forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoperator_schema.cc
546 lines (486 loc) · 17.1 KB
/
operator_schema.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
#include "caffe2/core/operator_schema.h"
#include "caffe2/core/logging.h"
#include <iostream>
#include <c10/util/irange.h>
namespace caffe2 {
// NOLINTNEXTLINE(modernize-pass-by-value)
OpSchema::OpSchema(const string& type, const string& file, const int line)
: type_(type), file_(file), line_(line), tensor_inference_function_(
[](const OperatorDef& def, const vector<TensorShape>&) {
vector<TensorShape> out;
for (int i = 0; i < def.output_size(); i++) {
TensorShape ts;
ts.set_unknown_shape(true);
out.push_back(ts);
}
return out;
}), device_inference_function_(
[](const OperatorDef& def) {
auto op_device =
def.has_device_option() ? def.device_option() : DeviceOption();
vector<DeviceOption> in_dev(def.input_size(), op_device);
vector<DeviceOption> out_dev(def.output_size(), op_device);
return std::make_pair(in_dev, out_dev);
}) {}
bool OpSchema::Verify(const OperatorDef& def) const {
// Check the number of inputs.
if (def.input_size() < min_input_ || def.input_size() > max_input_) {
LOG(ERROR) << "Input size " << def.input_size()
<< " not in range [min=" << min_input_ << ", max="
<< max_input_ << "].";
return false;
}
if (!num_inputs_allowed_(def.input_size())) {
LOG(ERROR) << "Input size " << def.input_size()
<< " not in allowed input sizes.";
return false;
}
// Check the number of outputs.
if (def.output_size() < min_output_ || def.output_size() > max_output_) {
LOG(ERROR) << "Output size " << def.output_size()
<< " not in range [min=" << min_output_ << ", max="
<< max_output_ << "].";
return false;
}
if (!num_outputs_allowed_(def.output_size())) {
LOG(ERROR) << "Output size " << def.output_size()
<< " not in allowed output sizes.";
return false;
}
if (!num_inputs_outputs_allowed_(def.input_size(), def.output_size())) {
LOG(ERROR) << "Combination of input size " << def.input_size()
<< "and output size " << def.output_size() << " not in allowed.";
return false;
}
// If the number of outputs can be calculated, check if the number matches.
if (calculate_output_) {
int expected_nout = calculate_output_(def.input_size());
if (expected_nout != kCannotComputeNumOutputs &&
def.output_size() != expected_nout) {
LOG(ERROR) << "Output size " << def.output_size()
<< " not matching expected output size, which is "
<< expected_nout;
return false;
}
}
// Check in-place settings.
for (int in_idx = 0; in_idx < def.input_size(); ++in_idx) {
for (int out_idx = 0; out_idx < def.output_size(); ++out_idx) {
// If an input is the same as an output but in-place is not opt-in
// either as allowed or enforced, we will fail the verification.
if (def.input(in_idx) == def.output(out_idx) &&
(!inplace_allowed_(in_idx, out_idx)
&& !inplace_enforced_(in_idx, out_idx))) {
LOG(ERROR) << "Input index " << in_idx << " and output idx " << out_idx
<< " (" << def.input(in_idx) << ")"
<< " are set to be in-place but this is actually not "
<< "supported by op " << def.type();
return false;
}
if (def.input(in_idx) != def.output(out_idx) &&
inplace_enforced_(in_idx, out_idx)) {
LOG(ERROR) << "Input index " << in_idx << " (" << def.input(in_idx) << ")"
<< " and output idx " << out_idx
<< " (" << def.output(in_idx) << ")"
<< " are not in-place but should be as required by op "
<< def.type();
return false;
}
}
}
std::set<std::string> present_args{};
for (const auto& arg : def.arg()) {
present_args.insert(arg.name());
}
for (const auto& arg : args()) {
if (arg.is_required() &&
present_args.find(arg.name()) == present_args.end()) {
LOG(ERROR) << "Argument '" << arg.name() << "' is required for Operator '"
<< def.type() << "'.";
return false;
}
}
// Phew. All verifications passed.
