forked from shubham721/Sentiment-Analysis-On-Hindi-Reviews
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MachineTranslationApproach.py
215 lines (191 loc) · 6.96 KB
/
MachineTranslationApproach.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import pickle
import random
import numpy as np
from googletrans import Translator
from nltk.collections import Counter
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import f1_score
from sklearn.metrics.classification import accuracy_score
from sklearn.tree import DecisionTreeClassifier as DTC
stop_words = set(stopwords.words("english"))
clf = DTC()
# This function is used to create a kind of dictionary/lexicon set
# Input to this algorithm is positive and negative reviews file which are given.
def create_lexicon(pos, neg):
lexicon = []
for file_name in [pos, neg]:
with open(file_name, 'r') as f:
contents = f.read()
for line in contents.split('\n'):
data = line.strip('\n')
if data:
all_words = word_tokenize(data)
lexicon += list(map((lambda x: x.lower()), all_words))
lexicons = []
for word in lexicon:
if not word in stop_words:
lexicons.append(word)
word_counts = Counter(lexicons) # it will return kind of dictionary
l2 = []
for word in word_counts:
if 4000 > word_counts[word]:
l2.append(word)
print(l2)
return l2
def samplehandling(sample, lexicons, classification):
featureset = []
with open(sample, 'r', encoding="utf8") as f:
contents = f.read()
for line in contents.split('\n'):
data = line.strip('\n')
if data:
all_words = word_tokenize(data)
all_words = list(map((lambda x: x.lower()), all_words))
all_words_new = []
for word in all_words:
if not word in stop_words:
all_words_new.append(word)
features = np.zeros(len(lexicons))
for word in all_words_new:
if word in lexicons:
idx = lexicons.index(word)
features[idx] += 1
features = list(features)
featureset.append([features, classification])
return featureset
def create_feature_set(pos, neg):
featuresets = []
lexicons = create_lexicon(pos, neg)
featuresets += samplehandling(pos, lexicons, 1)
featuresets += samplehandling(neg, lexicons, 0)
random.shuffle(featuresets)
return featuresets
def check_class(data):
with open("decisiontree.pkl", "rb") as f:
clf = pickle.load(f)
prediction = clf.predict(data)
return np.array(prediction)
def create_test_data_for_unigram(pos, neg, size):
hm_lines = 100000
lexicons = create_lexicon('pos_english.txt', 'neg_english.txt')
translator = Translator()
testset = []
for file in [pos, neg]:
with open(file, "r") as f:
content = f.read()
for line in content.split('$')[:size]:
line = line.strip('\n')
if not line:
continue
print(line)
line = translator.translate(line, dest="english").text
print(line)
featureset = np.zeros(len(lexicons))
line = word_tokenize(line)
words = list(set([w.lower() for w in line]))
for w in lexicons:
if w in words:
idx = lexicons.index(w.lower())
featureset[idx] += 1
featureset = list(featureset)
if file == pos:
testset.append([featureset, 1])
else:
testset.append([featureset, 0])
random.shuffle(testset)
return testset
def create_classfier_for_tf():
featureset = create_feature_set('pos_english.txt', 'neg_english.txt')
featureset = np.array(featureset)
random.shuffle(featureset)
x = list(featureset[:, 0])
y = list(featureset[:, 1])
print(len(x), len(y))
clf = DTC()
clf.fit(x, y)
with open("decisiontree.pkl", "wb") as f:
pickle.dump(clf, f)
def test_by_unigram():
create_classfier_for_tf()
testset = create_test_data_for_unigram('pos_hindi.txt', 'neg_hindi.txt', 200)
testset = np.array(testset)
random.shuffle(testset)
test_x = list(testset[:, 0])
test_y = list(testset[:, 1])
y_pred = list(check_class(test_x))
print(y_pred)
print(test_y)
print('Accuracy: ', accuracy_score(test_y, y_pred) * 100)
print('f-measure: ', f1_score(test_y, y_pred))
def create_classifier_for_tfidf():
vectorizer = TfidfVectorizer(lowercase=False, analyzer=word_tokenize)
pos = open('pos_english.txt', 'r').read()
neg = open('neg_english.txt', 'r').read()
documents = pos.split('\n')
pos_count = len(documents)
documents += neg.split('\n')
tfidf = vectorizer.fit_transform(documents)
featureset = tfidf.toarray()
positive_feature_set = featureset[0:pos_count]
negative_set = featureset[pos_count:]
finalset = []
for i in positive_feature_set:
finalset.append([i, 1])
for i in negative_set:
finalset.append([i, 0])
finalset = np.array(finalset)
random.shuffle(finalset)
train_x = list(finalset[:, 0])
train_y = list(finalset[:, 1])
clf = DTC()
clf.fit(train_x, train_y)
with open("decisiontree_tfidf.pkl", "wb") as f:
pickle.dump(clf, f)
def translated_docs(pos, neg, size):
translator = Translator()
testdocuments = []
for file in [pos, neg]:
with open(file, "r") as f:
content = f.read()
for line in content.split('$')[:size]:
line = line.strip('\n')
if not line:
continue
print(line)
line = translator.translate(line, dest="english").text
print(line)
testdocuments.append(line)
return testdocuments
def test_by_tfifdf():
create_classifier_for_tfidf()
vectorizer = TfidfVectorizer(lowercase=False, analyzer=word_tokenize)
test_size = 200
testdocuments = translated_docs('pos_hindi.txt', 'neg_hindi.txt', test_size)
tfidf = vectorizer.fit_transform(testdocuments)
featureset = tfidf.toarray()
positive_feature_set = featureset[0:test_size]
negative_set = featureset[test_size:]
finalset = []
for i in positive_feature_set:
finalset.append([i, 1])
for i in negative_set:
finalset.append([i, 0])
finalset = np.array(finalset)
random.shuffle(finalset)
test_x = list(finalset[:, 0])
test_y = list(finalset[:, 1])
print(test_x[1])
with open("decisiontree_tfidf.pkl", "rb") as f:
clf = pickle.load(f)
y_pred = clf.predict(test_x)
print('Accuracy: ', accuracy_score(test_y, y_pred) * 100)
print('f-measure: ', f1_score(test_y, y_pred))
if __name__ == '__main__':
print("=" * 10)
print("Unigram+Tf results")
test_by_unigram()
print("=" * 10)
print("Unigram+Tfidf results")
test_by_tfifdf()