Skip to content

Latest commit

 

History

History
48 lines (33 loc) · 1.6 KB

distributed.tensor.parallel.rst

File metadata and controls

48 lines (33 loc) · 1.6 KB

Tensor Parallelism - torch.distributed.tensor.parallel

Tensor Parallelism(TP) is built on top of the PyTorch DistributedTensor (DTensor) and provides different parallelism styles: Colwise and Rowwise Parallelism.

Warning

Tensor Parallelism APIs are experimental and subject to change.

The entrypoint to parallelize your nn.Module using Tensor Parallelism is:

.. automodule:: torch.distributed.tensor.parallel

.. currentmodule:: torch.distributed.tensor.parallel

.. autofunction::  parallelize_module

Tensor Parallelism supports the following parallel styles:

.. autoclass:: torch.distributed.tensor.parallel.ColwiseParallel
  :members:
  :undoc-members:

.. autoclass:: torch.distributed.tensor.parallel.RowwiseParallel
  :members:
  :undoc-members:

To simply configure the nn.Module's inputs and outputs with DTensor layouts and perform necessary layout redistributions, without distribute the module parameters to DTensors, the following classes can be used in the parallelize_plan``of ``parallelize_module:

.. autoclass:: torch.distributed.tensor.parallel.PrepareModuleInput
  :members:
  :undoc-members:

.. autoclass:: torch.distributed.tensor.parallel.PrepareModuleOutput
  :members:
  :undoc-members:


For models like Transformer, we recommend users to use ColwiseParallel and RowwiseParallel together in the parallelize_plan for achieve the desired sharding for the entire model (i.e. Attention and MLP).