return true;
}
OpSchema& OpSchema::NumInputs(int min, int max) {
min_input_ = min;
max_input_ = max;
return *this;
}
OpSchema& OpSchema::NumInputs(int n) {
return NumInputs(n, n);
}
OpSchema& OpSchema::NumInputs(std::function<bool(int)> func) {
num_inputs_allowed_ = func;
return *this;
}
OpSchema& OpSchema::NumInputs(set<int> allowed_input_nums) {
return NumInputs(
[allowed_input_nums](int n)->bool {
return allowed_input_nums.count(n);
});
}
OpSchema& OpSchema::NumOutputs(int min, int max) {
min_output_ = min;
max_output_ = max;
return *this;
}
OpSchema& OpSchema::NumOutputs(int n) {
return NumOutputs(n, n);
}
OpSchema& OpSchema::NumOutputs(std::function<bool(int)> func) {
num_outputs_allowed_ = func;
return *this;
}
OpSchema& OpSchema::NumOutputs(set<int> allowed_output_nums) {
return NumOutputs(
[allowed_output_nums](int n)->bool {
return allowed_output_nums.count(n);
});
}
OpSchema& OpSchema::NumInputsOutputs(std::function<bool(int, int)> func) {
num_inputs_outputs_allowed_ = func;
return *this;
}
OpSchema& OpSchema::OutputCalculator(std::function<int(int)> calc) {
calculate_output_ = calc;
return *this;
}
OpSchema& OpSchema::SameNumberOfOutput() {
return OutputCalculator([](int n)->int { return n; } );
}
OpSchema& OpSchema::AllowInplace(std::function<bool(int, int)> inplace) {
inplace_allowed_ = inplace;
return *this;
}
OpSchema& OpSchema::AllowInplace(set<std::pair<int, int>> inplace) {
return AllowInplace(
[inplace](int in, int out)->bool {
return inplace.count(std::make_pair(in, out));
});
}
OpSchema& OpSchema::AllowOneToOneInplace() {
return AllowInplace([](int in, int out) { return in == out; });
}
OpSchema& OpSchema::EnforceInplace(std::function<bool(int, int)> inplace) {
inplace_enforced_ = inplace;
return *this;
}
OpSchema& OpSchema::EnforceInplace(set<std::pair<int, int>> inplace) {
return EnforceInplace(
[inplace](int in, int out)->bool {
return inplace.count(std::make_pair(in, out));
});
}
OpSchema& OpSchema::EnforceOneToOneInplace() {
return EnforceInplace([](int in, int out) { return in == out; });
}
OpSchema& OpSchema::Private() {
private_ = true;
return *this;
}
OpSchema& OpSchema::InputsCanCrossDevices() {
inputs_can_cross_devices_ = true;
return *this;
}
OpSchema& OpSchema::TensorInferenceFunction(
TensorInferenceFunctionType function) {
tensor_inference_function_ = function;
return *this;
}
OpSchema::TensorInferenceFunctionType OpSchema::NeedsAllInputShapes(
TensorInferenceFunctionType f) {
return [f](const OperatorDef& def, const vector<TensorShape>& in) {
for (const auto& in_ts : in) {
if (in_ts.unknown_shape()) {
vector<TensorShape> out(def.output().size());
for (auto& out_ts : out) {
out_ts.set_unknown_shape(true);
}
return out;
}
}
return f(def, in);
};
}
OpSchema& OpSchema::InheritOnnxSchema(const std::string& onnx_schema_name) {
onnx_schema_ = onnx_schema_name;
return *this;
}
OpSchema& OpSchema::IdenticalTypeAndShape() {
return TensorInferenceFunction(
[](const OperatorDef&, const vector<TensorShape>& input_types) {
return vector<TensorShape>(input_types);
});
}
OpSchema& OpSchema::IdenticalTypeAndShapeOfInput(int idx) {
return TensorInferenceFunction(
[idx](const OperatorDef&, const vector<TensorShape>& input_types) {
vector<TensorShape> out(1);
out[0] = input_types[idx];
return out;
});
}
OpSchema& OpSchema::IdenticalTypeAndShapeOfMultipleInputs(
const vector<int>& indices) {
return TensorInferenceFunction(
[indices](const OperatorDef&, const vector<TensorShape>& input_types) {
vector<TensorShape> out(indices.size());
for (const auto i : c10::irange(indices.size())) {
out[i] = input_types[indices.at(i)];
}
return out;
});
}
OpSchema& OpSchema::IdenticalTypeAndShapeOfInputDim(int idx, int dim) {
return TensorInferenceFunction(
[idx, dim](const OperatorDef&, const vector<TensorShape>& input_types) {
vector<TensorShape> out(1);
out[0].add_dims(input_types[idx].dims(dim));
out[0].set_data_type(input_types[idx].data_type());
return out;
});
}
