
IntStream.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util.stream;
import java.util.Arrays;
import java.util.IntSummaryStatistics;
import java.util.Objects;
import java.util.OptionalDouble;
import java.util.OptionalInt;
import java.util.PrimitiveIterator;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.BiConsumer;
import java.util.function.Function;
import java.util.function.IntBinaryOperator;
import java.util.function.IntConsumer;
import java.util.function.IntFunction;
import java.util.function.IntPredicate;
import java.util.function.IntSupplier;
import java.util.function.IntToDoubleFunction;
import java.util.function.IntToLongFunction;
import java.util.function.IntUnaryOperator;
import java.util.function.ObjIntConsumer;
import java.util.function.Supplier;
/**
* A sequence of primitive int-valued elements supporting sequential and parallel
* aggregate operations. This is the {@code int} primitive specialization of
* {@link Stream}.
*
* <p>The following example illustrates an aggregate operation using
* {@link Stream} and {@link IntStream}, computing the sum of the weights of the
* red widgets:
*
* <pre>{@code
* int sum = widgets.stream()
* .filter(w -> w.getColor() == RED)
* .mapToInt(w -> w.getWeight())
* .sum();
* }</pre>
*
* See the class documentation for {@link Stream} and the package documentation
* for <a href="package-summary.html">java.util.stream</a> for additional
* specification of streams, stream operations, stream pipelines, and
* parallelism.
*
* @see Stream
* @see <a href="package-summary.html">java.util.stream</a>
* @since 1.8
*/
// 流接口(int类型版本)
public interface IntStream extends BaseStream<Integer, IntStream> {
/*▼ 创建流的源头阶段 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Returns an empty sequential {@code IntStream}.
*
* @return an empty sequential stream
*/
// 构造处于源头阶段的流,该流不包含任何待处理元素
static IntStream empty() {
return StreamSupport.intStream(Spliterators.emptyIntSpliterator(), false);
}
/**
* Returns a sequential {@code IntStream} containing a single element.
*
* @param t the single element
*
* @return a singleton sequential stream
*/
// 构造处于源头阶段的流,该流仅包含一个元素。当然,该元素可能是多维度的,比如数组或其他容器
static IntStream of(int t) {
return StreamSupport.intStream(new Streams.IntStreamBuilderImpl(t), false);
}
/**
* Returns a sequential ordered stream whose elements are the specified values.
*
* @param values the elements of the new stream
*
* @return the new stream
*/
// 构造处于源头阶段的流,该流包含了指定数组(或类似数组的序列)中的元素
static IntStream of(int... values) {
return Arrays.stream(values);
}
/**
* Returns an infinite sequential ordered {@code IntStream} produced by iterative
* application of a function {@code f} to an initial element {@code seed},
* producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},
* {@code f(f(seed))}, etc.
*
* <p>The first element (position {@code 0}) in the {@code IntStream} will be
* the provided {@code seed}. For {@code n > 0}, the element at position
* {@code n}, will be the result of applying the function {@code f} to the
* element at position {@code n - 1}.
*
* <p>The action of applying {@code f} for one element
* <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a>
* the action of applying {@code f} for subsequent elements. For any given
* element the action may be performed in whatever thread the library
* chooses.
*
* @param seed the initial element
* @param f a function to be applied to the previous element to produce
* a new element
*
* @return a new sequential {@code IntStream}
*/
// 构造一个包含无限元素的流,仅支持单元素访问(如果遍历,则停不下来)
static IntStream iterate(final int seed, final IntUnaryOperator f) {
Objects.requireNonNull(f);
Spliterator.OfInt spliterator = new Spliterators.AbstractIntSpliterator(Long.MAX_VALUE, Spliterator.ORDERED | Spliterator.IMMUTABLE | Spliterator.NONNULL) {
int prev;
boolean started;
@Override
public boolean tryAdvance(IntConsumer action) {
Objects.requireNonNull(action);
int t;
if(started)
t = f.applyAsInt(prev);
else {
t = seed;
started = true;
}
action.accept(prev = t);
return true;
}
};
return StreamSupport.intStream(spliterator, false);
}
/**
* Returns a sequential ordered {@code IntStream} produced by iterative
* application of the given {@code next} function to an initial element,
* conditioned on satisfying the given {@code hasNext} predicate. The
* stream terminates as soon as the {@code hasNext} predicate returns false.
