-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
231 lines (192 loc) · 8.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from mini_batch_loader import *
import MyFCN_de
import sys
import time
import State_de
import pixelwise_a3c_de
import os
import torch
import Myloss
import pixelwise_a3c_el
import MyFCN_el
from models import FFDNet
import torch.nn as nn
#_/_/_/ paths _/_/_/
TRAINING_DATA_PATH = "./data/training_LOL_eval15.txt"
label_DATA_PATH = "./data/label_LOL_eval15.txt"
TESTING_DATA_PATH = "./data/training_LOL_eval15.txt"
IMAGE_DIR_PATH = "./"
SAVE_PATH = "./model/ex7_"
#_/_/_/ training parameters _/_/_/
LEARNING_RATE = 0.0005
TRAIN_BATCH_SIZE = 32
TEST_BATCH_SIZE = 1 #must be 1
N_EPISODES = 30000
EPISODE_LEN = 10
SNAPSHOT_EPISODES = 500
TEST_EPISODES = 500
GAMMA = 1.05 # discount factor
#noise setting
N_ACTIONS = 27
MOVE_RANGE = 27 #number of actions that move the pixel values. e.g., when MOVE_RANGE=3, there are three actions: pixel_value+=1, +=0, -=1.
CROP_SIZE = 70
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
GPU_ID = 0
def test(loader1,loader2, agent_el, agent_de, fout, model):
sum_psnr = 0
sum_reward = 0
test_data_size = MiniBatchLoader.count_paths(TESTING_DATA_PATH)
current_state = State_de.State_de((TEST_BATCH_SIZE, 1, CROP_SIZE, CROP_SIZE), MOVE_RANGE, model)
for i in range(0, test_data_size, TEST_BATCH_SIZE):
raw_x = loader1.load_testing_data(np.array(range(i, i+TEST_BATCH_SIZE)))
label = loader2.load_testing_data(np.array(range(i, i+TEST_BATCH_SIZE)))
#raw_n = np.random.normal(MEAN,SIGMA,raw_x.shape).astype(raw_x.dtype)/255
current_state.reset(raw_x)
reward = np.zeros(raw_x.shape, raw_x.dtype)*255
for t in range(0, EPISODE_LEN):
previous_image = current_state.image.copy()
action_el = agent_el.act(current_state.image)
current_state.step_el(action_el)
action_de = agent_de.act(current_state.image)
current_state.step_de(action_de)
reward = np.square(label - previous_image)*255 - np.square(label - current_state.image)*255
sum_reward += np.mean(reward)*np.power(GAMMA,t)
agent_el.stop_episode()
agent_de.stop_episode()
I = np.maximum(0,label)
I = np.minimum(1,I)
p = np.maximum(0,current_state.image)
p = np.minimum(1,p)
I = (I*255).astype(np.uint8)
p = (p*255).astype(np.uint8)
sum_psnr += cv2.PSNR(p, I)
p = np.squeeze(p, axis=0)
p = np.transpose(p, (1, 2, 0))
cv2.imwrite('./result/' + str(i) + '_output.png', p)
print("test total reward {a}, PSNR {b}".format(a=sum_reward*255/test_data_size, b=sum_psnr/test_data_size))
fout.write("test total reward {a}, PSNR {b}\n".format(a=sum_reward*255/test_data_size, b=sum_psnr/test_data_size))
sys.stdout.flush()
def main(fout):
#_/_/_/ load dataset _/_/_/
mini_batch_loader = MiniBatchLoader(
TRAINING_DATA_PATH,
TRAINING_DATA_PATH,
IMAGE_DIR_PATH,
CROP_SIZE)
mini_batch_loader_label = MiniBatchLoader(
label_DATA_PATH,
label_DATA_PATH,
IMAGE_DIR_PATH,
CROP_SIZE)
pixelwise_a3c_el.chainer.cuda.get_device_from_id(GPU_ID).use()
# load ffdnet
in_ch = 3
model_fn = 'FFDNet_models/net_rgb.pth'
# Absolute path to model file
model_fn = os.path.join(os.path.abspath(os.path.dirname(__file__)), \
model_fn)
# Create model
print('Loading model ...\n')
net = FFDNet(num_input_channels=in_ch)
# Load saved weights
state_dict = torch.load(model_fn)
device_ids = [GPU_ID]
model = nn.DataParallel(net, device_ids=device_ids).cuda()
model.load_state_dict(state_dict)
model.eval()
current_state = State_de.State_de((TRAIN_BATCH_SIZE, 1, CROP_SIZE, CROP_SIZE), MOVE_RANGE, model)
# load pretrained myfcn model for el
# load myfcn model
model_el = MyFCN_el.MyFcn(N_ACTIONS)
# _/_/_/ setup _/_/_/
optimizer_el = pixelwise_a3c_el.chainer.optimizers.Adam(alpha=LEARNING_RATE)
optimizer_el.setup(model_el)