OpSchema& OpSchema::ScalarType(::caffe2::TensorProto_DataType dt) {
return TensorInferenceFunction(
[dt](const OperatorDef& def, const vector<TensorShape>& /*input_types*/) {
TensorShape shape;
shape.set_data_type(dt);
vector<TensorShape> out(def.output_size(), shape);
return out;
});
}
OpSchema& OpSchema::CostInferenceFunction(CostInferenceFunctionType function) {
cost_inference_function_ =
std::make_unique<CostInferenceFunctionType>(function);
return *this;
}
OpSchema& OpSchema::DeviceInferenceFunction(
DeviceInferenceFunctionType function) {
device_inference_function_ = function;
return *this;
}
OpSchema& OpSchema::SetDoc(const string& doc) {
doc_ = doc;
return *this;
}
OpSchema&
OpSchema::Arg(const char* name, const char* description, bool required) {
// NOLINTNEXTLINE(modernize-use-emplace)
args_.push_back(Argument(name, description, required));
return *this;
}
#define DEFINE_STANDARG_ARG(name, str) \
TORCH_API const char* OpSchema::Arg_##name = #str; \
TORCH_API OpSchema& OpSchema::Arg##name(const char* description) { \
return Arg(#str, description, true); \
}
DEFINE_STANDARG_ARG(IsTest, is_test)
#undef DEFINE_STANDARG_ARG
OpSchema& OpSchema::Input(const int n, const char* name, const char* description) {
if (input_desc_.size() <= (unsigned)n) {
input_desc_.resize(n + 1);
}
input_desc_[n] = std::make_pair(name, description);
return *this;
}
OpSchema& OpSchema::Output(const int n, const char* name, const char* description) {
if (output_desc_.size() <= (unsigned)n) {
output_desc_.resize(n + 1);
}
output_desc_[n] = std::make_pair(name, description);
return *this;
}
OpSchema& OpSchema::FillUsing(std::function<void(OpSchema&)> populator) {
if (populator) {
populator(*this);
}
return *this;
}
int OpSchema::CalculateOutput(int num_input) const {
if (min_output_ == max_output_) {
return min_output_;
} else if (calculate_output_) {
return calculate_output_(num_input);
} else {
return kCannotComputeNumOutputs;
}
}
namespace {
void SparseLengthsFillerHelper(
const std::vector<std::vector<int64_t>>& shapes,
size_t value_index,
size_t length_index,
std::vector<TensorFiller>* fillers) {
CAFFE_ENFORCE_EQ(shapes[length_index].size(), 1);
// filler.h: SparseLengths->FixedSum will select FD_FIXEDSUM distribution
(*fillers)[length_index].SparseLengths(shapes[value_index].front());
}
void SparseWeightsFillerHelper(
const std::vector<std::vector<int64_t>>& shapes,
size_t weight_index,
std::vector<TensorFiller>* fillers) {
(*fillers)[weight_index]
.Min(0)
.Max(shapes[weight_index].front())
.Dist(FD_UNIFORM);
}
void SparseSegmentsFillerHelper(
const std::vector<std::vector<int64_t>>& shapes,
size_t value_index,
size_t segment_index,
std::vector<TensorFiller>* fillers) {
CAFFE_ENFORCE_EQ(shapes[segment_index].size(), 1);
// filler.h SparseSegments will select FD_UNIFORM or FD_SYNTHETIC distribution
(*fillers)[value_index]
.Min(0)
.Max(shapes[value_index].front() * 2)
.Dist(FD_UNIFORM);
(*fillers)[segment_index].SparseSegments(shapes[value_index].front() - 1);
}
} // namespace
// The helper is build sparse input with values, keys, and lengths; e.g.:
// values = [1, 2, 3, 2, 4, 6, 7, 3, 6]
// keys = [0, 1, 4, 0, 1, 2, 5, 1, 2]
// \_____/ \________/ \__/
// lengths = [3, 4, 2]
OpSchema& OpSchema::ValueKeyLengthInputFillers(
size_t value_index,
size_t key_index,
size_t length_index) {
filler_supplier_ = [this, value_index, key_index, length_index](
const std::vector<std::vector<int64_t>>& shapes) {
auto fillers = SupplyDenseFillers(shapes);
// fill in the length (value_index is used to get the correct shape)
SparseLengthsFillerHelper(shapes, key_index, length_index, &fillers);
// fill in the keys (value_index is used to get the correct shape)
SparseSegmentsFillerHelper(shapes, value_index, key_index, &fillers);
return fillers;
};
return *this;
}
// The helper is build sparse input with values, keys, and lengths; e.g.:
// values = [1, 2, 3, 2, 4, 6, 7, 3, 6]
// keys = [0, 1, 4, 0, 1, 2, 5, 1, 2]