*
* <p>{@code IntStream.iterate} should produce the same sequence of elements as
* produced by the corresponding for-loop:
* <pre>{@code
* for (int index=seed; hasNext.test(index); index = next.applyAsInt(index)) {
* ...
* }
* }</pre>
*
* <p>The resulting sequence may be empty if the {@code hasNext} predicate
* does not hold on the seed value. Otherwise the first element will be the
* supplied {@code seed} value, the next element (if present) will be the
* result of applying the {@code next} function to the {@code seed} value,
* and so on iteratively until the {@code hasNext} predicate indicates that
* the stream should terminate.
*
* <p>The action of applying the {@code hasNext} predicate to an element
* <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a>
* the action of applying the {@code next} function to that element. The
* action of applying the {@code next} function for one element
* <i>happens-before</i> the action of applying the {@code hasNext}
* predicate for subsequent elements. For any given element an action may
* be performed in whatever thread the library chooses.
*
* @param seed the initial element
* @param hasNext a predicate to apply to elements to determine when the
* stream must terminate.
* @param next a function to be applied to the previous element to produce
* a new element
*
* @return a new sequential {@code IntStream}
*
* @since 9
*/
/*
* 构造一个包含有限元素的流,既支持单元素访问,也支持批量访问(可以遍历)
* 如果由next处理生成的新元素被hasNext识别为终止元素,则需要关闭访问
*/
static IntStream iterate(int seed, IntPredicate hasNext, IntUnaryOperator next) {
Objects.requireNonNull(next);
Objects.requireNonNull(hasNext);
Spliterator.OfInt spliterator = new Spliterators.AbstractIntSpliterator(Long.MAX_VALUE, Spliterator.ORDERED | Spliterator.IMMUTABLE | Spliterator.NONNULL) {
int prev;
boolean started, finished;
@Override
public boolean tryAdvance(IntConsumer action) {
Objects.requireNonNull(action);
if(finished)
return false;
int t;
if(started)
t = next.applyAsInt(prev);
else {
t = seed;
started = true;
}
if(!hasNext.test(t)) {
finished = true;
return false;
}
action.accept(prev = t);
return true;
}
@Override
public void forEachRemaining(IntConsumer action) {
Objects.requireNonNull(action);
if(finished)
return;
finished = true;
int t = started ? next.applyAsInt(prev) : seed;
while(hasNext.test(t)) {
action.accept(t);
t = next.applyAsInt(t);
}
}
};
return StreamSupport.intStream(spliterator, false);
}
/**
* Returns an infinite sequential unordered stream where each element is
* generated by the provided {@code IntSupplier}. This is suitable for
* generating constant streams, streams of random elements, etc.
*
* @param s the {@code IntSupplier} for generated elements
*
* @return a new infinite sequential unordered {@code IntStream}
*/
// 构造一个包含无限元素的流,元素由supplier提供
static IntStream generate(IntSupplier supplier) {
Objects.requireNonNull(supplier);
return StreamSupport.intStream(new StreamSpliterators.InfiniteSupplyingSpliterator.OfInt(Long.MAX_VALUE, supplier), false);
}
/**
* Creates a lazily concatenated stream whose elements are all the
* elements of the first stream followed by all the elements of the
* second stream. The resulting stream is ordered if both
* of the input streams are ordered, and parallel if either of the input
* streams is parallel. When the resulting stream is closed, the close
* handlers for both input streams are invoked.
*
* <p>This method operates on the two input streams and binds each stream
* to its source. As a result subsequent modifications to an input stream
* source may not be reflected in the concatenated stream result.
*
* @param a the first stream
* @param b the second stream
*
* @return the concatenation of the two input streams
*
* @implNote Use caution when constructing streams from repeated concatenation.
* Accessing an element of a deeply concatenated stream can result in deep
* call chains, or even {@code StackOverflowError}.
* @apiNote To preserve optimization opportunities this method binds each stream to
* its source and accepts only two streams as parameters. For example, the
* exact size of the concatenated stream source can be computed if the exact
* size of each input stream source is known.
