diff --git a/docs/source/conf.py b/docs/source/conf.py index ac8ecaf5..1016220b 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -57,6 +57,7 @@ "sphinx.ext.viewcode", "sphinxcontrib.mermaid", "numpydoc", + "sphinx_inline_tabs", ] numpydoc_show_class_members = True diff --git a/docs/source/examples/positionswitch.rst b/docs/source/examples/positionswitch.rst index f930d70f..b4e91a30 100644 --- a/docs/source/examples/positionswitch.rst +++ b/docs/source/examples/positionswitch.rst @@ -103,26 +103,37 @@ Single beam position-switched (PS) data is retrieved using :meth:`~dysh.fits.gbt >>> from dysh.fits.gbtfitsload import GBTFITSLoad >>> import astropy.units as u + >>> import wget .. (TODO need to replace fixed path with get_example_data() and explanation thereof):: +Download the data from GBO + +.. code:: python + + >>> filename = wget.download("http://www.gb.nrao.edu/dysh/example_data/onoff-L/data/TGBT21A_501_11.raw.vegas.fits") + >>> print(filename) + TGBT21A_501_11.raw.vegas.fits + +.. note:: + The data used for this tutorial is ~800 MB. Make sure you have enough disk space and bandwidth to download it. + Then load your SDFITS file containing PS data. In this example, we use a `GBT SDFITS file downloadable from GBO `_ .. code:: python - >>> f = 'TGBT21A_501_11.raw.vegas.fits' - >>> sdfits = GBTFITSLoad(f) + >>> sdfits = GBTFITSLoad(filename) The returned `sdfits` can be probed for information .. code:: python >>> sdfits.info() - Filename: /data/gbt/examples/onoff-L/data/TGBT21A_501_11.raw.vegas.fits - No. Name Ver Type Cards Dimensions Format - 0 PRIMARY 1 PrimaryHDU 12 () - 1 SINGLE DISH 1 BinTableHDU 245 6040R x 74C ['32A', '1D', '22A', '1D', '1D', '1D', '32768E', '16A', '6A', '8A', '1D', '1D', '1D', '4A', '1D', '4A', '1D', '1I', '32A', '32A', '1J', '32A', '16A', '1E', '8A', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '8A', '1D', '1D', '12A', '1I', '1I', '1D', '1D', '1I', '1A', '1I', '1I', '16A', '16A', '1J', '1J', '22A', '1D', '1D', '1I', '1A', '1D', '1E', '1D', '1D', '1D', '1D', '1D', '1A', '1A', '8A', '1E', '1E', '16A', '1I', '1I', '1I'] + Filename: TGBT21A_501_11.raw.vegas.fits + No. Name Ver Type Cards Dimensions Format + 0 PRIMARY 1 PrimaryHDU 12 () + 1 SINGLE DISH 1 BinTableHDU 245 6040R x 74C ['32A', '1D', '22A', '1D', '1D', '1D', '32768E', '16A', '6A', '8A', '1D', '1D', '1D', '4A', '1D', '4A', '1D', '1I', '32A', '32A', '1J', '32A', '16A', '1E', '8A', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '8A', '1D', '1D', '12A', '1I', '1I', '1D', '1D', '1I', '1A', '1I', '1I', '16A', '16A', '1J', '1J', '22A', '1D', '1D', '1I', '1A', '1D', '1E', '1D', '1D', '1D', '1D', '1D', '1A', '1A', '8A', '1E', '1E', '16A', '1I', '1I', '1I'] You can also print a concise (or verbose if you choose `verbose=True`) summary :meth:`~dysh.fits.gbtfitsload.GBTFITSLoad.summary` of the data @@ -138,8 +149,6 @@ Retrieve a scan and its partner ON or OFF, selecting an IF number and polarizati .. code:: python >>> psscan = sdfits.getps(152, ifnum=0, plnum=0) - >>> psscan.calibrate() # this will be eventually be subsumed into `calibrate=True` in `getps` - PSSCAN nrows = 302 The system temperature array (`numpy.ndarray`) is stored in `tsys` @@ -148,7 +157,7 @@ The system temperature array (`numpy.ndarray`) is stored in `tsys` >>> print(f"T_sys = {psscan[0].tsys.mean():.2f} K") T_sys = 17.17 K -Then time average the data, using system temperature weighting (other option is 'equal' weighting; 'tsys' is the default if no `weights` parameter is given. Future upgrade