// weights = [1, 1, 1, 0, 2, 2, 2, 1, 2]
// \_____/ \________/ \__/
// lengths = [3, 4, 2]
OpSchema& OpSchema::WeightedValueKeyLengthInputFillers(
size_t value_index,
size_t key_index,
size_t length_index,
size_t weight_index) {
filler_supplier_ = [this, value_index, key_index, length_index, weight_index](
const std::vector<std::vector<int64_t>>& shapes) {
auto fillers = SupplyDenseFillers(shapes);
// fill in the length (value_index is used to get the correct shape)
SparseLengthsFillerHelper(shapes, key_index, length_index, &fillers);
// fill in the keys (value_index is used to get the correct shape)
SparseSegmentsFillerHelper(shapes, value_index, key_index, &fillers);
// fill in the weights
SparseWeightsFillerHelper(shapes, weight_index, &fillers);
return fillers;
};
return *this;
}
// The helper is build sparse input with values and lengths; e.g.:
// values = [1, 2, 3, 2, 4, 6, 7, 3, 6]
// \_____/ \________/ \__/
// lengths = [3, 4, 2]
OpSchema& OpSchema::ValueLengthInputFillers(
size_t value_index,
size_t length_index) {
filler_supplier_ = [this, value_index, length_index](
const std::vector<std::vector<int64_t>>& shapes) {
auto fillers = SupplyDenseFillers(shapes);
// fill in the length (value_index is used to get the correct shape)
SparseLengthsFillerHelper(shapes, value_index, length_index, &fillers);
return fillers;
};
return *this;
}
OpSchema& OpSchema::DisallowInputFillers() {
filler_supplier_ =
[this](const std::vector<std::vector<int64_t>>& /* unused */) {
throw std::invalid_argument(type_ + " does not have input fillers");
return std::vector<TensorFiller>();
};
return *this;
}
std::vector<TensorFiller> OpSchema::InputFillers(
const std::vector<std::vector<int64_t>>& shapes) const {
return filler_supplier_(shapes);
}
std::vector<TensorFiller> OpSchema::SupplyDenseFillers(
const std::vector<std::vector<int64_t>>& shapes) {
std::vector<TensorFiller> fillers;
for (const auto& shape : shapes) {
// NOLINTNEXTLINE(performance-inefficient-vector-operation)
fillers.emplace_back(shape);
}
return fillers;
}
C10_EXPORT std::ostream& operator<<(std::ostream& out, const OpSchema& schema) {
if (!schema.args().empty()) {
out << "Arguments:" << std::endl;
for (const auto& arg : schema.args()) {
out << " " << arg.name() << " : " << arg.description() << std::endl;
}
}
if (schema.max_input_ > 0) {
out << "Inputs:" << std::endl;
if (!schema.input_desc_.empty()) {
for (size_t i = 0; i < schema.input_desc_.size(); ++i) {
const auto& p = schema.input_desc_[i];
out << " " << i << ", " << (p.first ? p.first : "(unnamed)") << " : "
<< (p.second ? p.second : "(no doc)") << std::endl;
}
} else {
out << " (no explicit description available)" << std::endl;
}
}
if (schema.max_output_ > 0) {
out << "Outputs:" << std::endl;
if (!schema.output_desc_.empty()) {
for (size_t i = 0; i < schema.output_desc_.size(); ++i) {
const auto& p = schema.output_desc_[i];
out << " " << i << ", " << (p.first ? p.first : "(unnamed)") << " : "
<< (p.second ? p.second : "(no doc)") << std::endl;
}
} else {
out << " (no explicit description available)" << std::endl;
}
}
out << std::endl;
if (schema.doc()) {
out << schema.doc();
} else {
out << "(no documentation yet)" << std::endl;
}
out << std::endl;
if (schema.line_) {
out << "Defined at " << schema.file_ << ":" << schema.line_ << std::endl;
}
return out;
}
OpSchema& OpSchemaRegistry::NewSchema(const string& key, const string& file, const int line) {
auto& m = map();
auto it = m.find(key);
if (it != m.end()) {
const auto& schema = it->second;
std::ios_base::Init init;
std::cerr << "Trying to register schema with name " << key
<< " from file " << file << " line " << line
<< ", but it is already registered from file " << schema.file()
<< " line " << schema.line();
abort();
}
m.emplace(key, OpSchema(key, file, line));
return m[key];
}
CaffeMap<string, OpSchema>& OpSchemaRegistry::map() {
static CaffeMap<string, OpSchema> map;
return map;
}
} // namespace caffe2