* To concatenate more streams without binding, or without nested calls to
* this method, try creating a stream of streams and flat-mapping with the
* identity function, for example:
* <pre>{@code
* IntStream concat = Stream.of(s1, s2, s3, s4).flatMapToInt(s -> s);
* }</pre>
*/
// 构造一个由s1和s2拼接而成的流
static IntStream concat(IntStream s1, IntStream s2) {
Objects.requireNonNull(s1);
Objects.requireNonNull(s2);
Spliterator.OfInt split = new Streams.ConcatSpliterator.OfInt(s1.spliterator(), s2.spliterator());
IntStream stream = StreamSupport.intStream(split, s1.isParallel() || s2.isParallel());
return stream.onClose(Streams.composedClose(s1, s2));
}
/**
* Returns a sequential ordered {@code IntStream} from {@code startInclusive}
* (inclusive) to {@code endExclusive} (exclusive) by an incremental step of
* {@code 1}.
*
* @param startInclusive the (inclusive) initial value
* @param endExclusive the exclusive upper bound
*
* @return a sequential {@code IntStream} for the range of {@code int}
* elements
*
* @apiNote <p>An equivalent sequence of increasing values can be produced
* sequentially using a {@code for} loop as follows:
* <pre>{@code
* for (int i = startInclusive; i < endExclusive ; i++) { ... }
* }</pre>
*/
// 构造一个包含有限元素的流,其区间为[startInclusive, endExclusive)(右区间开放)
static IntStream range(int startInclusive, int endExclusive) {
if(startInclusive >= endExclusive) {
return empty();
}
return StreamSupport.intStream(new Streams.RangeIntSpliterator(startInclusive, endExclusive, false), false);
}
/**
* Returns a sequential ordered {@code IntStream} from {@code startInclusive}
* (inclusive) to {@code endInclusive} (inclusive) by an incremental step of
* {@code 1}.
*
* @param startInclusive the (inclusive) initial value
* @param endInclusive the inclusive upper bound
*
* @return a sequential {@code IntStream} for the range of {@code int}
* elements
*
* @apiNote <p>An equivalent sequence of increasing values can be produced
* sequentially using a {@code for} loop as follows:
* <pre>{@code
* for (int i = startInclusive; i <= endInclusive ; i++) { ... }
* }</pre>
*/
// 构造一个包含有限元素的流,其区间为[startInclusive, endExclusive](右区间封闭)
static IntStream rangeClosed(int startInclusive, int endInclusive) {
if(startInclusive>endInclusive) {
return empty();
}
return StreamSupport.intStream(new Streams.RangeIntSpliterator(startInclusive, endInclusive, true), false);
}
/*▲ 创建流的源头阶段 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 流迭代器 ████████████████████████████████████████████████████████████████████████████████┓ */
// 返回当前阶段的流的流迭代器;如果遇到并行流的有状态的中间阶段,则需要特殊处理
@Override
Spliterator.OfInt spliterator();
// 将当前阶段的流的Spliterator适配为Iterator
@Override
PrimitiveIterator.OfInt iterator();
/*▲ 流迭代器 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 中间操作-无状态 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Returns a stream consisting of the elements of this stream that match
* the given predicate.
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* predicate to apply to each element to determine if it
* should be included
*
* @return the new stream
*/
// 筛选数据
IntStream filter(IntPredicate predicate);
/**
* Returns a stream consisting of the results of applying the given
* function to the elements of this stream.
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function to apply to each element
*
* @return the new stream
*/
// 映射数据
IntStream map(IntUnaryOperator mapper);
/**
* Returns a {@code LongStream} consisting of the results of applying the
* given function to the elements of this stream.
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function to apply to each element
*
* @return the new stream
*/
// 映射数据
LongStream mapToLong(IntToLongFunction mapper);
/**
* Returns a {@code DoubleStream} consisting of the results of applying the
* given function to the elements of this stream.
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function to apply to each element
*
* @return the new stream
*/
// 映射数据
DoubleStream mapToDouble(IntToDoubleFunction mapper);
/**
* Returns an object-valued {@code Stream} consisting of the results of
* applying the given function to the elements of this stream.
*
* <p>This is an <a href="package-summary.html#StreamOps">
* intermediate operation</a>.
*
* @param <U> the element type of the new stream
* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function to apply to each element
*
* @return the new stream
*/
// 映射数据
<U> Stream<U> mapToObj(IntFunction<? extends U> mapper);
/**
* Returns a stream consisting of the results of replacing each element of
* this stream with the contents of a mapped stream produced by applying
* the provided mapping function to each element. Each mapped stream is
* {@link java.util.stream.BaseStream#close() closed} after its contents
* have been placed into this stream. (If a mapped stream is {@code null}
* an empty stream is used, instead.)