will allow the user to provide a numeric weights array). The returned object is :class:`~dysh.spectra.spectrum.Spectrum`, which has a default `matplotlib`-based plotter attached +Then time average the data, using system temperature weighting (other option is 'equal' weighting; 'tsys' is the default if no `weights` parameter is given. (Future upgrades will allow the user to provide a numeric weights array.) The returned object is :class:`~dysh.spectra.spectrum.Spectrum`, which has a default `matplotlib`-based plotter attached .. code:: python @@ -162,7 +171,7 @@ The :meth:`~dysh.spectra.spectrum.Spectrum.plot` command allows changing of axis .. code:: python - >>> ta[0].plot(xaxis_unit="km/s",yaxis_unit="mK",ymin=-100,ymax=500,xmin=3000,xmax=4500) + >>> ta[0].plot(xaxis_unit="km/s", yaxis_unit="mK", ymin=-100, ymax=500, xmin=3000, xmax=4500) .. figure:: img/ps_152_zoom.png :alt: The spectrum plot zoomed in along both axes to frame a central emission line. @@ -175,18 +184,23 @@ The :meth:`~dysh.spectra.spectrum.Spectrum.plot` command allows changing of axis Removing a baseline =================== -Baselines can be removed from :class:`~dysh.spectra.spectrum.Spectrum` with the :meth:`~dysh.spectra.spectrum.Spectrum.baseline` function. Users provide baseline degree and optionally exclude region in any conformable x-axis unit (e.g., frequency, velocity, channel). The default model is polynomial (:class:`~astropy.modeling.polynomial.Polynomial1D`) but a Chebyshev series (:class:`~astropy.modeling.polynomial.Chebyshev1D`) -is also . The baseline is removed if `remove=True`. +Baselines can be removed from :class:`~dysh.spectra.spectrum.Spectrum` with the :meth:`~dysh.spectra.spectrum.Spectrum.baseline` function. +Users provide baseline degree and optionally exclude region in any conformable x-axis unit (e.g., frequency, velocity, channel). +The default model is polynomial (:class:`~astropy.modeling.polynomial.Polynomial1D`) but a Chebyshev series (:class:`~astropy.modeling.polynomial.Chebyshev1D`) is also available. +The baseline is removed if `remove=True`. .. code:: python >>> kms = u.km/u.s - >>> ta.baseline(degree=2, exclude=[3600,4100]*kms, remove=True) + >>> ta[0].baseline(degree=2, exclude=[3600*kms,4100*kms], remove=True) EXCLUDING [Spectral Region, 1 sub-regions: (1401242184.363393 Hz, 1403551474.1090915 Hz) ] - >>> ta.plot(ymin=-200) - >>> print(ta.baseline_model)Model: Polynomial1D + WARNING: The fit may be poorly conditioned + [astropy.modeling.fitting] + >>> ta[0].plot(ymin=-200) + >>> print(ta[0].baseline_model) + Model: Polynomial1D Inputs: ('x',) Outputs: ('y',) Model set size: 1 diff --git a/docs/source/examples/subbeamnod.rst b/docs/source/examples/subbeamnod.rst index 654a0544..969371f7 100644 --- a/docs/source/examples/subbeamnod.rst +++ b/docs/source/examples/subbeamnod.rst @@ -74,4 +74,5 @@ The SubBeamNod scans are 43, 46, and 54. Retrieve and calibrate a SubBeamNod sc .. code:: python >>> sbn = sdfits.subbeamnod(scan=43, fdnum=1, ifnum=0, weights='tsys') - >>> sbn[0].plot() + >>> ta = sbn.timeaverage(weights="tsys") + >>> ta[0].plot() diff --git a/docs/source/examples/totalpower.rst b/docs/source/examples/totalpower.rst index 428ccf2f..c56e0760 100644 --- a/docs/source/examples/totalpower.rst +++ b/docs/source/examples/totalpower.rst @@ -10,27 +10,38 @@ Single beam total power (TP) data is retrieved using :meth:`~dysh.fits.gbtfitslo .. code:: python >>> from dysh.fits.gbtfitsload import GBTFITSLoad + >>> import wget >>> import