From e4dac9b154b5c0dc7776b5b8a6977292e0c548b2 Mon Sep 17 00:00:00 2001
From: Marc Pound <22331890+mpound@users.noreply.github.com>
Date: Tue, 21 Nov 2023 13:54:40 -0500
Subject: [PATCH 1/2] Update subbeamnod.ipynb
typo in URL for example data.
---
notebooks/examples/subbeamnod.ipynb | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/notebooks/examples/subbeamnod.ipynb b/notebooks/examples/subbeamnod.ipynb
index 47a747c0..d70e84c3 100644
--- a/notebooks/examples/subbeamnod.ipynb
+++ b/notebooks/examples/subbeamnod.ipynb
@@ -35,7 +35,7 @@
"id": "a62b09df-8cdb-44c5-85d3-d93078e8603b",
"metadata": {},
"source": [
- "Then load your SDFITS file containing SubBeamNod data. In this example, we use a GBT SDFITS file downloadable from GBO http://www.gb.nrao.edu/dysh/example_datasubbeamnod-Ka/data/TRCO_230413_Ka.raw.vegas/TRCO_230413_Ka.raw.vegas.A.fits"
+ "Then load your SDFITS file containing SubBeamNod data. In this example, we use a GBT SDFITS file downloadable from GBO http://www.gb.nrao.edu/dysh/example_data/subbeamnod-Ka/data/TRCO_230413_Ka.raw.vegas/TRCO_230413_Ka.raw.vegas.A.fits"
]
},
{
From 1811a4b15cc553470c7b72c0a1726f54963f496e Mon Sep 17 00:00:00 2001
From: Marc Pound <22331890+mpound@users.noreply.github.com>
Date: Tue, 21 Nov 2023 17:21:07 -0500
Subject: [PATCH 2/2] patching subbeamnod
---
notebooks/examples/positionswitch.ipynb | 291 +-----
notebooks/examples/subbeamnod.ipynb | 1125 +++++++----------------
src/dysh/spectra/core.py | 15 +-
src/dysh/spectra/scan.py | 24 +-
4 files changed, 396 insertions(+), 1059 deletions(-)
diff --git a/notebooks/examples/positionswitch.ipynb b/notebooks/examples/positionswitch.ipynb
index 2de2217c..8ab1e773 100644
--- a/notebooks/examples/positionswitch.ipynb
+++ b/notebooks/examples/positionswitch.ipynb
@@ -8,12 +8,13 @@
"# Position-switched Data Reduction\n",
"----------------------------------\n",
"\n",
- "This notebook shows how to use `dysh` to calibrate an OnOff observation."
+ "This notebook shows how to use `dysh` to calibrate an OnOff observation.\n",
+ "It retrieves and calibrates position-switch scans using `GBTFITSLoad.getps()`, which returns a `ScanBlock` object. OffOn observations can be reduced the same way."
]
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 3,
"id": "b4967550-2ca1-4931-b53b-6f9868718490",
"metadata": {
"editable": true,
@@ -26,16 +27,23 @@
},
"outputs": [],
"source": [
+ "import os\n",
"import wget\n",
- "\n",
"import astropy.units as u\n",
- "\n",
"from dysh.fits.gbtfitsload import GBTFITSLoad"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "87669763-8d96-4521-9e81-f69d7213e133",
+ "metadata": {},
+ "source": [
+ "## First, we download the example SDFITS data, if necessary.\n"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 4,
"id": "6bc88bc5-986d-4eae-b1c7-6398cc9ddd5a",
"metadata": {
"editable": true,
@@ -51,65 +59,24 @@
"name": "stdout",
"output_type": "stream",
"text": [
- " 29% [.................... ] 235528192 / 795479040"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "IOPub data rate exceeded.\n",
- "The Jupyter server will temporarily stop sending output\n",
- "to the client in order to avoid crashing it.\n",
- "To change this limit, set the config variable\n",
- "`--ServerApp.iopub_data_rate_limit`.\n",
- "\n",
- "Current values:\n",
- "ServerApp.iopub_data_rate_limit=1000000.0 (bytes/sec)\n",
- "ServerApp.rate_limit_window=3.0 (secs)\n",
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- " 81% [........................................................ ] 645423104 / 795479040"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "IOPub data rate exceeded.\n",
- "The Jupyter server will temporarily stop sending output\n",
- "to the client in order to avoid crashing it.\n",
- "To change this limit, set the config variable\n",
- "`--ServerApp.iopub_data_rate_limit`.\n",
- "\n",
- "Current values:\n",
- "ServerApp.iopub_data_rate_limit=1000000.0 (bytes/sec)\n",
- "ServerApp.rate_limit_window=3.0 (secs)\n",
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "100% [......................................................................] 795479040 / 795479040TGBT21A_501_11.raw.vegas.fits\n"
+ "TGBT21A_501_11.raw.vegas.fits already downloaded\n"
]
}
],
"source": [
- "url = \"http://www.gb.nrao.edu/dysh/example_data/onoff-L/data/TGBT21A_501_11.raw.vegas.fits\"\n",
- "filename = wget.download(url)\n",
- "print(filename)"
+ "filename = \"TGBT21A_501_11.raw.vegas.fits\"\n",
+ "if not os.path.isfile(filename):\n",
+ " url = f\"http://www.gb.nrao.edu/dysh/example_data/onoff-L/data/{filename}\"\n",
+ " print(f\"Downloading {filename}\")\n",
+ " wget.download(url,out=filename)\n",
+ " print(f\"\\nRetrieved {filename}\")\n",
+ "else:\n",
+ " print(f\"{filename} already downloaded\")"
]
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 5,
"id": "93a62e3a-c95d-475b-8602-b5b8b7934733",
"metadata": {
"editable": true,
@@ -133,14 +100,13 @@
}
],
"source": [
- "#f = '/data/gbt/examples/onoff-L/data/TGBT21A_501_11.raw.vegas.fits'\n",
"sdfits = GBTFITSLoad(filename)\n",
"sdfits.info()"
]
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 9,
"id": "5578549d-7f9c-4abd-a1d3-c69f03187ec6",
"metadata": {
"editable": true,
@@ -153,100 +119,20 @@
},
"outputs": [
{
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " SCAN | \n",
- " OBJECT | \n",
- " VELOCITY | \n",
- " PROC | \n",
- " PROCSEQN | \n",
- " RESTFREQ | \n",
- " DOPFREQ | \n",
- " # IF | \n",
- " # POL | \n",
- " # INT | \n",
- " # FEED | \n",
- " AZIMUTH | \n",
- " ELEVATIO | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 152 | \n",
- " NGC2415 | \n",
- " 3784.0 | \n",
- " OnOff | \n",
- " 1 | \n",
- " 1.617185 | \n",
- " 1.420406 | \n",
- " 5 | \n",
- " 2 | \n",
- " 151 | \n",
- " 1 | \n",
- " 286.218008 | \n",
- " 41.62843 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 153 | \n",
- " NGC2415 | \n",
- " 3784.0 | \n",
- " OnOff | \n",
- " 2 | \n",
- " 1.617185 | \n",
- " 1.420406 | \n",
- " 5 | \n",
- " 2 | \n",
- " 151 | \n",
- " 1 | \n",
- " 286.886521 | \n",
- " 41.118134 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " SCAN OBJECT VELOCITY PROC PROCSEQN RESTFREQ DOPFREQ # IF # POL \\\n",
- "0 152 NGC2415 3784.0 OnOff 1 1.617185 1.420406 5 2 \n",
- "1 153 NGC2415 3784.0 OnOff 2 1.617185 1.420406 5 2 \n",
- "\n",
- " # INT # FEED AZIMUTH ELEVATIO \n",
- "0 151 1 286.218008 41.62843 \n",
- "1 151 1 286.886521 41.118134 "
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
}
],
"source": [
- "sdfits.summary()"
+ "print(sdfits.summary())"
]
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"id": "684126da-97d4-4afb-8625-43160340cab1",
"metadata": {
"editable": true,
@@ -258,16 +144,7 @@
"test"
]
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "FILE TGBT21A_501_11.raw.vegas.fits\n",
- "FILE TGBT21A_501_11.raw.vegas.fits\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"psscan = sdfits.getps(152, ifnum=0, plnum=0)\n",
"psscan.calibrate()"
@@ -275,7 +152,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"id": "5deaae0c-e70b-4758-ae10-f11c6f66cc3b",
"metadata": {
"editable": true,
@@ -287,22 +164,14 @@
"test"
]
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "T_sys = 17.17\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"print(f\"T_sys = {psscan[0].tsys.mean():.2f}\")"
]
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"id": "e0a33c19-576b-46e8-9a57-f34b8f85f6aa",
"metadata": {
"editable": true,
@@ -314,18 +183,7 @@
"test"
]
},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGsCAYAAAAytsZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHUUlEQVR4nO3deVhUZf8G8HsYYFhnkEUWGUDAXVTcUHPBFdRMM83MUtPstVcrsyztza0sWizLLLVFLX9lbqlt7iluiKLiLgqigAgiyC4DzJzfH+TIyCLLDDPjuT/XNdfFmXPmnO88M5xzz3M2iSAIAoiIiIhEwsLYBRARERE1JIYfIiIiEhWGHyIiIhIVhh8iIiISFYYfIiIiEhWGHyIiIhIVhh8iIiISFYYfIiIiEhVLYxfQEDQaDVJTU+Ho6AiJRGLscoiIiKgGBEFAXl4evLy8YGGhv/4aUYSf1NRUKJVKY5dBREREdZCcnAxvb2+9zU8U4cfR0RFAWePJ5XKdcbm5uVAqlZWOI8Nj+xsX29/4+BkYF9vfuB7W/vfG39uO64sows+9XV1yubzKL3d148jw2P7GxfY3Pn4GxsX2N66Htb++D1nhAc9EREQkKgw/REREJCqiDz8ymQzz58+HTCYzdimixPY3Lra/8fEzMC62v3EZq/0lgiAIDbpEI8jNzYVCoUBOTg736RIREZkJQ22/Rd/zQ0REROLC8ENERESiwvBDREREosLwQ0RERKLC8ENERESiwvBDREREosLwQ0RERKLC8ENERESiwvBDAIAjCbfx1d4ryCooNnYpREREBiWKu7pT9XLuluDZ76IBAKdTcvD9hM5GroiIiMhw2PNDuJqRr/17z8V0I1ZCRERkeAw/REREJCpmG36WL1+Odu3aQS6XQy6Xo3v37ti+fbuxyyIiIiITZ7bhx9vbGx999BFOnDiBmJgY9OvXD8OHD8f58+eNXRoRERGZMLM94HnYsGE6wx988AGWL1+Oo0ePok2bNkaqioiIiEyd2Yaf8tRqNTZu3IiCggJ07969yulyc3N1hmUyGWQymaHLIyIiohpQqVRQqVTa4Qe32/pitru9AODs2bNwcHCATCbD1KlTsWXLFrRu3brK6ZVKJRQKhfYRERHRgNUSERFRdSIiInS200ql0iDLkQiCIBhkzg2guLgYSUlJyMnJwaZNm/D9998jMjKyQgDKzc2FQqFAcnIy5HK59nn2/JQ5lXQHT35zRDt87aOhRqyGiIjEqrKeH6VSiZycHJ3td32Z9W4va2trBAYGAgA6deqE48eP48svv8TKlSsrnf7emWFERERkehqqU8Ksd3s9SKPR6CRGIiIiogeZbc/PnDlzMHjwYPj4+CAvLw+//PIL9u/fj507dxq7NCIiIjJhZht+bt26hfHjx+PmzZtQKBRo164ddu7ciYEDBxq7NCIiIjJhZht+fvjhB2OXQERERGbokTrmh4iIiOhhGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH4IEonE2CUQERE1GIYfIiIiEhWGHyIiIhIVhh8iIiISFbMNPxEREejSpQscHR3RuHFjjBgxAnFxccYui4iIiEyc2YafyMhITJs2DUePHsXu3btRUlKCQYMGoaCgwNilERERkQmzNHYBdbVjxw6d4TVr1qBx48Y4ceIEevfubaSqiIiIyNSZbc/Pg3JycgAAzs7ORq6EiIiITJnZ9vyUp9FoMGPGDDz22GNo27ZtldPl5ubqDMtkMshkMkOXR0RERDWgUqmgUqm0ww9ut/Xlkej5mTZtGs6dO4dff/212umUSiUUCoX2ERER0UAVEhER0cNERETobKeVSqVBlmP2PT/Tp0/Hn3/+iQMHDsDb27vaaZOTkyGXy7XD7PUhIiIyHXPmzMHMmTO1w7m5uQYJQGYbfgRBwCuvvIItW7Zg//79aNq06UNfI5fLdcIPERERmY6GOhzFbMPPtGnT8Msvv2Dbtm1wdHREWloaAEChUMDW1tbI1REREZGpMttjfpYvX46cnByEhobC09NT+1i/fr2xSyMiIiITZrY9P4IgGLsEIiIiMkNm2/NDREREVBcMP0RERCQqDD9EREQkKgw/REREJCoMP0RERCQqDD9EREQkKgw/REREJCoMP0RERCQqDD9EREQkKgw/REREJCoMP0RERCQqDD9EREQkKgw/REREJCoMP0RERCQqDD9EREQkKgw/REREJCoMP0RERCQqDD9EREQkKgw/REREJCoMP0RERCQqDD9EREQkKgw/BEEQjF0CERFRg2H4ISIiIlFh+CEiIiJRYfghIiIiUWH4ISIiIlFh+CEiIiJRYfghIiIiUWH4ISIiIlFh+CEiIiJRYfghIiIiUWH4ISIiIlFh+CFIJBJjl0BERNRgGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFTMNvwcOHAAw4YNg5eXFyQSCbZu3WrskoiIiMgMmG34KSgoQPv27fH1118buxQiIiIyI5bGLqCuBg8ejMGDBxu7DCIiIjIzZtvzQ0RERFQXZtvzUxe5ubk6wzKZDDKZzEjVEBERUXkqlQoqlUo7/OB2W19E1fOjVCqhUCi0j4iICGOXRERERP+KiIjQ2U4rlUqDLEdUPT/JycmQy+XaYfb6EBERmY45c+Zg5syZ2uHc3FyDBCBRhR+5XK4TfoiIiMh0NNThKGYbfvLz8xEfH68dTkxMRGxsLJydneHj42PEyoiIiMiUme0xPzExMQgODkZwcDAAYObMmQgODsa8efOMXBkREZW39dQNTFh1DCeT7hi7FCIAZtzzExoaCkEQjF0GERFVQxAEzFgfCwCIvJyBax8NNW5BRDDjnh8iIiKiumD4ISIiIlFh+CEiIiJRYfghIiIiUWH4ISIiIlFh+CEiIiJRYfghIiIiUWH4ISIiIlFh+CEiIiJRYfghIjJBgiDgxPU7iL+Vb+xSiB45DD9ERCbowJXbeGr5EQz4PBI3su8auxyiRwrDDxGRCXr5/05o/172zxUjVkL06GH4ISIycbyHMzUEQRBwt1ht7DIaBMMPkYidu5GDjTHJKCoRxwrPnEiMXQCJilojYPjXh9Fp0W4cvZpp7HIMjuGHSKRyCkvw+FeHMGvTGSzZc9nY5VA12PNDhrbrfBrOpOSgsFiNZ749auxyDI7hh0ikohPv/7pbGXnViJVQZSQS9v0YWolag8jLGcgpLDF2KUaXfVdcbcDwQyRS7EwwHwI/LYP4ePslTFh1DM98dxSCyLvXxPb2GX6IREpsKztzw34fw/v+UCIA4OLNXBSVaIxcDTUkhh8iIhPHoGp4Yt/LKLbeRYYfIpG6U1hs7BL0rkBVauwS9EfkG2NqWGIL2JbGLoCIjCPlTqGxS6izE9ezsONcGoK8nZCeU4RRnbyx+WQKPvz7IsZ29cEHTwYZu0S9MuftkrlsVM2lTkMR29tn+CEis/PU8iid4Q/+vqj9++foJHzwZBAitl/EPxdvIWJkEDr7OTd0ifXGjp+GVaLRYM/pdDRpZIuOPo2MXQ4ZGHd7NbAStQarDiViQ0xytWcXLN17BaNXHMH51Jw6L0ujEUR/BkNN/XMpHUOXHsQv0UnGLuWRUKLW4Ep6Xp2+fwt+P4+wJQdwJiW7zsvfd+kWVkZexZVb+Ri1IurhLwCgKlXj+4NXsflESp2Xayj8Nza8n48m4ZV1pzDymyNIzjLfXtE6E9mXjOGnga2Nuo73/ryAtzadwYErtyudJjmrEJ/vvozj1+5gzMq6XWwqOasQvT/dhyFLD1V6uXJBELBk92W8/+eFel3OPPpqJmb8egonrmfVeR4AUFyqwRsbTmP6LyeNctzGpDUxOJ+ai3e2nNXL/ARBwO18lV7mZU7yikqQma/C2G+PYuCSA/h6XzyAsvbYGJOM1YcTUaKu+qyay+l5WHPkGuLS86oMLcWlDz8r54U1xys8dzUjH7+fTq3yatarD1/Dor8u4o2NpxGVkKl9zRsbTmP72ZuVviYuLU+vNx09n5qDp1dE4au9V3Su87P5ZMVAdjUjH5/visPl9Dy9Lb86BarSKsOsIAhIyMiHWmO+G9CPd1zS/r3l1A0jVmIcqhr8Xz1KGH4a2Df747V///bvCu1WbhFu5RVpV8q38u5vNPOrCQIajYBbeUUAylY+5VdMszadRsqdu7h4Mxet5u2osPLeFpuKL/dewQ+HErHwj/M646raON3MuYv/bTmLbbH3Vwxjvj2KrbGpeGp5FH48cg3TfjlZ419N2YXF+OFQIs7dyMHqw4nYfDIFf565ic926V5t+G6xGjvOpSH6aiYOXsmApooVbL6qFKsOJeJIQuWhsjY0GgGH428jLaeo0vGCIKCwWPezychTYdWhRCTeLsCbG8+g86I9+Gpv5TekvJSWixPXs3Q+M0EQMHzZIXR4bxcOXsnQmb5ErUFRiRqCIOB6ZkGlG6HtZ2/Cb/Zf8Jv9V4XazqfmYMzKKKyITABQtuFc8cCFDTfGJONOQd0Pgv505yUELdiFTov2IOb6HQDA4n8/y8jLGZi16QwW/nEB647d711TawREX83EllMpKFCV4na5735VISc2ObvWtfnN/gv9PovEq+tO4cUfY1Cq1mDfpVs6xz0tLfdZ3fuOP/d9NDafTMHLP5+s8CMhKiETYV8cQOin+5CeW/F7IggCFvx+Hi/+GKP9P32YMSuP4ti1LHy2+zJyHrjo3Nqj1yEIAk4nZ+N2vgqjVkRh6T/xGPzlQe3yohIycTUjX+d1d4vVWBGZgN9Pp9aohi2nUvD+nxeQWS68bz97E8Hv7cb4Vccqfc3iXXHo/1kk/rP2BDQaAQv/OI9X151CtpkeVG+OnSCHrtzGysgE5BbV/GKF/1xKR+9P9uGLPZex+vA1wxVngnjMjxFti01FJ99GmLftfviY+3hrNHaU6Ux3PbMAvi72Os8Vlagxac1xHEnIhHcjWwCAg8wSG6Z2h9zGCpfSdH8NvvzzSVz9cAgsLMp+Tc7dek477sFpO76/Gx2UTvhpUlfkFpXiTEo2uvm7YPovp3Di+h38HJ2Ebv4ucJfb6Lxu/u9l7+NqRgG2v9YLQFnAWRF5Fa295HiivZfO9G9vPoOd59MrtMu+uFuYN6y1dvh/W8/it5P3A9cXYzpgRHATAGUbT+m/7+nj7Zew9uh1AMCxd/pjf1wGtpy6gVf7N0M3f+cKV8zN//eXrKONlc7zJWoNfj56HQv+uAALCfD79J5o20QBQRBw7kYu/N3sMWHVMcRcv4OFT7TBhB5+AICp/3cCJ67fwac743D33yD72e7LSLlzF43lMswc2BwSiQTXMwsQ/kXZBmvt5K7o1cwNAPDpzjicTinbzfn8D8cwLsQHA1q7I6iJAsO+OoSiEjVkllKk5RahVzNXfD2uI+Tlan/555PavyevicHPL4ZoP++nV0ShoFiN6MQsBLg5YMpPMRXafdamM2jtKcd/+wYgu7AEIU2doRGAZ787ihkDmmFciC+iE7Pg5WSD5Ky7CPF3hqWFBIfjM+HrYoev9yVUmCcAJGTkY0NMsnZ43rbzGNjaHZfT8zGh3MZ0dKdMjOzorfPaOwXF+PNMKqwtLdDc3RFPfnOk0mXUxqH42xjweSSuZZYFn2/GdUS/lo11ei0kEgn2x91CarnwO//3c/hkVHsAZT1UY78r65UtUQv4ZEccwtt6oI2XHJ4KG0gkEuw8n4Y1R64BAITNAlY+3wkCgBPX76CTbyMkZRVi/rbzsJJK8OXYYMhtrKr9sTN36znYW0sxc8NpONlZIfvfqxKrNQKOxN9GQkY+5v67Lnmqozc+eLItbKyk+GZ/PL76p+xH17kbOXhnSCsAQKlaA1WpBvayss2AIAi4ersAr68/DQC4cecuFg5vgwupudrv1sErt/Hc99FYPLo9PBT3///vffZ7Lqbj99Op2g2pldQCn45qV+V7KiwuxenkHAT7OCEqIRNNXe3hobCBjZW00umPxN/GtwevYlyILxxkllh9OBHjuvmiT3O3Sqe/9z/b3MMBMsvK51kZzQPpJ6+oBJ/ujENjRxmm9Q2s9OrbxaUaRF3NxL5Lt3AsMQv/6eOPYGUj+LjY1Xi5NaUqVaNULWg/u1t5RXjuh2gAQFx6Hp7r5ovWnnKddlRrBGQVFMOt3PZl0pqy9cAXeyr/kfYokwgiOCgkNzcXCoUCOTk5kMvlRqtDEAQ0nfN3nV67aERb7LqQjkGt3dHOW4Enlh2udLrezd3w06Su8Jv9V5XjH2/nibc2nXnoMhW2Vtpfn0919Nbpeu/a1Bl21lLsj8uo9LXXPhqKqIRM7QbinsfbeWLRiLZYffgavqyiVwQAfp/+GP635RzO3qj8mKf4Dwbjq3/i8cOhRIwL8cGcIa2qfM8A0M3fGT9NCoG1pQW+2nsFn+2+37t08K2+6PXJvipfCwCv9AuEldQCn++ueA+sZc8G4/F2XtUu/56Xevvj2wO6PS7PdfPBohFBNXr9g/55ow/83RwAoMLrn+7sjZ7N3CCztMB/1p6o9bwf1MLdEXHldrFM7tkUao2g3cDrw/qXumGMEe4rJJHU7Ne+n4udNjRVRWZpgQ+eDMKbG0/XePkTe/jhzbAWaDt/Z41fUxMdfZxwMilb5zlrqQWGd/DCjvNpyCsqxc8vhqCjTyO0mrejwuvdHGXIyKu4+7azbyNserkHNBoBpRoBzd/drh03LsQHP/977JzM0gIX3wuH/zv313uLR7fH3RI1hnfwwpNfH0ZCRoHOvB1llnilfyB2nk/Hy30CMKC1OwqLS2FnbVnl/8i1j4Yip7AEa49ew2+nbqCrnzPeH9EWM36NxV9nb6KlhyOWjg3GL9FJGNDKHa295HC2t65yfrZWUu0PmH/e6IPvDl7FumNlAf778Z0xoLW7zvRJmYV47odoJFXS673r9d5o7u6IlDuFWBt1HV5OttofTOVlFxYjq6AY22JT8cuxJPi72uM/ffzRt0Vj5KlKEZWQiV7NXKEq0WDgkkgUlWiw5b89kJJ9F1czCvD+nxd05tcz0BX/92II9sXdwreRVxF1NRMWEuCLZ4K1P0SrW+eM7uSNsSE+Rj/421Dbb4afBnA9swBnUnJgL5Nqk/ajbvfrvTFwyQFjl1FBEydbvR6joS8/Tuqq0wtSG+28FfjwySA8/tUhPVdFVH+fP90eMzfUPAhWJcDNvkJQumdsVx+d3akA4O9qj6u3K5++Pro2dcZ7w9vg6L/HhY3urETnRXu0YakyB2b1Re9P7//Aav9vz3pUQibOpGTjm/2V95rW15UPBqPZ/7ZXeP6J9l44kpBZo+MSr3001BCl1RjDTz0YM/yoStVot2CX6A4mIyKiR8MvL4age4CLUW62a6jtNw94NrC4tDwGHyIiMlvPfh+NlQ/srjd3DD8GpNYIejnWgoiIyJg+2n7p4ROZEYYfA0nKLETAO3/jZhWnShMREZmTH/V4coOxMfwYQHGpRufgNiIiInM3//fzVV5nzdww/OhJiVqDdceSsOPcTTz3fbSxyyEiItI7/3f+xvhVxyAIAnKLSqDWCCgqUWPPhXRk1eMiqQ2NFzmsp7yiEuy+kI7L6fnaq+cSERE9qg5czqj0mnUt3B2xY0Yvo5wVVlsMP/X0zpZz+KOGl40nIiJ6VMWl50EjAFLTzz7c7VVfDD5ERETmhT0/9aAqrfvd0Imo/iZ094XC1gq21pbo29JNe880IjKOsusmm37XT53DT0lJCdLS0lBYWAg3Nzc4Ozvrsy6z8KUIbwZHZEo6+jbC8A5NjF0GEf3LXM4Fq9Vur7y8PCxfvhx9+vSBXC6Hn58fWrVqBTc3N/j6+mLKlCk4fvy4oWqt1Ndffw0/Pz/Y2NggJCQEx47V7f5IdWGo+7EQ0cON7NgEw9p56TzXxc+4N2EkIvNQ4/Dz+eefw8/PD6tXr8aAAQOwdetWxMbG4vLly4iKisL8+fNRWlqKQYMGITw8HFeuGL5XZP369Zg5cybmz5+PkydPon379ggLC8OtW7cMvmwiMp49M/vg86c7wMJCt3t92bMdjVQREQFAqdo8+n5qHH6OHz+OAwcO4NixY5g7dy7CwsIQFBSEwMBAdO3aFZMmTcLq1atx8+ZNjBgxAgcPGn7f++eff44pU6bghRdeQOvWrbFixQrY2dlh1apVBl+2vj3V0bvBluVib12j6RS2Vng7vGWF598Y2Byn5w3CrLAW+GZc3TY2/m72D53GxqrmHZP/6eOPZc8Ga4c7+jjh0Nt90ayxQ53qq8y1j4Zi88vdMaKD18MnrqE/X+mJhA+H4JcpITXqtdj7Rh+d4XeGtISrg0xv9dzz/oi2eKm3P94f3kbn+Y1Tu+P0vEFIjBiCxo73l/tSb39c+2goDs/uh5HBTTCxhx82v9wdz4b41HrZvZq54s1Bzascv+aFLgis4nN1l9vg0vvhCG/jofN8v5aNAQB+LnZY8VzDBKSTcwfi2kdD8Uq/QO1z9/73BrZ2x9KxwVW91KBe6u0PV4eHrwPaeDXcTaAHtnZvsGWRYZVqzONelnq/q3t+fj4cHPS3walKcXEx7OzssGnTJowYMUL7/IQJE5CdnY1t27Zpn7t3V9jk5GSdu8LKZDLIZHXfcPjN/qvOry3PzVGGaaEBWPDHBe1zj7fzxJ9nbmqH23srEDGyHYYsrT5Udm3qjLScIiRlFeo8/97wNlj010X0DHTFd+M749V1p/DX2ZuVzuOjkUG4lafCC4/5wdHGCoIg4GZOEVLu3EVgYwc4PxCeMvJU2BCTjMcCXdHGS47b+Sp0j/inyhoXPtEGYW08sO5YElYdTsSQtp5YH5MMAGjiZAtVqQbd/J3x0VPtoNYIeO+PC9h8MgXNGjvgyq187Xy+GhsMtUZAsVqDUR29YWEhQXJWIY4lZiGsrQccZJYoLtWg/+f7kZx1V/u6z0a3xxsbT1fbjpW59tFQneGiEjVsrKRIzy1C/88ika8q1Y4bGdwEHXycMG/beQBlG5yNMcmQWljg8XaeyL1bgv/2DUBgY0edeWo0Ar4/dBU/HrmOtwe3xMBW7hj73VFcSc/D8uc6oXdzN0z75ST+OnMTb4e3xMuhAcjIU2HBH+cRGZeBl0MDMKWXP6wtLVBYXIqEWwW4mXMX/Vu5Iy23CGNWRiHlzl1U5unO3tgQk4KXevvjnSGttM/nFZUgu7AELg7WsLO+f5igIAjYH5cBVakG/Vs1hpW08rCaW1SC2KRsLPj9PJKyCvHdhM54YXXF3eNNnGzRu7kr3hjUAq4OMoxafgQx1+9oxz/ezhNPd1aiVzPXGl1H5Ep6Hj78+yJ6NnPD5J5Ntc/fKShG8Pu7AQCONpY4OXcg1BoBFhIJVh9ORHquCqsOJ1Y539GdvLHxRIp2eHgHL2yLLTvrU2ohQWNHGXbM6A2FrVWF1xaoShGdmIlu/i6ws7bE1lM3MGN9rHb8tY+G1mi9sv/NUIQu3q8d/vWlbnjm26MAgGXPBqOwWI3vDlzFsyE+GNNFidbzdgIAuvo5Y8PU7si5W4I3NsTiSEImAhs74ExKToVlXPtoKH6Kuoav/onH2C5KvNQnAIkZBTifmoPZv519aI1VOfHuAExcfRxnb+To1FSb9enVD4fA/52K15l5GH83e3wxpgOeWHYYg1q7Y9eFdO249S91w5h/23BEBy+08pQj4t/7Wc0f1hp9WzTGM98eRVpu3W5ZFDkrFH0+3a/z3NiuSrwzpBXulqhx9GoW/rmYjq2xqXCQWWrXJ72aueLgldva17T2lMNeJkV7byd8f+j+93TX673h5iDDzZwiZN8thq2VFJ/siEPU1UwAQDtvBb4aG4zxq47hembZ9uHLZzogI0+F8d390Pzd7XV6Xw+KnTcQTnY1+4FdGZVKBZVKpR3Ozc2FUqnU+13daxV+lixZgtdff73K8Xl5eQgPD8fhw4f1Ulx1UlNT0aRJExw5cgTdu3fXPv/WW28hMjIS0dH3r7J8L/w8aP78+ViwYEGda9BX+Bka5IlBbdzx2q+xAMp6PC4sDMfao9exLfYGWnjI8Uq/QHg52aKoRI31x5OhdLZFJx9n/H3uJrr7u8DP1R53CorhZGcFVakGO8+noYmTLY5ezUQbLwX6tmwMVakaMkupdrkajYBSjYBdF9Iw/ZdT2ucf3MjXxeKdcVi2Lx7PdfNBWBsPPP9D2bFYp+YORKNy4UkQBEgkEhxJuI2iEjX6tmhc7YYt524JrqTnoW0TBWyspFVOV96dgmL85/9OwNZKipXPd4LM0gKv/RqLk0l3sGRMB7T3doK1pQUupeXiue+jcTu/GI0dZdg9sw++2R+PlZFX8VigC35+sVuVy9BoBKw7noQzyTkY180H7bydqpzuwV01dXGv3eriVl4R/jx9Ew42lnhr0xnt8/r43KtTqtYgt6gUzvbWOv87Yzor0bWpM0YEN4G0XNvcKSjGqBVHIADYNLVHhdBdH/939Dr+uXQLb4W3QEuPiivU8vVd+2goPvjrAk4n5+DDkUHYczFd5yaPp+YOxCc7L8HXxR5T+wTUqo7Kws/VjHws3XsFW2MrXkZj9+u9EeDmAAsLCU4l3cGmEykY29UHbZsoUKrWwLKKAJp4uwAXUnMxoHVjnXXAPSl3CvHWpjM4klC2oezVzBVrJ4dUOq9StQZhXxzA9cxCrHy+EywkEhyOv43Gchm+2huPHoEueKl3AHadT4OdtSWUzraYueH+j41737PD8bdxOP42JvTwg7vcBtFXM7HqcCLGhfhi/CrdYzfHdFYiMbMAp5OzseK5TujbsjGuZxbgn0u3sPXUDcispLCQAEevZum8rpWnHBYS4HxqLoCyoPrlM/d73Mp/zhv+0x0tPBxxMukOegS4VNpOgiCg5dwdUJVW3rtxedHgCiHi5dAAtPdWILytZ4Xv1YPuFqux52I6Ovo2gquDNfKKSnErV6Xzo/fe6wRBQNgXB3A5PR+zB7es8runKlUjNbsIyka2sJRa4Eb2XWw/exNhbTygdLbTTvflnitYsueydvjk3IF4Zd1JHI7PrHS+VYl5d0C9eqMXLFiAhQsXVnjeqOHH1tYWK1euxPjx4yuMKygowKBBg5CZmYlLlwx/99e6hB9j9/wENnZAUlYhih/4x1n2bDAGt/XEyG8O42pGAdZM6oJOvg139tyOc2mY+n/37z6vr41gZr4KLv/+E+SrSmFvLTWpK39WFSAKVKWwklrA2tICgiDgws1cNGvsCGvLR+uyWDHXsjBqRZR22NDhp7xPd17C1/sSENbGHSuf71zldPdWTw39vVl1KBEf/n0Rz3f3xfxhurv+DlzO0G6cu/k749eXulc2ixq5W6xGyId7kFtUioiRQRjb9f5uwubvbq+wrtgzs0+Vu/z0Qa0RcDolG2285JVu/O8pVWuQc7dE+/9dnezCYnR4b7d2uCbfs092XNI5oWTPzD4IcLPH3RK1Tu9jebfzVZi79Rwu3szFtX97Ni6+F47rWQV4fOkhSC0kiJzVFx4KG+1ryq/DL70fXuMfVPd+xJy7kYPHvzqkrTGwsQN+iU7CO1vu94yVf79nUrLx89EkPN3Fu1br+ElrjuOfS7ewemIX9P13Fy4Abe9u2ybyev+PbIhJrvTHUMqdQvT8uOb3qox+pz/c5TYPn7AKDdXzU6tT3deuXYvnn38eTk5OeOKJJ7TPFxQUICwsDBkZGYiMjNRbcdVxdXWFVCpFenq6zvPp6enw8PCo9DVyuVyvjVdTDjJL/DIlBAFuDui8aI/OuLfDW2JokCckEgm2TnsMqlJNjf8B9cVQ25XyK0YHmeldUqqqlYV9uVolEgnaeFXsNaT6mRXWEi/1Dqh011B5xgrLk3o2xbMhPpX+L/Zq5oqXevvjSnoePngyqF7LsbWWYufrvXHtdiG6+etuDB98501d7eHv+vBj5epDaiFBR5+HH3tmKbWoUfCpq7fCW+LV/s1w9GomFLZW2sBXVfABAFcHGZY/1wkAcD2zAC4OMthaS9HSQ44js/vBSmqh0+v8IOsqes0qc6/3tm0TBXbO6A1LqQQBbmU1di537N7QIE+d17XzdkK7UU41Xs49qyZ2QXGppsIPMDtrSwR5G3b95N3IDhN7+GFNDe/orq7njU/r2ylRU7XaIo0aNQrZ2dkYO3Ys/vrrL4SGhqKgoADh4eFIT09HZGQkPD09Hz4jPbC2tkanTp2wd+9e7TE/Go0Ge/fuxfTp0xukhpo4u2AQHG3ur+DLr8uf6aLEy6EB5cZJGjz4kHgZ+5yMhwUfY6vqf1EikegcE1VfngpbeCpsK1nO/b+bNXbAppd76GWXaUOT1PGCdzZWUoS2aPzwCSvh66IbEhvXoyfiYVp46B6319zdEZ+OaodLaXmY1jewilfVnjF7nhc80QavD2yO9gt3PXTa+oafhlLrn+MvvvgisrKyMHz4cGzbtg3z5s1DamoqIiMj4eWlv7NgamLmzJmYMGECOnfujK5du+KLL75AQUEBXnjhhQZZfhe/Rjh+7U6V4xMjhlT45Vp+SL+HmhPRo6qzn7PJh8UqmUle0+fqeHRnpR7n1kAe0gA1/f6VPqrhByg7riYrKwv9+/eHn58f9u/fD2/vhjtV+54xY8YgIyMD8+bNQ1paGjp06IAdO3bA3b1hTptcPLp9haP374lbFF5pl72ttRQFxWW3xbA0h7u/0SOL3z7TpttjYh4bFHMT3sYDO86noZGdFcywU63BbflvD6w6fK3ae1qqzeRU91qFn5EjR+oMW1lZwdXVFa+99prO87/99lv9K6uh6dOnG203l6+LPTZN7a5z0Og9VR0suPy5Thi9IgrWUgu81r+ZoUskIjNV/reTOfcSm9A5DhV8Mrod+rdqjO4BLiZ1MoYxCDUI2ME+jfCVT6NKw4+H3AZdmjrDQWYePZS1Cj8Pni4+duxYvRZjjjr7OeP1Ac11ThGsThc/Z+x9ow/srS0Nuh+aiMzbo7IpNuX3IbexMs9dVEa28vlOWHcsCeNCfFGi1uCxAFco7Mwj9NxTq/CzevVqQ9Vh1pztdT/0NS90qXb6e2cFEBHVhDn3/JB5qM13LKyNB8LaVH5Wtbl4tC5cYiRjuvhoT8X85Kl2dT5DgaghibyX3+Q9KrthHpX3QY+WGvf8JCUlwcen5vfpuXHjBpo0aVKnosyNtaUFds3oDVWpBrbWPFWdiPSrJsdjmCpGHzJFNe756dKlC/7zn//g+PGK9+S5JycnB9999x3atm2LzZs366VAc2FhITHb4MOVE5Hp4f8lNSTzjdd1U+OenwsXLuCDDz7AwIEDYWNjg06dOsHLyws2Nja4c+cOLly4gPPnz6Njx4745JNPMGTIEEPWTUQkGuZ8zA/3epEpqnHPj4uLCz7//HPcvHkTy5YtQ7NmzXD79m1cuXIFADBu3DicOHECUVFRDD5mxozXq1Qv3CqZtEfk46nrFZ6JDKnWFzm0tbXFqFGjMGrUKEPUQ0RED+APFDI0c+5drAue7UVEZIIelf4S7vYiU8TwQyRS3CiZD7H9KicyNIYfIpFq10QBL0XZVcb/p8e7lJN+8Po4RIZTpxubEpH5s5Ra4K9Xe+Fyeh66+Dkbuxx6QO/mbtp7KAU1kRu5mrpjhjMP5nwtqbpg+CESsUb21gjxdzF2GVSJBcNaI7uwGApbKzzXzdfY5dSZlcX9HQztvBXVTEnUcPQSftLT03HhwgXt4/z587h48SLS09P1MXsyMP4wIzI9Lg4yrJ0cYuwy6s3CQoI/pvfE/rhbeLoLbyJKpqFe4adnz564cuUKnJyc0KJFC7Rs2RIbN27En3/+iWbNmumrRiIiMmNB3goEsdfHpIntoPp6hR8vLy9oNBpERESgT58+AICNGzeia9eueimOiIiISN/qdbbXhg0bsHLlSnzxxRcYNGgQoqOjeYYCERERmbRahZ89e/ZAeKBvLCgoCFu2bMGHH36IhQsXIj09HdHR0XotkoiIiAzHyc5K+7eV9NHvxKhV+AkLC0NGRkal4zp37oy///4bu3btwjvvvIMBAwbopUAiIiIyrMFtPdHeWwFHmSV+fambscsxuFod8/Ngr09lHnvsMezduxf79u2rc1FERETUcKQWEmyd9hhUpRrYWEmNXY7BGewKz3379jXUrImIiEjPJBKJKIIPUIfws3z5cuzduxd37twxRD1EREREBlXrU92XLVuGhQsXQiKRQKlUomPHjjoPDw8PQ9RJBsQz9IiISExqHX7Onz+P0tJSnDp1CidPnsTJkyfx3XffITk5GRKJBB4eHrhx44YhaiUiIiKqt1qFn3s9BF5eXvDy8sLQoUO14zIzM3HixAnExsbqtUAiIiIifdLb2V4uLi4YNGgQBg0aVO+iiIiIiAylVgc879ixAwoF789CRERE5qtWPT/s1SEiIiJzZ7Dr/BARERGZIoYfIiIiEhWGHyIiIhIVhh8CL3FIRERiwvBDREREosLwQ0RERKLC8ENERESiwvBDREREosLwQ0RERKLC8ENERESiYpbh54MPPkCPHj1gZ2cHJycnY5dDREREZsQsw09xcTFGjx6Nl19+2dilEBERkZmp1Y1NTcXChQsBAGvWrDFuIY8ICa9ySEREImKW4aeucnNzdYZlMhlkMpmRqiEiIqLyVCoVVCqVdvjB7ba+mOVur7pSKpVQKBTaR0REhLFLIiIion9FRETobKeVSqVBlmMy4Wf27NmQSCTVPi5dulSvZSQnJyMnJ0f7mDNnjp6qJyIiovqaM2eOznY6OTnZIMsxmd1eb7zxBiZOnFjtNP7+/vVahlwuh1wur9c8iIiIyDAa6nAUkwk/bm5ucHNzM3YZRERE9IgzmfBTG0lJScjKykJSUhLUajViY2MBAIGBgXBwcDBucURERGTSzDL8zJs3Dz/++KN2ODg4GACwb98+hIaGGqkqIiIiMgcmc8BzbaxZswaCIFR4MPgQERHRw5hl+CH94kUOiYhITBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH4IEvAqh0REJB4MP0RERCQqDD9EREQkKgw/REREJCoMP0RERCQqDD9EREQkKgw/REREJCoMP0RERCQqDD9EREQkKgw/BF7jkIiIxIThh4iIiESF4YeIiIhEheGHiIiIRIXhh4iIiESF4YeIiIhEheGHiIiIRIXhh4iIiESF4YeIiIhEheGHeI1DIiISFYYfIiIiEhWGHyIiIhIVhh8iIiISFYYfIiIiEhWGHyIiIhIVhh8iIiISFYYfIiIiEhWGHyIiIhIVhh+CRMLLHBIRkXgw/BAREZGomGX4uXbtGiZPnoymTZvC1tYWAQEBmD9/PoqLi41dGhEREZk4S2MXUBeXLl2CRqPBypUrERgYiHPnzmHKlCkoKCjA4sWLjV0eERERmTCzDD/h4eEIDw/XDvv7+yMuLg7Lly9n+CEiIqJqmeVur8rk5OTA2dnZ2GWYJUEQjF0CERFRgzHLnp8HxcfH46uvvnpor09ubq7OsEwmg0wmM2RpREREVEMqlQoqlUo7/OB2W19Mqudn9uzZkEgk1T4uXbqk85obN24gPDwco0ePxpQpU6qdv1KphEKh0D4iIiIM+XaIiIioFiIiInS200ql0iDLkQgmtM8jIyMDmZmZ1U7j7+8Pa2trAEBqaipCQ0PRrVs3rFmzBhYWlWe53NxcKBQKJCcnQy6Xa59nz0+Z/XG3MHH1ce3wtY+GGrEaIiISq8p6fpRKJXJycnS23/VlUru93Nzc4ObmVqNpb9y4gb59+6JTp05YvXp1lcGnPLlcrtfGe1TwIodERGQKGqpTwqTCT03duHEDoaGh8PX1xeLFi5GRkaEd5+HhYcTKiIiIyNSZZfjZvXs34uPjER8fD29vb51xJrQXj4iIiEyQSR3wXFMTJ06EIAiVPoiIiIiqY5bhh4iIiKiuGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+CLzEIRERiQnDDxEREYkKww8RERGJCsMPERERiQrDDxEREYkKww8RERGJCsMPERERiQrDDxEREYkKww8RERGJCsMPQcKrHBIRkYgw/BAREZGoMPwQERGRqDD8EBERkagw/BAREZGoMPwQERGRqDD8EBERkagw/BAREZGoMPwQERGRqDD8ECTgVQ6JiEg8GH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfggSXuOQiIhEhOGHiIiIRIXhh4iIiESF4YeIiIhEheGHiIiIRIXhh4iIiETFbMPPE088AR8fH9jY2MDT0xPPP/88UlNTjV0WERERmTizDT99+/bFhg0bEBcXh82bNyMhIQGjRo0ydllERERk4iyNXUBdvf7669q/fX19MXv2bIwYMQIlJSWwsrIyYmVERERkysy256e8rKws/Pzzz+jRoweDTx3wGodERCQmZh1+3n77bdjb28PFxQVJSUnYtm1btdPn5ubqPFQqVQNVSkRERA+jUqkqbKsNwaTCz+zZsyGRSKp9XLp0STv9rFmzcOrUKezatQtSqRTjx4+HIAhVzl+pVEKhUGgfERERDfG2iIiIqAYiIiJ0ttNKpdIgy5EI1aWFBpaRkYHMzMxqp/H394e1tXWF51NSUqBUKnHkyBF0795dZ1xubi4UCgWSk5Mhl8u1z8tkMshkMv0Ub8aOxN/Gs99Ha4evfTTUiNUQEZFYqVQqnb0yubm5UCqVyMnJ0dl+15dJHfDs5uYGNze3Or1Wo9EAQLW7suRyuV4bj4iIiPSnoTolTCr81FR0dDSOHz+Onj17olGjRkhISMDcuXMREBBQodeHiIiIqDyTOuanpuzs7PDbb7+hf//+aNGiBSZPnox27dohMjKSu7GIiIioWmbZ8xMUFIR//vnH2GUQERGRGTLLnh8iIiKiumL4IV7lkIiIRIXhh4iIiESF4YeIiIhEheGHiIiIRIXhh4iIiESF4YeIiIhEheGHiIiIRIXhh4iIiESF4YeIiIhEheGHIOFVDomISEQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+CBJe45CIiESE4YeIiIhEheGHiIiIRIXhh4iIiESF4YeIiIhEheGHiIiIRIXhh4iIiESF4YeIiIhEheGHYGMlNXYJREREDYbhh9DeW4FOvo1gaSHBN+M6GrscIiIig7I0dgFkfBKJBBv/0x25RSVwsrM2djlEREQGxZ4fAgBYWEgYfIiISBQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVMw+/KhUKnTo0AESiQSxsbHGLoeIiIhMnNmHn7feegteXl51fr1KpcKCBQugUqn0WBXVFNvfuNj+xsfPwLjY/sZlrPaXCIIgNOgS9Wj79u2YOXMmNm/ejDZt2uDUqVPo0KFDhelyc3OhUCiQk5MDuVxe43FkeGx/42L7Gx8/A+Ni+xvXw9rfUJ+P2d7YND09HVOmTMHWrVthZ2dXo9fk5ubqDMtkMkOURkRERHWgUql0eoEe3G7ri1nu9hIEARMnTsTUqVPRuXPnGr9OqVRCoVBoHxEREQaskoiIiGojIiJCZzutVCoNshyT6vmZPXs2Pv7442qnuXjxInbt2oW8vDzMmTOnRvO9t2fvwoULcHR01D4vk8m0qdJQ6ZKqx/Y3Lra/8fEzMC62v3E92P7Tpk3Diy++qB2fl5eH1q1bQ99H6JjUMT8ZGRnIzMysdhp/f388/fTT+OOPPyCRSLTPq9VqSKVSjBs3Dj/++KPOa1JSUgyWHomIiMiwkpOT4e3trbf5mVT4qamkpCSdlJ6amoqwsDBs2rQJISEhFRpIo9EgNTUVjo6OOoGJiIiITJcgCMjLy4OXlxcsLPR3pI5J7faqKR8fH51hBwcHAEBAQEClydDCwkKviZGIiIgahkKh0Ps8zfKAZyIiIqK6MsvdXkRERER1ZdY9PwcOHMCwYcPg5eUFiUSCrVu3Vjv9oUOH8Nhjj8HFxQW2trZo2bIllixZojNNXl4eZsyYAV9fX9ja2qJHjx44fvy4zjSCIGDevHnw9PSEra0tBgwYgCtXruj77Zk8Y7X/xIkTIZFIdB7h4eH6fnsmr7btX97hw4dhaWlZ6UVBv/76a/j5+cHGxgYhISE4duyYzviioiJMmzYNLi4ucHBwwFNPPYX09PR6vhvzY6z2Dw0NrfD9nzp1aj3fjfkxRPvXZJ5c/99nrM9AH9sAsw4/BQUFaN++Pb7++usaTW9vb4/p06fjwIEDuHjxIt599128++67+Pbbb7XTvPjii9i9ezfWrl2Ls2fPYtCgQRgwYABu3LihneaTTz7B0qVLsWLFCkRHR8Pe3h5hYWEoKirS+3s0ZcZqfwAIDw/HzZs3tY9169bp9b2Zg9q2/z3Z2dkYP348+vfvX2Hc+vXrMXPmTMyfPx8nT55E+/btERYWhlu3bmmnef311/HHH39g48aNiIyMRGpqKkaOHFnv92NujNX+ADBlyhSd7/8nn3xSr/dijgzR/jWZJ9f/9xnrMwD0sA0QHhEAhC1bttT6dU8++aTw3HPPCYIgCIWFhYJUKhX+/PNPnWk6duwo/O9//xMEQRA0Go3g4eEhfPrpp9rx2dnZgkwmE9atW1f3N2DmGqr9BUEQJkyYIAwfPrw+5T5yatP+Y8aMEd59911h/vz5Qvv27XXGde3aVZg2bZp2WK1WC15eXkJERIQgCGXfdSsrK2Hjxo3aaS5evCgAEKKiour9PsxVQ7W/IAhCnz59hNdee00PVT869NX+D5sn1/9Va6jPQBD0sw0w656f+jp16hSOHDmCPn36AABKS0uhVqthY2OjM52trS0OHToEAEhMTERaWhoGDBigHa9QKBASEoKoqKiGK/4RUJf2v2f//v1o3LgxWrRogZdffvmh14eiMqtXr8bVq1cxf/78CuOKi4tx4sQJne+2hYUFBgwYoP1unzhxAiUlJTrTtGzZEj4+Pvz+10B92/+en3/+Ga6urmjbti3mzJmDwsJCg9f+KKiu/WuC6//6q+9ncE99twFmeap7fXl7eyMjIwOlpaVYsGCB9mqSjo6O6N69O95//320atUK7u7uWLduHaKiohAYGAgASEtLAwC4u7vrzNPd3V07jqpXn/YHyro7R44ciaZNmyIhIQHvvPMOBg8ejKioKEilUmO9LZN35coVzJ49GwcPHoSlZcV//du3b0OtVlf63b506RKAsu+/tbU1nJycKkzD73/19NH+APDss8/C19cXXl5eOHPmDN5++23ExcXht99+M/h7MGcPa/+a4Pq/fvTxGQD62QaIMvwcPHgQ+fn5OHr0KGbPno3AwECMHTsWALB27VpMmjQJTZo0gVQqRceOHTF27FicOHHCyFU/Ourb/s8884z276CgILRr1w4BAQHYv39/pfuQqewK6M8++ywWLlyI5s2bG7sc0dFn+7/00kvav4OCguDp6Yn+/fsjISEBAQEB9S31kcTvv/Hp8zPQxzZAlOGnadOmAMoaLT09HQsWLNBufAMCAhAZGYmCggLk5ubC09MTY8aMgb+/PwDAw8MDQNld5T09PbXzTE9Pr/TMDaqoPu1fGX9/f7i6uiI+Pp7hpwp5eXmIiYnBqVOnMH36dABlVz4XBAGWlpbYtWsXevbsCalUWuHMrfT0dO333sPDA8XFxcjOztbp/Sk/DVWkr/avTEhICAAgPj6e4acKNWn/fv36PXQ+XP/Xnb4+g8rUZRsg6mN+gLLGV6lUFZ63t7eHp6cn7ty5g507d2L48OEAyjbcHh4e2Lt3r3ba3NxcREdHo3v37g1W96Oitu1fmZSUFGRmZuqsjEiXXC7H2bNnERsbq31MnToVLVq0QGxsLEJCQmBtbY1OnTrpfLc1Gg327t2r/W536tQJVlZWOtPExcUhKSmJ3/9q6Kv9KxMbGwsA/P5XoybtXxNc/9edvj6DytRlG2DWPT/5+fmIj4/XDicmJiI2NhbOzs7w8fHBnDlzcOPGDfz0008Ayq6f4ePjg5YtWwIou57A4sWL8eqrr2rnsXPnTgiCgBYtWiA+Ph6zZs1Cy5Yt8cILLwAAJBIJZsyYgUWLFqFZs2Zo2rQp5s6dCy8vL4wYMaLh3rwJMEb75+fnY+HChXjqqafg4eGBhIQEvPXWWwgMDERYWFgDvnvjq037W1hYoG3btjqvb9y4MWxsbHSenzlzJiZMmIDOnTuja9eu+OKLL1BQUKBtf4VCgcmTJ2PmzJlwdnaGXC7HK6+8gu7du6Nbt24N88ZNhDHaPyEhAb/88guGDBkCFxcXnDlzBq+//jp69+6Ndu3aNcwbNxGGaP+HzZPrf13G+Az0tg2o17liRrZv3z4BQIXHhAkTBEEoOx2uT58+2umXLl0qtGnTRrCzsxPkcrkQHBwsfPPNN4JardZOs379esHf31+wtrYWPDw8hGnTpgnZ2dk6y9VoNMLcuXMFd3d3QSaTCf379xfi4uIa4i2bFGO0f2FhoTBo0CDBzc1NsLKyEnx9fYUpU6YIaWlpDfW2TUZt2/9BVZ1m+tVXXwk+Pj6CtbW10LVrV+Ho0aM64+/evSv897//FRo1aiTY2dkJTz75pHDz5k09vjPzYIz2T0pKEnr37i04OzsLMplMCAwMFGbNmiXk5OTo+d2ZPkO0/8PmKQhc/5dnjM9AX9sA3t6CiIiIREX0x/wQERGRuDD8EBERkagw/BAREZGoMPwQERGRqDD8EBERkagw/BAREZGoMPwQERGRqDD8EBERkagw/BAR1VBxcTECAwNx5MgRvc53x44d6NChAzQajV7nS9QQDhw4gGHDhsHLywsSiQRbt26t9Tw2bNiADh06wM7ODr6+vvj000/1X2g5DD9EIjVx4kRIJJIKj/L31SFdK1asQNOmTdGjRw/tc1Wt7CdOnFjj+z2Fh4fDysoKP//8s54qJWo4BQUFaN++Pb7++us6vX779u0YN24cpk6dinPnzuGbb77BkiVLsGzZMj1Xeh/DD5GIhYeH4+bNmzqPpk2bVpiuuLjYCNWZFkEQsGzZMkyePNkg8584cSKWLl1qkHkTGdLgwYOxaNEiPPnkk5WOV6lUePPNN9GkSRPY29sjJCQE+/fv145fu3YtRowYgalTp8Lf3x9Dhw7FnDlz8PHHH8NQd+Bi+CESMZlMBg8PD52HVCpFaGgopk+fjhkzZsDV1VV7t+Rz585h8ODBcHBwgLu7O55//nncvn1bO7+CggKMHz8eDg4O8PT0xGeffYbQ0FDMmDFDO01lPSVOTk5Ys2aNdjg5ORlPP/00nJyc4OzsjOHDh+PatWva8fd6VRYvXgxPT0+4uLhg2rRpKCkp0U6jUqnw9ttvQ6lUQiaTITAwED/88AMEQUBgYCAWL16sU0NsbGy1PV8nTpxAQkIChg4dWstWBq5du1ZpL1toaKh2mmHDhiEmJgYJCQm1nj+RKZs+fTqioqLw66+/4syZMxg9ejTCw8Nx5coVAGX/qzY2NjqvsbW1RUpKCq5fv26Qmhh+iKhSP/74I6ytrXH48GGsWLEC2dnZ6NevH4KDgxETE4MdO3YgPT0dTz/9tPY1s2bNQmRkJLZt24Zdu3Zh//79OHnyZK2WW1JSgrCwMDg6OuLgwYM4fPgwHBwcEB4ertMDtW/fPiQkJGDfvn348ccfsWbNGp0ANX78eKxbtw5Lly7FxYsXsXLlSjg4OEAikWDSpElYvXq1znJXr16N3r17IzAwsNK6Dh48iObNm8PR0bFW7wcAlEqlTu/aqVOn4OLigt69e2un8fHxgbu7Ow4ePFjr+ROZqqSkJKxevRobN25Er169EBAQgDfffBM9e/bU/g+GhYXht99+w969e6HRaHD58mV89tlnAICbN28aprBa3QOeiB4ZEyZMEKRSqWBvb699jBo1ShAEQejTp48QHBysM/37778vDBo0SOe55ORkAYAQFxcn5OXlCdbW1sKGDRu04zMzMwVbW1vhtdde0z4HQNiyZYvOfBQKhbB69WpBEARh7dq1QosWLQSNRqMdr1KpBFtbW2Hnzp3a2n19fYXS0lLtNKNHjxbGjBkjCIIgxMXFCQCE3bt3V/reb9y4IUilUiE6OloQBEEoLi4WXF1dhTVr1lTZXq+99prQr1+/Cs8DEGxsbHTa0d7eXrC0tBSGDx9eYfq7d+8KISEhwuOPPy6o1WqdccHBwcKCBQuqrIHI1D34//3nn38KACr9/3j66acFQRAEjUYjvPXWW4KNjY0glUqFRo0aCQsWLBAACEePHjVInZaGiVREZA769u2L5cuXa4ft7e21f3fq1Eln2tOnT2Pfvn1wcHCoMJ+EhATcvXsXxcXFCAkJ0T7v7OyMFi1a1Kqm06dPIz4+vkIPS1FRkc4uoTZt2kAqlWqHPT09cfbsWQBlu7CkUin69OlT6TK8vLwwdOhQrFq1Cl27dsUff/wBlUqF0aNHV1nX3bt3K3TN37NkyRIMGDBA57m3334barW6wrSTJk1CXl4edu/eDQsL3c53W1tbFBYWVlkDkbnJz8+HVCrFiRMndP5fAWjXJRKJBB9//DE+/PBDpKWlwc3NDXv37gUA+Pv7G6Quhh8iEbO3t69yN0/5IASUrcSGDRuGjz/+uMK0np6eNT5LTCKRVDiIsfyxOvn5+ejUqVOlZz65ublp/7aysqow33unitva2j60jhdffBHPP/88lixZgtWrV2PMmDGws7OrcnpXV1dtuHqQh4dHhXZ0dHREdna2znOLFi3Czp07cezYsUp3n2VlZem8RyJzFxwcDLVajVu3bqFXr17VTiuVStGkSRMAwLp169C9e3eD/T8w/BBRjXTs2BGbN2+Gn58fLC0rrjoCAgJgZWWF6Oho+Pj4AADu3LmDy5cv6/TAuLm56ezHv3Llik5vR8eOHbF+/Xo0btwYcrm8TrUGBQVBo9EgMjKyQo/MPUOGDIG9vT2WL1+OHTt24MCBA9XOMzg4GMuXL4cgCJBIJLWuafPmzXjvvfewfft2BAQEVBh/r2crODi41vMmMqb8/HydHz+JiYmIjY2Fs7MzmjdvjnHjxmH8+PH47LPPEBwcjIyMDOzduxft2rXD0KFDcfv2bWzatAmhoaEoKirSHiMUGRlpsJp5wDMR1ci0adOQlZWFsWPH4vjx40hISMDOnTvxwgsvQK1Ww8HBAZMnT8asWbPwzz//4Ny5c5g4cWKFXTv9+vXDsmXLcOrUKcTExGDq1Kk6vTjjxo2Dq6srhg8fjoMHDyIxMRH79+/Hq6++ipSUlBrV6ufnhwkTJmDSpEnYunWrdh4bNmzQTiOVSjFx4kTMmTMHzZo1Q/fu3audZ9++fZGfn4/z58/XotXKnDt3DuPHj8fbb7+NNm3aIC0tDWlpacjKytJOc/ToUchksofWQWRqYmJiEBwcrA3uM2fORHBwMObNmweg7GSC8ePH44033kCLFi0wYsQIHD9+XPsjCSg7waJz58547LHHcP78eezfvx9du3Y1WM0MP0RUI15eXjh8+DDUajUGDRqEoKAgzJgxA05OTtqA8+mnn6JXr14YNmwYBgwYgJ49e1Y4duizzz6DUqlEr1698Oyzz+LNN9/U2d1kZ2eHAwcOwMfHByNHjkSrVq0wefJkFBUV1aonaPny5Rg1ahT++9//omXLlpgyZQoKCgp0ppk8eTKKi4vxwgsvPHR+Li4uePLJJ+t0IcKYmBgUFhZi0aJF8PT01D5GjhypnWbdunUYN25ctbveiExRaGgoBEGo8Lh39qWVlRUWLlyIxMREFBcXIzU1Fb/99huCgoIAlO1SjoqKQn5+PgoKCrBnzx6dYwcNQSI8uPOdiEiPQkND0aFDB3zxxRfGLqWCgwcPon///khOToa7u/tDpz9z5gwGDhyIhISESg/8rqvbt2+jRYsWiImJqfQik0SkX+z5ISLRUalUSElJwYIFCzB69OgaBR8AaNeuHT7++GMkJibqtZ5r167hm2++YfAhaiA84JmIRGfdunWYPHkyOnTogJ9++qlWr504caLe6+ncuTM6d+6s9/kSUeW424uIiIhEhbu9iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVBh+iIiISFQYfoiIiEhUGH6IiIhIVP4fQWM+MMHeJJcAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"ta = psscan.timeaverage(weights='tsys')"