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function to apply to each element which produces an
* {@code IntStream} of new values
*
* @return the new stream
*
* @see Stream#flatMap(Function)
*/
// 数据降维
IntStream flatMap(IntFunction<? extends IntStream> mapper);
/**
* Returns a stream consisting of the elements of this stream, additionally
* performing the provided action on each element as elements are consumed
* from the resulting stream.
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* <p>For parallel stream pipelines, the action may be called at
* whatever time and in whatever thread the element is made available by the
* upstream operation. If the action modifies shared state,
* it is responsible for providing the required synchronization.
*
* @param action a <a href="package-summary.html#NonInterference">
* non-interfering</a> action to perform on the elements as
* they are consumed from the stream
*
* @return the new stream
*
* @apiNote This method exists mainly to support debugging, where you want
* to see the elements as they flow past a certain point in a pipeline:
* <pre>{@code
* IntStream.of(1, 2, 3, 4)
* .filter(e -> e > 2)
* .peek(e -> System.out.println("Filtered value: " + e))
* .map(e -> e * e)
* .peek(e -> System.out.println("Mapped value: " + e))
* .sum();
* }</pre>
*
* <p>In cases where the stream implementation is able to optimize away the
* production of some or all the elements (such as with short-circuiting
* operations like {@code findFirst}, or in the example described in
* {@link #count}), the action will not be invoked for those elements.
*/
// 用于查看流的内部结构,不会对流的结构产生影响
IntStream peek(IntConsumer action);
/**
* Returns a {@code Stream} consisting of the elements of this stream,
* each boxed to an {@code Integer}.
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @return a {@code Stream} consistent of the elements of this stream,
* each boxed to an {@code Integer}
*/
// 装箱
Stream<Integer> boxed();
/**
* Returns a {@code LongStream} consisting of the elements of this stream,
* converted to {@code long}.
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @return a {@code LongStream} consisting of the elements of this stream,
* converted to {@code long}
*/
// 转换为LongStream
LongStream asLongStream();
/**
* Returns a {@code DoubleStream} consisting of the elements of this stream,
* converted to {@code double}.
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @return a {@code DoubleStream} consisting of the elements of this stream,
* converted to {@code double}
*/
// 转换为DoubleStream
DoubleStream asDoubleStream();
// 中间操作,返回顺序的等效流
@Override
IntStream sequential();
// 中间操作,返回并行的等效流
@Override
IntStream parallel();
/*▲ 中间操作-无状态 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 中间操作-有状态 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Returns a stream consisting of the distinct elements of this stream.
*
* <p>This is a <a href="package-summary.html#StreamOps">stateful
* intermediate operation</a>.
*
* @return the new stream
*/
// 去重
IntStream distinct();
/**
* Returns a stream consisting of the elements of this stream in sorted
* order.
*
* <p>This is a <a href="package-summary.html#StreamOps">stateful
* intermediate operation</a>.
*
* @return the new stream
*/
// 排序(默认升序)
IntStream sorted();
/**
* Returns a stream consisting of the elements of this stream, truncated
* to be no longer than {@code maxSize} in length.
*
* <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
* stateful intermediate operation</a>.
*
* @param maxSize the number of elements the stream should be limited to
*
* @return the new stream
*
* @throws IllegalArgumentException if {@code maxSize} is negative
* @apiNote While {@code limit()} is generally a cheap operation on sequential
* stream pipelines, it can be quite expensive on ordered parallel pipelines,
* especially for large values of {@code maxSize}, since {@code limit(n)}
* is constrained to return not just any <em>n</em> elements, but the
* <em>first n</em> elements in the encounter order. Using an unordered
* stream source (such as {@link #generate(IntSupplier)}) or removing the
* ordering constraint with {@link #unordered()} may result in significant
* speedups of {@code limit()} in parallel pipelines, if the semantics of
* your situation permit. If consistency with encounter order is required,
* and you are experiencing poor performance or memory utilization with
* {@code limit()} in parallel pipelines, switching to sequential execution
* with {@link #sequential()} may improve performance.