numpy as np .. (TODO need to replace fixed path with get_example_data() and explanation thereof):: +Download the data from GBO + +.. code:: python + + >>> filename = wget.download("http://www.gb.nrao.edu/dysh/example_data/onoff-L/data/TGBT21A_501_11.raw.vegas.fits") + >>> print(filename) + TGBT21A_501_11.raw.vegas.fits + +.. note:: + The data used for this tutorial is ~800 MB. Make sure you have enough disk space and bandwidth to download it. + Then load your SDFITS file containing TP data. In this example, we use a `GBT SDFITS file downloadable from GBO `_ .. code:: python - >>> f = 'TGBT21A_501_11.raw.vegas.fits' - >>> sdfits = GBTFITSLoad(f) + >>> sdfits = GBTFITSLoad(filename) The returned `sdfits` can be probed for information .. code:: python >>> sdfits.info() - Filename: /data/gbt/examples/onoff-L/data/TGBT21A_501_11.raw.vegas.fits - No. Name Ver Type Cards Dimensions Format - 0 PRIMARY 1 PrimaryHDU 12 () - 1 SINGLE DISH 1 BinTableHDU 245 6040R x 74C ['32A', '1D', '22A', '1D', '1D', '1D', '32768E', '16A', '6A', '8A', '1D', '1D', '1D', '4A', '1D', '4A', '1D', '1I', '32A', '32A', '1J', '32A', '16A', '1E', '8A', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '8A', '1D', '1D', '12A', '1I', '1I', '1D', '1D', '1I', '1A', '1I', '1I', '16A', '16A', '1J', '1J', '22A', '1D', '1D', '1I', '1A', '1D', '1E', '1D', '1D', '1D', '1D', '1D', '1A', '1A', '8A', '1E', '1E', '16A', '1I', '1I', '1I'] + Filename: TGBT21A_501_11.raw.vegas.fits + No. Name Ver Type Cards Dimensions Format + 0 PRIMARY 1 PrimaryHDU 12 () + 1 SINGLE DISH 1 BinTableHDU 245 6040R x 74C ['32A', '1D', '22A', '1D', '1D', '1D', '32768E', '16A', '6A', '8A', '1D', '1D', '1D', '4A', '1D', '4A', '1D', '1I', '32A', '32A', '1J', '32A', '16A', '1E', '8A', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '1D', '8A', '1D', '1D', '12A', '1I', '1I', '1D', '1D', '1I', '1A', '1I', '1I', '16A', '16A', '1J', '1J', '22A', '1D', '1D', '1I', '1A', '1D', '1E', '1D', '1D', '1D', '1D', '1D', '1A', '1A', '8A', '1E', '1E', '16A', '1I', '1I', '1I'] You can also print a concise (or verbose if you choose `verbose=True`) summary :meth:`~dysh.fits.gbtfitsload.GBTFITSLoad.summary` of the data @@ -52,19 +63,19 @@ The `~dysh.spectra.scan.GBTTPScan` contains the individual integrations. The sy .. code:: python >>> print('%s' % (np.array2string(tpscan[0].tsys, precision=2))) - [16.89 16.89 16.94 16.77 16.96 16.94 16.87 16.86 16.92 16.86 16.85 16.97 - 16.79 16.86 16.96 17.02 16.94 16.89 16.87 16.92 16.88 16.86 16.92 17.02 - 16.77 16.8 17. 16.91 16.91 16.86 16.98 16.81 16.88 17.03 16.96 16.95 - 16.8 16.86 16.91 17.02 16.77 17.03 17.03 16.88 16.78 16.88 16.83 16.84 - 16.88 17.03 17.01 16.98 16.99 16.92 16.88 16.74 16.87 16.92 16.81 16.88 - 16.99 16.97 16.92 17.03 16.94 16.84 16.86 17.05 16.87 16.97 16.82 16.83 - 16.98 17.06 17.11 16.98 16.86 17.02 16.88 16.94 16.93 16.98 16.81 16.83 - 16.98 17. 16.87 16.91 16.91 16.93 17. 16.91 17.08 16.85 16.9 16.85 - 16.89 16.95 17.03 16.98 16.9 16.98 16.98 16.93 16.83 17.03 16.97 16.92 - 16.87 16.99 16.87 16.84 16.97 16.84 16.89 16.89 16.98 16.89 16.81 16.76 - 16.94 16.95 16.89 16.87 16.94 16.91 17.1 16.91 16.84 16.84 16.88 16.95 - 17.04 16.88 16.9 17.03 16.9 16.84 16.99 16.95 16.94 17.02 17.01 16.91 - 16.95 16.91 16.92 17.08 16.67 17.06 17.14] + [17.46 17.47 17.51 17.48 17.27 17.24 17.43 17.51 17.36 17.41 17.27 17.36 + 17.28 17.31 17.15 17. 