]
@@ -351,7 +209,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"id": "6c07cf19-3a5d-47a9-9a10-ccd9f305efb9",
"metadata": {
"editable": true,
@@ -363,25 +221,14 @@
"test"
]
},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAGxCAYAAABslcJTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsYklEQVR4nO3deXwM9/8H8Ndu7pCEkEMIcRPiiivqKEKoqjrKV9VVvfzQlrZarV60tP1+i7aunvRytqXqjiCouEJccV9x5CJyCLnn90dkZZO9d2Znj9fz8fCQ3Zmd+ezs7sx7Psf7oxAEQQARERGRg1PKXQAiIiIia8CgiIiIiAgMioiIiIgAMCgiIiIiAsCgiIiIiAgAgyIiIiIiAAyKiIiIiAAwKCIiIiICwKCIiIiICACDIiIiIiIANhwUffTRR1AoFGr/mjVrplqel5eHSZMmoUaNGqhatSqGDh2K1NRUtW0kJSVhwIAB8PT0hL+/P9566y0UFRVZ+q0QERGRFXCWuwDmaNGiBXbs2KF67Oz86O1MnToVmzZtwtq1a+Hj44PJkydjyJAh+PfffwEAxcXFGDBgAAIDA7F//34kJydjzJgxcHFxwZw5cyz+XoiIiEheCludEPajjz7C+vXrkZCQUGlZVlYW/Pz8sGLFCgwbNgwAcPbsWTRv3hxxcXHo3LkztmzZgieffBK3bt1CQEAAAGDp0qV4++23kZ6eDldXV0u+HSIiIpKZTdcUXbhwAUFBQXB3d0dERATmzp2LunXrIj4+HoWFhYiMjFSt26xZM9StW1cVFMXFxSEsLEwVEAFAVFQUJk6ciNOnT6Nt27aV9ldSUoKrV6/CxcUFCoVC9bybmxvc3NykfbNERERkkPz8fOTn56seC4KAwsJChISEQKnU3nPIZoOiTp06Yfny5WjatCmSk5Px8ccfo1u3bjh16hRSUlLg6uqKatWqqb0mICAAKSkpAICUlBS1gKhsedkyTa5evYqGDRuK/2aIiIhIctevX0edOnW0LrfZoKh///6qv1u1aoVOnTqhXr16WLNmDTw8PCTZp4uLCwDg0KFDqFWrlup5R6spys7ORpcv41SPT30cJWNp5JOdnY3g4GBcv34d3t7echdHNjwOpXgcSvE4PGLPx+KLrWfxS9w11WNd1wE5jkPFmqKcnByEhobCy8tL5+tsNiiqqFq1amjSpAkuXryIPn36oKCgAJmZmWq1RampqQgMDAQABAYG4tChQ2rbKBudVrZORWVNZrVq1dIZaToCpZun6m97+7Eby9vb2+GPAcDjUIbHoRSPwyP2eCzcPasafR2Q8zhkZ2cDgFrXF01sdkh+Rffu3cOlS5dQq1YthIeHw8XFBTExMarl586dQ1JSEiIiIgAAEREROHnyJNLS0lTrREdHw9vbG6GhoRYvPxEREcnLZmuK3nzzTQwcOBD16tXDrVu38OGHH8LJyQkjR46Ej48PJkyYgGnTpsHX1xfe3t6YMmUKIiIi0LlzZwBA3759ERoaitGjR+OLL75ASkoKZs6ciUmTJjlUUxgRERGVstmg6MaNGxg5ciTu3LkDPz8/dO3aFQcOHICfnx8AYP78+VAqlRg6dCjy8/MRFRWFxYsXq17v5OSEjRs3YuLEiYiIiECVKlUwduxYzJo1S+s+y4IlRw+aHP39l3Fzc8OHH37o8MeDx6EUj0MpHodHeCxK2dJxsNk8RXLIzs6Gj48PsrKy7K592Fgh72xS/X31swEyloSIiCztk42J+GHfFdVja78OGHr9tps+RURERETmYFBEREREBAZFRERERAAYFBEREREBYFBEREREBIBBERERERnJXoetMygiIiIio+TmF8ldBEkwKCIiIiKjrDp8Xe4iSIJBEREREREYFBEREREBYFBEREREBIBBEREREREABkVEREREABgUEREREQFgUEREREQEgEEREREREQAGRUREREQAGBQRERERAWBQRERERASAQRERERERAAZFRERERAAYFBEREREBYFBEREREBIBBEREREREABkVEREREABgUEREREQFgUEREZLKkO/fx0i9H8G3sJbmLQkQicJa7AEREturFX47gXGoOtiemolczfzQO8JK7SERkBtYUERGZ6FxqjurvK7dzZSwJEYmBQRERERERGBQRERERAWBQRERERASAHa2JiKxCYXEJ5m4+ixJBwIwnmsHN2UnuIhE5HAZFREQWkldYjJ/3X0XNqm4YGl5Hbdmvcdfw079XAAA1q7picq/GchSRyKGx+YyIyEK+33MZc7ecxRtrj+PQlQy1ZdsTU1R/bz6ZUvGlRGQBDIqIiCzkq5gLqr83nbglY0mISBMGRURERERgUEREZDGC3AUgIp0YFBERyUChUMhdBCKqgEERERERERgUEREREQFgUEREhNv38jF0yX6M/vEg8gqLJduPILBXEZE1Y1BERA7vow2nEX/tLvZeuI3v9lyWuzhEJBMGRUTk8OKv3VX9fTYl2yL7vJh2D88vP4xlD7NYE5H8OM0HEZGFlG8823fxNgBg59k09G9ZC2xZI5Ifa4qIiCSSdb8Q09YkYM7mMzr7E6Vm51mwVESkDWuKiIgk8unmRPx19CYAIKy2DxTQnsCRaYuI5MeaIiIiiaw/9mh+s0NXMpjRmsjKMSgiIiIiAoMiIiI1cnR4Zg0SkXVgUEREDs9S3Xk4wozIutlFUPTZZ59BoVDg9ddfVz2Xl5eHSZMmoUaNGqhatSqGDh2K1NRUtdclJSVhwIAB8PT0hL+/P9566y0UFRVZuPRERERkDWw+KDp8+DC+/fZbtGrVSu35qVOn4p9//sHatWsRGxuLW7duYciQIarlxcXFGDBgAAoKCrB//378/PPPWL58OT744ANLvwUisgNls95n3i/AhdScSssFNpIRWT2bDoru3buHUaNG4fvvv0f16tVVz2dlZeHHH3/EvHnz0KtXL4SHh2PZsmXYv38/Dhw4AADYvn07EhMT8dtvv6FNmzbo378/Zs+ejUWLFqGgoECut0RENkoQBNwvKEKP/+5Gn/l7sP10iuXa5UR2NiUbBy/f4Vxt5HBsOiiaNGkSBgwYgMjISLXn4+PjUVhYqPZ8s2bNULduXcTFxQEA4uLiEBYWhoCAANU6UVFRyM7OxunTp3XuNzs7W+1ffn6+iO+KiGzV2iM3kPWgEADw0q/xasvOp9yTo0hGS7pzH/0W7MWI7w5g9/l0uYtDZJL8/PxK12pD2GxQtGrVKhw9ehRz586ttCwlJQWurq6oVq2a2vMBAQFISUlRrVM+ICpbXrZMl+DgYPj4+Kj+aSoDEdkOsepDCotLtG740NUM3WWwkkqZr3deUP396opjMpaEyHRz585Vu04HBwcb9DqbzGh9/fp1vPbaa4iOjoa7u7ss+/f29lY9dnNzs3gZiEgacmWWzit6FFAlJltmUloiezVjxgxMmzZN9Tg7O9ugwMgma4ri4+ORlpaGdu3awdnZGc7OzoiNjcXXX38NZ2dnBAQEoKCgAJmZmWqvS01NRWBgIAAgMDCw0mi0ssdl62jj7e2t9o9BEVGpu7kFSMux7Xm85KqxOX49U54dE9khNze3StdqQ9hkUNS7d2+cPHkSCQkJqn/t27fHqFGjVH+7uLggJiZG9Zpz584hKSkJERERAICIiAicPHkSaWlpqnWio6Ph7e2N0NBQi78nIluXnPUAnefGoMvcnTiXUnn0lTUTo3JIoamKyUY7WhM5KptsPvPy8kLLli3VnqtSpQpq1Kihen7ChAmYNm0afH194e3tjSlTpiAiIgKdO3cGAPTt2xehoaEYPXo0vvjiC6SkpGDmzJmYNGkSa36ITDBn81nkP2wCemNtAjZO6SZzicR3JjkbOxJTMTS8DoKqeagt40gtIttnk0GRIebPnw+lUomhQ4ciPz8fUVFRWLx4sWq5k5MTNm7ciIkTJyIiIgJVqlTB2LFjMWvWLBlLTWS77uc/Snx6L88+k6D2/2ovAGDD8VuIntZDtO0yoCKyDnYTFO3evVvtsbu7OxYtWoRFixZpfU29evWwefNmiUtGRPbmQpptDK8nIuPYZJ8iIiJbUFBUon8lsqgtJ5PR+8vd+PXANbmLQlaIQRERETmMib8fxaX0XLy//pTcRSErxKCIiKgcdu8hclwMiojI4WkcTm/CNkwNqOZFnzd7/0RkPgZFZDElJbwFJ/tlzgiyvRdui1gSIjIVgyKyiLfWHkf4J9HYfS5N/8pEREQyYFBEBotOTMWHf5/CzcwHRr3uesZ9rI2/gbv3CzFu2WGJSkfmEAQBt4z8XO0J8wQREWBHeYpIWtl5hXjxlyMAgMNX7xr12twC+0zkZ0/+7/ej2HIqBW/2bYLJvRrLXRxZmdO9SACDKyJbxpoiO7HrbBo+23JWssk4U7IebZczeNufLadSAAD/284Ov2SdBEHAj/uuYH70eeQVFstdHLJTrCmyA3dzCzB+eWmz1KmbWfjthU4yl4gcnS3Xl5jakqZQKKDgDLCS2Z6YitkbEwEAzkoFpvR27BpNkgZriuzA5du5qr/3XeQoFpKHCKPazSIIAj7acBqjfzxodP8oMYbks1+StDafTFb9/XPcVfkKQnaNQRFJjnfPpskrLMa/F28jv4hNBYbYfS4dy/dfxd4Lt/H66gTRt2/IAAN76FPEXys5MgZFZBDeBFve5BVHMeqHg3hr7Qm5i2IQub8jZ1NyVH8fupIh6raT7txH9y92ibpNa8WfOjkyBkVkkJy8QpNfaw93z3LYcaY0p9OG47dkLonxbLm2YevpFNzLVx8xOXtTIoorJB9lZ1/LkjroTs56gBUHk3D7Xr60OyKrxqCI9NpyMhnDlsbJXQwii3n3r5NqjzXNdj9T4glFF+68IOn2Sd0zS+Pw7rqTeOHnI6rn/rvtLP7zXRwupt2TsWRkSQyKSK+Jvx816/XsU0S2pqx2rqi4NBjS1A/7j/gbao/NmftME6ZHUCd1R/4bd0v7jCVczwRQOpJ30a5LOHA5A88vZ9JZR8GgiIgcgiAI2HshHfsNHKE5e2Miwj7ajjVHrhsU1j8oLMbRJOMSm5L1up5xX/V3Urm/yb4xKCLSo7C4RFVjQLZr/6U7GP3jITz7w0Ecuaq/I/aP+67gQWExpv9xwqAh+6+uPIZtp1PFKCppIHdHfpKeIAg4fDVDsiTEhmBQRKRDanYeun6+E10/38UOmDbu001nVH//b/s5o17LBmAi6a08dB3PLI1D1Pw9sg1kYFBEpMOHf59GanY+UrLz8MnDbLrkeOROTEn8DBzBu+tKBzjcvV+ImIejby2NQZEJMnIL5C6CGp4spHMj81FfgltZ8lXpktwc50em0PqAyP4xKDJB73mxBmW3tRS2tRNpl19UXCnHkLG/GUe68RC0PpAXz3O2425uAeZHn8fuc/LU9piDQZEJCotK2JRCpIO1XL8upt1D5zkx6PXlbjwo10fh4JUMtdFFJI68wmJsP52C9Byp+99JH6Vay3dYLgVFJVh37IZBgxIqmvHXSXwVcwHjlh22ub6YDIpMdL9A3E5gu86l4ZuYC8h6YHrmaGvlSHfZjkzsz3nVoSS8u+6kwSNRNO3/tVXHcPd+Ia7duY8r5SZOBoDxRuSe4VfYMHM2n8FLv8Zj2NL9Ek+Q6+ghi/R+3n8VU1cfx7Clcbhx17gbiK2nU1R/nys3/Y4tYFBkBVKy8jB+2WF8GX0eH284Lem+/oi/gTE/HVIlKCOyRhfT7uGdv05ixcEkvKlj7rfL6ffw5fZzOJ+ao7F55WqFQKjiPgzFwN4wv8RdAwBcu3MfuSLfOPIzsKxPNz8arfnP8WQZS2JZDIpMJOZ9yrFyCd/+OnZTxC2rKyouwZtrj2PP+XQ8vehfyfZjt3hzajGnb2Wp/t5zPl3rek8v+hff7LyIqAV7JC2PXFnZL6bl4PH/7sKk349KXPMijZy8Quy/eFuUPF82+PbJBjEociBFJTyrGItTlFi37LzSiVulvmCWbw6wpMh5e3D1zn1sOpmM7Ym2lxhy1A8H8ewPB/HZlrMib5m/S5IGgyIiEgXv5KWlqynQGhUVl+DEjdIavx/2XZG5NESGYVBkIlusyibjCXbaZiYIAk7cyMRdiXJuWct9vD19evb0XszHo0HSYFBkBdiB0HBXb+eioEimecjs6HNaG38DTy38F33m70F+kTzp9DXJLyrGlpPJqhnL6RFL3YeJlbwx52HTpjmKikuw82yqzdWS2Rt7vTnUxFnuApD5JztHCap+PXAN768/hZa1vfHP5K4GTdJJmk3/o3RE1+17+dh11noSrM2PvoClsZdE2549fUMW77qIJ1vVQrCvp+V2asa5SYx+RD/HXcPsjYlwVirQvYlfuSX29Mnah/ScfPy8/yo61veVuyhmYU2RTIqKSxymCU6s09f7608BAE7dzMaldBnuHO3047Kmr6GYAZEx+7SmDPXa5OQXYfi3cZLvR6yvw6aT5g/jnv0wSW5RiYCdVhS8U2VTVydg4a6LGPPTIbmLYhYGRTI4fSsLnefGYMiS/aIMVXVEJRa6knP0mW0zJFeO+COjpJPM+fcesqJIXkaX0+8hOjHVKq4j+y7elrsIomDzmQyeX34Yt+8V4Pa9Avx19Ca83M37GCrGB4XFJXBxsp54l6cvcd3LL+2rUdWNP9/y/oi/LncRrE5JiQCFAmxqtkM5eYXo9WUsAOC9J5rjxe4NZC6RZmXfPEEQbOJ7aD1XTgeSmv1oLpj0e/mi9wnKl6sjMknuxt376DwnBp3nxOCWSE0+ur5/V27nYu2R66pAzJrJ0qQqg5B3NiHxVrbe9e7cy0fkvFhEzotF5n1pRhnKx/ovrlIr35xYPvu0FMypMRcATFh+GI99thOnbmbpXV9uDIqsgDX16ZACT1/q7uYWGD0ZaZ95sXj7jxOYuf4U7uUX4V5+ET6SeEqYouIS9J0fi7f+OIEP/zZuX3b+lZbdE1/v1bvOrI2JuHw7F5fSczF3s/YmwkNXMvDW2uM4cSNTxBKSpf1z/JZJrys2IKmvOaPPdpxJRczZNNzKysOT3+wzeTuWwqDIRmw/nYJPNiYiNZt9CgDbDSQz7xeg6+c70f2/u3Dw8h2DX3ch7R5WH7mO3eceTXlxV+K7/7ScfBQWlx7oP4/e0Lu+DdSM2534axnoMy8Wn25KrLTsUvqjud2u3NFeizb82zhVigY5yJZiQ0aCIOCnfVewYMd55BWq93v79+JtLNhxHneMnF1+yspjWpcVFpfgwOU7yCssxo2791U1v9/GXkLYR9vw3R7pBjikZRv3PuTGTgk2ICO3AC/9Gg8AOHkzC6tfjpC5RLZj17k0vPfXSQxsE4QZ/ZvLXRwsib2k6vw74ecjOPVxlMwlIlsV8s4m1d8X0u5hdOcQ1K1h/nB9S8a2vx4oHXI/pnM9zHwyVLTtZuQW4Of9VxFer3qFofyGM+bGK/FWNl5ddQwtg7wxf0QbvX1nohNTMevhyDpnpQKTezUGAGTdL8SoHw4CAE7dzMIPYzuYVPaK3vnzJP48egOuzkoUFpeguqcr9r3dE3MfDjKYs/ksXureUJR9VSLjzdLhqxnYf/EORnWuC1cDX8OaIiug7w77SrnEZQevZOjd3vnUHHOLpDLxt3jRtiW2i2k5GLpkPz7ZWPkuucz4ZYdxKysP38ZeRnZeoQVLp1l+4aO7YnP76XBkHJWnq+bQ5P5nEn3FTt/KwrQ1CXh//SkUFJWIPg3IO3+ewFcxFzDmp0PIkChre5nZGxPxxNd7cTHtHtYn3DJoFFb5dAXL919V/X2xXO3ejjPipSAoq+ktKCqBIJQGjSsOJom2fV3kOks9KCjGM0vjMH/Heby+KsHg1zEoMpE1N98MWbwfaTnmN7NdvZ2LLafkmQjTEGN/Ooz4a3fxw74rGPvTIVzQEwymVWh6zHogf5DkSNJy8vBt7CWcSxEvaCfD3Lj7wOh+bFJ68pt9+OvoTcm2X37yXDFvEivKKyzGjxUCOltJm6BrQE7WffHOjXKNOLuV9ehGwJh0AQyKLEQQBPy47wo+31q5w6MUGa3FuAu4b0COFzmVT7gXez5db+fT55cfUf09b/s5tP54uyo5nDHOpeTg65gLuHFX/0UmLScPu86loVBLHpH0nNKM0vL2q7DMSeulX+Ixd8tZRC3YY5H9kTpDv+uC1gfiseabSmMUaeqkbAfv7Yd9lyXb9iEDWjvkxKDIQnafT8fsjYlYslu9Qxs7p4qnrFOwNknl7pS/3nkRACrd5RkiasEezIs+j9E/6s7cWlwi4OmF/2L8ssP45uH+Khq8+F+MX34Y83ecN7octibheqbcRXBo2gJze2cvAZjYdF17Cip8V8w5hhV3c8CIASanbmbhh72XLZpSgkGRyG5mPsC6Yzcq9RfZUa46tyIGRrbpip5JKi+l38Oth1XpX8dc0LhO2cSnFYNlc5y8kYWvYy5YdKTixbR7ovaBsJQSA4Yj24qrFUaY2XOfs9v38jH82zgk3bGeJkHSzNTrW0FxMZ78Zh8+2XQGb649Yfx+TdstgyIxCYKAp77Zh6mrj+O9dSflLo7VsJegz5IzRRuSnE/Tr76kRMDAhfswL/q8asSiJYz58aDa42t37ss+t9+Mv/SfSP/z/QELlMQyXluVgJxygwlsbWZzY78vh65kYPLKo3rXM/X8Y6nzljXWZIkZUJu6pfJJjnec0V6pIDYGRSLKLyrBnYcjHf5OMC2Rlib2ElTYIjmOfVFxiUHJ+TQpX+19XENzlVQ1I7c0dC6NkbnmaOUh/dN+WHv/BmNFP6yRFgQBDyr0CbT2SjFTgoMTN/RnSDY16DCkmcfUwN/WTunmnAfl6mht6n6Zp8hEYt2FGfKb0reONdxpZOQWoKi4BP7e7hbZn63dBRsjJ0+aKTUupOZgzE+HUKe6hyTbr+hOrm0lbbMXxSUCBi/+t9K0J7Hn07W8wjpcvZOLBn5V5S6Gyi9x10x6ndTnpqwHhfBwcZJ0H46MNUWklaE/7uSsB+g8NwZdPtuJsykGNPtILCevEB/+fQrfaOnHYwx9AaexQ1elblLStfmXf41HclYeDl+9K2kZpJB5vwCfbTmLvxOkG8ZtL7afTjGoBkUbuWoxXl+dINOeTWdqbYSpZ4GE65no+OkO9Pjvrko1gdZKru8T+xTZMWtvPpuz+SwKikpQVCLgjTXHAZQmi3tt1TH8JHJSNkP8d9s5/Bx3DV9GizuiS1M7e98FsQaP6pE7T8xlLR3Drf37BQAf/H0aS2Mv4bVVCbhcLsEdVSZqklILfjdOyjRZaEmJgC80pEoxhBg3Ocb8/l74+Qjyi0qQnJWnlvTRpP0a8eGa9TZt4PxSHoMimZlyQcorLMa4ZYcwfGmc1mythnyJxRqie7/cSLvch3+/uvIY/k64hVkbE3EuRfNF7H5BkSRZpo3N0WROsJKanW9wYrCoBXtQKGLHDk1fneM2OKlnXmExLqbpDnQ2lJvs8mhSpsQlchxiJukzl1zdAP4+fhOLRRz9aSxj3vftcvOhZWtIPltUXII959MNmjfN1rsgFBaXYOupZFxMEzc5J4MiE4n5A15/THen7IoXv+/2XMbuc+k4dDXDpOSDj/aruynCnBEIR649aqLRlFE2PScfnefEoNOnMWoTV8ph4ELDZm7WdhIx9G7xfkGxQQGYOTU3//nO8qOpzJlMcve5NDR7fysi58XitwOm9eEg08RduoMOn+7QvZJtXzcNsue84dmOxSJV5cnCXRcx5qdDGLJkv9Wkm5Aq8P5+72W88ttRRM7bI+rNtc0GRUuWLEGrVq3g7e0Nb29vREREYMuWLarleXl5mDRpEmrUqIGqVati6NChSE1VH9aXlJSEAQMGwNPTE/7+/njrrbdQVCRNJ1ddtp5Wn0rjVIVq5Ipf7fLLD1/N0HgRNeTCqq9Dr5R3Ep9vPYvsvCI8KCzGm2uPG/16XXGIsaXO1PGjFbtpydz5zqzRnM3GNz0IgoBjSXcxbtlh1XMz158y+LVkvpHfH6iUpA+wvzioRBCQmp2HjSdu4X6B9L8/Ob+eC3aU9qO8dud+pbxVFem66RXzvBdzVv8o1IzcAqNzTn2x9Zzq770iBrY2O/qsTp06+Oyzz9C4cWMIgoCff/4ZgwYNwrFjx9CiRQtMnToVmzZtwtq1a+Hj44PJkydjyJAh+PfffwEAxcXFGDBgAAIDA7F//34kJydjzJgxcHFxwZw5cyz2Psp/sGWe/GYfLnzaHy5OthGz6jsHaPqBlQ9E7tyzXLZSqZSUCJi1MRHp9/LxyaCWqF5F85zMx9j0o/L9XummEnBUx5Iy0bK2t9zFsKjc/CJUcdN+KXtv3UkUFgu4mfkAw8LrVFpur0G2XEPhjXU3twBdP99ZaVopY0qvaa5PU9++bVx1NRg4cCCeeOIJNG7cGE2aNMGnn36KqlWr4sCBA8jKysKPP/6IefPmoVevXggPD8eyZcuwf/9+HDhQ2rywfft2JCYm4rfffkObNm3Qv39/zJ49G4sWLUJBgfwX6fKTldrGV7uUph+iGOec/ZfU7wSkGrZuqn9O3MLy/Vex6UQyZpnRpGkNxLpI2EIqCXvz64FrOG1I4k8tBn6zD3/E31A9zskvsmjQYEpTy/+2V76xLO/qnfuqeRLLvzep6DtaG0/cwnoR89hpLYeN/MCWxF4yaJ7N+GsZWpsEP/5H/zl3zibDzss2GxSVV1xcjFWrViE3NxcRERGIj49HYWEhIiMjVes0a9YMdevWRVxcHAAgLi4OYWFhCAgIUK0TFRWF7OxsnD59Wu8+i4qKkJ2djezsbOTni5+PxRq+z6b0KdL0QzT3rRQVl+DZ79UzJn+i4wtu7slgzeHr+GzLWbXAVBcFFDhSbpj7umM3sebwdfxp4gnY0OMu1Y3gT/9elWbDZBGm5tcBNI8As+T0Lcv2Gz9adZkZ39cLqTkGByjXM+4j5kyqWQNU0nLyMHnFMbXnTD1b2UpNkD75hZoDoorHZeiSOCzcpXkOSU0KK1RurDAgmStg40HRyZMnUbVqVbi5ueGVV17BunXrEBoaipSUFLi6uqJatWpq6wcEBCAlpbT/TkpKilpAVLa8bJk+sbF74OPjAx8fH8ydO1ecN1SOJUYGbDqZLEoZpP5paur3YE4eFl1O3czC9D9PYGnsJczZdMbk7Uz/8wS+3WNa85Dco0Jmb0yEIAj418BRddroO2ebek435K6QxPPSr0csti9L9w3uM3+Pwet2+2IXJvx8BF9sPYvxyw7h9VXHKiXIBHSfD6/eFi8th76bPzEPpbbAxRTmXC/mGZFmZcmSpSbtw2b7FAFA06ZNkZCQgKysLPzxxx8YO3YsYmNjLbLvHj2644fvSi/Mbm5u4u9AgpNDxd9Q/LW7+PfibTzWqKZ529Wz3JgfwZfbzyE6MRWNA7zQIsgbE7rWN6doRisfCKw+ch1htX30vkbuIEYK206n4q0/jJ+E0VDmVObZY2d1ayYIwIOCYni4MosyAHy/91FtlqZaJl1fbWtq0ioo0l7jVfGc/fXOi5jWt6ko+614BMQ+Ipn3C7DtdAoGPTsOfy7XPzdeRTYdFLm6uqJRo0YAgPDwcBw+fBhfffUVRowYgYKCAmRmZqrVFqWmpiIwMBAAEBgYiEOHDqltr2x0Wtk6ujg5OcPbW7oOjTp/WIa83sBv2q9x18wOisrT2KfIwNcmZz3ANztLq0fPpuTgn+O34OHihGfaV+4cKbYvt5/DumM3EVzdU+d6tx72TbAGUs6C/urKY/pXMtPmk/prZMk6NP9gK9rWrYY/X+kCpVLCumErChqkoOndydUINn+H9loXW/4UXl2VgD1mTGlj081nFZWUlCA/Px/h4eFwcXFBTEyMatm5c+eQlJSEiIgIAEBERAROnjyJtLRH7eXR0dHw9vZGaGioxctuKoXCPs4j1+7k4lJa5aroX+Kuinrx3346BbvOVe4j8c3Oi7hx9wHiKkwCWTHGS9Yw8anYwYmUwQ6RqY4lZWJ7Yiru5Rdh4m/xmLLyGPKLSptVtp5KwX+3mZYV2tHdyS3AuRRxExA6MnMCIsCGa4pmzJiB/v37o27dusjJycGKFSuwe/dubNu2DT4+PpgwYQKmTZsGX19feHt7Y8qUKYiIiEDnzp0BAH379kVoaChGjx6NL774AikpKZg5cyYmTZokTXOYkT7fchZe7s54p3/zSsvKz3ljCwGRvkt8UsZ99PjvbksUBS/9Gm/U+hX7Lmm7SbaTPo8qmvpxWRtraopwFGk5eZi3/Ty2nCqt5WsaUBWD29XBK78Z97vSyt5+SBVo+8pGLdiDq58NMGpbUna0tuSnoO2YyPVNsNmgKC0tDWPGjEFycjJ8fHzQqlUrbNu2DX369AEAzJ8/H0qlEkOHDkV+fj6ioqKwePFi1eudnJywceNGTJw4EREREahSpQrGjh2LWbNmGbR/Y/uRGPv9/ethtumq7s6IbK7eIbz8tBI37mpuzjF0f5Y4B1n6PCflpVLbiUis6/PpW1n4M96wSU/F6sukb4qN8tYfu4nkrDyMfywE7npm6pY6Ztl6is1vxjqWdBf7LtzGiI7BJm9j74VHd+I/x13D3gsiZoS2w0B366kULNl9Ec93rQ8/L8vdcBt7KK/ezkVIzSrSFEaHohLrugGz2aDoxx9/1Lnc3d0dixYtwqJFi7SuU69ePWzevFnsomlk6m/974RblYKiiqz95krze7fNk5+U3SkAYMDXhk05AgAHLmcgr7AY7i5OKCouwXM/HtT/Ig1+NXAId/y1u6qZzB8UFmNanyYm7Q8Q59M/dj1ThK04lsGL9wMA9po5srBMek4+0nPET0liyyqe78pq0V5blYAVL3bS+rq/E26ijp4+jVIa/m0cDr0XqX9FEU3/4zjWHJE+d5Qx7KpPkbW5mJaD6xn38erKY/jdyElKyxOrmlRTzYIlAqqLFeY26/W/3QbnPrmUnqtzlERFyVkPJL3Z1NTfZ+b6U3rnkZPK9w+H/a8+ch0HLmdIuq8t5VI4fB1TOp2AoU1Y1/RMOUCWdeiKad+VjNwCXLltfZ+l2PNrSTYdiI6fy2urEnAs6a72FSSWZqHgtuwMmptfZHUBEWDDNUW2IHKe4TkwtLlx94HN953YdEI9H9JlI0+qn201PF/QwG/+NWrbxjh89S4Kiivn67gp44i0sn1ra0aV2mQDR6m9scb4+e30sfXfhS0qm1vL2ojdB67NrGhRt1dG3zf2EzNyoxm/N+2kvFkuK1VRsXX+fhkUOTgxRjpJfXFaaWAmUgC4fU/aux1Nc9VZA22fYlnzmlQqBrzllT+xHrkm7h2wIAhITDZ9OgsiXYypndZGEAS7bFp8UFBsdmJXQ8gVMjEoMtGByxkoLhHgJHUnE0g7ykDsxINW3r3JbAdNbHaQWrGWVMCp2XmoV6MKYs0cpgqIe5J6b91Js16/YMcF/Hvxjv4ViWTy+uoE/G2BOc60kepete+CWFzPsJ58bWJjnyIz/J0gTz8SQ4jxgzBlGwKAtOzKuXxIWvqmFBn70yGdyy1t1WHDa/80+SrGOptxSF7nU3PwqYETf0ql7EZTU0Bk6y2+adl5ZgdE86LP47MtZ/U2eXJIvg2atuY4luy+hGJBwMdPtUCHEF9ZynHgsmF3zJp+kGI0n1WsyZomQf8RR2Bq51drdSa5NCt5VAv9GeKJAPNrI5/8ep9N5NiyhLLT8o/7jJ9kV5voM6mibGdp7CXJR/KaikGRmS48zPEy+sdDODu7nyxlkKqfi6GtduX7FF25nWuVo1NswfBv40x6XdwlyzQjGXtyXb7/Kpbvvwpnaz37kV3ZeyHd6gOiQgvm5Ck7Lc/eaHzNmSWy6svZtKgLm8/slMHdkHi9smmX0u9h5PcH5C6GTkWWnvqcbJY5p6PRP1pXE7Emn5gQoMjB2ie5LpteRgoMimyAKSeKBTsuYPVh03MjAbbf/u0IDl/VPapr2b9XkVco3QmESEymnnKs6SKu67x5Kd24WvQf9uruK6izHCa/UjtLzss4d4v2ufQ01VqLNQqaQZENMPWjfvvP0hE+BUUlyMgt0LgOK4rs2/L9V9Hs/a2SbHvRrouSbJeISn2y6QwSZMjcrin4uZAq7qS1pg6qXnUoCQuiKw+00HaNMxaDIjuXV1iMnv/bjU5zduDgFeP6nlj79CEkDlObt/67zTpzNpF12ifmHGkO5MSNTJNed/pWlv6VNCgpEbBQww1Pn/l7rOJG6J2/Tkrad4xBkQ147gfT5rQCgCe+3oubmQ9QWCzg+eVHjHotm88cg9QJL4kAmDw3n61JyriP3l/uFnWb6Tn5KDHy5uWjDab1X/ojXvvUG3Jm77cUjj6zAffyTZ+H57KeNuy0bPULYsL1TLg6KREa5G3yPomIHNV3enKGGeuP+Bv4cMNpi6V8OW5izZTcfom7hrDaPmZvh0GRgzt0NQNp2Xnw93ZH/LUMDF1SOiw8emp3mUtGRPZGEASDMvRfvZ2L6p6uFiiR9Ttxo7QZzN7ymIk9X6NYCV0ZFBEWxFzAnMFheGvtCdVzfebvweC2tQ16PVvZiMgQHefEoHczf53r7DmfjjE/HYKXu+GXp/98Z91pKWyFIFjTOD55sE8R4cbdB5j+x/FKs9evO2a905gQke1Jz8nXOcWLIABjHk5Jk5NneLcBfd0EHJEpA2W2J4qTsdqWsaaIsMfMyUJ3nzN/slEiomKO7jCYvk7PphzK6xn3TSyN/WBNERERWYUluy/JXQRycAyKRPTXUTY3ERGR/PIKi/HiL8alYSEGRaJ6d91JuYtARESE/KISRJvQRyjrfqEEpbEdDIqIiIgIALDpZLLcRZAVgyIiIiIiMCgiIiIiAKt1pEtwFAyKiIiICBfS7sldBNkxKCIiIiICgyIiIiIiAAyKiIiIiAAwKCIiIiICwKCIiIiICACDIiIiIiIAgLOpLywsLERKSgru378PPz8/+Pr6ilkuIiIiIosyqqYoJycHS5YsQY8ePeDt7Y2QkBA0b94cfn5+qFevHl588UUcPnxYqrISERERScbgoGjevHkICQnBsmXLEBkZifXr1yMhIQHnz59HXFwcPvzwQxQVFaFv377o168fLly4IGW5iYiIiERlcPPZ4cOHsWfPHrRo0ULj8o4dO+L555/HkiVLsHz5cuzduxeNGzcWraBEREREUjI4KFq5cqVB6xUVFeGVV14xuUBEREREcjCqT9H8+fN1Ls/JyUFUVJRZBSIiIiKSg1FB0bvvvotffvlF47Lc3Fz069cPd+7cEaVgRERERJZkVFD066+/4uWXX8aGDRvUns/NzUVUVBTS09Oxa9cuUQtIREREZAlG5SkaNmwYMjMzMXLkSGzatAmPP/64qoYoNTUVsbGxqFWrllRlJSIiIpKM0ckbX3jhBWRkZGDQoEH4+++/8cEHH+DWrVuIjY1FUFCQFGUkIiIikpxJGa2nT5+OjIwM9O7dGyEhIdi9ezfq1KkjdtmIiIiILMaooGjIkCFqj11cXFCzZk289tpras//9ddf5peMiIiIyIKMCop8fHzUHo8cOVLUwhARERHJxaigaNmyZVKVg4iIiEhWJvUpAoC8vDycOHECaWlpKCkpUT2vUCgwcOBAUQpHREREZCkmBUVbt27F6NGjNSZqVCgUKC4uNrtgRERERJZkVPLGMlOmTMHw4cORnJyMkpIStX8MiIiIiMgWmRQUpaamYtq0aQgICBC7PERERESyMCkoGjZsGHbv3i1yUYiIiIjkY1KfooULF+KZZ57B3r17ERYWBhcXF7Xlr776qiiFIyIiIrIUk4KilStXYvv27XB3d8fu3buhUChUyxQKBYMiIiIisjkmNZ+99957+Pjjj5GVlYWrV6/iypUrqn+XL18Wu4wazZ07Fx06dICXlxf8/f3x9NNP49y5c2rr5OXlYdKkSahRowaqVq2KoUOHIjU1VW2dpKQkDBgwAJ6envD398dbb72FoqIii7wHIiIish4mBUUFBQUYMWIElEqTXi6K2NhYTJo0CQcOHEB0dDQKCwvRt29f5ObmqtaZOnUq/vnnH6xduxaxsbG4deuW2lQlxcXFGDBgAAoKCrB//378/PPPWL58OT744AM53hIRERHJSCEIgmDsi6ZOnQo/Pz+8++67UpTJJOnp6fD390dsbCy6d++OrKws+Pn5YcWKFRg2bBgA4OzZs2jevDni4uLQuXNnbNmyBU8++SRu3bqlGkm3dOlSvP3220hPT4erq6vaPrKzs+Hj44Pg19dA6eZp8fdIRERExivJv4/rC4YjKysL3t7eWtczqU9RcXExvvjiC2zbtg2tWrWq1NF63rx5pmzWLFlZWQAAX19fAEB8fDwKCwsRGRmpWqdZs2aoW7euKiiKi4tDWFiYWmqBqKgoTJw4EadPn0bbtm0t+yaIiIhINiYFRSdPnlQFDKdOnVJbVr7TtaWUlJTg9ddfx2OPPYaWLVsCAFJSUuDq6opq1aqprRsQEICUlBTVOhVzLZU9LluHiIiIHINJQdGuXbvELodZJk2ahFOnTmHfvn1yF4WIiIhslHw9pUUyefJkbNy4Ebt27UKdOnVUzwcGBqKgoACZmZlq66empiIwMFC1TsXRaGWPy9YhIiIix2BwUJSUlGTUhm/evGl0YYwhCAImT56MdevWYefOnahfv77a8vDwcLi4uCAmJkb13Llz55CUlISIiAgAQEREBE6ePIm0tDTVOtHR0fD29kZoaKik5SciIiLrYnBQ1KFDB7z88ss4fPiw1nWysrLw/fffo2XLlvjzzz9FKaA2kyZNwm+//YYVK1bAy8sLKSkpSElJwYMHDwAAPj4+mDBhAqZNm4Zdu3YhPj4e48ePR0REBDp37gwA6Nu3L0JDQzF69GgcP34c27Ztw8yZMzFp0iS4ublJWn4isl91fTk6lcgWGdynKDExEZ9++in69OkDd3d3hIeHIygoCO7u7rh79y4SExNx+vRptGvXDl988QWeeOIJKcuNJUuWAAAef/xxteeXLVuGcePGAQDmz58PpVKJoUOHIj8/H1FRUVi8eLFqXScnJ2zcuBETJ05EREQEqlSpgrFjx2LWrFmSlp2IiIisj9F5ih48eIBNmzZh3759uHbtGh48eICaNWuibdu2iIqKUo3+skfMU0REhpjWpwnmRZ+XuxhE9JBkeYo8PDwwbNgwVUJEIiJS91L3BsgtKMK3sZaZ9oiIxGHzo8+IiKyNu4sTZvRvLncxiMhIDIqIiIiIwKCIiIiICACDIiIiIiIADIqIiIiIAJg491lFqampSExMVP07ffo0zpw5U2kKDSIiIiJrZVZQ1LVrV1y4cAHVqlVD06ZN0axZM6xduxYbN25E48aNxSojERERkeTMCoqCgoJQUlKCuXPnokePHgCAtWvXomPHjqIUjojIVoTW8kZITU+82K2B3EUhIhOZ1adozZo1+Pbbb7FgwQL07dsXBw8ehEKhEKtsREQ2o3dzfyweFY62davLXRQiMpFRQdGOHTtQcVaQsLAwrFu3DnPmzMHHH3+M1NRUHDx4UNRCEhFZu+5N/OQuAhGZyaigKCoqCunp6RqXtW/fHps3b8b27dvx7rvvIjIyUpQCEhHZgg4hvnIXgYjMZFSfIkPmjn3ssccQExODXbt2mVwoIiIiIkuTLE9Rz549pdo0ERERkeiMDoqWLFmCmJgY3L17V4ryEBEREcnC6CH5CxcuxMcffwyFQoHg4GC0a9dO7V9gYKAU5SQiIiKSlNFB0enTp1FUVIRjx47h6NGjOHr0KL7//ntcv34dCoUCgYGBuHnzphRlJSKyef/pEIxVh6/LXQwi0sCooKgsB1FQUBCCgoIwYMAA1bI7d+4gPj4eCQkJohaQiMjaLRvXweB1ZzzRHG7OStSu7oE5m89KWCoiMpZoo89q1KiBvn37om/fvmYXiojIlvRs5m/wuj4eLvh4UEsAUAuK6vp64sbd+yjRP8iXiCRiVEfrrVu3wsfHR6qyEBE5rH+mdMWh9yLRIYQZsYnkYlRNEWuBiIik4aRUwMfDTe5iEDk0yfIUERGR8QzIkUtEEmFQREQkkVd7N5a7CERkBAZFREQSmdKrkcEj05yVColLQ0T6MCgiIpKIi5NS58i0X57viIZ+VfBWVFO4uzgBABSMjYhkY3TyRiIiEkf3Jn6IeeNxuYtBRA+xpoiIiIgIDIqIiIiIADAoIiIiIgLAoIiIiIgIAIMiIiIiIgAMioiIJDekXW0AQI8mfjKXhIh04ZB8IiKJzR0ShiFt6yC8Hid7JbJmDIqIiCTm5uyEro1ryl0MItKDzWdEREREYFBERGSQ3jqm6yAi+8CgiIjIAHOHhllkPwpw8jMiuTAoIiLSY2pkE/h7uctdDCKSGIMiIiIzrH0lQu4iEJFIGBQREZlobEQ9dAjxFXWbAgRRt0dEhmNQRERkxZjwkchyGBQREVmpsNo++Pn5jnIXg8hhMCgiIrIiHH1GJB8GRUREJgqpWUXuIhCRiBgUERGZoFN9XzzXuZ7cxSAiETEoIiIywa8TOsHFiadQInvCXzQRkQkUFuj6UzY8//0nQ6XfGRExKCIisioagq329apbvhxEDohBEZEMmHuGxPZc57pyF4GsQOcG4iYTdTQMiohkUN3TRe4ikLUyMaF1r2b+4paDbNKw8GDEzegldzFsls0GRXv27MHAgQMRFBQEhUKB9evXqy0XBAEffPABatWqBQ8PD0RGRuLChQtq62RkZGDUqFHw9vZGtWrVMGHCBNy7d8+C74KISDtjchZVXJc1R46rlo+H3EWwWTYbFOXm5qJ169ZYtGiRxuVffPEFvv76ayxduhQHDx5ElSpVEBUVhby8PNU6o0aNwunTpxEdHY2NGzdiz549eOmllyz1FoiIJPPJ02FyF8Fs1VijShZms0FR//798cknn2Dw4MGVlgmCgAULFmDmzJkYNGgQWrVqhV9++QW3bt1S1SidOXMGW7duxQ8//IBOnTqha9eu+Oabb7Bq1SrcunXLwu+GHA2n/LROW17rpvF5TZO0WiLvdNl+DRnpZo8Tyca+1VPuItgcQbC/74El2WxQpMuVK1eQkpKCyMhI1XM+Pj7o1KkT4uLiAABxcXGoVq0a2rdvr1onMjISSqUSBw8etHiZjeHn5SZ3EYjsUtMAL7mLoDHactTrnI8Ha4rIsuwyKEpJSQEABAQEqD0fEBCgWpaSkgJ/f/WOic7OzvD19VWto82dbQtFLK3xBretLev+ieyVthoZW5iPzBbKSNJrWdtH7iLYNLsMiqR2Zttvsu7fScmTH0mrqpuz3EUQ3d+THjP5tfbYNEXGW/VSZ8wZHGbVtfX1OR+fWewyKAoMDAQApKamqj2fmpqqWhYYGIi0tDS15UVFRcjIyFCto001Hx/Uq+EpYomNw5CIpObvbb0nfVNZIgM12bfODWrg2U51UddXvvM/Scsug6L69esjMDAQMTExqueys7Nx8OBBREREAAAiIiKQmZmJ+Ph41To7d+5ESUkJOnXqpHcfPL+SOfj9sS2amqYUjLLIgTTyryp3EYzm4mT8b9Rm68jv3buHixcvqh5fuXIFCQkJ8PX1Rd26dfH666/jk08+QePGjVG/fn28//77CAoKwtNPPw0AaN68Ofr164cXX3wRS5cuRWFhISZPnoz//Oc/CAoKkuldGYYV+fL7aGAo8otKMHfLWZNez8/Qtliy+axOdQ8culL6d3B11kiQdbDFUW2lNzPGldtmg6IjR46gZ89HwzWnTZsGABg7diyWL1+O6dOnIzc3Fy+99BIyMzPRtWtXbN26Fe7u7qrX/P7775g8eTJ69+4NpVKJoUOH4uuvv7b4eyFxdGtcE3sv3JZ0H35ebvh5fEeEBnlj59lU/S8gMtJ7TzTHwcsZKBEEfPxUC7mLQw+VH+BiiwECGcZmg6LHH39c5xdToVBg1qxZmDVrltZ1fH19sWLFCimKJylW2svnv8NaITTIG4D2YdLRU7tjyspjOJuSY8GSkT6GjM6yhiaxGlXdsGd6TwiCAGcnu+zhYJPmDrH9ZJjmsMUw0JQaXv7iTCTnydOZo880GtqujtxFAAA0DvBCn9AA/StauSquTnIXQVTmNIFZeri7k1JhVQGRnOec955oDn8jRnu5Oktz3Nxd7Ov3QJpZz6/Oxsh1ipj4eEOjfvSTejaUsDTy6xsagE8Ht8S3o8PRqo56fo4mAbbXMdBqCEBEw5pyl8JqcEi+fF7s3gAH3+1t8PoHZhi27uNN/Uwtkmh6yzSJb7fGNTFnsP3XfJnSysmgyIa0ruODt/s1M+qDfiuqmdrjHdN64MlWtUQumXxcnJUY1akeolpUTqPwWu8mku7b3rsVzBnSEuH1qstdDFG5u4h3yrO6+loRC9SrwsXa0Irxro2kCaSNqZn3reKKmlX11yz975nW5hTJLK5OSnw9si1+HNdBlv3/OqETnu3ECYM1YVDkYEJqeGLhs+3Qqb6v3EXRqmmAF8Y/FmLYyjoCk6aB5k3Z0FHDMbLzOEhFAODv5Y4/J3bB+0+Gyl0c0Wx7vTs+ebql0a/T1Hxmz9+F1yMbqz3WdwPw0cBQfDq4JQa1sY6Ru4bEUIYETlJ4PbIxjn/YF0+1to5jZc9MySfFoMgGmdOdqeyOS9M2VrygPz+T1N6KaoptU7vjmfBgs7elKa/GpJ4NDe4f8d3ocIv3qxkWbh39ouxVvRpV8Fzneka/ztGaz9ycjfveP9M+GKM61bOKjuq2wMMW++vJ/BN4Ikx3UuWKvNydsfi5dkbvh0GRqeT47Ut8wukiUdU3AEzrY1hT1jPtTQ8KDDkhT+vT1ODtVfN0xVNttM8z1ypY/DmGRna0jiptXtrsw3OdS79PFZvD9DH2VCPFqcnLiqeaMSc+MKTTfuvgambswX6F1vI2aL1aPu44/F4kmgUatn55DIrIIgzpf/NO/2bw9yrNIyVV/OekVJi17QCvR3mu/L3c8euEjiKUyvo4Vr2IaSyZq0bTfIeGXCBmD2qJPW/1xH+HtTJr/5N7NTJoPV3HJMDIqWOaB+l+fwPCbLNvpCG1jgtHtrVASWzPC93qG7SeUqEwebQggyIb5OPpKncRJPFKD8uMlKtjRpbg0Aon6m6N/fBS9wbmFoksQIxh9S8//Kzb1q1m0SHzobW80fhhc3Cn+r4Y2TEY340J1/s6hUKBujU8NdaitqtbTeNr/vq/LpWee6VHQ7wV1RRfaAmuDDm2S5/TX97ydPV7/HRwSywaZXzTiKnMDSoN1di/KpaP74BgK5xbTe4bJUulxbDe+knSakT7YLy//pTcxZCUwTfh5X4ndap7wNVJiYLiEp3NUKbWFHloufOoU93DtA1qoKlGgKzH2/2aoW+LAITWEr/pVBelUoF/pnTF9Yz7aBxg/AACTd+qTweHof9Xe9Wea+xfFe3qVsf5VPXEo+4uTpjUs7S2aPofJ7TuR9fPtm1dw0Yy9msRCKUSqv1porRw36Vn2pvfx7GMrot79LQeou1Hm6mR0o7KlVLv5tLnf2NNkYlkuXQ9jBRcnZW4+Gl/EzdRug1LJ6MTS6SOH4WLkxLbp3bH/BGt8f6TzS1WJjFbUVrVNv1iW8vHXf9KBrL2aQwWPWu5WoLylEoFwuv5ytJR1t3FyaSACNB8I+Dn5aY1/4+xZwcxY5Slo8OxeFS41SRL1DRKrXWdapYviEhqi3gTZ2k+Hi74XeIBQQyKJFLX1xMt9LSJm8OYqvsJXUvbYVvV8TG5yr9sG6aq2I7epWENk7bzw9j28NOR3TakZhUMblsHnq46KkGNuN6H1HhUjR1WR7zaAVctn4OyQk2Rk1Jh8Gg5exo6r88TYYF4vKkf/L3c8Pekxwx6jaONINNHASDA2x0dQ8RLz9G/pXEjhKSirVYXAGpWdcWM/s20Lq9I0+/vjb5NTD6HGaqnFSSXtEYN/aRNysugyET6RjrVr1kF31hJZ7kZ/ZthxQud1CJsuS8QDfyqyLp/Q41/rD461vdFQ78q+FKkZG+uzkq8GWXYKLij7/fBkHbaR8CVJ2blTvnmCTlqjTo30H2hVigUWD6+Iw7M6M2ROgbQVTPsVi6hpbmftJe7i5lbEMc3I9tqrL3q2dQPR2b2wctG9F/s3qTyqFwvdxeseLGzSWUztFbtE4kyTttmG8EjUl+7GBRJRKEAGogd0ZpYR+3spESXRjXNOmGZe100trnO4Lcq8fXa1VmJNS9HYMe0Hlo7PxrzsfQNDcC/b/dCgLf2pq5/JnfFwNZB+Glce/h4yHOR+XK4fNl+AeDVXo31r4TKNWskDltPN9Q6uBpi3+wpyraMSeMhJi93abr8+lY1baCOtTepl2fO95dBkYwaa0guKCapUu7LTZ4UUeLstU51T53Nf0BpM903I9uiVzPjOhWKeSEr3ylWzIR8A1sHoaoB+WdM7TtD4qhXowo8H/abGtclRO/6lg6iDLk+161h/giub0a2RaCBffU+MLD5OqSmtLXkuprbuzfxw+NNrLtZrp+GKZvKM+QG25z4jUGRicw9BwwLr4PtU7uLUhZt5G4iK0+MsoyJMD4TsSbl5377cKD198OxptnSzfXNyLY49XGUxmUfPBmKl3s0wPdjdPcbM5WtDi4QhYa3XvaL1BT0ujgpse317vhmZFu8Y0T/G3vSOrgantCTC+l/z7SGQlE6JZAhUxP5VnHFkxW2uXFKVwxqE4Rl49XnQTMleeWSUe10ni9+eb6jVWcdf6FrfSx8Vne3k4rXEk3TMZnDfs62FtbSjFFCQOlJR84vp7YLxNv9Sk+A3RqLW8tUMXI3NpKf0b8Zpj8sm9pLTTiE/9ezEcZE1MOL3epjTEQIgkQctSWF13s3houT/jdqqW9TsK/4o1dGdgzG+MdCMKN/c/QJLa0hm95PnmYLW2Xq56+tWSTY1xMDWwcZNArM0gFn2amzmZ75DU29kdo7vSfW/18XvSkyhoXXweH3IrHqxc4Gnc+Pvt+nUpNvy9o++Oo/bdGzacVJeI07poPaBKG/hAktLXGLPb1fM6NvAheMaINqnuJ1M2BQZKL3nww1c3SZ9dTilDfx8YbYO70nfh5vXZmaX+7R0KBmF13KJmB0d3HCrEEt8d6AUDgpFWZ/Ep0bPBqFom/usgHlaqlmDlBPG6BtRnp/b3fsmd5TbxNFrWq2O9R27pBWlS4C3RqpV/P7VnGFk1JhUHOOPu89UXrsw8y8ubEVmr471ltfYLgNk7vqXP7xUy10Ln/h4ajaHhWalNycDb9prVnVTW/ftseb+hk8SrI8c2rpDJkyKESEJkYxuTrrD0kqBuBB1TywbJx6LVv5j+6Zh+fkro0NGy3I5I0m8q3iik2vdsPfCTfx2qqESsslOeEYWb1iaruqOdlU69XwRF5hMVKz803ehlQ66RnRZKomAV5YMKINzqfm6BzV8tV/2qgFPhVHTX03WnvG31o+HmjkVxUX0u5pXD4moh7a2PkorAld62P8YyEa0y0EeLshNTsfTQO8cK5C4kFNXuzeAFEtAuHj4YLWs7ZLUVybIUaNtaUrvf0e5g7SdxFVKBRoULMKLt/O1bj8vQHNMbhdbTQJ8ELj97aIXk4AiGzujx/GdtC/ogbjuoTAw8UJAd7ueOW3eKNeO3tQCwwLr40/j95E7Ll0jdnIvxvTHn3n7zG6XA39quBSuuZjKjVNXTF0XermDAnDsPA6qO+jxMpJ+rfPoEgi+uMRe7hPqyxmWg/0/HJ3peeNjc+kOMlKWcX/dFv9w+YH6ZhcFgBqaEgSZ4jJPRsZPMTf1mnLP/XnxC7YkZiK/mG10GlOjEHbqlvDEzl5hWIWz+bZygij3s0Nn+D2tcjGqhvX8Y+p51tTKBRoEWS9tYXuLk4Ya2LNqLOTEuH1fBFeT/vNYJMALzQL9MLZFP03EuW/GvVryhAUmXj6dnFSolODGsjOzjZofTaf2ZIKkYKhMwZrIlUnbEPbg5+vkAzSzYBqU9Ls/3paZs44qTQVYaRZneqeGPdYfZ2pDgzV28gZ5W2B1Ldglr7FK1+7NfvpljrXHdgqCPOGt8bCZ9sa3FfSkGYcOWnqK+WsNK3McmRnN4emm9uKsbw5Uy9Z9ydvA0zNrinGcPxl4ztgRv9m2DFN2lFsxtL0pa1brkmugV8VNPSrij8ndsEz4XUwoFUtrDehvZ1Kaas96Rsq/TxBYni7v2VquconKSyj6dbguzHtsevNx9Wec+iRa1auR2PdQ8yVSgWGtKuDJ1sF6Wwq/HZ0OHw8XPBc57qoJuqk2+J/dypu0cVJgbdMrC3+fKhlJrsViyE39P8dZnqeNTafmallbR9M69MEJ25kIvZ8OgqL9X9gPZv6YbQIw8sDvN119mHRlfxLsmSKWvRpHoCBrYNwITVHNbt1eL3qWjsX6+Lv5Yb0nNI+S9VkSm5oC4a3D8b2xFTRt1v+rqyKqxPa1K2G/3Soiykrj6mtN6Rtbfx17KbaY028Rc6CvPS5cPy07wpe6t4A+UUleH31MXSqXwNNDKyRclIqUL9mFXw7Ohwv/xoPdxclxnYRJx2EXDQFA6oh+RJt31LE2nVUi0D0aR5gkwlB9+lJCKuLob8LddZ9jMzpF8ugSASv9i7Nvtvrf7tVHfo0fWW+GNYKw9rVsdiP7sOBukdeWJQCok17smBEGwxa9C/cnJV4o69j9KWxVhENa+KHse0BoFJQVJGlvo/9WgaiX7k5uLo3qWnSyMW+oQH4e9Jj8PNyE7nmwLr4l8sJVcvH9kYwijq9jQ0GRABEaTa2dmXz2Wm+oRfvS8CgyIKGtw+22L7cnJUIEnGItjEnHjHu3HTtr3GAFw682xuuTkpRZtIO9vVEclae2nPmDvs2N4+VobqbkZ02yMcdtyq8b010f5zaPyg/b/WO4z5G5hLxcBWndd/U6W0UCoVdz6tW9rm+078Zdp9PR2FxCeYOMW2+LdsMJcgYciUDdlYq4OKk1Jm3TMzAmEGRnfK282YlMZtc/jesNQYv/hfuLk7YOKUrUnPyzO78a6n+PLpubD3ddAeM0dN6YNjSOJxJ1j0qo+L5xtCgV9dM5YZo5M+pPoyhqwlL10dWo6ob/n27F0oEQZSbDEuz4gTNkpE7K7W+3b/SoyEup9+Dt4cL0nPyEXs+HUBp03Rxif4I5uk2QVifcAtv9GmCER2C4eqstFhtLYMiG+JII7QkGZKvZZt1a3hi/4xecFYq4aRUoHoV8398ljpp6dqLt7sLpvVpgnnR5zW/VgH8NqEj9l64jZz8Iry//pSoZRv/WH38sPcK7uUX4dcJ2pOByjmzuj1dT80ZTm/uaCtHDEzsXaC3O1KyH9UkG/P1ql3dQ5V4ctyyQ6rnDf2azB/RBu8+0Rz+BjYL1iyXzkTX3G+GcJyrrAUMLZfNuH9Lw9Kt/3dYK73zPCkVpf/mDDa8alvfF9jiJzErT3/i5uykN6W/3CrmWDFEWX83bWpUdcPTbWvDx4iaRfXvluZj9tO49vDxcMHe6T2x840e6FZhhNDvL3RCjSqueLpNEJrqmaqBzMegRT5i3cz2KVf73FmiRLTl/fcZ7aPSJE/xoFAYHBABpZPsvtyjAUJreePPiV3M2jdrikT0Qrf6yMkrgquzUu90D2WeaR+MYeF1MHP9Kfx+MKnScmelAnum94QAoLYNT+NAlRl7Yhnevg7yCosxa2Oi6rmKseYrPRpiaewlVHVzNnFUiTi6NCzNB1O9iqvGmrfHGtXE4fciZe/YauWxuk1494lmWmtGezfzx/5LdwwebSv25J5yUipKm4verTCdj6nmDA6Dh4sTQmp4ol/LWninfzNsOpGM95+0/kmty7g5K1FUUCzJtmf0b44Z/c3fDoMiEbk5O5k0V43OvgAKmNRhWt+doY0krhWVp40lKavI2UmJ57vWx28Hr+GylmyyU/s0RptgH7QI8jGqSUSO0ETugMjeyNHP5LvR4ejbIlDr8v90rItvR4frTeq69fVu2Hv+Nga3058ZvqLy/QutqbZ3z/SecHVWwt9LnJFhfl5u+LrcCN5XejTEKzpSsoitW+OaWHnoOgCgbd3qJqX7CPBxR/Na3ohOTEUVVyfcvW99GeXZfEais57TEvDbhE5wdVKioV8VDJBwBmlN+pW7WFjqZO3m7IR+LWup5en45GHG30YVEoYyIaHjkOqz1ndvpYBhWe6bBXrjxe4N1PqGGMrH0wUfDQzFY41qYP3/WU8S2DrVPUULiKzBO/2bo3czfwwIq4UJXY1vyi+z6Nl2OPFhXzzZKsik15s7gEMf1hQRAOu6wxJT18alzTRV3JwMnoJELIE+1nFCfK5zPXRu4Is61T3R7P2tIm/dAascrcjaVyLwx5EbeK5zPWTcL5C7OLIZ91h9jDOhz53YvhsdjtWHr+Ol7g3kLopZvhnZVm1OuIGtg+Dj4YIfxxk/sa2mVgl3Fyf0DwvErweuGb09H08XvNy9Af45fgufmphCQhcGRQQAcJK46t3YHBdi3tkamx9HLPpGA1kynBBzePtX/2mDoUviAADvDbCd/gz2qEOILzqElPbDibt0R+t6Uv287fNWynR9WwTqbE60BYfe7a3q5Pz7C52QcD0Tz3XS3yes/MSyDWtW0bt+l4Y1UbOqK27fMz6Yn/FEc8x4Qpy+WhWx+cxKVLPwhbviSdLFSffpzZCTatl8bnLn0LBG9nREwuv5YuOUroie2h31y538Zj7sUNqrmb9N5ruxdZ3q+6p+g1/9p43aMkdK50HmKd9q8FijmpjUs5FBN5bfjg5H5wa+GNclBF0aPZp4V9fl4LcXOqn+NqU/rhRYU2QlXunREGuO3MC9vCKEBnkj/tpdAKbXmEyNbGLU+t+NaW/Sfsor+zFpqiFh/xXbpemT05Sx+4VuDfBkqyAEeBvfL4TMp1QqsOnVbrh9L7/S4Awxb1RmDmiOTzadQRVXp0qpFsj2OStNC6Dr1aiCVS9FGPWaZoHeWDauA5Kz8jA03PhO9lJgUGQlvNxdsO/tnsgvKsF/t55TBUWm+HxoGIa2MywlQJnHykX2mjjiaDVz1a3xqBalVR3LTPshNyn7UZmTnFAbz3I1WvbwGbmKPL2PJuMfq49G/lXR0K8qPGx8RCeV+mJYK7z710n0bRFg8e4GPZv5W3R/+jAosiJuzk5wczb/JDOiQ12j1m8mcvI8zTNyO15UNbpzPWw/nYL0nHwsGCHOZLhSsfV0BaZydlLir//rgthz6RjZ0bjfja0zdSogJ6UCjzc17ELmeL962zS8fTCeCKtl0sTJ9oZHQGI/jm2Pr3dexJjOhiUvI/vh6qzE6pcjIAiCuP2sJLjSPN7UH80CvXAp/R6+HR0u/g6sWLu61dGubnW5i2FRQ9rWhouFR2OSdZMqILK1VgYGRRLr3TwAvZsbNzlo/5aPhiq+3EOaoZ3v9G+Gpxb+CwD46KkWkuyDSmkLiMQIk8QKtZwe9kfJySusNPGitZzT2IFfPM1reVtkP/zEqDxb+D4wKLJCXRrVxJzBYUjPyZcsKGpVpxr+nBiBwmIBnQxMrR/ZPAA7zqRiUJsg/J1wS+t6tvDFp8qclAqLzURNRGSNGBRZqWc7Sd+/IbyecfMMLR7VDidvZqJZoLfOoEgTW6tCJSLrMjWyCb7ZeQGTezWSuyhkxxgUkcFcnZUIr+eLvELdE/pZOucSOQYpRp+R7XgtsjFe7tGAObBIUuxpR6L7YlhrJosjsmK22j2LARFJjVcuMpq2E2rdh5OQNvKvigMzeluwRI7LnLoTW70wEhFJhUERma12NQ/U8nHH7IezsQNA9SquCCuX9biKkcM9ecHWwcLHhh8FGaNruUSwTUXOgUa259Xej/qAzegvzXxlYmKfIjKIriBlz/SeEASh0iz0340Jx4qDSejRxA+ubE4jcgjzhrfGwl0X0bZuNQQ/rD0mxxVezxe/TuiI/MIS9G5uXdmrNWFQZCfa1a2Go0mZGNxWmvljdPVxLZ3zrHLUVMvHA2/0bSpJeeyBGNnLiayNv7c7Zg1qqX9Fchi2NEcegyI7sWx8Rxy+koGujXXPYUbWo2Vtb7StWw3Hr2diwX+sexoQuTT0q4JL6bkAIPmcXkREDIrshI+HCyJDjcucTfJSKBT485UuuHu/ADWqWn5meaUNdNz6dnR7vPjLEdT19cSgNtYxizYR2S8GRUQyUioVxgdEZgw5Wz6+A2ZtTMTQdnVsop9XI/+q2PlGD07xQUQWwaCIrBIvgYYx9jg93tTf4BnOrQUDInGE16uO+Gt3AQBNAjgqjEgT679VJCJZMY+0ffjqP23QrXFNjH8sBN3Y95BIIwZFABYtWoSQkBC4u7ujU6dOOHTokNxFcni8EBOJq051T/w6oRM+HNiCtW9EWjh8ULR69WpMmzYNH374IY4ePYrWrVsjKioKaWlpcheNiMiuzBrUQu4iEOnk8EHRvHnz8OKLL2L8+PEIDQ3F0qVL4enpiZ9++knuohFZBdYpkFie7VgX84a3xlOtg+QuCpFGDt3RuqCgAPHx8ZgxY4bqOaVSicjISMTFxWl9XXZ2ttpjNzc3uLlZfkg1EZEtcXZSYki7OigqFrDh+C25i0N2LD8/H/n5+arHFa/b2jh0TdHt27dRXFyMgAD1/D4BAQFISUnR+rrg4GD4+Pio/s2dO1fqoloVhQXqDlg7QUREppo7d67adTo4ONig1zl0TZGprl+/Dm9vb9Vj1hIRERlO4FAKktiMGTMwbdo01ePs7GyDAiOHDopq1qwJJycnpKamqj2fmpqKwMBAra/z9vZWC4qI5MJLCxFRZaZ2a3Ho5jNXV1eEh4cjJiZG9VxJSQliYmIQEREhY8mIdGDbIhGRJBy6pggApk2bhrFjx6J9+/bo2LEjFixYgNzcXIwfP17uohEREZEFOXxQNGLECKSnp+ODDz5ASkoK2rRpg61bt1bqfE1kNdhmRkQkCYcPigBg8uTJmDx5stzFoHKYcNcwPExEROJx6D5FRKSfp6uT3EUgIrIIBkVEpNPgdrUR5OMOJ6UCvzzfUe7ikB0Iq11N9XfPpn7yFYSoAjafEZFObs5O2PXW48h6UAh/L3e5i0N2IDTIG7MHtUBicjam9mkid3GIVBgUEZFebs5O8PdiMxqJZ3REiNxFIKqEzWdklYKqeaj+7tGE1etERCQ91hSR0SwxMszT1Rl/vBKBA5fvYGTHutLvkIiIHB6DIrJa7UN80T7EV+5iEBGRg2DzGREREREYFBEREREBYFBEREREBIBBEZHNmTWopervN/o2lbEkRET2hR2tiWzMY41qYMULneDmokTL2j5yF4eIyG4wKCKyMQqFAl0a1ZS7GEREdofNZ0RERERgUEREREQEgEEREREREQAGRaRD+ek1ujSsIWNJiIiIpMeO1qTVjCeawUkJ+Hu5o3dzf7mLQ0REJCkGRaSVt7sLPnk6rNLzFpgPloiIyOLYfEZEREQEBkVEREREABgUEREREQFgUEREREQEgEEREREREQAGRUREREQAGBQRERERAWBQRERERASAQRERERERAAZFRERERAAYFBEREREBYFBEJlAoOPsZERHZHwZFRERERGBQRERERASAQRERERERAAZFRERERAAYFBEREREBYFBEREREBIBBEREREREABkVEREREABgUEREREQFgUEREREQEgEEREREREQAGRUREREQAGBSRCTgdLBER2SMGRURERERgUEREREQEgEEREREREQAGRUREREQAGBQRERERAWBQRERERASAQZFR8vPz1f53VI7+/svk5+fjo48+cvjjweNQisehFI/DIzwWpWzpONhkUPTpp5+iS5cu8PT0RLVq1TSuk5SUhAEDBsDT0xP+/v546623UFRUpLbO7t270a5dO7i5uaFRo0ZYvny5zv0yKCqVX+DY779Mfn4+Pv74Y34feBwA8DiU4XF4hMeilC0dB5sMigoKCvDMM89g4sSJGpcXFxdjwIABKCgowP79+/Hzzz9j+fLl+OCDD1TrXLlyBQMGDEDPnj2RkJCA119/HS+88AK2bdtmqbdBREREVsRZ7gKY4uOPPwYArTU727dvR2JiInbs2IGAgAC0adMGs2fPxttvv42PPvoIrq6uWLp0KerXr48vv/wSANC8eXPs27cP8+fPR1RUlKXeChEREVkJmwyK9ImLi0NYWBgCAgJUz0VFRWHixIk4ffo02rZti7i4OERGRqq9LioqCq+//rrW7QqCAABITk5We97NzQ1ubm7ivQErl52djZL8+2qPHVHZ+3bU91+Gx6EUj0MpHodH7PlYlL8GALrfoxzHIT8/X625LicnB8Cj67g2dhkUpaSkqAVEAFSPU1JSdK6TnZ2NBw8ewMPDo9J2CwsLAQAdO3aUotg2y2eB3CWQV3BwsNxFsAo8DqV4HErxODziCMfCkOuANRyHnJwc+Pj4aF1uNUHRO++8g88//1znOmfOnEGzZs0sVKLKQkJCcOnSJbi4uECheDQtqqPVFBEREVmzijVFgiCgsLAQQUFBOl9nNUHRG2+8gXHjxulcp0GDBgZtKzAwEIcOHVJ7LjU1VbWs7P+y58qv4+3trbGWCACUSqXBZSAiIiLbYjVBkZ+fH/z8/ETZVkREBD799FOkpaXB398fABAdHQ1vb2+Ehoaq1tm8ebPa66KjoxERESFKGYiIiMi22OSQ/KSkJCQkJCApKQnFxcVISEhAQkIC7t27BwDo27cvQkNDMXr0aBw/fhzbtm3DzJkzMWnSJFUz1yuvvILLly9j+vTpOHv2LBYvXow1a9Zg6tSpcr41IiIikolC0NcV2wqNGzcOP//8c6Xnd+3ahccffxwAcO3aNUycOBG7d+9GlSpVMHbsWHz22Wdwdn5UObZ7925MnToViYmJqFOnDt5//329TXhERERkpwQHsnjxYiEsLEzw8vISvLy8hM6dOwubN29WLX/w4IHwf//3f4Kvr69QpUoVYciQIUJKSoraNq5duyY88cQTgoeHh+Dn5ye8+eabQmFhodo6u3btEtq2bSu4uroKDRs2FJYtW2aJt2cUXcfizp07wuTJk4UmTZoI7u7uQnBwsDBlyhQhMzNTbRv2cCz0fSfKlJSUCP369RMACOvWrVNb5ijHYf/+/ULPnj0FT09PwcvLS+jWrZtw//591fI7d+4Izz77rODl5SX4+PgIzz//vJCTk6O2jePHjwtdu3YV3NzchDp16giff/65Rd6fofQdh+TkZOG5554TAgICBE9PT6Ft27bCH3/8obYNezgOFc2dO1cAILz22muq5xzpfFmm4nFwpHNleZq+D2Vs/VzpUEHRhg0bhE2bNgnnz58Xzp07J7z77ruCi4uLcOrUKUEQBOGVV14RgoODhZiYGOHIkSNC586dhS5duqheX1RUJLRs2VKIjIwUjh07JmzevFmoWbOmMGPGDNU6ly9fFjw9PYVp06YJiYmJwjfffCM4OTkJW7dutfj71UXXsTh58qQwZMgQYcOGDcLFixeFmJgYoXHjxsLQoUNVr7eXY6HvO1Fm3rx5Qv/+/Sv90B3lOOzfv1/w9vYW5s6dK5w6dUo4e/assHr1aiEvL0+1jX79+gmtW7cWDhw4IOzdu1do1KiRMHLkSNXyrKwsISAgQBg1apRw6tQpYeXKlYKHh4fw7bffWvz9aqPvOPTp00fo0KGDcPDgQeHSpUvC7NmzBaVSKRw9elS1DXs4DuUdOnRICAkJEVq1aqV2EXSk86UgaD4OjnSuLKPt+1DG1s+VDhUUaVK9enXhhx9+EDIzMwUXFxdh7dq1qmVnzpwRAAhxcXGCIAjC5s2bBaVSqXY3tGTJEsHb21vIz88XBEEQpk+fLrRo0UJtHyNGjBCioqIs8G7MU3YsNFmzZo3g6uqqiurt+VhUPA7Hjh0TateuLSQnJ1f6oTvKcejUqZMwc+ZMresmJiYKAITDhw+rntuyZYugUCiEmzdvCoJQWgtTvXp11XERBEF4++23haZNm0r0DsRR/jhUqVJF+OWXX9SW+/r6Ct9//70gCPZ3HHJycoTGjRsL0dHRQo8ePVQXQUc7X2o7DprY87lS33Gwh3OlTXa0FkNxcTFWrVqF3NxcREREID4+HoWFhWpZrps1a4a6desiLi4OgPZM2dnZ2Th9+rRqHU2Zssu2YY0qHgtNsrKy4O3treqTZY/HQtNxuH//Pp599lksWrRIlc6hPEc4DmlpaTh48CD8/f3RpUsXBAQEoEePHti3b5/qNXFxcahWrRrat2+vei4yMhJKpRIHDx5UrdO9e3e4urqq1omKisK5c+dw9+5dy71BA2n6PnTp0gWrV69GRkYGSkpKsGrVKuTl5an6MtrbcZg0aRIGDBhQ6fvraOdLbcdBE3s+V+o6DvZyrrSaIfmWcvLkSURERCAvLw9Vq1bFunXrEBoaioSEBLi6uqJatWpq6wcEBOjNgl22TNc6ujJly0Xbsajo9u3bmD17Nl566SXVc/Z0LHQdh6lTp6JLly4YNGiQxtc6wnE4cOAAAOCjjz7C//73P7Rp0wa//PILevfujVOnTqFx48ZISUlRpb8o4+zsDF9fX7XjUL9+fbV1yh+r6tWrW+Bd6qfr+7BmzRqMGDECNWrUgLOzMzw9PbFu3To0atQIAOzqOKxatQpHjx7F4cOHKy1LSUlxmPOlruNQkT2fK/UdB3s5VzpcUNS0aVMkJCQgKysLf/zxB8aOHYvY2Fi5iyULbceifGCUnZ2NAQMGIDQ0FB999JF8hZWQtuNw8eJF7Ny5E8eOHZO7iBah7TiUlJQAAF5++WWMHz8eANC2bVvExMTgp59+wty5c+Ustuh0/S7ef/99ZGZmYseOHahZsybWr1+P4cOHY+/evQgLC5O76KK5fv06XnvtNURHR8Pd3V3u4sjGmONgz+dKfcdhw4YNdnOudLigyNXVVXVXFx4ejsOHD+Orr77CiBEjUFBQgMzMTLW7n9TUVLUs2FJkypaLtmPx7bffAiidI6Zfv37w8vLCunXr4OLionqtPR0LbcfBw8MDly5dqnQ3PHToUHTr1g27d+92iOPwzjvvAEClWsTmzZsjKSkJQOl7TEtLU1teVFSEjIwMvcehbJm10HYcpk+fjoULF+LUqVNo0aIFAKB169bYu3cvFi1ahKVLl9rNcYiPj0daWhratWuneq64uBh79uzBwoULsW3bNoc4X+o7Dvn5+XBycrL7c6W+4zBx4kS7OVc6bJ+iMiUlJcjPz0d4eDhcXFwQExOjWnbu3DkkJSWp+hNERETg5MmTaic9TZmyy2+jbB1byJRddiyA0ruevn37wtXVFRs2bKh0d2DPx6LsOLzzzjs4ceKEKjloQkICAGD+/PlYtmwZAMc4DiEhIQgKCsK5c+fUlp8/fx716tUDUPoeMzMzER8fr1q+c+dOlJSUoFOnTqp19uzZo5pYGSg9Dk2bNrWaJiNNyo7D/fuls4IrleqnTScnJ1Vtmr0ch969e+PkyZNq3/327dtj1KhRqr8d4Xyp7zg4OTk5xLlS33F477337OdcabEu3VbgnXfeEWJjY4UrV64IJ06cEN555x1BoVAI27dvFwShdIhp3bp1hZ07dwpHjhwRIiIihIiICNXry4YU9u3bV0hISBC2bt0q+Pn5aRxS+NZbbwlnzpwRFi1aZJVDK3Udi6ysLKFTp05CWFiYcPHiRSE5OVn1r6ioSBAE+zkW+r4TFUHLMFN7Pw7z588XvL29hbVr1woXLlwQZs6cKbi7uwsXL15UbaNfv35C27ZthYMHDwr79u0TGjdurDYUPTMzUwgICBBGjx4tnDp1Sli1apXg6elpVUPRdR2HgoICoVGjRkK3bt2EgwcPChcvXhT+97//CQqFQti0aZNqG/ZwHDSpONrIkc6X5ZU/Do50rqxI3yg8Wz1XOlRQ9Pzzzwv16tUTXF1dBT8/P6F3795qF7+yZGTVq1cXPD09hcGDBwvJyclq27h69arQv39/wcPDQ6hZs6bwxhtvaEw+1aZNG8HV1VVo0KCBVSbh0nUsdu3aJQDQ+O/KlSuqbdjDsdD3naio4g9dEBznOMydO1eoU6eO4OnpKURERAh79+5VW37nzh1h5MiRQtWqVQVvb29h/PjxOpMW1q5dW/jss88kf2/G0Hcczp8/LwwZMkTw9/cXPD09hVatWlUaom8Px0GTihdBRzpfllf+ODjSubIiY4MiQbCN42CT03wQERERic3h+xQRERERAQyKiIiIiAAwKCIiIiICwKCIiIiICACDIiIiIiIADIqIiIiIADAoIiIiIgLAoIiIiIgIAIMiIrICISEhWLBggdVur7xz584hMDAQOTk5AIDly5dXmgjT0goKChASEoIjR47IWg4iW8egiIhMNnDgQPTr10/jsr1790KhUODEiRMWLhVw+PBhvPTSS6rHCoUC69evF2XbM2bMwJQpU+Dl5SXK9vQZP348Zs6cqXMdV1dXvPnmm3j77bctUiYie8WgiIhMNmHCBERHR+PGjRuVli1btgzt27dHq1atLF4uPz8/eHp6ir7dpKQkbNy4EePGjRN925oUFxdj48aNeOqpp/SuO2rUKOzbtw+nT5+2QMmI7BODIiIy2ZNPPgk/Pz8sX75c7fl79+5h7dq1mDBhAgBg37596NatGzw8PBAcHIxXX30Vubm5WreblJSEQYMGoWrVqvD29sbw4cORmpqqts4///yDDh06wN3dHTVr1sTgwYNVy8o3n4WEhAAABg8eDIVCgZCQEFy9ehVKpbJSc9OCBQtQr149lJSUaCzXmjVr0Lp1a9SuXVtr2dPT09G+fXsMHjwY+fn52L17NxQKBbZt24a2bdvCw8MDvXr1QlpaGrZs2YLmzZvD29sbzz77LO7fv6+2rf3798PFxQUdOnRAQUEBJk+ejFq1asHd3R316tXD3LlzVetWr14djz32GFatWqW1bESkG4MiIjKZs7MzxowZg+XLl6P83NJr165FcXExRo4ciUuXLqFfv34YOnQoTpw4gdWrV2Pfvn2YPHmyxm2WlJRg0KBByMjIQGxsLKKjo3H58mWMGDFCtc6mTZswePBgPPHEEzh27BhiYmLQsWNHjds7fPgwgNKaq+TkZBw+fBghISGIjIzEsmXL1NZdtmwZxo0bB6VS86lx7969aN++vdbjcf36dXTr1g0tW7bEH3/8ATc3N9Wyjz76CAsXLsT+/ftx/fp1DB8+HAsWLMCKFSuwadMmbN++Hd98843a9jZs2ICBAwdCoVDg66+/xoYNG7BmzRqcO3cOv//+uyrgK9OxY0fs3btXa/mISA+BiMgMZ86cEQAIu3btUj3XrVs34bnnnhMEQRAmTJggvPTSS2qv2bt3r6BUKoUHDx4IgiAI9erVE+bPny8IgiBs375dcHJyEpKSklTrnz59WgAgHDp0SBAEQYiIiBBGjRqltUzltycIggBAWLdundo6q1evFqpXry7k5eUJgiAI8fHxgkKhEK5cuaJ1u61btxZmzZql9tyyZcsEHx8f4ezZs0JwcLDw6quvCiUlJarlu3btEgAIO3bsUD03d+5cAYBw6dIl1XMvv/yyEBUVpbbtxo0bCxs3bhQEQRCmTJki9OrVS23bFX311VdCSEiI1uVEpBtriojILM2aNUOXLl3w008/AQAuXryIvXv3qprOjh8/juXLl6Nq1aqqf1FRUSgpKcGVK1cqbe/MmTMIDg5GcHCw6rnQ0FBUq1YNZ86cAQAkJCSgd+/eZpX76aefhpOTE9atWwegdBRZz549K9W+lPfgwQO4u7trfL5bt24YMmQIvvrqKygUikrrlO9bFRAQAE9PTzRo0EDtubS0NNXjM2fO4NatW6r3OW7cOCQkJKBp06Z49dVXsX379kr78PDwqNQER0SGY1BERGabMGEC/vzzT+Tk5GDZsmVo2LAhevToAaC0f9HLL7+MhIQE1b/jx4/jwoULaNiwoUn78/DwMLvMrq6uGDNmDJYtW4aCggKsWLECzz//vM7X1KxZE3fv3q30vJubGyIjI7Fx40bcvHlT42tdXFxUfysUCrXHZc+V78u0YcMG9OnTRxWEtWvXDleuXMHs2bPx4MEDDB8+HMOGDVPbRkZGBvz8/HS/cSLSikEREZlt+PDhUCqVWLFiBX755Rc8//zzqtqSdu3aITExEY0aNar0z9XVtdK2mjdvjuvXr+P69euq5xITE5GZmYnQ0FAApbUuMTExBpfPxcUFxcXFlZ5/4YUXsGPHDixevBhFRUUYMmSIzu20bdsWiYmJlZ5XKpX49ddfER4ejp49e+LWrVsGl02bv//+G4MGDVJ7ztvbGyNGjMD333+P1atX488//0RGRoZq+alTp9C2bVuz903kqBgUEZHZqlatihEjRmDGjBlITk5WG7L+9ttvY//+/Zg8eTISEhJw4cIF/P3331o7WkdGRiIsLAyjRo3C0aNHcejQIYwZMwY9evRQdXL+8MMPsXLlSnz44Yc4c+YMTp48ic8//1xr+UJCQhATE4OUlBS1mp7mzZujc+fOePvttzFy5Ei9NVBRUVGIi4vTGGA5OTnh999/R+vWrdGrVy+kpKTo3JYuaWlpOHLkCJ588knVc/PmzcPKlStx9uxZnD9/HmvXrkVgYKBa4si9e/eib9++Ju+XyNExKCIiUUyYMAF3795FVFQUgoKCVM+3atUKsbGxOH/+PLp164a2bdvigw8+UFunPIVCgb///hvVq1dH9+7dERkZiQYNGmD16tWqdR5//HGsXbsWGzZsQJs2bdCrVy8cOnRIa9m+/PJLREdHIzg4uFJNyoQJE1BQUKC36QwA+vfvD2dnZ+zYsUPjcmdnZ6xcuRItWrRQDbs3xT///IOOHTuiZs2aque8vLzwxRdfoH379ujQoQOuXr2KzZs3q0bKxcXFISsrq1KTGhEZTiEI5cbREhE5mNmzZ2Pt2rUGZ95etGgRNmzYgG3btklWpqeeegpdu3bF9OnTDX7NiBEj0Lp1a7z77ruSlYvI3jnLXQAiIjncu3cPV69excKFC/HJJ58Y/LqXX34ZmZmZyMnJkWyqj65du2LkyJEGr19QUICwsDBMnTpVkvIQOQrWFBGRQxo3bhxWrlyJp59+GitWrICTk5PcRSIimTEoIiIiIgI7WhMREREBYFBEREREBIBBEREREREABkVEREREABgUEREREQFgUEREREQEgEEREREREQAGRUREREQAgP8HYRHpXAxWcgEAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"ta[0].plot(xaxis_unit=\"km/s\",yaxis_unit=\"mK\",ymin=-100,ymax=500,xmin=3000,xmax=4500)"
]
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"id": "d4c4526b-2e78-4f0f-85ff-0a4e3694a1e5",
"metadata": {
"editable": true,
@@ -393,25 +240,7 @@
"test"
]
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EXCLUDING [Spectral Region, 1 sub-regions:\n",
- " (1401242184.363393 Hz, 1403551474.1090915 Hz) \n",
- "]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "WARNING: The fit may be poorly conditioned\n",
- " [astropy.modeling.fitting]\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"kms = u.km/u.s\n",
"ta[0].baseline(degree=2,exclude=[3600*kms,4100*kms],remove=True)"
@@ -419,7 +248,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"id": "527d868b-0ef7-40d3-9e80-dd5aea8f4405",
"metadata": {
"editable": true,
@@ -430,25 +259,14 @@
"test"
]
},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAGxCAYAAABslcJTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuM0lEQVR4nO3deVhUZfsH8O+wgzjgwiKK4JaK4r6N+4KioZlLmZlLWZmvmmWZWqamlf3MtFJT27R6M5e3XMJcEDdMFEVRFsWVQGVRkUWU/fz+IEYGZmdmzgzz/VwXlzJne+Ywc859nuV+JIIgCCAiIiKycjZiF4CIiIjIHDAoIiIiIgKDIiIiIiIADIqIiIiIADAoIiIiIgLAoIiIiIgIAIMiIiIiIgAMioiIiIgAMCgiIiIiAsCgiIiIiAiABQdFS5YsgUQiUfhp1aqVfHl+fj5mzJiBevXqwdXVFWPGjEF6errCPpKTkxESEgIXFxd4enpi7ty5KC4uNvVbISIiIjNgJ3YBqqNNmzY4dOiQ/Hc7uydv5+2338bevXuxY8cOuLm5YebMmRg9ejT+/vtvAEBJSQlCQkLg7e2NkydPIjU1FZMmTYK9vT0+/fRTk78XIiIiEpfEUieEXbJkCXbt2oWYmJgqy7Kzs+Hh4YEtW7Zg7NixAIDLly+jdevWiIyMRI8ePbBv3z4MHz4cd+7cgZeXFwBgw4YNmDdvHu7evQsHBwdTvh0iIiISmUXXFF29ehU+Pj5wcnKCTCbD8uXL0bhxY0RHR6OoqAhBQUHydVu1aoXGjRvLg6LIyEgEBgbKAyIACA4OxvTp0xEfH4+OHTtWOV5paSmSkpJgb28PiUQif93R0RGOjo7GfbNERESklYKCAhQUFMh/FwQBRUVF8Pf3h42N6p5DFhsUde/eHZs3b0bLli2RmpqKjz76CH369EFcXBzS0tLg4OAAd3d3hW28vLyQlpYGAEhLS1MIiMqXly9TJikpCc2aNTP8myEiIiKjS0lJQaNGjVQut9igaNiwYfL/t2vXDt27d4efnx+2b98OZ2dnoxzT3t4eABAVFYUGDRrIX7e2mqKcnBz4+voiJSUFUqlU7OKIhuehDM9DGZ6HMjwPT/BclBHjPFSuKcrNzUVAQABq166tdjuLDYoqc3d3x1NPPYVr165h8ODBKCwsRFZWlkJtUXp6Ory9vQEA3t7eiIqKUthH+ei08nUqK28ya9CggdpI01pIpVKr/qKX43kow/NQhuehDM/DEzwXZcQ8Dzk5OQCg0PVFGYsdkl/Zw4cPcf36dTRo0ACdO3eGvb09wsPD5csTExORnJwMmUwGAJDJZIiNjUVGRoZ8nbCwMEilUgQEBJi8/ERERCQui60pevfddzFixAj4+fnhzp07WLx4MWxtbTF+/Hi4ublh6tSpmDNnDurWrQupVIpZs2ZBJpOhR48eAIAhQ4YgICAAEydOxIoVK5CWloaFCxdixowZVtUURkRERGUsNii6desWxo8fj/v378PDwwO9e/fGqVOn4OHhAQBYvXo1bGxsMGbMGBQUFCA4OBjffPONfHtbW1uEhoZi+vTpkMlkqFWrFiZPnoylS5eqPGZ5sGTtQZOjoyMWL17M88DzAIDnoRzPQxmehyd4LspY0nmw2DxFYsjJyYGbmxuys7PZPkxERGQhtL1/15g+RWRaUTcz8e6OC7iQkiV2UYiIiAzCYpvPSFzPb4wEAPwv+haSPgsRuTRERETVx5oiIiIiIjAoIiIiIgLAoIiIiIgIAIMiIiIiIgAMioiIiIgAMCgiIiIiAsCgiIiIiAgAgyIiIiIiAAyKiIiIiAAwKCIiIiICwKCIiIiICACDIiIiIiIADIqIiIiIADAoIiIiIgLAoIiIiIgIAIMiIiIiIgAMioiIiIgAMCgiIiIiAsCgiIiIiAgAgyIiIiIiAAyKiIiIiAAwKCIiIiICwKCIiIiICACDIiIiIiIADIqIiIiIADAoIiIiIgLAoIiIiIgIAIMiIiIiIgAMioiIiIgAMCgiIiIiAsCgiIiIiAgAgyIiIiIiAAyKiIiIiAAwKCIiIiICwKCIiIiICACDIiIiIiIANSQo+uyzzyCRSPDWW2/JX8vPz8eMGTNQr149uLq6YsyYMUhPT1fYLjk5GSEhIXBxcYGnpyfmzp2L4uJiE5eeiIiIzIHFB0VnzpzBxo0b0a5dO4XX3377bfz555/YsWMHjh07hjt37mD06NHy5SUlJQgJCUFhYSFOnjyJn376CZs3b8aiRYtM/RaIiIgsiiAIWHkgEe9sv4CsR4ViF8dgLDooevjwISZMmIDvvvsOderUkb+enZ2NH374AatWrcLAgQPRuXNnbNq0CSdPnsSpU6cAAAcPHkRCQgL++9//okOHDhg2bBiWLVuGdevWobCw5vyBiYiIDC0sIR1rj1zD7+duYWlogtjFMRiLDopmzJiBkJAQBAUFKbweHR2NoqIihddbtWqFxo0bIzIyEgAQGRmJwMBAeHl5ydcJDg5GTk4O4uPj1R43JydH4aegoMCA74qIiMi8Rd3MlP//j3O3RSyJcgUFBVXu1dqw2KBo69atOHfuHJYvX15lWVpaGhwcHODu7q7wupeXF9LS0uTrVAyIypeXL1PH19cXbm5u8h9lZSAiIiJxLF++XOE+7evrq9V2dkYul1GkpKRg9uzZCAsLg5OTkyjHl0ql8t8dHR1NXgYiIiJSbsGCBZgzZ47895ycHK0CI4sMiqKjo5GRkYFOnTrJXyspKcHx48exdu1aHDhwAIWFhcjKylKoLUpPT4e3tzcAwNvbG1FRUQr7LR+dVr6OKlKpVCEoIiIiIvPh6OioV4WFRTafDRo0CLGxsYiJiZH/dOnSBRMmTJD/397eHuHh4fJtEhMTkZycDJlMBgCQyWSIjY1FRkaGfJ2wsDBIpVIEBASY/D0RERGRuCyypqh27dpo27atwmu1atVCvXr15K9PnToVc+bMQd26dSGVSjFr1izIZDL06NEDADBkyBAEBARg4sSJWLFiBdLS0rBw4ULMmDGDzWFERERWyCKDIm2sXr0aNjY2GDNmDAoKChAcHIxvvvlGvtzW1hahoaGYPn06ZDIZatWqhcmTJ2Pp0qUilpqIiIjEUmOCoqNHjyr87uTkhHXr1mHdunUqt/Hz88Nff/1l5JIRERGRJbDIPkVEREREhsagiIiIiAgMioiIiEhHgtgFMBIGRURERERgUEREREQEgEEREREREQAGRUREREQAGBQRERERAWBQRERERASAQRERERERAAZFRERERAAYFBEREREBYFBEREREBIBBEREREelIqKHzfDAoIiIiIgKDIiIiIiIADIqIiIiIADAoIiIiIgLAoIiIiIgIAIMiIiIiIgAMioiIiIgAMCgiIiIiHUkkYpfAOBgUEREREYFBEREREemIGa2JiIiIajAGRURERERgUEREREQEgEEREREREQAGRUREREQAGBQRERERAWBQRERERASAQRERERERAAZFRERERAAYFBEREREBYFBEREREOhJQM+f5YFBEREREepNIxC6B4TAoIiIiIgKDIiIiIiIADIqIiIhIR6lZ+fL/CzWoe5HFBkXr169Hu3btIJVKIZVKIZPJsG/fPvny/Px8zJgxA/Xq1YOrqyvGjBmD9PR0hX0kJycjJCQELi4u8PT0xNy5c1FcXGzqt0JERGRR9seniV0Eo7DYoKhRo0b47LPPEB0djbNnz2LgwIEYOXIk4uPjAQBvv/02/vzzT+zYsQPHjh3DnTt3MHr0aPn2JSUlCAkJQWFhIU6ePImffvoJmzdvxqJFi8R6S0RERCQiiSDUnIqvunXr4vPPP8fYsWPh4eGBLVu2YOzYsQCAy5cvo3Xr1oiMjESPHj2wb98+DB8+HHfu3IGXlxcAYMOGDZg3bx7u3r0LBweHKvvPycmBm5sbsrOzIZVKTfrezI3//L3y/yd9FiJiSYiIyNQq3gMA878PaHv/ttiaoopKSkqwdetW5OXlQSaTITo6GkVFRQgKCpKv06pVKzRu3BiRkZEAgMjISAQGBsoDIgAIDg5GTk6OvLZJlZycHIWfgoIC47wxIiIi0llBQUGVe7U2LDooio2NhaurKxwdHfHGG29g586dCAgIQFpaGhwcHODu7q6wvpeXF9LSytpB09LSFAKi8uXly9Tx9fWFm5ub/Gf58uWGe1NERERULcuXL1e4T/v6+mq1nZ2Ry2VULVu2RExMDLKzs/G///0PkydPxrFjx4x+3JSUFIXqN0dHR6Mfk4iIiLSzYMECzJkzR/57Tk6OVoGRRQdFDg4OaN68OQCgc+fOOHPmDL766iuMGzcOhYWFyMrKUqgtSk9Ph7e3NwDA29sbUVFRCvsrH51Wvo4q5SPeiIiIyPw4OjrqVWFh0c1nlZWWlqKgoACdO3eGvb09wsPD5csSExORnJwMmUwGAJDJZIiNjUVGRoZ8nbCwMEilUgQEBJi87ERERCQui60pWrBgAYYNG4bGjRsjNzcXW7ZswdGjR3HgwAG4ublh6tSpmDNnDurWrQupVIpZs2ZBJpOhR48eAIAhQ4YgICAAEydOxIoVK5CWloaFCxdixowZbA4jIiKyQhYbFGVkZGDSpElITU2Fm5sb2rVrhwMHDmDw4MEAgNWrV8PGxgZjxoxBQUEBgoOD8c0338i3t7W1RWhoKKZPnw6ZTIZatWph8uTJWLp0qVhviYiIiERUo/IUGRvzFD3BPEVERNaLeYqIiIiIajAGRURERERgUEREREQEgEEREVG1sFsmUc3BoIiISE/R/2Si+6fhmPHrOQZHRDUAgyIiIj2NWR+JjNwC7I1NRfQ/D8QuDhFVE4MiIiIDyMwrFLsIRFRNDIqIiIiIwKCIiMhs5BUU42FBsdjFILJaDIqIiEwoJfMRsh5VbWpLy85Hj0/D0f2TQ0jJfCRCyYiIQRERkYmcScpE38+PoOdnh/GgUh+kZaEJyC0oRl5hCd7fGStSCYmsG4MiIiITee3nsxAE4FFhCdYfu66w7H5ewZP/P2SnbSIxMCgiIjKRh/lP+gsVFJWIWBIiUoZBERGRiTC9I5F5Y1BERCQCiUQidhGIqBIGRUREAPKLSlBUUip2MYhIRAyKiMjqJd3LQ/dPw9H7/w4rHS5vKJwfjci8MSgiIqv37o4LyH5chPScAqwKu2KSYxaWlGJ/XCpzEhGZETuxC0BEJLbbWY/l/7/3sEDNmtVTsZ5oy+lkbDmdjFoOtji3aDBYiUQkPtYUEREZSdajQsz67TyW7IlX2XSWV1iCy6m5Ji4ZESnDmiIiIiNZGpqAPy/cAQB0bOwOCVQPy+dgNCLxsaaIiMhIQi+kyv9/NukB8xQRmTkGRURERERgUEREpMCYHZ5V7Zs1SETmgUEREVk9duchIoBBERGRQX1+4DKm/XIWadn5Cq8LFlQfVFoqoLCY2b3J+nD0GRGRgZy8fg/rjlwHAOTmFytUQd3LNV6mbEPKKyhGyNcRyM0vxo43ZGjq4Sp2kYhMhjVFRGT1DFWHk3AnR/7/k9fvKyzbH5+mvgwVCiFmndI3R68h6f4j3M8rxOytMSKWhMj0GBQRERmLDtFNbn6x/P+XUnPUrGlc6TlPMnon3csTrRxEYmBQREQGUVxSiiV74rHgj4t4XFgidnF0Yg4drRNEDISIqAz7FBGRQWyJSsbmk0kAAHcXB8wb2krcAhlBRk4+Im/cx8BWnqjtZK+wTKIsJbU5RFtEpDXWFBGRQRxLvCv//77YVDVrWq7nN0Zi9tYYzN1xscoyVXObaaM62xKR4TAoIiLSUtL9RwBUd5pmbGP+iktKcTYpE/lFltXES6bBoIiIyEiY68f8fLg7HmM3ROKN/0aLXRQyQwyKiIgqqE5tD2e6N3+/RSUDAI5WaO4lKsegiIisntJO0ibcx9rD16p9fCKqPgZFZBJp2fk4lJDO5gSqsQRB0LuWKfxyhmELQ0R6YVBEWsvNL8L55Ac6j5QpLinF8DURePXns/g6/KqRSkdERFQ9FhsULV++HF27dkXt2rXh6emJZ599FomJiQrr5OfnY8aMGahXrx5cXV0xZswYpKenK6yTnJyMkJAQuLi4wNPTE3PnzkVxcTFIUWmpgJHr/saob05iw7EbOm177e5D3HtYNu/T2iNsJjBH3x2/gQErj+KghqkoaioOiSciwIKDomPHjmHGjBk4deoUwsLCUFRUhCFDhiAv70la+rfffht//vknduzYgWPHjuHOnTsYPXq0fHlJSQlCQkJQWFiIkydP4qeffsLmzZuxaNEiMd5Stey9mIoPd8XhTtZjo+z/+t2HuHG37Nz+3/7LRjkGieeTvy7h5r08vP4LR+Sws7R5EgQBa8Kv4pO9CRaXMZ0sh8VmtN6/f7/C75s3b4anpyeio6PRt29fZGdn44cffsCWLVswcOBAAMCmTZvQunVrnDp1Cj169MDBgweRkJCAQ4cOwcvLCx06dMCyZcswb948LFmyBA4ODmK8NZ3de1iAGVvOAQBib2dj14xeBj8Gn6NJF2J9XnLyi5CVV4TG9Vz03oe+lUaG6KxNqoVeTMUXYVcAAA52NpgbXPMyppP4LLamqLLs7GwAQN26dQEA0dHRKCoqQlBQkHydVq1aoXHjxoiMjAQAREZGIjAwEF5eXvJ1goODkZOTg/j4eJXHysnJUfgpKChQua4p/PNvQjkAiEnJEq8gZHDFJZbTMV3smOBRYTH6rTiCvp8fwZFE3TouaxPQaGpiYxOccR269KTrw7YzKSKWhCxBQUFBlXu1NmpEUFRaWoq33noLvXr1Qtu2bQEAaWlpcHBwgLu7u8K6Xl5eSEtLk69TMSAqX16+TBVfX1+4ubnJf5YvX27Ad2OeqpW7hRNA6WVN+FW0XXIA30fo1odLLGLHBL9FpeDBoyIAwMubzhh037n5RXj66xMa1xNYp0pkFpYvX65wn/b19dVquxoRFM2YMQNxcXHYunWrSY6XkpKC7Oxs+c+CBQtMclyxCIKAhNRs/bfnjUIvX4RdQX5RKT7ee0nsouhMjDDYUOke9sen4d5DxdrfVWFXcKnSLPYP8goNcjxVWPOkyNin41rGQ6w9fBUpmY8UXi+yoNpaemLBggUK9+mUFO1qFy0+KJo5cyZCQ0Nx5MgRNGrUSP66t7c3CgsLkZWVpbB+eno6vL295etUHo1W/nv5OspIpVKFH0dHRwO9G/P031P/4O1tF8QuBpHJzPy3j1658kEGFf3n13NVXjOkBX/EGnX/pGjYV8ex8uAVvPDtKQBlQenEH06j87IwnLpxX+TSka4cHR2r3Ku1YbFBkSAImDlzJnbu3InDhw+jSZMmCss7d+4Me3t7hIeHy19LTExEcnIyZDIZAEAmkyE2NhYZGU/6H4SFhUEqlSIgIMA0b8QCfLhbdf8qbbD5jMxFflGJVhOBnrqRiXPJD7B83yUk338EGyUf4chKN0qJRIJSA9ZmbGW/GQXG7rNWVFL2x7v97wjeyBv3EXH1HnLyi+WBEtV8Fjv6bMaMGdiyZQt2796N2rVry/sAubm5wdnZGW5ubpg6dSrmzJmDunXrQiqVYtasWZDJZOjRowcAYMiQIQgICMDEiROxYsUKpKWlYeHChZgxY0aNr/0h7ZX+e6ezUXZnJItxO+sxQr6OgI1Egv1v9YFnbSe164/+5iQAIPRCKlp619a4/0/2JiDp/iON65F+TN2amP1v/zQyrRt3H8LbzQkuDuKEJxZbU7R+/XpkZ2ejf//+aNCggfxn27Zt8nVWr16N4cOHY8yYMejbty+8vb3xxx9/yJfb2toiNDQUtra2kMlkeOmllzBp0iQsXbpUjLdEZuhubgH6rTyCAV8cNXofEjKuD3fFIetRETLzCrEsVPt+WrezHmtV18mAiKh6dsfcxsAvjmHwquOi9eWy2JoibTohOjk5Yd26dVi3bp3Kdfz8/PDXX38ZsmhUgywNTUBKZll1+qd/XcLnz7UXuUSkr7TsfPn/7+bmq1mzKrHTDRD/BtZg9tYYAGUPIocvZyC4jeq+vcZisTVFYvp0b4JZjUjgxcJ4bt57KP//P5msCbBe1vMlk6j8RVwcjGdZrmU8rFbm8eIScf7gDIr0sCUqBb9E/iN2MeR4sSBSLjOvEK9sPoN3tl9AaYUvyqkbmch+rH2fEWt68BBU/qLFtoKACylZWnVmJ/MmCAKibmZWSVGgje1nUxC06hiGfnUcJYYcfWACDIr0dOzKXYPuL/TiHXz61yXcf2j87Nimzn9iTTcUKmOIT9hPJ5MwZ3uMQrOXrpbsicfhyxn4/dwtXE7LVVg2738Xtd4PP8LaWR12BSPX/V0jRmtZ1q3c8PbGpuL5jZEYvPqYzp3O3/v3u/XP/UeIuplpjOIZDYMiM5CS+Qgzt5zHt8dvYL6Rc5N8HJqADkvDsPdiqlGPQ9bHkMHvlfRcLN4Tjz/O3cbsredVrncoIR1j1p9E6MU7SpeHX0pX+jpQlqRRW2IF9oIg4HzyA6Tn6B8YmtLXh68BKJtu6GFBsUH3zYcr05q5pex7l19Uil+j9G8ZKbWwpgwGRXoy5J857vaTbNFhCaov4tVVWFyK70/cRPbjIvkEsqQDy/puW7SK2aNPq3nSfPXns4j+54H8Am4sx6/cM+r+Vfnm6HWM+uYkun8ajtx8yxsi/t9T/2DM+pM4bYDkhxZ2b61RrCnXnN5BUVFREVJSUpCYmIjMTMuqHrNWlhaxmwNruhiQao9F6iPz+YFE+f+3n70lShn0VVIqYOGuOET/8wDjDN6cxu8lGYdOQVFubi7Wr1+Pfv36QSqVwt/fH61bt4aHhwf8/Pzw2muv4cwZw07ESCSmmjpvW1FJKfbHpeFaxkPNK2vJHGNuMyyS3sxpxKs2jNt3sSb9ZcmcaJ2naNWqVfjkk0/QrFkzjBgxAu+//z58fHzg7OyMzMxMxMXFISIiAkOGDEH37t2xZs0atGjRwphlFxUnazS9zLxCbD2TjO5N6qKzX13TF6AGPZx+F3EDK/aX1ULELhli8P3re6pSMh/h6/CryGSizCpMVdNrqCH5tx48rm5RkJGbj68OXUVgQ7dq74v0p+3DYVFJKextLbtXjtZB0ZkzZ3D8+HG0adNG6fJu3brhlVdewfr167F582ZERETU6KDInFhLB8S5Oy4g/HLZPHUJS4NFSwNfE5QHRABw4qo4/WWUefWns0hMz9W8opa0+WpcSc+Vz3dlzlbsT4Srox0myfyNepzqDMmv6E01HeS1NXfHRflI3zY+FSf0tJKLngU5lJCO2VvPo08LD7GLUi1a31V+++03rdYrLi7GG2+8oXeBrEF6Tj4+2BmHph61sGBYK7GLY3SGunyVB0RA2VPoU16a56MyKFYOGp0hAyIAyC/W3OQ0ZPVxgx7TmBbtjjd6UGQoN+7mVXsfFVOfxN/JqbCEX0YAeJBXiFsPHqNtQykkIj8dv/rzWQC6jeo0RzrVc61evVrt8tzcXAQHB1erQNbg3R0XcOhSOr49fgNHDZDvqHKturklyzKv0ujGHDta37yXh6R71b/h1DQ/nLhR5TVz+y6YWvajIp2SVJLlKCguweDVxzBi7Qn8fu622MVRq6ik1CQ5+AxBp6Do/fffx88//6x0WV5eHoYOHYr796s/9LKmi6jQXJFwJ8fgzV9ijZQh4zmX/AD3HxYgMS0XA1YeRf+VR3EtwzC1Kuo+f7tjbmPmlnO4auAaHGO499A6+iH5z9+rVeqO5PuP0H35IfT4NFxj86DlBU7m97BiamEJ6fLP/Ls7Lhi1I351Hg6LSwUM+uIYOn98CEcTMzRvIDKdgqJffvkF06ZNw549exRez8vLQ3BwMO7evYsjR44YtIDWQJv+k7n5RYi9lW2RHbyNcfmywNMAoKyD/qd/XcLsrefxQIfOxKO/OYkhq4/jnR0x8tcW7oozQgmfyCsoxuytMQi9WJbZVhcW+uexGK/921SRk1+En04m4eKtrCrrvL8zFvlFpXhcVILFu+NV7mvpnwlo/9FBrA67YqzikhLpOfm4qaTGN7+oBNfvah4VWrkWdOFO9dcDZbWmiWm5+GzfZVzR8NBTnVG4oRfuIPnfqUKmbDL/0ek6BUVjx47FmjVrMH78eBw9ehTAkxqi9PR0HD16FA0aNDBGOa1aSamAkK9PYMTaE/jpZJLYxbEoiWm5mPHrOeyO0a962dBD8v+KTcO3x29gd8wdfPSn6huVMvfzChF3+0m/CmM3DVWsPXigRZp/a+nwby5e3hSFzsvCsHhPPJ5Z+zfyKmWQznr8JOjOUZP48ce/bwIAvgq/apyCqnHy2j2M2xiJP84ZNgdTflEJdp2/Xa3aVF0evDJy8vHO9gv48cRNrdZPy85H7/87jAErj+Jc8gP566WlAoavOYFBXxzDltPJOpV329kUlct+jkxCuyUH8Pa2GAz64iimbj6D0lIBQ786jg3HrmPYVxE6HUsXj0RsuUi+/wi7Y27rNDGtzmPnXn31VSxevBgjR47E0aNHMWzYMNy5cwdHjhyBj4+PrrsjaL6ZXLyVJY+0l/yZoHF/hsgeW+7tbTEG25ehXU3PxZj1J/FxqOpzMnbDSeyNTcXsrTHVmrHZUM4kPUl0uitG+dQURNo4kngXRRVmEleXcyomOUvr/RpqSL46F1KyMOPXc3jx+9M4fTMTc7ZfMOj+V4ddwVvbYhC06jgeFRp2upHKPtt3Gd0+Dcfv525haWgC4u9ka9xm5cFE+d9u5q9PZheIvZ0t/zu+v9NwUz4t2h2PvMIS7Dx/G9fv5iH8cgb+vHhHHvgZ8wFLrGelopJSDF59DLO3xuDTvy5pvZ1eCQXee+89TJ8+HYMGDcLt27dx9OhRNGrUSJ9dWSx9mm9KSgW9Zo/W9fM69aezBumIm3z/EXaeN98OfFM2nUH0Pw/w/YmbeOqDfdgXW3U+t9z8JxfEwxVGr2Xk5uO/p/5Barb6vhaq2tJLzaADrzl2AlfnbFImJv5w2uC1AqRZYUmpVjdrUxm57m/sVfJ9NZSNx590ur94y3jvO7+oBBuOXVd4TXGUnHIV+/8UVvh/sQmvK+rySGm6Luqi8qg4U107kzMfoeDf0ae/nNJ+7jadgqLRo0fLf65cuQJ7e3vUr18fs2fPVlhGVeUVFKP/yiPo9skhg+9bWU3TLj2biyoy9ISOhiRAUOg8WlhSium/qp/PreJ8by9vOoOFu+IwbqPu0w+sOpiI9h8dxNYozdXbaw9fxch1f+N8hSryir45eg0j155A9D9iTpVjmuBq7IZIRFy9Z/BaAdLOygpThqhjqDxF1kBpEFMDztlmI3bT+FPF5M3KlJQKJs8hplNQ5ObmpvAzfvx4BAQEVHndmj0sKMapG/erVEduPH4DKZmPkZOvGGiwH4Y4yp/mypsldfH14WvILSjG/D/UV29n5OZj5cEruJCShVHfnFS6zor9ibhwKxtj1uvWkVmd1OzH2B1zu0ofE2O6/7AAhy6Z/8iSyixx4IIqljeCTH/3HhZgWWgCsh5Zx4hDY9Dl3lOdr0nlw/xzX/tr7vhvT6HXZ4d1qulRdVxt6ZQSeNOmTXoexjoIgoAXvzuFi7eyMa1vUyx4urV8maXkaDAGYwR+YjQd6drpOkuLzsmqnE3Sr+ZIEAQ8s/Zv3M0twOhODbHq+Q56l0EX7+xQrP355/4jCIIgakK5OVr0h3v1p7PGL4iJTPoxCpeXDYWTva3YRdGLrp+XH07cxIO8Qqwa18F4hTIBc4zLDXl91fcSkJr9GFH/Xgc/3BWHiT38DFYmdfSepCQ/Px9RUVEIDQ3Fnj175D9//vmnIctnUQqKS+Xt1xXbtKuLtUniEePcF5WUYuwGLWqOlJStoLgUd3PLAvA/KiV0Ky0V8Pe1ewbLb1TR0cSqSUiPiJyT5A8t+sNVzJJeExz4N5tw3O1shZGKAHDVgJP/GoM+XU20+RvrG3QcuqQ5F5S+NY2WdkmvznXQRs+Nq9u/St8HMr0mj9q/fz8mTpyoNFGjRCJBSYn4o3yMzVBDtQ3xlCD2k0ZxSSmWhSYgv6gUS55pA2cH4z+pqjv/giDg4q1suLvYV/84Bj632lxEH+Ybp9nrz4t3MHtrjFH2rUx5cGYol9Ny0EDqDDcD/F1rqpJSAfcfFmD4mhNVlhliglZjOnQpHcFtvMUuhpy+g0wMncajopz8Iqw6eAU+7k7wkjoZ7TiGZGkBoF41RbNmzcLzzz+P1NRUlJaWKvxYQ0BkLbT9cv96Ohk/Rf6DbWdT5LlOcvKL8M3RawpzF5nK8av3MHLd3xj0xTGD7ldZlfL0/0Zr/bSoLleMoagriikDIkPbHXMbQ7+MwKBVR/UawWlNtKnhUMcUQ/KVmf7faKPsV5sKA33zmOlL37Dp//ZdxuaTSfj0r8smnci5Wg+HIkVF+h5Wr6AoPT0dc+bMgZeXl56HperILyrBK5vPYNzGSJVZkbX5EBcbKC388QqBz/64smG2n4Rewor9iZj8YxRSs/OVbpeS+UhtbhV9vfZvPxFtq18vp2keQqvKvrg0nNMyB8yza/82+sAUVaPc1KluE2F1P0fpOfk4mpihdj/lAd29h4XYF2e8odzWJkGL4eOmYqyR2pquhSev37OYB4ZfKyR0/Pta1aAor6AY28+maJUR29I9KizGL6f+0bv/pSp6BUVjx46VZ7S2VoZqVpFIgPVHr2tesYLvjt/A4csZOH0zE8vUJC7URNPQyOp0tquYXfVsUtUbdUrmI/T7/AiCVh3DhZQsvY+jTKmOf5yhX2qXzVVVzVn2Y+1GwNy4l6c0rX9l2gYpylZ78fvT2m1sQJ8f1G6od2UlpQKW7IlH90/DMWXTmSr5XlRvp9fhqJJ9sal4+msNn30z7ARsaDvOmj5vlrEqT4Z9FYH3/ncRg744hsJi8/iiVO7baCgrD1zBh7viMHZDJO4pGcik78OeXn2K1q5di+eeew4REREIDAyEvb1iG/+bb76pX2ms0KGEdFyolFxsyZ54LHmmjcptYm8/WT8qKRMvyar2ytfmA/EgT31zjrbNZ/pcNz/Ze0n+ZPj2thgcfre/Tturi3sMeR3X5YsVdzsbmXmF6N28PmxslG8YYcIqb1PZeEz3QQWCIGDH2RSFfCgrD2o391ZNGkZvaMUl2p8bVXm9atrZ/fvaPVy8lYXfz93CwpCAKssN/XkS8+NZMcXI7azHaFK/lsp11T30mnKAiSAI+GTvJWRU6oOoqQjl09MAQOT1+xjR3jAzaugVFP322284ePAgnJyccPToUYVe3hKJhEGRDpQ1vWw+mYQ5Q56C1MnyOpQq6/Gv7AtWsWlLm2auG5Wqg83lKahc8v1H8s6t30zohKcDOQegppvD8aum729W0733+0XMG9pK7+2X7InH/6Kf1JzkmjiBa3FJKexsdWvACEtIx+AA1V051h65Jv//pB+j9C6bocSkZJlkih9LeXgIvZiK75XMGVe59En38uCvIsj749wtjUHRb1Ha5TrSq/nsgw8+wEcffYTs7GwkJSXh5s2b8p8bNww3FN2aVbzpW1LvfWVfxOp+N0tLBQxefVzhNWVfInVl0MXmv29i0e44rWexl0CC7yKefO7/8+s5rNh/Wa8alPL9iWnbGd0mojS1fDMLiM3N/+2/rPe2yjIZR1433FyKmmzXoynrtZ/1zzV1PvmB1gHKiav38FtUMh4VFqO4pFSv6Spy84vw7Lq/dd5OmermADOXVC/a9gnqv/Koygl3jyhJCVL5OvrJXu2+F3rVFBUWFmLcuHGwsdE7zRFpoGu/GG1U3uXS0ARMkvnp/GRWmabvli7v5GFBMa5nPETbhm4oFQTY29ogv7ikSobwPy8Y50nrXPID+aS71ckQ/I2O/cQq0rbZ0lgXtXm/xyKknQ8+3qt/fzVAc/n0/YibMpEbAeO/O4Wkz0JMcqy0HOWDMoxFVaZ5ZV76oay/3sH4NCSk5sDV0Q7zh7XWsJWiS6lVc4Tpe6XX9PBnyDtIQqrhOuRX57K1NDQBr/RuYrCyKKPX3XDy5MnYtm2boctiUYxeM2mims//6pE+vTJNRdX2S1BaKuCZNScwct3faPb+X+j9f4dxx0Tz3sTdzsbGY9dxIC5N/tpuJU+QllIlXV2rDl7BX7FpmlfUkyCon9WdzMu0X84ivJpD/WuKI4l3kZ5TgOt385TWUqm7QpjT9WN1mHZ9+ABg70XDjfisfAYMfUb2xaaiz4rD2HhcvwdTvWqKSkpKsGLFChw4cADt2rWr0tF61apVehWGtFPlQ6VsTkItP2mnbmRiSi/DRd76Vulm5hXin/t5uFFhdFZ6TgE+2BmLdRM6Gap4iL+TDXslNWPKkt0pUzlLsDGI3XwGGCZY1sTcMyzTEwfi03EgPh1H3u2PRnWcsfHYddjZ2uD1Pk1hYyNB3O1sJKYZIFO6GQUNxqDs3WXmFSIjNx+etXVLxljd5rMCM2+G1vfdlQ8gqJi+QBd6BUWxsbHo2LEjACAuLk5hmZhzHdUkH4UmoLajHRaNqDpaIqXCCIOacA1JznyEHp+Go1DJWOvkzEcGDRJCvtYu+Cl3sdLIwOJS876QGIqyv4W5MaenbmsRcfUuSkoF+UhBz9qOGNjKU+uHCmtVWFwKBzsbldfrCd+dRticfqYtlBrWfBfXKyg6cuSIocthcXRN5a5rrFheXenmbI+hbRVT31+u8ER2W0Xzkta5bszk02/Im7Axb5XGDvr/F30L30do10H7cqUn88oj9LR18VaWVuuVlgpY8EcsUnPysXJsO3hqmGbA2DGLMZv3aqpfIpOwNza1WiPUtlR4Ap+z/YKaNQkANh67ji8OXsH0/s3QvWldpetczXgoemqAY1fuot9THgYtgyZ3sh4brX+ovthT2ohKSwWUlAo4fuUu0lRkddZkb6zmtlxt79PGnJNH7XErfTt/OHFT6xu4PlW8xrwZK0s/dC75ATIfaTdSTZN3d1yoEuyokvWoCMn3y2oN7+YWVBmhp63fo7VLrrbnwh1sO5uC41fuYsEfsTodo6BYcWoOQ/yJLmgZzNETH+6Ox6kbmTp1MK7MHOvn9BkJZiyVrz/L911GYUlp2RRIaoo5Yu0JUVONTDZxuoLSUgHD15zAg0fGn/5IF1rXFCUnJ6Nx48Za7/j27dto2LChXoWqKfqvPIohAV5qh49rcv+hYW62qpiipujrw9cUftclC/etB4/xx3nth+nO3npe63V1Ff2P8ik01lR6f6b0zdFr+GxMO/z4980qI/QMLa5C0tDy2eW1rdX6PkL/74AqbD4zvUW748UuglL38wrhUdvRYPsbu746QaN+n8u42zkY/90p7Y+j8fNv3t+P3PxiZKpJeyJW6bWuKeratSumTZuGM2fOqFwnOzsb3333Hdq2bYvff//dIAW0ZMmZj6oVEAHAYwuY/NLYN6cPdsZpXulfykaMGUqpoH3WZVNTFdsaO1D6eO8llcsqBtyfH9BvKhBV8otKEJbA0VBkHGdVPADpIr+oBFE3DTsvl6moe1i+97AAv542/kAMsWhdU5SQkIBPPvkEgwcPhpOTEzp37gwfHx84OTnhwYMHSEhIQHx8PDp16oQVK1bg6aefNma5RXfqRiYeFhTD1VGvblk6Yed181Fx8ltzomrS3VsPHsGvXi2VSc90YcjwavDqY9Xa/pO9l5B0/5HmFcnqmEu2+5c3nUHkDcXEl4adgkic+0KXjw9Va/v8ohI8LjTfh32ta4rq1auHVatWITU1FWvXrkWLFi1w7949XL16FQAwYcIEREdHIzIyssYHROUmfH8ap2/cx48nbmqd/dgYspT0ZzFly0LlL+eRf5tWSDfVuZjvPK++X9BSNU2Wxrq2lgpATr7y/gI37mqeGFedX0yQMoAsz8Zj19F28QGxiwEAVQIiQJzRwobMBxZjgMm7vzl6HT2Wh6scJFROrKoAnas5nJ2dMXbsWIwdO9YY5bEoF1KyMO7bsjbgE9fu4RsD5tPRxdI/teujo+wLaYjh7hWbz27ey8PLm1U3sZJqPZaH67XdP/erF2Boe6HWNXfRgj9iseCPWIzv5qtHqYi0J0DAtYxcLN+n/xQnpmDKwS7l3+unv44w2D7j72RrXkkL2Y+L8MEu3QZrmIrFjj47fvw4RowYAR8fH0gkEuzatUthuSAIWLRoERo0aABnZ2cEBQXJa7XKZWZmYsKECZBKpXB3d8fUqVPx8KF+UfVhEWtHlDUj5BdrWT3Jljmzoa7ToSqnb2ai3+dHDV8YJfRN9vZbVIqBS0JUVdAq/UZfmtIXIvRJNJfmxMoycgrULlcXPhqz+c1ig6K8vDy0b98e69atU7p8xYoV+Prrr7FhwwacPn0atWrVQnBwMPLzn/S9mDBhAuLj4xEWFobQ0FAcP34cr7/+uqnegtb0iVs2HruB5X+p7gSrDQ7uMX8376mvJXrxu9NGm06j2AISPJJl0feSYw5Z4Mupu27q2vw0/b/Reg9kMcbl25Tn+TMVtX6PCoux7kjVEb+GSstg/F7CRjJs2DAMGzZM6TJBEPDll19i4cKFGDlyJADg559/hpeXF3bt2oUXXngBly5dwv79+3HmzBl06dIFALBmzRo8/fTTWLlyJXx8fEz2XjTR90+98fgNLHi6Nb6PuIEb9/IwvV+zKuuYz6WEjOF21mMErVLfqVnfPkXNP9in34Zkle49LEB9V8MNm69IrBxsxrYvLg2HLmVgcICXzts+qkZtyrl/sqq89upPZ+ElNdzfT9/rTsAi5X3GHjwqRD0DfL4stqZInZs3byItLQ1BQUHy19zc3NC9e3dERkYCACIjI+Hu7i4PiAAgKCgINjY2OH36tMnLrM4XB/Ufzrx83yV8vPcStpxOxuI9uuUY4aA366Bq5BqRIX24S/vUGpYs+3ER3t1huEzfqdmPkVdQrHON0dfhVzWvpMS1jIdKO4kfupSu93xilsRia4rUSUsrS//v5aUYXXt5ecmXpaWlwdPTU2G5nZ0d6tatK1/HXERcvaf3thuPPUmup6zfU8WEfIIgICwhHQ52Nujf0pPNZ0RkMPvizOu6aiyGzskVeiEVy0IT0LeFblNwqEo2q8mmvw2faNUU1hy+hva+btXej0GCovT0dCQkJMh/4uPjcenSJaSnM7mauUu6/wg37j5EUw9XhCWk4/VfogEA7w1tiW7+yufpISLSx9HEDAQ0kKpd53FhCX45lYSG7i5a7/d6RvVGYJqzqKSyBJDhNSzVya0H6ofk62rzySSD7KdaQVHv3r1x9epVuLu7o2XLlmjVqhV27NiB0NBQtGjRwiAF1Ie3d9kEqunp6WjQoIH89fT0dHTo0EG+TkaG4oesuLgYmZmZ8u2txfqj1zGmcyOFyR1X7E/UOjElK5SISBtTNp3R2C9l7ZGrWHfkuk771WV6DFItN7/I6q/n1epT5OPjg2bNmuHbb7/Fnj17sGLFCtSqVQvdunVDnTp1DFVGnTVp0gTe3t4ID3+S9yUnJwenT5+GTCYDAMhkMmRlZSE6Olq+zuHDh1FaWoru3bubvMxi2hF9Cy98ewoPC4oVXq/8uyoVm+CIiNRJVzMUWxCgc0BkrTQlP9TH9rPazzNZU1UrKNq+fTs2btyIL7/8EkOGDMHp06dNlnr84cOHiImJQUxMDICyztUxMTFITk6GRCLBW2+9hY8//hh79uxBbGwsJk2aBB8fHzz77LMAgNatW2Po0KF47bXXEBUVhb///hszZ87ECy+8YFYjzyzBPSNPWktE1mGtkqHWpD9d5z7kJMs6Np8dOnQIgwYNUgh8AgMDsXPnTpw9exaLFi1Ceno6Tp8+bfTalrNnz2LAgAHy3+fMmQMAmDx5MjZv3oz33nsPeXl5eP3115GVlYXevXtj//79cHJykm/z66+/YubMmRg0aBBsbGwwZswYfP3113qXadZvxpuhnYiISFvZj4vQd8URsYthcSSCDqGhra0tUlNTq4zaqujvv//GokWLIJFIcOhQ9SaOMzc5OTlwc3OD71vbYeOofSdAIiIic7cwpDV+ikxCSqbhm+bEVlrwCClfPo/s7GxIpao7++tUU6RN/NSrVy+Eh4fjyBFGqERERJakJgZEujBa8saKTVtERERk3vZcuCN2EUSnc1C0fv16hIeH48ED/RJDERERkfm5eIsjiXXOU7R27Vp89NFHkEgk8PX1RadOnRR+rC3HDxEREdUMOgdF8fHxKC4uxvnz53Hu3DmcO3cO3333HVJSUiCRSODt7Y3bt28bo6xERERERqNTUFQ+FN/Hxwc+Pj4ICQmRL7t//z6io6PleYOIiIiILInBRp/Vq1cPQ4YMwZAhQ6pdKCIiIiJT06mj9f79++HmVv1ZaImIiIjMjU41RawFIiIioprKaHmKiIiIiCwJgyIiIiIiMCgiIiIiAsCgiIiIiAgAgyIiIiIiAAyKiIiIiAAwKCIiIiICwKCIiIiICACDIiIiIiIADIqIiIiIADAoIiIiIgLAoIiIiIgIAIMiIiIiIgAMioiIiIgAMCgiIiIiAsCgiIiIiAgAgyIiIiIiAAyKiIiIiAAwKCIiIiICwKCIiIiICACDIiIiIiIADIqIiIiIADAoIiIyuMZ1XcQuAhHpgUEREZGBNXBzErsIRKQHBkVERAa2Ymw7uDnbi10MItIRgyIiIgPzq1cLpxYMErsYRKQjBkVEREbg7GArdhGISEcMioiIiIjAoIiIiIgIAIMiAMC6devg7+8PJycndO/eHVFRUWIXiYiIiEzM6oOibdu2Yc6cOVi8eDHOnTuH9u3bIzg4GBkZGWIXjYgsUJP6tcQuAhHpyeqDolWrVuG1117Dyy+/jICAAGzYsAEuLi748ccfxS4aEVmQwQFemDP4KfwytZvYRSEiPVl1UFRYWIjo6GgEBQXJX7OxsUFQUBAiIyNFLBkRWZrh7RrgzUEt0KgOs1kTWSqrDoru3buHkpISeHl5Kbzu5eWFtLQ0kUpFRJZoRDsfsYtARNVk1UEREZGh2NhIxC4CEVWTVQdF9evXh62tLdLT0xVeT09Ph7e3t0ilIiIiIjFYdVDk4OCAzp07Izw8XP5aaWkpwsPDIZPJRCwZERERmZpVB0UAMGfOHHz33Xf46aefcOnSJUyfPh15eXl4+eWXxS4aEdVAozs1FLsIRKSCndgFENu4ceNw9+5dLFq0CGlpaejQoQP2799fpfM1EZEqP7+i/TD8RcMD4Ghng4buzlh58IoRS0VEurL6oAgAZs6ciZkzZ4pdDCKyUH2f8tB6XXcXBywf3Q4AFIKicV18EXcnGzfv5eFRYYnBy0hEmll98xkRkTn4cEQA9r7ZB218pGIXhchqMSgiIjIjgiB2CYisF4MiIiIj+XB4gNhFICIdMCgiIjKSV3r5Y9/sPiqX96vQF8nZ3tYURSIiNdjRmojISCQSCVo3UN1H6MtxHbA75jZ6Na8P238zYkuYGJtINAyKiIhEUqeWA6b0aiJ2MYjoX2w+IyIiIgKDIiIiIiIADIqIiIiIADAoIiIyup7N6gEAWni6ilwSIlKHHa2JiIzsmwmdEH4pQ6fpQIjI9BgUEREZmbuLA8Z0biR2MYhIAzafERFpoWn9WmIXgYiMjEEREZEWNk7sbJLjSMDsjURiYVBERKTBW0Et0MKrttJlzdl5mqjGYFBERKSButqbHyd3NWFJiMiYGBQREelpsswPjeu5GHSfAgSD7o+ItMegiIjITAU2dEPEewPELgaR1WBQRERkRio31fnWNWxNFBGpxqCIiEhPzD1EVLMwKCIi0kBZP591L3ZCu0bupi8MERkNgyIiIj0MaeNl9GOUB2Ov9Gpi9GMREYMiIiKNTJpQUcmhRnbwMd3xiawYgyIiEQxr6y12Echc6Tkif/6wVoYtB1mk8d0aowUTiuqNQRGRCBzt+NUjzXSpoXrKizdCAjr71UHYnH5iF8Ni8cpMRFQDVA6gznwQJFJJDMfBlrcoMi1+4ohEwJzF5umHyV20XtcUvYzKO1pLtDhY5RFyHrUdjVEkkzr4dl+xi0BWhkGRHto1chP1+P1beoh6fKKaakBLT7GLoDTaEqw0ivavX0vsIlgcV0dbsYtg0RgU6WHFmHaiHj+ggVTU4xNZoue0SLSoqkbGEuYjM+kIOStlCQ+kfZ8y/zKaMwZFemhU1wV+Bp4EksicNPWoeU/oE2V+YheBLNzml7vh5vKn0dmvjthFUclGm7ZWUolBkZ74saPq4OfHsiirhZHw5mOVrPXv3swCH5Rs9PhTMSiyQOZfkV/z/TilCz4fq38zKv+GlsWUzWfjuvjK//9iNx1qt6zzXi0KwVo7eVkYOxvdQxw7I5SDSBR9WtRHxNV7Rj3GzAHN8VZQC9jZ2iD8UrrSdV7o6outZ1KMWg4yDnOoBRjVsSEePCpESamAcV19NW9Qjvdpo/pxivYjE2siS/x46fMww5oiPYl58bTXp07QCoQENjD6Mbr414Gdhtwpn41ph1kDmxu9LEZliVdAIzJlJ2YbGwle7dMU0/o1g62ZfNfFjBVf7N5YvINXMLCV8ee6I/ExKNKTWNeIqb2bwEGHbMgv9/JX+L1uLQcDl0hcQa29MG9oK6x8rj26NamrsMwYo/Qqxgo1vQZ9Wt+mYhfBbFjC6DNjshUxKvp0VCCiF2qfiPLAW9rlNprS01/PEhnOoFbipIBo7umKdwY/JcqxTUmfazSDIgvSvpEbPhweoNM2i0e0Ufj90Jx++PjZtoYslqgc7WwwvX8zjFUy3Prd4Jr/pTem2UEtMLV3E7i72ItdFIMZ3s74tYmiMWDc8u4Q3b87DrY2mDGgmeEKUUE9V+0TUbb0rq1V4sp5Q8WZK662kx26NamL3TN64YcpXUUpw6E5/TBrUAtRjm3uGBRZGamTHV7q4YceTetWWWYuGXC3vNod/53avdr76feU8qcwbR96V49rX3Xb6hTIwrg42OHD4QGYNbDmXDzXjO+IszrUOlirwQG6TVj89/yBOLlgIJrUN4/517SpIXB2ECfJ4dTeTbB9mgztfd1FOb41+UyPnIIMivRloXdHdX2hot4fZLTjjurYUKv1oj4YhJ7N6+vVzFf5vSnrjxGzaLDWTQGjOjbC+G6K/RkqXmvbNDR889zv03safJ/0hEQiQX0dah0s3dOBZcFNayMnfK3jYm9V57U6jana9E/zretcjSMYicgtyOWfZW1teKmz1vedihgUWRIjt+sbs/O4fz3NOS7mD2sFz9pO/5bFOOVwd3Go1hNic48nT8IN3JyxcWJnQxTL7NTEHjSWnPHZzblqE+azHXw0brfq+Q749dXuOo2cauDmVOW1/9PwxF1+btUNVdc14WHlPoKVjVZzwzODQYQqadM/bcurPUxQEsuz6vmqtffKNHR3xtC23noNVLDIoOiTTz5Bz5494eLiAnd3d6XrJCcnIyQkBC4uLvD09MTcuXNRXFyssM7Ro0fRqVMnODo6onnz5ti8ebPxC28AvZrXF7sIRvFGvyf9EfTpIOfqqF2Gieo0E/rWVcxkHtzGW6/+F