*/
// 只显示前maxSize个元素
IntStream limit(long maxSize);
/**
* Returns a stream consisting of the remaining elements of this stream
* after discarding the first {@code n} elements of the stream.
* If this stream contains fewer than {@code n} elements then an
* empty stream will be returned.
*
* <p>This is a <a href="package-summary.html#StreamOps">stateful
* intermediate operation</a>.
*
* @param n the number of leading elements to skip
*
* @return the new stream
*
* @throws IllegalArgumentException if {@code n} is negative
* @apiNote While {@code skip()} is generally a cheap operation on sequential
* stream pipelines, it can be quite expensive on ordered parallel pipelines,
* especially for large values of {@code n}, since {@code skip(n)}
* is constrained to skip not just any <em>n</em> elements, but the
* <em>first n</em> elements in the encounter order. Using an unordered
* stream source (such as {@link #generate(IntSupplier)}) or removing the
* ordering constraint with {@link #unordered()} may result in significant
* speedups of {@code skip()} in parallel pipelines, if the semantics of
* your situation permit. If consistency with encounter order is required,
* and you are experiencing poor performance or memory utilization with
* {@code skip()} in parallel pipelines, switching to sequential execution
* with {@link #sequential()} may improve performance.
*/
// 跳过前n个元素
IntStream skip(long n);
/**
* Returns, if this stream is ordered, a stream consisting of the longest
* prefix of elements taken from this stream that match the given predicate.
* Otherwise returns, if this stream is unordered, a stream consisting of a
* subset of elements taken from this stream that match the given predicate.
*
* <p>If this stream is ordered then the longest prefix is a contiguous
* sequence of elements of this stream that match the given predicate. The
* first element of the sequence is the first element of this stream, and
* the element immediately following the last element of the sequence does
* not match the given predicate.
*
* <p>If this stream is unordered, and some (but not all) elements of this
* stream match the given predicate, then the behavior of this operation is
* nondeterministic; it is free to take any subset of matching elements
* (which includes the empty set).
*
* <p>Independent of whether this stream is ordered or unordered if all
* elements of this stream match the given predicate then this operation
* takes all elements (the result is the same as the input), or if no
* elements of the stream match the given predicate then no elements are
* taken (the result is an empty stream).
*
* <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
* stateful intermediate operation</a>.
*
* @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* predicate to apply to elements to determine the longest
* prefix of elements.
*
* @return the new stream
*
* @implSpec The default implementation obtains the {@link #spliterator() spliterator}
* of this stream, wraps that spliterator so as to support the semantics
* of this operation on traversal, and returns a new stream associated with
* the wrapped spliterator. The returned stream preserves the execution
* characteristics of this stream (namely parallel or sequential execution
* as per {@link #isParallel()}) but the wrapped spliterator may choose to
* not support splitting. When the returned stream is closed, the close
* handlers for both the returned and this stream are invoked.
* @apiNote While {@code takeWhile()} is generally a cheap operation on sequential
* stream pipelines, it can be quite expensive on ordered parallel
* pipelines, since the operation is constrained to return not just any
* valid prefix, but the longest prefix of elements in the encounter order.
* Using an unordered stream source (such as {@link #generate(IntSupplier)})
* or removing the ordering constraint with {@link #unordered()} may result
* in significant speedups of {@code takeWhile()} in parallel pipelines, if
* the semantics of your situation permit. If consistency with encounter
* order is required, and you are experiencing poor performance or memory
* utilization with {@code takeWhile()} in parallel pipelines, switching to
* sequential execution with {@link #sequential()} may improve performance.
* @since 9
*/
// "保存前缀":保存起初遇到的满足predicate条件的元素;只要遇到首个不满足条件的元素,就结束后续的保存动作
default IntStream takeWhile(IntPredicate predicate) {
Objects.requireNonNull(predicate);
// Reuses the unordered spliterator, which, when encounter is present,
// is safe to use as long as it configured not to split
return StreamSupport.intStream(new WhileOps.UnorderedWhileSpliterator.OfInt.Taking(spliterator(), true, predicate), isParallel()).onClose(this::close);
}
/**
* Returns, if this stream is ordered, a stream consisting of the remaining
* elements of this stream after dropping the longest prefix of elements
* that match the given predicate. Otherwise returns, if this stream is
* unordered, a stream consisting of the remaining elements of this stream
* after dropping a subset of elements that match the given predicate.