17.54 17.21 17.4 17.38 17.49 17.43 17.15 17.2 + 17.45 17.15 17.31 17.31 17.1 17.48 17.29 17.24 17.52 17.31 17.19 17.1 + 17.35 17.14 17.38 17.48 17.22 17.5 17.33 17.27 17.41 17.2 17.48 17.21 + 17.37 17.47 17.25 17.18 17.25 17.17 17.14 17.36 17.25 17.28 17.25 17.19 + 17.36 17.14 17.48 17.17 17.36 17.43 17.51 17.38 17.29 17.19 17.4 17.63 + 17.36 17.27 17.19 17.45 17.39 17.48 17.24 17.31 17.13 17.22 17.24 17.42 + 17.1 17.5 17.38 17.24 17.42 17.32 17.27 17.35 17.29 17.49 17.4 17.18 + 17.18 17.28 17.26 17.48 17.38 17.35 17.28 17.25 17.28 17.39 17.25 17.24 + 17.08 17.28 17.28 17.36 17.53 17.38 17.34 17.48 17.43 17.49 17.29 17.44 + 17.32 17.5 17.11 17.38 17.24 17.2 17.37 17.21 17.19 17.32 17.01 17.48 + 17.34 17.35 17.5 17.01 17.44 17.45 17.4 17.38 17.18 17.44 17.22 17.25 + 17.28 17.19 17.38 17.34 17.3 17.26 17.37] You can time-average the data, in this example with equal weighting per integration, and plot it diff --git a/docs/source/for_beta_testers/beta_testing.rst b/docs/source/for_beta_testers/beta_testing.rst index 0e520d00..e7138af3 100644 --- a/docs/source/for_beta_testers/beta_testing.rst +++ b/docs/source/for_beta_testers/beta_testing.rst @@ -38,4 +38,53 @@ Example feedback Here are examples of feedback on GitHub * reporting an issue, `Issue #88 `_ -* requesting a modification, `Issue #78, `_ +* requesting a modification, `Issue #78 `_ + + +Installing `dysh` +================= + +Here we provide additional installation steps that include creating a virtual environment to keep `dysh` isolated from your system `Python` version. +We provide steps for working in one of `GBO data reduction hosts `_ (e.g., fourier), and if you're working outside one of the GBO data reduction hosts. + +.. tab:: At GBO + + Create a `Python3.11` virtual environment + + .. code:: bash + + /users/gbosdd/python/bin/python3.11 -m venv /home/scratch/$USER/dysh-0.2-env + + Activate your virtual environment + + .. code:: bash + + source /home/scratch/$USER/dysh-0.2-env/bin/activate + + Install `dysh` and Jupyter Lab + + .. code:: bash + + pip install jupyterlab dysh==0.2.0b + +.. tab:: Outside of GBO + + Create a `Python3.9+` virtual environment + + .. code:: bash + + python3 -m venv /path/to/venv + + Activate your virtual environment + + .. code:: bash + + source /path/to/venv/bin/activate + + Install `dysh` and Jupyter Lab + + .. code:: bash + + pip install jupyterlab dysh==0.2.0b + +In the future we will provide `dysh` executables at GBO. diff --git a/docs/source/getting_started/tutorials/GBT/tutorial-positionswitch.rst b/docs/source/getting_started/tutorials/GBT/tutorial-positionswitch.rst index e5a773bb..054d4056 100644 --- a/docs/source/getting_started/tutorials/GBT/tutorial-positionswitch.rst +++ b/docs/source/getting_started/tutorials/GBT/tutorial-positionswitch.rst @@ -82,7 +82,6 @@ The following lines will let you calibrate and time average the position switche .. code:: python >>> psscan = sdfits.getps(152, ifnum=0, plnum=0) - >>> psscan.calibrate() >>> ta = psscan.timeaverage(weights='tsys') Plotting the calibrated data @@ -90,7 +89,7 @@ Plotting the calibrated data .. code:: python - >>> ta[0].plot(xaxis_unit="km/s",yaxis_unit="mK",ymin=-100,ymax=500,xmin=3000,xmax=4500) + >>> ta[0].plot(xaxis_unit="km/s", yaxis_unit="mK", ymin=-100, ymax=500, xmin=3000, xmax=4500) .. figure:: img/ps_152_zoom.png :alt: The spectrum plot zoomed in along both axes to frame a central emission line. diff --git a/pyproject.toml b/pyproject.toml index 2db9ec60..858c164f 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -31,6 +31,7 @@ dependencies = [ "specutils", "sphinx", "myst-parser", + "sphinx-inline-tabs", "ipython", "wget" ]