2SZvh7fEW7O9ni9b1OTjgzzr18LE7o3ho+bExYMa4XFIwKwVIu+gU72tujVvD6c7Ko+CLz/tPI+NTvekFUJKp7t2BAbXuqMHW/I1B5P3dd2zfiOmoqrQF1H4E9HBWLVuA467a86fp+u/n0bynOdGyHs7b5VrjOG1MZHv1pDsR+UJJCgUR3jzyRhkXmKCgsL8dxzz0Emk+GHH36osrykpAQhISHw9vbGyZMnkZqaikmTJsHe3h6ffvopAODmzZsICQnBG2+8gV9//RXh4eF49dVX0aBBAwQHB2ssgygPIv9GCh0b18GzHXywK+aOGKUQlYOdDQqLS5+8UOEP4VHbETMGNMP+uDR8/GygwY/tbK+8hqm2k+E6IlesiRKTuSena1THGbcePDb5cZ9p74PhgQ1gI8JQ+U9GBUIQBIPV6D7bsSHSsgvw49835a+18HRFozouuJKeq7CurY0EQ9uqbr7Qpkg+7to1Cf38SjfYSCTo3rRetY5nKPVdHdDZT7HWysfNGeeRpdf+1NVYfv6cdjUh1THJgqe76dakLoJae+LQpQyjHcMia4o++ugjvP322wgMVH7jO3jwIBISEvDf//4XHTp0wLBhw7Bs2TKsW7cOhYWFAIANGzagSZMm+OKLL9C6dWvMnDkTY8eOxerVqw1SRh83J3QwYke6L1/Q/qmrfMRNfVcHedpzXZsShqm5IGqjcpWxvk/Zx+cOULt8bnArhL/TH7Jmqi+oujzyVExt38nPXfsNNajtpPx5xK0aI70+eqaN5pVqiCPv9od/PRfY2Uiw7sVOWm1jqGH1YgRE5fQNiJRtZiuR4MPhrZWvr9dRgIEGGGLe9ykP9G5Rvdrwehr6JL6gQ1JMeyV5yRaPCDD6wBRj3T9s9cjybE6WGXn0tGWfHRUiIyMRGBgIL68nybaCg4ORk5OD+Ph4+TpBQYqjUIKDgxEZGalx/zk5ORBKS9Wu08KrNr56oYPuhTeCz8a0w+px7bFnZm/5RVXXG4S2T3naGt9Nh0y9FXi7OZl0lNwkmT/6tKiP1g2k+HysYZ7ipE52mDO4pcrlrbxry///15t9tJrdHTDs6MFmItdYBbVWnyjP3tYGYXP64dT7gxBSk4fZG4iqhyCJRII+FQIQQf66fscxl87WX77QQWk+twEtPXBh8RCdRiW92K1q8khPqRP+njdQr7JpP/q1g17713h8o+zV/BQUFCAnJ0fn7WpkUJSWlqYQEAGQ/56WlqZ2nZycHDx+rL5a3tfXF5cTE9WuI5EAflp0LtaJnlcqV0c7jOrYqFqBTXVbU3StmdL6rRq5lcfBzga/TO2OfbP7qDx/uvxZRndqiFPvD1I7um7Ty10xN7gl9r/VBwE+UlE6jX4yyvDNj7p4c5DmjOD2tjZmcxOuaaQ6NgmbW8fmVt5SnF6gfDStsk7rqjjZ2+CV3k2ULqscdCnroK6MtrXk9VyNk2hXUwd2VUzVpG5va5gP0/Lly+Hm5qbzdmYTFM2fPx8SiUTtz+XLl8UuJgAgJSUFrVqqftLX1mejjXvj6dVcTROSiRmi6SKwYdkHvLpfmcBGT74owW1Mm7rf3dkBLg7qu/I1cHPGjAHN0crbuMOo1fHW8gKvq22v98CvryrPQdW/pQdcHGzRv6WH/G9tSJY8+swY1H0jPaVOmDWwOVp61dbYudpc1TFA9v4T8wailpoBHBWHfG+fpt15eqmHYp+e8iSSYzop1gir6sOozpAALzip2e77SV2M2om7upzsbbBfy4zk5VTVkC9YsADZ2dk6l8FsOlq/8847mDJlitp1mjbVbtoBb29vREVFKbyWnp4uX1b+b/lrFdeRSqVwdlZfoyKVStHRrx5u3L+lVXmUGd+tMV7o1hjz/4jVex/VoeoG8Xrfpvj2+A20bShF3G3dqx5VqfyQoetDR/+WHlg2sqwtWWFTPe5zi4YH4MbdPDjY2WD1uA4Y9MUxpGbn674jE5nevzm2n9X8WTPVLd/RzgYFxeqbj1VR1Xm2bUMpvp3YBQIEOP47UmpKT39sPpmkbzGtjtq/vx4fjneGtMQ7Q7R7+DPXgHNEex/8eUH3ASlLR7ZBV/+6Gmsil45sg05+ddDFr45WwUbUB4Oq1FRN798ML3T1rRLEKevLpE7v5vU1pggJCtD/IdAU9UTRCwerDUKV2TSlK4avOVHldUdHRzg66l6TbDY1RR4eHmjVqpXaHwcH7SJ/mUyG2NhYZGQ86aEeFhYGqVSKgIAA+Trh4eEK24WFhUEm0y7aXxjSGh0bu2v35izIe8EtseW17vjtNfPKk7H55W7VfsIpz+tSz9URf87qjd+n99RYa6ON4DZPOqHPDVZ/E6k48qNyx+jRnZTnXWlSvxb+nNlbYzlaGTlBXzlPqeGbrP6c2RsOdjbygAio+uTs4+YEJ3sb/Kd/9aeS+HRUIGwk5lWbakzKmrfMM4zRzbkPB6td/vlY9X2H5vw77L/y9C9D23hrlfCytpM9Jvbw07hunxb1sfM/PeV52CpTVau19kXtB9TUc3VQ6Ig/rZ9iJYKPktrfwdUIkoxB14AIANo2dKuSMqHi533qv82f2g4WMpuaIl0kJycjMzMTycnJKCkpQUxMDACgefPmcHV1xZAhQxAQEICJEydixYoVSEtLw8KFCzFjxgx55PjGG29g7dq1eO+99/DKK6/g8OHD2L59O/bu3atVGerUcsDO//TC7pjbmL01xkjvtBIdq1f0aQK2s7VBz2b6j/x4rnMjRN64L8pwaU266tmWromX1Al//Kcnku7lqe30u2tGL/jXf9LPLKBSvpDlappTAxu5oYWnK65mPFS6fMXYdmhS38B92ExIm1FVE3r4YVrfprBT8gQ9oXtj/Ho6GW/0a4YNx65r3NeL3Rvj6UBv2NhI0G7JQb3KbG70fZKveO717Tdi6j5Fvf69RmnKfO9kb4uQwAbYG5sKoOoAgjcHtcDzXXzhJXVE6MVUo5Q1qLUnvp+s3xxnT7dtgM0v28GzthOe/jpCp23nD22FF7s1RtTNTBy7chdvK8n79OmoQIQlpCvZuqqKH42u/nVwJumBTuWpNjWfMXXXj4UhrTGhe2PUtS/Bt69qPozZ1BTpYtGiRejYsSMWL16Mhw8fomPHjujYsSPOnj0LALC1tUVoaChsbW0hk8nw0ksvYdKkSVi6dKl8H02aNMHevXsRFhaG9u3b44svvsD333+vVY4iUu3z59orvUBWvtT2aeGhdj/GuMgas4q/U+M6GN2pkUJNR2Wahtiq21adw+/0w/Nd9BvNZw6UjRJSRVlABJR1DI96fxDmD9N+kk93F4caUVtiDkx9HhvXe1JrPFJDZu8lz7TBU16uCGzohreUBAbebk5Vbqpipl2oyMZGgv4tPas8QPnV01xrLpFI4FevFp7r4ou1L3ZSOqLUo7YjAvSoYdals7qhKbuOV47la1VoAZBIJGjq4ar139Qig6LNmzdDEIQqP/3795ev4+fnh7/++guPHj3C3bt3sXLlStjZKVaM9e/fH+fPn0dBQQGuX7+usU+TMvoOXW7ppcd2lb6426fJ0PcpD52qWE1B2YfWr0LT11Nerghu44W3g8ouUO4u9vh+kvbTEJCipio+g8qqy82RpiYObXlK1b9fZdO7KKsX2f9WH7w3VLEZVN+A1ZTUXfLN4xZvHG8Fqc8o71HbEQfe6os9M3upzXq/bGRZc3av5vUMPKrR8Ge//1NVHyrf1HPW+2XPWlZ+M20G7VQnnYFFBkXmpG1DN7wd9BQGtvKEnZaR6OAAryojEPTRrUld/PxKNwxvp/xJSd907spUt+YmKMALozo2RGBDN2yc2AUSiQSzg1og6bMQxCwaolMHQFmFzrqGfI81zdKRxklyVvGpzMXBFj2b1VM6hUPluanmqJi2oaGBc2BteKkzuvnXxXeTuuD7SV3g4mCLoW280dxTuweRVt5S/Kd/c/z6andIJGVB+0QLzgIMqG9eMMQt25jzJmqizXW3fASzOhNl/ji1YBB+eUX56EhzFjqrt94P6J0a6zYnXRnzDrMr16zpwiL7FJmb2UFlEfrAlUdx414eAOUfme3TZOjqX8dkFxBNT1Cmpkv0rq5rw5Jn2iAjNx+ujvZ4tbd2IxJNTd2wWEPy16IavbrUfVp7NquP7yeX1fLN+u28wrLKNTOVO34ay9C23gpTUsQsGqJTE125Xs3rI+K9AXBzttd6Xj1L9Ex7Hxy7chcA8ELXqokKrYmxUlEYW9tqpLDQ9n5kqIzw+uqrNsu54cpWc7/pZkjfpFn68KjtqFdPflV06X9p7Jivbi0HbH3dcLlTPnqmDV7/JRoA8FZQC8TdzsZrfap3A5/c0x+fH1Cf4NMQ/NV0rtYUCCwY1grL92nO/VX5T6/491X9wXCvNGWJrk1QLfRpYlZCn4ConCkmoDQUfR+2RnVsiLScfBQUl2JyT3/9jq3XVmSpNH3U+j3lIQ+09eFsb4vHRSVo6VUbnfzc4epoh+c6q+43aci8kgyKLIiYndtMzZS18YMDvLBpSle4ONiqnYRSF6aqWVB3murWcsDwdg1UjqqZKPNDYCM3bD+Tgrq1HBUmBjWEyT39se5I2Ugwdf3eVH2uTVHbVpNu5upGjql7nzY2EswYoDmDuDrmltG6phOjuVKXwCMowAv/N6Yd6tSyx7RfonE0sSxAsrORoLhU8472ze6DI4kZGN7Op0pyRmV9Viv2AXPQMb9TZexTZEDlzWgAVKaGr2z1uPYa+1S4ONjC2d4WnxhwIjyTf6fMYNJ1Ve9ZIpFgQCtPgwVExvJBSNXJO9WdVid7W6zVMFlqz2b18eULHdFBh5xbghbZM3+c0gWetZ1waE4/bHm1O0ICFVMVbHu9B3zcnPBCV1+08KqtdB9kOAxaxNPM0zCpMio2Pz9bob+eb13D9skr98vUbiqXafNx8nZz0nuAgn/9Wni5VxOt53P0r18L/+nfDIEN3fC/6dVrRWBNkQGNaOeDktKyjLy9m2uX62dUx0YY1bERPtgZi19PJ1dZbmcjwan3y+bw0XU+InVMNI0NqaHrfarfUx7Y9HJXvLzpjMp11k/ohNnbYtCrWT2tOxYbQ3muq+aerkrL0b1pPfw9f6CoHXQBs4jVRWOI9+7mbI8vx3VQ+Xd8tXcTXErL0ZgyYkBLDxxJvIsFOqRUKGcuw+cra+lVG04OtnhzoH6jwiqbPagF3J0d0LiuCzr4uuPHKV0QfikDr/c1TV+9isPc9a3F9ajtaLTZA94b2grvDa3+fhgUGZCNjQSjO2k3o7m2JBLDBkPWZvagFvgq/CoAYGArT5Me27+eC5LuPzLY/iQSCQa09ERTj1q4cTdP6TrDAhugX0sPhXmTBgd4KU3QVrEaWozbitgBUU0jxvlcMbYdBqj5XnVvWg8Lhwdo3M8Pk7siNSdfr5GIPm5O6ODrjpiULCweoflYprL/rT4G/Zu4ONhheoVs7gNbeWFgK9NlpF41rj1GrDkBOxsbLHi6FfboMX2Ks4MtfnqlGyKu3EXS/TwcupSheaNK7Aw0YazK/Rt172QxtJ25WRvK9iTWyIXp/ZuhYR1nNPNwhZeGPDaG1u8pDyRF/gPAsOdXk8pTl/zfmHZo3+gfdPGvixe+PVXt/Ss+MbIFXkyfjgrE9yduyHN+qaKsH4YpPpHaHsPGRqJ3agaJRIIdb8hw+8FjtQMPTOG9oS3xQ8RNzB/WyqKD/oUhrdHS+0mz9oCWHmjj44YT8wbCwc5GpzxOlVsl+j3lgX5PeeBoYoZeQVF9V0cMauWJI4kZ+HSU4SdVZ1BEAEx709aGobJPO9nbmkW2Z+WBomnUreWAmQaqwgfKUiuMWHsCtjYSpf2cAMDGgm8IluTF7o3xYveyYfQJd55M4Fx5xJ2xvt/m8le2t7URPSACgP/0b47p/ZpZdEC0e0YvtP83+/53k7og+p8HeLVPWR9ZHzWB6zPtfeS1R139Nec+6veUB+q7OuLewwIAQG0n7cOR7yd3QfbjIri7aDcfqi4YFJmJAS09lfYp0pemCQorf2eHaEieqM13vJW36g6z5jqLNukuwEeKE/MGwN5W8Ynxp1e6YVloAkZ3alitYfCknwAfKSb28MOpG/ex8rn2CssM+ffwkjoiPafsRqbuJmmtLDkgAoBGdZ78TQcHeGk9aezSkW3g7eaEFp6uaOX95P6jboDLsbn90e/zo8h+XIhNU7SfH04ikRglIAIYFJmNQa09MW9oK9x7WIAHjwrxx7nbAPQLJprWr4XP1Ewuqoym7MfsmK27ikPNTd10Z0jKPoEN3KreDPs95YF+c/oZv0AGVN3hu+ZmmQFHqKryy9TumP/7RXTxr1utpIFkPkZ28MHumDtwsLXRO9hwd3HA+08rrzlWpZajHU7MG4CHBcUGnlpFfwyKzIREIpF3ovtwV1y19hX+Tj+dnlZaedfWONu0LpQdW+xsqGJ4vV8zbD2Tgpz8Imyc2Fns4qgltYAcWPrO4K6Ok70tlj3bFn9euIN5leY7q+lq6zmA4ymv2vjjP70MXBoS08fPtkWv5vXRzb+uybtSONnbmmwGAG0wKDKyHyZ3wdeHr2GyDnMnVazq1qcjqzYBUcV09oaee8oQLLwGGkBZAseIeQOQX1SqNEGh3m/RCPFln+b10dW/DhLu5OBbK5ucd2IPP0w0wFyEliS4jRebOEmutpO90fpeWlorA4MiIxvU2guDWus2bHLGgObYcjoZj4tK8J2RblAfPN0af1+7h5JSwSRV7rqytC+SKo52tkadYd1QsaONjQTbp8lQUFxa5anNXP4Ult5Xw5x08TPdlENE5SzhG8ygyAzVreWAE/MGIDe/2GgjKuq5OuLEvIEQBO07YW54qRN+OfUPpvRsgtd+PqtyPaUjrczlzkoqSSQSs6rGJqqoY2N3nE/Oko+MIjIGBkVmqp6rI+oZueOZvY6dTIe2bYChbRsgv6hE7Xrebk64cU95ckEifRmjTxFZjh8md8XRxAz0b2naJKxkXdioTAb32eh2kOqQc4L0V50wga1R1ssS//Z1azlgdKdGBh0UQlQZgyLSmaoL6kv/dlZtXM8Fp98PUlima2p2S7xomwzPDVkIF0c2x1q7AJ8nOYssoemTQRFpRV2Q8uHwACwY1govdH0yesHZwRZrxndELQdbjO/WWO/hvyQ+xmCki00vd4WjnQ06+9WBrGk9sYtDIps1sDl6NK2Ljo3d8WGI+cxNpwrbOGoIj9qOuJtbgB5NjTOqRF13jqm9myh9fUR7Hwxr6w27GpYgz1CcHfgUTTXPgJaeOPfhYLg42HLEIMHFwQ5bX5eJXQytMSiqIXbN6IXjV+4iuI232EVRwIBItYAGUvRpUR9RNzOxZnxHsYtjloa19ca+uDQAQMfGmudTIvNQy5G3FrJM/OTWEA3dnTG+W2Oxi0E6kEgk+PmVbnhcVFJlZnu1qtG7uk+L+oi4eg+AZUxx8fGzbeHiYAe/ei7o1by+2MUhohqOQRGZJWupdJdIJLoFRJW313H9r17oiN0xt9G7eX3YmDidvz7quTrii+fba16RNKpXywH38woBwGzmmSIyN+b/qEhEBlO3lgNe7tUELbxqa70NswPVDD+90g31XR3Q1b8ORrT3Ebs4RGaJNUVklngjJjKstg3dcGrBIFH7+XnWdkRGboFoxyfShDVFRERWQuyBD8aay5HIUBgUEZFa5t/ziCxFe193xCwajGUj24hdFCKlGBSRziQmuE3yRkxUM7m7OMDRjjm6yDwxKCKyYOx7RZZI4CeXzBSDIiJLw2o0IiKjYFBEREREBAZFRJaHLQ9EREbBoIjMEueR1A5PExGR4TAoIiK1OjZ2l/9/SICXeAWhGsPV0V7sIhApxYzWRKRWx8Z18OHwAFxNz8W7wS3FLg7VAMFtvPCUlyuS7j/Cj5O7il0cIjkGRUSk0dTeTcQuAtUgdrY22De7Lx4WFMPNmbVGZD7YfEZmya9eLdRyKEvw9nIvf3ELQ0QGZ2sjYUBEZoc1RaQzU3SCtre1wf63+uLCrSwEtWY/FiIiMj6LrClKSkrC1KlT0aRJEzg7O6NZs2ZYvHgxCgsLFda7ePEi+vTpAycnJ/j6+mLFihVV9rVjxw60atUKTk5OCAwMxF9//WWqt0Ea+NZ1wfB2PnCy55QARERkfBYZFF2+fBmlpaXYuHEj4uPjsXr1amzYsAHvv/++fJ2cnBwMGTIEfn5+iI6Oxueff44lS5bg22+/la9z8uRJjB8/HlOnTsX58+fx7LPP4tlnn0VcXJwYb4uIiIhEZJHNZ0OHDsXQoUPlvzdt2hSJiYlYv349Vq5cCQD49ddfUVhYiB9//BEODg5o06YNYmJisGrVKrz++usAgK+++gpDhw7F3LlzAQDLli1DWFgY1q5diw0bNpj+jRFpoWEdZ9y4lwcA8KztJHJpiIhqDousKVImOzsbdevWlf8eGRmJvn37wsHBQf5acHAwEhMT8eDBA/k6QUFBCvsJDg5GZGSk2mPl5OQo/BQUFBjwnRCp9+moQNSr5QAvqSPmDWsldnGIiMxOQUFBlXu1NmpEUHTt2jWsWbMG06ZNk7+WlpYGLy/FDrrlv6elpaldp3y5Kr6+vnBzc5P/LF++3BBvg0grvnVdcHLBQJyYNxB1azlo3oCIyMosX75c4T7t6+ur1XZmFRTNnz8fEolE7c/ly5cVtrl9+zaGDh2K5557Dq+99ppJypmSkoLs7Gz5z4IFC0xyXKJyjna2sLc1q68vEZHZWLBggcJ9OiUlRavtzKpP0TvvvIMpU6aoXadp06by/9+5cwcDBgxAz549FTpQA4C3tzfS09MVXiv/3dvbW+065ctVkUqlkEqlatchIiIicTg6OsLR0VHn7cwqKPLw8ICHh4dW696+fRsDBgxA586dsWnTJtjYKD41y2QyfPDBBygqKoK9fVmCsLCwMLRs2RJ16tSRrxMeHo633npLvl1YWBhkMplh3pCF83Fzwp3sfACA1NmsPipEREQGZ5H177dv30b//v3RuHFjrFy5Enfv3kVaWppCX6AXX3wRDg4OmDp1KuLj47Ft2zZ89dVXmDNnjnyd2bNnY//+/fjiiy9w+fJlLFmyBGfPnsXMmTPFeFtmZ+PELnC2t4WX1BGv9WmqeQMiIiILZpGP/2FhYbh27RquXbuGRo0aKSwTBAEA4ObmhoMHD2LGjBno3Lkz6tevj0WLFsmH4wNAz549sWXLFixcuBDvv/8+WrRogV27dqFt27YmfT/mKrCRG05/MAhOdrZwsHsSP5sgoTUREZHJSYTyKII0ysnJgZubG7Kzs626T1FxSSmaf7BP/nvSZyEiloaIiEzNf/5ehd/N/T6g7f3bIpvPiIiIiAyNQRERERERGBQRERERAWBQRERERASAQRERERERAAZFRERERAAYFBEREREBYFBEREREBIBBEelBImFOayIiqnkYFBERERGBQRERERERAAZFRERERAAYFBEREREBYFCkk4KCAoV/rZW1v/9yBQUFWLJkidWfD56HMjwPZXgenuC5KGNJ50EiCIIgdiEsxa1bt+Dr64uUlBQ0atRI7OKI5kFWNjp+dkL+e9JnISKWRjw5OTlwc3NDdnY2pFKp2MURDc9DGZ6HMjwPT9Tkc+E/f6/C7+ruA+ZwHrQtA2uKiIiIiMCgiIiIiAgAYCd2ASxJeUtjbm4ucnJyRC6NeHJyclBa8Ejhd2tU/r6t9f2X43kow/NQhufhiZp8LireAwD179EczkP5sTX1GGKfIh3cuHEDzZo1E7sYREREpAdNfYIZFOmgtLQUd+7cQe3atTnVBRERkYUQBAG5ubnw8fGBjY3qnkMMioiIiIjAjtZEREREABgUEREREQFgUEREREQEwMqCovXr16Ndu3aQSqWQSqWQyWTYt2+ffHl+fj5mzJiBevXqwdXVFWPGjEF6errCPpKTkxESEgIXFxd4enpi7ty5KC4uVljn6NGj6NSpExwdHdG8eXNs3rzZFG9PJ+rORWZmJmbNmoWWLVvC2dkZjRs3xptvvons7GyFfdSEc6HpM1FOEAQMGzYMEokEu3btUlhmLechMjISAwcORK1atSCVStG3b188fvxYvjwzMxMTJkyAVCqFu7s7pk6diocPHyrs4+LFi+jTpw+cnJzg6+uLFStWmOT9aUvTeUhLS8PEiRPh7e2NWrVqoVOnTvj9998V9lETzkNln332GSQSCd566y35a9Z0vSxX+TxY07WyImWfh3IWf60UrMiePXuEvXv3CleuXBESExOF999/X7C3txfi4uIEQRCEN954Q/D19RXCw8OFs2fPCj169BB69uwp3764uFho27atEBQUJJw/f17466+/hPr16wsLFiyQr3Pjxg3BxcVFmDNnjpCQkCCsWbNGsLW1Ffbv32/y96uOunMRGxsrjB49WtizZ49w7do1ITw8XGjRooUwZswY+fY15Vxo+kyUW7VqlTBs2DABgLBz507569ZyHk6ePClIpVJh+fLlQlxcnHD58mVh27ZtQn5+vnwfQ4cOFdq3by+cOnVKiIiIEJo3by6MHz9evjw7O1vw8vISJkyYIMTFxQm//fab4OzsLGzcuNHk71cVTedh8ODBQteuXYXTp08L169fF5YtWybY2NgI586dk++jJpyHiqKiogR/f3+hXbt2wuzZs+WvW9P1UhCUnwdrulaWU/V5KGfp10qrCoqUqVOnjvD9998LWVlZgr29vbBjxw75skuXLgkAhMjISEEQBOGvv/4SbGxshLS0NPk669evF6RSqVBQUCAIgiC89957Qps2bRSOMW7cOCE4ONgE76Z6ys+FMtu3bxccHByEoqIiQRBq9rmofB7Onz8vNGzYUEhNTa3yRbeW89C9e3dh4cKFKtdNSEgQAAhnzpyRv7Zv3z5BIpEIt2/fFgRBEL755huhTp068vMiCIIwb948oWXLlkZ6B4ZR8TzUqlVL+PnnnxWW161bV/juu+8EQah55yE3N1do0aKFEBYWJvTr109+E7S266Wq86BMTb5WajoPNeFaaVXNZxWVlJRg69atyMvLg0wmQ3R0NIqKihAUFCRfp1WrVmjcuDEiIyMBlDUfBAYGwsvLS75OcHAwcnJyEB8fL1+n4j7K1ynfhzmqfC6UKZ9Ez86uLAl6TTwXys7Do0eP8OKLL2LdunXw9vauso01nIeMjAycPn0anp6e6NmzJ7y8vNCvXz+cOPFkUuDIyEi4u7ujS5cu8teCgoJgY2OD06dPy9fp27cvHBwc5OsEBwcjMTERDx48MN0b1JKyz0PPnj2xbds2ZGZmorS0FFu3bkV+fj769+8PoOadhxkzZiAkJKTK59farpeqzoMyNflaqe481JRrpdVN8xEbGwuZTIb8/Hy4urpi586dCAgIQExMDBwcHODu7q6wvpeXF9LS0gCU9Seo+ActX16+TN06OTk5ePz4MZydnY30znSn6lxUdu/ePSxbtgyvv/66/LWadC7UnYe3334bPXv2xMiRI5Vuaw3n4dSpUwCAJUuWYOXKlejQoQN+/vlnDBo0CHFxcWjRogXS0tLg6empsD87OzvUrVtX4Tw0adJEYZ2K56pOnTomeJeaqfs8bN++HePGjUO9evVgZ2cHFxcX7Ny5E82bNweAGnUetm7dinPnzuHMmTNVlqWlpVnN9VLdeaisJl8rNZ2HmnKttLqgqGXLloiJiUF2djb+97//YfLkyTh27JjYxRKFqnNRMTDKyclBSEgIAgICsGTJEvEKa0SqzsO1a9dw+PBhnD9/XuwimoSq81BaWgoAmDZtGl5++WUAQMeOHREeHo4ff/wRy5cvF7PYBqfue/Hhhx8iKysLhw4dQv369bFr1y48//zziIiIQGBgoNhFN5iUlBTMnj0bYWFhcHJyErs4otHlPNTka6Wm87Bnz54ac620uqDIwcFB/lTXuXNnnDlzBl999RXGjRuHwsJCZGVlKTz9pKeny6sCvb29ERUVpbC/8tEWFdepPAIjPT0dUqnULKL9ilSdi40bNwIom/h26NChqF27Nnbu3Al7e3v5tjXpXKg6D87Ozrh+/XqVp+ExY8agT58+OHr0qFWch/nz5wNAlVrE1q1bIzk5GUDZe8zIyFBYXlxcjMzMTI3noXyZuVB1Ht577z2sXbsWcXFxaNOmDQCgffv2iIiIwLp167Bhw4Yacx6io6ORkZGBTp06yV8rKSnB8ePHsXbtWhw4cMAqrpeazkNBQQFsbW1r/LVS03mYPn16jblWWm2fonKlpaUoKChA586dYW9vj/DwcPmyxMREJCcny/sTyGQyxMbGKlz0wsLCIJVK5TcMmUymsI/ydVT11TEn5ecCKHvqGTJkCBwcHLBnz54qTwc1+VyUn4f58+fj4sWLiImJkf8AwOrVq7Fp0yYA1nEe/P394ePjg8TERIXlV65cgZ+fH4Cy95iVlYXo6Gj58sOHD6O0tBTdu3eXr3P8+HEUFRXJ1wkLC0PLli3NpslImfLz8OhR2azgledNsrW1ldem1ZTzMGjQIMTGxip89rt06YIJEybI/28N10tN58HW1tYqrpWazsMHH3xQc66VJuvSbQbmz58vHDt2TLh586Zw8eJFYf78+YJEIhEOHjwoCELZENPGjRsLhw8fFs6ePSvIZDJBJpPJty8fUjhkyBAhJiZG2L9/v+Dh4aF0SOHcuXOFS5cuCevWrTPLoZXqzkV2drbQvXt3ITAwULh27ZqQmpoq/ykuLhYEoeacC02ficqgYphpTT8Pq1evFqRSqbBjxw7h6tWrwsKFCwUnJyfh2rVr8n0MHTpU6Nixo3D69GnhxIkTQosWLRSGomdlZQleXl7CxIkThbi4OGHr1q2Ci4uLWQ1FV3ceCgsLhebNmwt9+vQRTp8+LVy7dk1YuXKlIJFIhL1798r3URPOgzKVRxtZ0/WyoornwZqulZVpGoVnqddKqwqKXnnlFcHPz09wcHAQPDw8hEGDBinc/B4/fiz85z//EerUqSO4uLgIo0aNElJTUxX2kZSUJAwbNkxwdnYW6tevL7zzzjvyoZfljhw5InTo0EFwcHAQmjZtKmzatMkUb08n6s7FkSNHBABKf27evCnfR004F5o+E5VV/qILgvWch+XLlwuNGjUSXFxcBJlMJkRERCgsv3//vjB+/HjB1dVVkEqlwssvvyzk5uYqrHPhwgWhd+/egqOjo9CwYUPhs88+M/p704Wm83DlyhVh9OjRgqenp+Di4iK0a9euyhD9mnAelKl8E7Sm62VFFc+DNV0rK9M1KBIEyzgPEkEQBNPVSxERERGZJ6vvU0REREQEMCgiIiIiAsCgiIiIiAgAgyIiIiIiAAyKiIiIiAAwKCIiIiICwKCIiIiICACDIiIiIiIADIqIyAz4+/vjyy+/NNv9VZSYmAhvb2/k5uYCADZv3lxlIkxTKywshL+/P86ePStqOYgsHYMiItLbiBEjMHToUKXLIiIiIJFIcPHiRROXCjhz5gxef/11+e8SiQS7du0yyL4XLFiAWbNmoXbt2gbZnyYvv/wyFi5cqHYdBwcHvPvuu5g3b55JykRUUzEoIiK9TZ06FWFhYbh161aVZZs2bUKXLl3Qrl07k5fLw8MDLi4uBt9vcnIyQkNDMWXKFIPvW5mSkhKEhobimWee0bjuhAkTcOLECcTHx5ugZEQ1E4MiItLb8OHD4eHhgc2bNyu8/vDhQ+zYsQNTp04FAJw4cQJ9+vSBs7MzfH198eabbyIvL0/lfpOTkzFy5Ei4urpCKpXi+eefR3p6usI6f/75J7p27QonJyfUr18fo0aNki+r2Hzm7+8PABg1ahQkEgn8/f2RlJQEGxubKs1NX375Jfz8/FBaWqq0XNu3b0f79u3RsGFDlWW/e/cuunTpglGjRqGgoABHjx6FRCLBgQMH0LFjRzg7O2PgwIHIyMjAvn370Lp1a0ilUrz44ot49OiRwr5OnjwJe3t7dO3aFYWFhZg5cyYaNGgAJycn+Pn5Yfny5fJ169Spg169emHr1q0qy0ZE6jEoIiK92dnZYdKkSdi8eTMqzi29Y8cOlJSUYPz48bh+/TqGDh2KMWPG4OLFi9i2bRtOnDiBmTNnKt1naWkpRo4ciczMTBw7dgxhYWG4ceMGxo0bJ19n7969GDVqFJ5++mmcP38e4eHh6Natm9L9nTlzBkBZzVVqairOnDkDf39/BAUFYdOmTQrrbtq0CVOmTIGNjfJLY0REBLp06aLyfKSkpKBPnz5o27Yt/ve//8HR0VG+bMmSJVi7di1OnjyJlJQUPP/88/jyyy+xZcsW7N27FwcPHsSaNWsU9rdnzx6MGDECEokEX3/9Nfbs2YPt27cjMTERv/76qzzgK9etWzdERESoLB8RaSAQEVXDpUuXBADCkSNH5K/16dNHeOmllwRBEISpU6cKr7/+usI2ERERgo2NjfD48WNBEATBz89PWL16tSAIgnDw4EHB1tZWSE5Olq8fHx8vABCioqIEQRAEmUwmTJgwQWWZKu5PEAQBgLBz506FdbZt2ybUqVNHyM/PFwRBEKKjowWJRCLcvHlT5X7bt28vLF26VOG1TZs2CW5ubsLly5cFX19f4c033xRKS0vly48cOSIAEA4dOiR/bfny5QIA4fr16/LXpk2bJgQHByvsu0WLFkJoaKggCIIwa9YsYeDAgQr7ruyrr74S/P39VS4nIvVYU0RE1dKqVSv07NkTP/74IwDg2rVriIiIkDedXbhwAZs3b4arq6v8Jzg4GKWlpbh582aV/V26dAm+vr7w9fWVvxYQEAB3d3dcunQJABATE4NBgwZVq9zPPvssbG1tsXPnTgBlo8gGDBhQpfalosePH8PJyUnp63369MHo0aPx1VdfQSKRVFmnYt8qLy8vuLi4oGnTpgqvZWRkyH+/dOkS7ty5I3+fU6ZMQUxMDFq2bIk333wTBw8erHIMZ2fnKk1wRKQ9BkVEVG1Tp07F77//jtzcXGzatAnNmjVDv379AJT1L5o2bRpiYmLkPxcuXMDVq1fRrFkzvY7n7Oxc7TI7ODhg0qRJ2LRpEwoLC7Flyxa88sorarepX78+Hjx4UOV1R0dHBAUFITQ0FLdv31a6rb29vfz/EolE4ffy1yr2ZdqzZw8GDx4sD8I6deqEmzdvYtmyZXj8+DGef/55jB07VmEfmZmZ8PDwUP/GiUglBkVEVG3PP/88bGxssGXLFvz888945ZVX5LUlnTp1QkJCApo3b17lx8HBocq+WrdujZSUFKSkpMhfS0hIQFZWFgICAgCU1bqEh4drXT57e3uUlJRUef3VV1/FoUOH8M0336C4uBijR49Wu5+OHTsiISGhyus2Njb45Zdf0LlzZwwYMAB37tzRumyq7N69GyNHjlR4TSqVYty4cfjuu++wbds2/P7778jMzJQvj4uLQ8eOHat9bCJrxaCIiKrN1dUV48aNw4IFC5CamqowZH3evHk4efIkZs6ciZiYGFy9ehW7d+9W2dE6KCgIgYGBmDBhAs6dO4eoqChMmjQJ/fr1k3dyXrx4MX777TcsXrwYly5dQmxsLP7v//5PZfn8/f0RHh6OtLQ0hZqe1q1bo0ePHpg3bx7Gjx+vsQYqODgYkZGRSgMsW1tb/Prrr2jfvj0GDhyItLQ0tftSJyMjA2fPnsXw4cPlr61atQq//fYbLl++jCtXrmDHjh3w9vZWSBwZERGBIUOG6H1cImvHoIiIDGLq1Kl48OABgoOD4ePjI3+9Xbt2OHbsGK5cuYI+ffqgY8eOWLRokcI6FUkkEuzevRt16tRB3759ERQUhKZNm2Lbtm3ydfr3748dO3Zgz5496NChAwYOHIioqCiVZfviiy8QFhYGX1/fKjUpU6dORWFhocamMwAYNmwY7OzscOjQIaXL7ezs8Ntvv6FNmzbyYff6+PPPP9GtWzfUr19f/lrt2rWxYsUKdOnSBV27dkVSUhL++usv+Ui5yMhIZGdnV2lSIyLtSQShwjhaIiIrs2zZMuzYsUPrzNvr1q3Dnj17cODAAaOV6ZlnnkHv3r3x3nvvab3NuHHj0L59e7z//vtGKxdRTWcndgGIiMTw8OFDJCUlYe3atfj444+13m7atGnIyspCbm6u0ab66N27N8aPH6/1+oWFhQgMDMTbb79tlPIQWQvWFBGRVZoyZQp+++03PPvss9iyZQtsbW3FLhIRiYxBERERERHY0ZqIiIgIAIMiIiIiIgAMioiIiIgAMCgiIiIiAsCgiIiIiAgAgyIiIiIiAAyKiIiIiAAwKCIiIiICAPw//WFFGRapZkkAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"ta[0].plot(ymin=-250)"