*
* <p>If this stream is ordered then the longest prefix is a contiguous
* sequence of elements of this stream that match the given predicate. The
* first element of the sequence is the first element of this stream, and
* the element immediately following the last element of the sequence does
* not match the given predicate.
*
* <p>If this stream is unordered, and some (but not all) elements of this
* stream match the given predicate, then the behavior of this operation is
* nondeterministic; it is free to drop any subset of matching elements
* (which includes the empty set).
*
* <p>Independent of whether this stream is ordered or unordered if all
* elements of this stream match the given predicate then this operation
* drops all elements (the result is an empty stream), or if no elements of
* the stream match the given predicate then no elements are dropped (the
* result is the same as the input).
*
* <p>This is a <a href="package-summary.html#StreamOps">stateful
* intermediate operation</a>.
*
* @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* predicate to apply to elements to determine the longest
* prefix of elements.
*
* @return the new stream
*
* @implSpec The default implementation obtains the {@link #spliterator() spliterator}
* of this stream, wraps that spliterator so as to support the semantics
* of this operation on traversal, and returns a new stream associated with
* the wrapped spliterator. The returned stream preserves the execution
* characteristics of this stream (namely parallel or sequential execution
* as per {@link #isParallel()}) but the wrapped spliterator may choose to
* not support splitting. When the returned stream is closed, the close
* handlers for both the returned and this stream are invoked.
* @apiNote While {@code dropWhile()} is generally a cheap operation on sequential
* stream pipelines, it can be quite expensive on ordered parallel
* pipelines, since the operation is constrained to return not just any
* valid prefix, but the longest prefix of elements in the encounter order.
* Using an unordered stream source (such as {@link #generate(IntSupplier)})
* or removing the ordering constraint with {@link #unordered()} may result
* in significant speedups of {@code dropWhile()} in parallel pipelines, if
* the semantics of your situation permit. If consistency with encounter
* order is required, and you are experiencing poor performance or memory
* utilization with {@code dropWhile()} in parallel pipelines, switching to
* sequential execution with {@link #sequential()} may improve performance.
* @since 9
*/
// "丢弃前缀":丢弃起初遇到的满足predicate条件的元素;只要遇到首个不满足条件的元素,就开始保存它后及其后面的元素
default IntStream dropWhile(IntPredicate predicate) {
Objects.requireNonNull(predicate);
// Reuses the unordered spliterator, which, when encounter is present,
// is safe to use as long as it configured not to split
return StreamSupport.intStream(new WhileOps.UnorderedWhileSpliterator.OfInt.Dropping(spliterator(), true, predicate), isParallel()).onClose(this::close);
}
/*▲ 中间操作-有状态 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 终端操作-非短路操作 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Returns an array containing the elements of this stream.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* @return an array containing the elements of this stream
*/
// 将数据存入int数组返回
int[] toArray();
/**
* Performs an action for each element of this stream.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* <p>For parallel stream pipelines, this operation does <em>not</em>
* guarantee to respect the encounter order of the stream, as doing so
* would sacrifice the benefit of parallelism. For any given element, the
* action may be performed at whatever time and in whatever thread the
* library chooses. If the action accesses shared state, it is
* responsible for providing the required synchronization.
