forked from siliconflow/onediff
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext_to_image_sdxl_enterprise.py
155 lines (131 loc) · 4.73 KB
/
text_to_image_sdxl_enterprise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse
import os
import time
import torch
import torch.nn as nn
# oneflow_compile should be imported before importing any diffusers
from onediff.infer_compiler import oneflow_compile, OneflowCompileOptions
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, required=True)
parser.add_argument("--saved_image", type=str, required=True)
parser.add_argument("--save_graph", action="store_true")
parser.add_argument("--load_graph", action="store_true")
parser.add_argument(
"--prompt",
type=str,
default="photo of a rhino dressed suit and tie sitting at a table in a bar with a bar stools, award winning photography, Elke vogelsang",
)
parser.add_argument("--height", type=int, default=1024)
parser.add_argument("--width", type=int, default=1024)
parser.add_argument("--steps", type=int, default=30)
parser.add_argument("--bits", type=int, default=8)
parser.add_argument(
"--compile",
default=True,
type=(lambda x: str(x).lower() in ["true", "1", "yes"]),
)
parser.add_argument(
"--compile_text_encoder",
default=False,
type=(lambda x: str(x).lower() in ["true", "1", "yes"]),
help=(
"Switch controls whether text_encoder is compiled (default: False). "
"If your CPU is powerful, turning it on will shorten end-to-end time."
),
)
parser.add_argument(
"--graph",
default=True,
type=(lambda x: str(x).lower() in ["true", "1", "yes"]),
)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--warmup", type=int, default=1)
args = parser.parse_args()
return args
args = parse_args()
assert os.path.isfile(
os.path.join(args.model, "calibrate_info.txt")
), f"calibrate_info.txt is required in args.model ({args.model})"
import onediff_quant
from diffusers import StableDiffusionXLPipeline
from onediff_quant.utils import replace_sub_module_with_quantizable_module
onediff_quant.enable_load_quantized_model()
infer_args = {
"prompt": args.prompt,
"height": args.height,
"width": args.width,
"num_inference_steps": args.steps,
}
calibrate_info = {}
with open(os.path.join(args.model, "calibrate_info.txt"), "r") as f:
for line in f.readlines():
line = line.strip()
items = line.split(" ")
calibrate_info[items[0]] = [
float(items[1]),
int(items[2]),
[float(x) for x in items[3].split(",")],
]
pipe = StableDiffusionXLPipeline.from_pretrained(
args.model,
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.to("cuda")
for sub_module_name, sub_calibrate_info in calibrate_info.items():
replace_sub_module_with_quantizable_module(
pipe.unet,
sub_module_name,
sub_calibrate_info,
False,
False,
args.bits,
)
compile_options = OneflowCompileOptions()
compile_options.use_graph = args.graph
if args.compile_text_encoder:
if pipe.text_encoder is not None:
pipe.text_encoder = oneflow_compile(pipe.text_encoder, options=compile_options)
if pipe.text_encoder_2 is not None:
pipe.text_encoder_2 = oneflow_compile(
pipe.text_encoder_2, options=compile_options
)
if args.compile:
pipe.unet = oneflow_compile(pipe.unet, options=compile_options)
pipe.vae.decoder = oneflow_compile(pipe.vae.decoder, options=compile_options)
if args.load_graph:
print("Loading graphs to avoid compilation...")
start_t = time.time()
pipe.unet.load_graph("base_unet_compiled", run_warmup=True)
pipe.vae.decoder.load_graph("base_vae_compiled", run_warmup=True)
end_t = time.time()
print(f"warmup with loading graph elapsed: {end_t - start_t} s")
start_t = time.time()
for _ in range(args.warmup):
torch.manual_seed(args.seed)
image = pipe(**infer_args).images[0]
end_t = time.time()
print(f"warmup with run elapsed: {end_t - start_t} s")
else:
start_t = time.time()
for _ in range(args.warmup):
torch.manual_seed(args.seed)
image = pipe(**infer_args).images[0]
end_t = time.time()
print(f"warmup with run elapsed: {end_t - start_t} s")
start_t = time.time()
torch.manual_seed(args.seed)
torch.cuda.cudart().cudaProfilerStart()
image = pipe(**infer_args).images[0]
torch.cuda.cudart().cudaProfilerStop()
end_t = time.time()
print(f"e2e ({args.steps} steps) elapsed: {end_t - start_t} s")
image.save(args.saved_image)
if args.save_graph:
print("Saving graphs...")
start_t = time.time()
pipe.unet.save_graph("base_unet_compiled")
pipe.vae.decoder.save_graph("base_vae_compiled")
end_t = time.time()
print(f"save graphs elapsed: {end_t - start_t} s")