agent_el = pixelwise_a3c_el.PixelWiseA3C(model_el, optimizer_el, EPISODE_LEN, GAMMA)
# pixelwise_a3c.chainer.serializers.load_npz('./model/ex52_8000/model.npz', agent_el.model)
# agent_el.act_deterministically = True
agent_el.model.to_gpu()
# load myfcn model for de
model_de = MyFCN_de.MyFcn_denoise(2)
# _/_/_/ setup _/_/_/
optimizer_de = pixelwise_a3c_de.chainer.optimizers.Adam(alpha=LEARNING_RATE)
optimizer_de.setup(model_de)
agent_de = pixelwise_a3c_de.PixelWiseA3C(model_de, optimizer_de, EPISODE_LEN, GAMMA)
agent_de.model.to_gpu()
#_/_/_/ training _/_/_/
train_data_size = MiniBatchLoader.count_paths(TRAINING_DATA_PATH)
indices = np.random.permutation(train_data_size)
i = 0
#L_color = Myloss.L_color()
L_spa = Myloss.L_spa()
L_TV = Myloss.L_TV()
L_exp = Myloss.L_exp(16, 0.6)
L_color_rate = Myloss.L_color_rate()
for episode in range(1, N_EPISODES+1):
# display current episode
print("episode %d" % episode)
fout.write("episode %d\n" % episode)
sys.stdout.flush()
# load images
r = indices[i:i+TRAIN_BATCH_SIZE]
raw_x = mini_batch_loader.load_training_data(r)
# generate noise
#raw_n = np.random.normal(MEAN,SIGMA,raw_x.shape).astype(raw_x.dtype)/255
# initialize the current state and reward
current_state.reset(raw_x)
reward_de = np.zeros(raw_x.shape, raw_x.dtype)
action_value = np.zeros(raw_x.shape, raw_x.dtype)
sum_reward = 0
for t in range(0, EPISODE_LEN):
raw_tensor = torch.from_numpy(raw_x).cuda()
previous_image = current_state.image.copy()
action_el = agent_el.act_and_train(current_state.image, reward_de)
action_value = (action_el - 6)/20
current_state.step_el(action_el)
action_de = agent_de.act_and_train(current_state.image, reward_de)
current_state.step_de(action_de)
previous_image_tensor = torch.from_numpy(previous_image).cuda()
current_state_tensor = torch.from_numpy(current_state.image).cuda()
action_tensor = torch.from_numpy(action_value).cuda()
loss_spa_cur = torch.mean(L_spa(current_state_tensor, raw_tensor))
# loss_col_cur = 50 * torch.mean(L_color(current_state_tensor))
Loss_TV_cur = 200 * L_TV(action_tensor)
loss_exp_cur = 80 * torch.mean(L_exp(current_state_tensor))
loss_col_rate_pre = 20 * torch.mean(L_color_rate(previous_image_tensor, current_state_tensor))
# reward_previous = loss_spa_pre + loss_col_pre + loss_exp_pre + Loss_TV_pre + loss_col_rate_pre
reward_current = loss_spa_cur + loss_exp_cur + Loss_TV_cur + loss_col_rate_pre
reward = - reward_current
reward_de = reward.cpu().numpy()
sum_reward += np.mean(reward_de) * np.power(GAMMA, t)
agent_el.stop_episode_and_train(current_state.image, reward_de, True)
agent_de.stop_episode_and_train(current_state.image, reward_de, True)
print("train total reward {a}".format(a=sum_reward))
fout.write("train total reward {a}\n".format(a=sum_reward))
sys.stdout.flush()
if episode % TEST_EPISODES == 0:
#_/_/_/ testing _/_/_/
test(mini_batch_loader,mini_batch_loader_label, agent_el, agent_de, fout, model)
if episode % SNAPSHOT_EPISODES == 0:
agent_el.save(SAVE_PATH+str(episode))
if i+TRAIN_BATCH_SIZE >= train_data_size:
i = 0
indices = np.random.permutation(train_data_size)
else:
i += TRAIN_BATCH_SIZE
if i+2*TRAIN_BATCH_SIZE >= train_data_size:
i = train_data_size - TRAIN_BATCH_SIZE
# optimizer_de.alpha = LEARNING_RATE*((1-episode/N_EPISODES)**0.9)
if __name__ == '__main__':
try:
fout = open('log_ex7.txt', "w")
start = time.time()
main(fout)
end = time.time()
print("{s}[s]".format(s=end - start))
print("{s}[m]".format(s=(end - start)/60))
print("{s}[h]".format(s=(end - start)/60/60))
fout.write("{s}[s]\n".format(s=end - start))
fout.write("{s}[m]\n".format(s=(end - start)/60))
fout.write("{s}[h]\n".format(s=(end - start)/60/60))
fout.close()
except Exception as error:
print(error.message)