*
* @param action a <a href="package-summary.html#NonInterference">
* non-interfering</a> action to perform on the elements
*/
// 遍历,并执行action操作
void forEach(IntConsumer action);
/**
* Performs an action for each element of this stream, guaranteeing that
* each element is processed in encounter order for streams that have a
* defined encounter order.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* @param action a <a href="package-summary.html#NonInterference">
* non-interfering</a> action to perform on the elements
*
* @see #forEach(IntConsumer)
*/
// 按遭遇顺序遍历,并执行action操作
void forEachOrdered(IntConsumer action);
/**
* Returns an {@code OptionalInt} describing the minimum element of this
* stream, or an empty optional if this stream is empty. This is a special
* case of a <a href="package-summary.html#Reduction">reduction</a>
* and is equivalent to:
* <pre>{@code
* return reduce(Integer::min);
* }</pre>
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
*
* @return an {@code OptionalInt} containing the minimum element of this
* stream, or an empty {@code OptionalInt} if the stream is empty
*/
// 求最小值
OptionalInt min();
/**
* Returns an {@code OptionalInt} describing the maximum element of this
* stream, or an empty optional if this stream is empty. This is a special
* case of a <a href="package-summary.html#Reduction">reduction</a>
* and is equivalent to:
* <pre>{@code
* return reduce(Integer::max);
* }</pre>
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* @return an {@code OptionalInt} containing the maximum element of this
* stream, or an empty {@code OptionalInt} if the stream is empty
*/
// 求最大值
OptionalInt max();
/**
* Performs a <a href="package-summary.html#Reduction">reduction</a> on the
* elements of this stream, using an
* <a href="package-summary.html#Associativity">associative</a> accumulation
* function, and returns an {@code OptionalInt} describing the reduced value,
* if any. This is equivalent to:
* <pre>{@code
* boolean foundAny = false;
* int result = null;
* for (int element : this stream) {
* if (!foundAny) {
* foundAny = true;
* result = element;
* }
* else
* result = accumulator.applyAsInt(result, element);
* }
* return foundAny ? OptionalInt.of(result) : OptionalInt.empty();
* }</pre>
*
* but is not constrained to execute sequentially.
*
* <p>The {@code accumulator} function must be an
* <a href="package-summary.html#Associativity">associative</a> function.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* @param op an <a href="package-summary.html#Associativity">associative</a>,
* <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function for combining two values
*
* @return the result of the reduction
*
* @see #reduce(int, IntBinaryOperator)
*/
// 无初始状态的汇总操作(int类型版本)
OptionalInt reduce(IntBinaryOperator op);
/**
* Performs a <a href="package-summary.html#Reduction">reduction</a> on the
* elements of this stream, using the provided identity value and an
* <a href="package-summary.html#Associativity">associative</a>
* accumulation function, and returns the reduced value. This is equivalent
* to:
* <pre>{@code
* int result = identity;
* for (int element : this stream)
* result = accumulator.applyAsInt(result, element)
* return result;
* }</pre>
*
* but is not constrained to execute sequentially.
*
* <p>The {@code identity} value must be an identity for the accumulator
* function. This means that for all {@code x},
* {@code accumulator.apply(identity, x)} is equal to {@code x}.
* The {@code accumulator} function must be an
* <a href="package-summary.html#Associativity">associative</a> function.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* @param identity the identity value for the accumulating function
* @param op an <a href="package-summary.html#Associativity">associative</a>,
* <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function for combining two values
*
* @return the result of the reduction
*
* @apiNote Sum, min, max, and average are all special cases of reduction.
* Summing a stream of numbers can be expressed as:
*
* <pre>{@code
* int sum = integers.reduce(0, (a, b) -> a+b);
* }</pre>
*
* or more compactly:
*
* <pre>{@code
* int sum = integers.reduce(0, Integer::sum);
* }</pre>
*
* <p>While this may seem a more roundabout way to perform an aggregation
* compared to simply mutating a running total in a loop, reduction
* operations parallelize more gracefully, without needing additional
* synchronization and with greatly reduced risk of data races.
* @see #sum()
* @see #min()
* @see #max()
* @see #average()
*/
// 有初始状态的汇总操作(int类型版本)
int reduce(int identity, IntBinaryOperator op);
/**
* Performs a <a href="package-summary.html#MutableReduction">mutable
* reduction</a> operation on the elements of this stream. A mutable
* reduction is one in which the reduced value is a mutable result container,
* such as an {@code ArrayList}, and elements are incorporated by updating
* the state of the result rather than by replacing the result. This
* produces a result equivalent to:
* <pre>{@code
* R result = supplier.get();
* for (int element : this stream)
* accumulator.accept(result, element);
* return result;
* }</pre>
*
* <p>Like {@link #reduce(int, IntBinaryOperator)}, {@code collect} operations
* can be parallelized without requiring additional synchronization.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* @param <R> the type of the mutable result container
* @param supplier a function that creates a new mutable result container.
* For a parallel execution, this function may be called
* multiple times and must return a fresh value each time.
* @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
* <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function that must fold an element into a result
* container.
* @param combiner an <a href="package-summary.html#Associativity">associative</a>,
* <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function that accepts two partial result containers
* and merges them, which must be compatible with the
* accumulator function. The combiner function must fold
* the elements from the second result container into the
* first result container.
*