-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_single_stream.py
94 lines (76 loc) · 3.41 KB
/
test_single_stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from dataset.dataset import *
from torch.utils.data import Dataset, DataLoader
import getpass
import os
import socket
import numpy as np
from dataset.preprocess_data import *
from PIL import Image, ImageFilter
import argparse
import torch
from torch import nn
from torch import optim
from torch.optim import lr_scheduler
from models.model import generate_model
from opts import parse_opts
from torch.autograd import Variable
import time
import torch.utils
import sys
from utils import *
import pdb
if __name__=="__main__":
# print configuration options
opt = parse_opts()
print(opt)
opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
print("Preprocessing validation data ...")
data = globals()['{}_test'.format(opt.dataset)](split = opt.split, train = 0, opt = opt)
print("Length of validation data = ", len(data))
if opt.modality=='RGB': opt.input_channels = 3
elif opt.modality=='Flow': opt.input_channels = 2
print("Preparing datatloaders ...")
val_dataloader = DataLoader(data, batch_size = 1, shuffle=False, num_workers = opt.n_workers, pin_memory = True, drop_last=False)
print("Length of validation datatloader = ",len(val_dataloader))
# Loading model and checkpoint
model, parameters = generate_model(opt)
if opt.resume_path1:
print('loading checkpoint {}'.format(opt.resume_path1))
checkpoint = torch.load(opt.resume_path1)
assert opt.arch == checkpoint['arch']
model.load_state_dict(checkpoint['state_dict'])
model.eval()
accuracies = AverageMeter()
clip_accuracies = AverageMeter()
#Path to store results
result_path = "{}/{}/".format(opt.result_path, opt.dataset)
if not os.path.exists(result_path):
os.makedirs(result_path)
if opt.log:
f = open(os.path.join(result_path, "test_{}{}_{}_{}_{}_{}.txt".format( opt.model, opt.model_depth, opt.dataset, opt.split, opt.modality, opt.sample_duration)), 'w+')
f.write(str(opt))
f.write('\n')
f.flush()
with torch.no_grad():
for i, (clip, label) in enumerate(val_dataloader):
clip = torch.squeeze(clip)
if opt.modality == 'RGB':
inputs = torch.Tensor(int(clip.shape[1]/opt.sample_duration), 3, opt.sample_duration, opt.sample_size, opt.sample_size)
elif opt.modality == 'Flow':
inputs = torch.Tensor(int(clip.shape[1]/opt.sample_duration), 2, opt.sample_duration, opt.sample_size, opt.sample_size)
for k in range(inputs.shape[0]):
inputs[k,:,:,:,:] = clip[:,k*opt.sample_duration:(k+1)*opt.sample_duration,:,:]
inputs_var = Variable(inputs)
outputs_var= model(inputs_var)
pred5 = np.array(torch.mean(outputs_var, dim=0, keepdim=True).topk(5, 1, True)[1].cpu().data[0])
acc = float(pred5[0] == label[0])
accuracies.update(acc, 1)
line = "Video[" + str(i) + "] : \t top5 " + str(pred5) + "\t top1 = " + str(pred5[0]) + "\t true = " +str(int(label[0])) + "\t video = " + str(accuracies.avg)
print(line)
if opt.log:
f.write(line + '\n')
f.flush()
print("Video accuracy = ", accuracies.avg)
line = "Video accuracy = " + str(accuracies.avg) + '\n'
if opt.log:
f.write(line)