-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
172 lines (135 loc) · 6.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch, os, glob, cv2, random
import numpy as np
from torch.utils.data import Dataset, DataLoader
from argparse import ArgumentParser
from model import PRL
from utils import *
from skimage.metrics import structural_similarity as ssim
from time import time
from tqdm import tqdm
parser = ArgumentParser(description='PRL')
parser.add_argument('--start_epoch', type=int, default=0)
parser.add_argument('--end_epoch', type=int, default=600)
parser.add_argument('--phase_num', type=int, default=5)
parser.add_argument('--learning_rate', type=float, default=1e-4)
parser.add_argument('--block_size', type=int, default=32)
parser.add_argument('--model_dir', type=str, default='model')
parser.add_argument('--data_dir', type=str, default='data')
parser.add_argument('--log_dir', type=str, default='log')
parser.add_argument('--save_interval', type=int, default=100)
parser.add_argument('--testset_name', type=str, default='Set11')
parser.add_argument('--gpu_list', type=str, default='0')
parser.add_argument('--num_feature', type=int, default=8)
parser.add_argument('--ID_num_feature', type=int, default=8)
parser.add_argument('--cs_ratio', type=float, default=0.1)
args = parser.parse_args()
start_epoch, end_epoch = args.start_epoch, args.end_epoch
learning_rate = args.learning_rate
N_p = args.phase_num
B = args.block_size
nf = args.num_feature
ID_nf = args.ID_num_feature
cs_ratio = args.cs_ratio
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_list
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.backends.cudnn.benchmark = True
# fixed seed for reproduction
seed = 2023
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
patch_size = 128 # training patch size
batch_size = 16
iter_num = 800
N = B * B
q = int(np.ceil(N * cs_ratio))
# training set info
print('reading files...')
start_time = time()
training_image_paths = glob.glob(os.path.join(args.data_dir, 'pristine_images') + '/*')
training_image_num = len(training_image_paths)
print('training_image_num', training_image_num, 'read time', time() - start_time)
model = PRL(N_p, B, torch.nn.init.xavier_normal_(torch.Tensor(q, N)), nf, ID_nf)
model = torch.nn.DataParallel(model).to(device)
class MyDataset(Dataset):
def __init__(self):
self.len = iter_num * batch_size
self.real_len_1 = training_image_num - 1
def __getitem__(self, index):
while True:
index = random.randint(0, self.real_len_1)
path = training_image_paths[index]
# read from disk
training_image_ycrcb = cv2.imread(path, 1)
training_image_ycrcb = cv2.cvtColor(training_image_ycrcb, cv2.COLOR_BGR2YCrCb)
training_image_y = training_image_ycrcb[:, :, 0]
training_image_y_tensor = torch.Tensor(training_image_y) / 255.0
h, w = training_image_y.shape
max_h, max_w = h - patch_size, w - patch_size
if max_h < 0 or max_w < 0:
continue
start_h = random.randint(0, max_h)
start_w = random.randint(0, max_w)
return training_image_y_tensor[start_h:start_h+patch_size, start_w:start_w+patch_size]
def __len__(self):
return self.len
my_loader = DataLoader(dataset=MyDataset(), batch_size=batch_size, num_workers=8, pin_memory=True)
optimizer = torch.optim.Adam([{'params': model.parameters(), 'initial_lr': learning_rate}], lr=learning_rate)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[400, 500, 550], gamma=0.1, last_epoch=start_epoch-1)
model_dir = './%s/ratio_%.2f_layer_%d_block_%d_f_%d_IDnf_%d' % (args.model_dir, cs_ratio, N_p, B, nf, ID_nf)
log_path = './%s/ratio_%.2f_layer_%d_block_%d_f_%d_IDnf_%d.txt' % (args.log_dir, cs_ratio, N_p, B, nf, ID_nf)
os.makedirs(args.log_dir, exist_ok=True)
os.makedirs(model_dir, exist_ok=True)
# test set info
test_image_paths = glob.glob(os.path.join(args.data_dir, args.testset_name) + '/*')
test_image_num = len(test_image_paths)
def test():
with torch.no_grad():
PSNR_list, SSIM_list = [], []
for i in range(test_image_num):
test_image = cv2.imread(test_image_paths[i], 1) # read test data from image file
test_image_ycrcb = cv2.cvtColor(test_image, cv2.COLOR_BGR2YCrCb)
img, old_h, old_w, img_pad, new_h, new_w = my_zero_pad(test_image_ycrcb[:,:,0])
img_pad = img_pad.reshape(1, 1, new_h, new_w) / 255.0 # normalization
x_input = torch.from_numpy(img_pad)
x_input = x_input.type(torch.FloatTensor).to(device)
x_output = model(x_input)
x_output = x_output.cpu().data.numpy().squeeze()
x_output = np.clip(x_output[:old_h, :old_w], 0, 1).astype(np.float64) * 255.0
PSNR = psnr(x_output, img)
SSIM = ssim(x_output, img, data_range=255)
# print('[%d/%d] %s, PSNR: %.2f, SSIM: %.4f' % (i, test_image_num, image_path, PSNR, SSIM))
PSNR_list.append(PSNR)
SSIM_list.append(SSIM)
return float(np.mean(PSNR_list)), float(np.mean(SSIM_list))
if start_epoch > 0:
model.load_state_dict(torch.load('./%s/net_params_%d.pkl' % (model_dir, start_epoch)))
print('start training...')
for epoch_i in range(start_epoch + 1, end_epoch + 1):
start_time = time()
loss_avg, iter_num = 0.0, 0
for data in tqdm(my_loader):
x = data.unsqueeze(1).to(device)
x = H(x, random.randint(0, 7))
loss = (model(x) - x).pow(2).mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
iter_num += 1
loss_avg += loss.item()
scheduler.step()
loss_avg /= iter_num
log_data = '[%d/%d] Average loss: %f, time cost: %.2fs.' % (epoch_i, end_epoch, loss_avg, time() - start_time)
print(log_data)
with open(log_path, 'a') as log_file:
log_file.write(log_data + '\n')
if epoch_i % args.save_interval == 0:
torch.save(model.state_dict(), './%s/net_params_%d.pkl' % (model_dir, epoch_i)) # save only the parameters
if epoch_i == 1 or epoch_i % 10 == 0:
cur_psnr, cur_ssim = test()
log_data = 'CS Ratio is %.2f, PSNR is %.2f, SSIM is %.4f.' % (cs_ratio, cur_psnr, cur_ssim)
print(log_data)
with open(log_path, 'a') as log_file:
log_file.write(log_data + '\n')