forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontext.h
227 lines (189 loc) · 6.06 KB
/
context.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#ifndef CAFFE2_CORE_CONTEXT_H_
#define CAFFE2_CORE_CONTEXT_H_
#include <cstdlib>
#include <ctime>
#include <random>
#include <unordered_map>
#include <c10/util/typeid.h>
#include "caffe2/core/allocator.h"
#include "caffe2/core/context_base.h"
#include "caffe2/core/event.h"
#include "caffe2/core/logging.h"
#include "caffe2/proto/caffe2_pb.h"
#include <c10/util/ArrayRef.h>
#if !defined(CAFFE2_IS_XPLAT_BUILD) && !defined(C10_MOBILE)
#include <c10/core/GeneratorImpl.h>
#include <c10/util/irange.h>
#include <ATen/core/DistributionsHelper.h>
#include <ATen/core/MT19937RNGEngine.h>
#else
#include "caffe2/core/distributions_stubs.h"
#endif
C10_DECLARE_bool(caffe2_report_cpu_memory_usage);
namespace caffe2 {
/**
* A function to generate a random number seed that is unique in a best-effort
* basis, using an ever-incrementing seed and the current time.
*/
TORCH_API uint32_t RandomNumberSeed();
/**
* The CPU Context, representing the bare minimum of what a Context class in
* Caffe2 should implement.
*
* // TODO modify docs
* See operator.h, especially Operator<Context>, for how Context are used in
* actual operator implementations that are associated with specific devices.
* In general, the Context class is passed in as a template argument, and
* the operator can use the functions defined in the context to execute whatever
* computation it has.
*
*/
class TORCH_API CPUContext final : public BaseContext {
public:
#if !defined(CAFFE2_IS_XPLAT_BUILD) && !defined(C10_MOBILE)
class rand_gen_type {
public:
explicit rand_gen_type(uint64_t seed_in = default_rng_seed_val)
: engine_{seed_in} {}
uint32_t random() {
return engine_();
}
uint64_t random64() {
uint32_t random1 = engine_();
uint32_t random2 = engine_();
return (static_cast<uint64_t>(random1) << 32) | random2;
}
c10::optional<float> next_float_normal_sample() {
return next_float_normal_sample_;
}
c10::optional<double> next_double_normal_sample() {
return next_double_normal_sample_;
}
void set_next_float_normal_sample(c10::optional<float> randn) {
next_float_normal_sample_ = randn;
}
void set_next_double_normal_sample(c10::optional<double> randn) {
next_double_normal_sample_ = randn;
}
private:
at::mt19937 engine_;
c10::optional<float> next_float_normal_sample_;
c10::optional<double> next_double_normal_sample_;
};
#else
typedef std::mt19937 rand_gen_type;
#endif
CPUContext() {}
explicit CPUContext(const DeviceOption& option)
: random_seed_(option.has_random_seed() ? option.random_seed() : 1701),
random_seed_set_(option.has_random_seed() ? true : false) {
CAFFE_ENFORCE_EQ(option.device_type(), PROTO_CPU);
}
explicit CPUContext(const at::Device& device)
: CPUContext(DeviceToOption(device)) {}
~CPUContext() noexcept override {}
inline void SwitchToDevice(int64_t /*stream_id*/) override {}
using BaseContext::SwitchToDevice;
inline void WaitEvent(const Event& ev) override {
ev.Wait(CPU, this);
}
inline void Record(Event* ev, const char* err_msg = nullptr) const override {
CAFFE_ENFORCE(ev, "Event must not be null.");
ev->Record(CPU, this, err_msg);
}
inline void FinishDeviceComputation() override {}
inline rand_gen_type* RandGenerator() {
if (!random_generator_.get()) {
random_generator_.reset(new rand_gen_type(RandSeed()));
}
return random_generator_.get();
}
inline uint32_t RandSeed() {
if (!random_seed_set_) {
random_seed_ = RandomNumberSeed();
random_seed_set_ = true;
}
return static_cast<uint32_t>(random_seed_);
}
inline static at::DataPtr New(size_t nbytes) {
return GetCPUAllocator()->allocate(nbytes);
}
void CopyBytesSameDevice(size_t nbytes, const void* src, void* dst) override;
void CopyBytesFromCPU(size_t nbytes, const void* src, void* dst) override {
CopyBytesSameDevice(nbytes, src, dst);
}
void CopyBytesToCPU(size_t nbytes, const void* src, void* dst) override {
CopyBytesSameDevice(nbytes, src, dst);
}
bool SupportsNonFundamentalTypes() const override {
// CPU non fumdamental type copy OK
return true;
}
template <class SrcContext, class DstContext>
inline void CopyBytes(size_t nbytes, const void* src, void* dst);
template <typename T, class SrcContext, class DstContext>
inline void Copy(size_t n, const T* src, T* dst) {
if (c10::guts::is_fundamental<T>::value) {
CopyBytes<SrcContext, DstContext>(
n * sizeof(T),
static_cast<const void*>(src),
static_cast<void*>(dst));
} else {
for (const auto i : c10::irange(n)) {
dst[i] = src[i];
}
}
}
template <class SrcContext, class DstContext>
inline void
CopyItems(const TypeMeta meta, size_t n, const void* src, void* dst) {
if (meta.copy()) {
meta.copy()(src, dst, n);
} else {
CopyBytes<SrcContext, DstContext>(n * meta.itemsize(), src, dst);
}
}
// By default CPU operators don't have async device parts
static bool HasAsyncPartDefault() {
return false;
}
static bool SupportsAsyncScheduling() {
return false;
}
// CPU streams are not implemented and are silently ignored by CPU ops,
// return true to signal executor to schedule a CPU op
static bool IsStreamFree(
const DeviceOption& /* option */,
int /* stream_id */) {
return true;
}
at::Device device() const override {
// TODO: numa?
return at::Device(CPU);
}
DeviceType device_type() const override {
return CPU;
}
static constexpr DeviceType GetDeviceType() {
return CPU;
}
protected:
// TODO(jiayq): instead of hard-coding a generator, make it more flexible.
int random_seed_{1701};
bool random_seed_set_{false};
std::unique_ptr<rand_gen_type> random_generator_;
};
template <>
inline void CPUContext::CopyBytes<CPUContext, CPUContext>(
size_t nbytes,
const void* src,
void* dst) {
if (nbytes == 0) {
return;
}
CAFFE_ENFORCE(src);
CAFFE_ENFORCE(dst);
memcpy(dst, src, nbytes);
}
} // namespace caffe2
#endif // CAFFE2_CORE_CONTEXT_H_