]
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"id": "219e21a8-91cb-405e-82fc-249143c219ae",
"metadata": {
"editable": true,
@@ -459,31 +277,14 @@
"test"
]
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: Polynomial1D\n",
- "Inputs: ('x',)\n",
- "Outputs: ('y',)\n",
- "Model set size: 1\n",
- "Degree: 2\n",
- "Parameters:\n",
- " c0 c1 c2 \n",
- " K K / Hz K / Hz2 \n",
- " ------------------- --------------------- ----------------------\n",
- " 0.16984671749959526 6.155580315232285e-29 2.2305012033296116e-56\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"print(ta[0].baseline_model)"
]
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
"id": "3a7e4887-ba55-447a-9274-8275e9896d39",
"metadata": {},
"outputs": [],
@@ -516,7 +317,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.11.6"
+ "version": "3.10.9"
},
"toc": {
"base_numbering": 0
diff --git a/notebooks/examples/subbeamnod.ipynb b/notebooks/examples/subbeamnod.ipynb
index 47a747c0..622dd9e7 100644
--- a/notebooks/examples/subbeamnod.ipynb
+++ b/notebooks/examples/subbeamnod.ipynb
@@ -6,47 +6,71 @@
"metadata": {},
"source": [
"# SubBeamNod Data Reduction\n",
- "---------------------------"
+ "---------------------------\n",
+ "This notebook shows how to use `dysh` to calibrate an SubBeamNod observation via two different methods. It retrieves and calibrates SubBeamNod scans using `GBTFITSLoad.subbeamnod()` which returns a `ScanBlock` object. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "71a0f9ba-9f38-408d-ba57-2630c1525a64",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import wget\n",
+ "from dysh.fits.gbtfitsload import GBTFITSLoad"
]
},
{
"cell_type": "markdown",
- "id": "02ff283d-8772-43ee-88af-4e1c6363dcc8",
+ "id": "efc7bb5b-7979-4863-a4a2-7270760c2ee9",
"metadata": {},
"source": [
- "SubBeamNod data, where a single pixel in a pixel \n",
- "camera is used to do a beam nod, is retrieved \n",
- "using `gbtfitsload.GBTFITSLoad.subbeamnod` which returns a `Spectrum` object. \n",
- "First, import the relevant module:"
+ "## First, we download the example SDFITS data, if necessary."
]
},
{
"cell_type": "code",
- "execution_count": 1,
- "id": "71a0f9ba-9f38-408d-ba57-2630c1525a64",
+ "execution_count": 2,
+ "id": "f07cfb32-6864-4ac4-94f8-4c2b66b981c4",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "TRCO_230413_Ka.raw.vegas.A.fits already downloaded\n"
+ ]
+ }
+ ],
"source": [
- "from dysh.fits.gbtfitsload import GBTFITSLoad"
+ "filename=\"TRCO_230413_Ka.raw.vegas.A.fits\"\n",
+ "if not os.path.isfile(filename):\n",
+ " url = f\"http://www.gb.nrao.edu/dysh/example_data/subbeamnod-Ka/data/TRCO_230413_Ka.raw.vegas/{filename}\"\n",
+ " print(f\"Downloading {filename}\")\n",
+ " wget.download(url,out=filename)\n",
+ " print(f\"\\nRetrieved {filename}\")\n",
+ "else:\n",
+ " print(f\"{filename} already downloaded\")"
]
},
{
"cell_type": "markdown",
- "id": "a62b09df-8cdb-44c5-85d3-d93078e8603b",
+ "id": "cf925ad1-e149-46dd-9728-53ea2142fbf8",
"metadata": {},
"source": [
- "Then load your SDFITS file containing SubBeamNod data. In this example, we use a GBT SDFITS file downloadable from GBO http://www.gb.nrao.edu/dysh/example_datasubbeamnod-Ka/data/TRCO_230413_Ka.raw.vegas/TRCO_230413_Ka.raw.vegas.A.fits"
+ "## Now, load the SDFITS file and examine it."
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 3,
"id": "1b12df99-20b2-4f8b-95c3-802be4ffaf3c",
"metadata": {},
"outputs": [],
"source": [
- "f = 'TRCO_230413_Ka.raw.vegas.A.fits'\n",
- "sdfits = GBTFITSLoad(f)"
+ "sdfits = GBTFITSLoad(filename)"
]
},
{
@@ -60,7 +84,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 4,
"id": "259fec35-f69a-4061-ad37-c2235102af4c",
"metadata": {},
"outputs": [
@@ -77,382 +101,312 @@
{
"data": {
"text/html": [
- "\n",
- "\n",
- "
\n",
+ "\n",
" \n",
- " \n",
- " | \n",
- " SCAN | \n",
- " OBJECT | \n",
- " VELOCITY | \n",
- " PROC | \n",
- " PROCSEQN | \n",
- " RESTFREQ | \n",
- " DOPFREQ | \n",
- " # IF | \n",
- " # POL | \n",
- " # INT | \n",
- " # FEED | \n",
- " AZIMUTH | \n",
- " ELEVATIO | \n",
+ "
\n",
+ " SCAN | \n",
+ " OBJECT | \n",
+ " VELOCITY | \n",
+ " PROC | \n",
+ " PROCSEQN | \n",
+ " RESTFREQ | \n",
+ " DOPFREQ | \n",
+ " # IF | \n",
+ " # POL | \n",
+ " # INT | \n",
+ " # FEED | \n",
+ " AZIMUTH | \n",
+ " ELEVATIO | \n",
"
\n",
" \n",
" \n",
" \n",
- " 0 | \n",
- " 32.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Nod | \n",
- " 1.0 | \n",
- " 26.5 | \n",
- " 26.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 60 | \n",
- " 2 | \n",
- " 160.975324 | \n",
- " 43.884984 | \n",
+ " 32 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Nod | \n",
+ " 1 | \n",
+ " 26.500000 | \n",
+ " 26.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 60 | \n",
+ " 2 | \n",
+ " 160.975324 | \n",
+ " 43.884984 | \n",
"
\n",
" \n",
- " 1 | \n",
- " 33.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Nod | \n",
- " 2.0 | \n",
- " 26.5 | \n",
- " 26.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 60 | \n",
- " 2 | \n",
- " 161.174093 | \n",
- " 43.928449 | \n",
+ " 33 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Nod | \n",
+ " 2 | \n",
+ " 26.500000 | \n",
+ " 26.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 60 | \n",
+ " 2 | \n",
+ " 161.174093 | \n",
+ " 43.928449 | \n",
"
\n",
" \n",
- " 2 | \n",
- " 34.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Nod | \n",
- " 1.0 | \n",
- " 30.5 | \n",
- " 30.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 60 | \n",
- " 2 | \n",
- " 161.589629 | \n",
- " 44.000491 | \n",
+ " 34 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Nod | \n",
+ " 1 | \n",
+ " 30.500000 | \n",
+ " 30.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 60 | \n",
+ " 2 | \n",
+ " 161.589629 | \n",
+ " 44.000491 | \n",
"
\n",
" \n",
- " 3 | \n",
- " 35.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Nod | \n",
- " 2.0 | \n",
- " 30.5 | \n",
- " 30.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 60 | \n",
- " 2 | \n",
- " 161.783395 | \n",
- " 44.041622 | \n",
+ " 35 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Nod | \n",
+ " 2 | \n",
+ " 30.500000 | \n",
+ " 30.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 60 | \n",
+ " 2 | \n",
+ " 161.783395 | \n",
+ " 44.041622 | \n",
"
\n",
" \n",
- " 4 | \n",
- " 36.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Unknown | \n",
- " 0.0 | \n",
- " 0.75 | \n",
- " 0.75 | \n",
- " 1 | \n",
- " 2 | \n",
- " 120 | \n",
- " 2 | \n",
- " 162.124052 | \n",
- " 44.100404 | \n",
+ " 36 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Unknown | \n",
+ " 0 | \n",
+ " 0.750000 | \n",
+ " 0.750000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 120 | \n",
+ " 2 | \n",
+ " 162.124052 | \n",
+ " 44.100404 | \n",
"
\n",
" \n",
- " 5 | \n",
- " 37.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Nod | \n",
- " 1.0 | \n",
- " 34.5 | \n",
- " 34.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 60 | \n",
- " 2 | \n",
- " 162.611075 | \n",
- " 44.183661 | \n",
+ " 37 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Nod | \n",
+ " 1 | \n",
+ " 34.500000 | \n",
+ " 34.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 60 | \n",
+ " 2 | \n",
+ " 162.611075 | \n",
+ " 44.183661 | \n",
"
\n",
" \n",
- " 6 | \n",
- " 38.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Nod | \n",
- " 2.0 | \n",
- " 34.5 | \n",
- " 34.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 60 | \n",
- " 2 | \n",
- " 162.896506 | \n",
- " 44.237997 | \n",
+ " 38 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Nod | \n",
+ " 2 | \n",
+ " 34.500000 | \n",
+ " 34.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 60 | \n",
+ " 2 | \n",
+ " 162.896506 | \n",
+ " 44.237997 | \n",
"
\n",
" \n",
- " 7 | \n",
- " 39.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Nod | \n",
- " 1.0 | \n",
- " 37.5 | \n",
- " 37.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 60 | \n",
- " 2 | \n",
- " 163.333508 | \n",
- " 44.306385 | \n",
+ " 39 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Nod | \n",
+ " 1 | \n",
+ " 37.500000 | \n",
+ " 37.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 60 | \n",
+ " 2 | \n",
+ " 163.333508 | \n",
+ " 44.306385 | \n",
"
\n",
" \n",
- " 8 | \n",
- " 40.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Nod | \n",
- " 2.0 | \n",
- " 37.5 | \n",
- " 37.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 60 | \n",
- " 2 | \n",
- " 163.529285 | \n",
- " 44.343704 | \n",
+ " 40 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Nod | \n",
+ " 2 | \n",
+ " 37.500000 | \n",
+ " 37.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 60 | \n",
+ " 2 | \n",
+ " 163.529285 | \n",
+ " 44.343704 | \n",
"
\n",
" \n",
- " 9 | \n",
- " 41.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Nod | \n",
- " 1.0 | \n",
- " 30.5 | \n",
- " 30.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 60 | \n",
- " 2 | \n",
- " 164.941425 | \n",
- " 44.559629 | \n",
+ " 41 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Nod | \n",
+ " 1 | \n",
+ " 30.500000 | \n",
+ " 30.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 60 | \n",
+ " 2 | \n",
+ " 164.941425 | \n",
+ " 44.559629 | \n",
"
\n",
" \n",
- " 10 | \n",
- " 42.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Nod | \n",
- " 2.0 | \n",
- " 30.5 | \n",
- " 30.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 60 | \n",
- " 2 | \n",
- " 165.139436 | \n",
- " 44.593378 | \n",
+ " 42 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Nod | \n",
+ " 2 | \n",
+ " 30.500000 | \n",
+ " 30.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 60 | \n",
+ " 2 | \n",
+ " 165.139436 | \n",
+ " 44.593378 | \n",
"
\n",
" \n",
- " 11 | \n",
- " 43.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " SubBeamNod | \n",
- " 1.0 | \n",
- " 30.5 | \n",
- " 30.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 120 | \n",
- " 2 | \n",
- " 165.469522 | \n",
- " 44.639023 | \n",
+ " 43 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " SubBeamNod | \n",
+ " 1 | \n",
+ " 30.500000 | \n",
+ " 30.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 120 | \n",
+ " 2 | \n",
+ " 165.469522 | \n",
+ " 44.639023 | \n",
"
\n",
" \n",
- " 12 | \n",
- " 44.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Nod | \n",
- " 1.0 | \n",
- " 30.5 | \n",
- " 30.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 60 | \n",
- " 2 | \n",
- " 166.48287 | \n",
- " 44.776997 | \n",
+ " 44 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Nod | \n",
+ " 1 | \n",
+ " 30.500000 | \n",
+ " 30.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 60 | \n",
+ " 2 | \n",
+ " 166.482870 | \n",
+ " 44.776997 | \n",
"
\n",
" \n",
- " 13 | \n",
- " 45.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Nod | \n",
- " 2.0 | \n",
- " 30.5 | \n",
- " 30.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 60 | \n",
- " 2 | \n",
- " 166.688378 | \n",
- " 44.808119 | \n",
+ " 45 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Nod | \n",
+ " 2 | \n",
+ " 30.500000 | \n",
+ " 30.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 60 | \n",
+ " 2 | \n",
+ " 166.688378 | \n",
+ " 44.808119 | \n",
"
\n",
" \n",
- " 14 | \n",
- " 46.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " SubBeamNod | \n",
- " 1.0 | \n",
- " 30.5 | \n",
- " 30.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 120 | \n",
- " 2 | \n",
- " 167.026583 | \n",
- " 44.849753 | \n",
+ " 46 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " SubBeamNod | \n",
+ " 1 | \n",
+ " 30.500000 | \n",
+ " 30.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 120 | \n",
+ " 2 | \n",
+ " 167.026583 | \n",
+ " 44.849753 | \n",
"
\n",
" \n",
- " 15 | \n",
- " 52.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Nod | \n",
- " 1.0 | \n",
- " 30.5 | \n",
- " 30.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 60 | \n",
- " 2 | \n",
- " 169.972904 | \n",
- " 45.179358 | \n",
+ " 52 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Nod | \n",
+ " 1 | \n",
+ " 30.500000 | \n",
+ " 30.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 60 | \n",
+ " 2 | \n",
+ " 169.972904 | \n",
+ " 45.179358 | \n",
"
\n",
" \n",
- " 16 | \n",
- " 53.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " Nod | \n",
- " 2.0 | \n",
- " 30.5 | \n",
- " 30.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 60 | \n",
- " 2 | \n",
- " 170.175815 | \n",
- " 45.201877 | \n",
+ " 53 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " Nod | \n",
+ " 2 | \n",
+ " 30.500000 | \n",
+ " 30.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 60 | \n",
+ " 2 | \n",
+ " 170.175815 | \n",
+ " 45.201877 | \n",
"
\n",
" \n",
- " 17 | \n",
- " 54.0 | \n",
- " 1256-0547 | \n",
- " 0.0 | \n",
- " SubBeamNod | \n",
- " 1.0 | \n",
- " 30.5 | \n",
- " 30.5 | \n",
- " 1 | \n",
- " 2 | \n",
- " 120 | \n",
- " 2 | \n",
- " 170.518885 | \n",
- " 45.232575 | \n",
+ " 54 | \n",
+ " 1256-0547 | \n",
+ " 0.000000 | \n",
+ " SubBeamNod | \n",
+ " 1 | \n",
+ " 30.500000 | \n",
+ " 30.500000 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 120 | \n",
+ " 2 | \n",
+ " 170.518885 | \n",
+ " 45.232575 | \n",
"
\n",
" \n",
- "
\n",
- ""
+ "
\n"
],
"text/plain": [
- " SCAN OBJECT VELOCITY PROC PROCSEQN RESTFREQ DOPFREQ # IF # POL \\\n",
- "0 32.0 1256-0547 0.0 Nod 1.0 26.5 26.5 1 2 \n",
- "1 33.0 1256-0547 0.0 Nod 2.0 26.5 26.5 1 2 \n",
- "2 34.0 1256-0547 0.0 Nod 1.0 30.5 30.5 1 2 \n",
- "3 35.0 1256-0547 0.0 Nod 2.0 30.5 30.5 1 2 \n",
- "4 36.0 1256-0547 0.0 Unknown 0.0 0.75 0.75 1 2 \n",
- "5 37.0 1256-0547 0.0 Nod 1.0 34.5 34.5 1 2 \n",
- "6 38.0 1256-0547 0.0 Nod 2.0 34.5 34.5 1 2 \n",
- "7 39.0 1256-0547 0.0 Nod 1.0 37.5 37.5 1 2 \n",
- "8 40.0 1256-0547 0.0 Nod 2.0 37.5 37.5 1 2 \n",
- "9 41.0 1256-0547 0.0 Nod 1.0 30.5 30.5 1 2 \n",
- "10 42.0 1256-0547 0.0 Nod 2.0 30.5 30.5 1 2 \n",
- "11 43.0 1256-0547 0.0 SubBeamNod 1.0 30.5 30.5 1 2 \n",
- "12 44.0 1256-0547 0.0 Nod 1.0 30.5 30.5 1 2 \n",
- "13 45.0 1256-0547 0.0 Nod 2.0 30.5 30.5 1 2 \n",
- "14 46.0 1256-0547 0.0 SubBeamNod 1.0 30.5 30.5 1 2 \n",
- "15 52.0 1256-0547 0.0 Nod 1.0 30.5 30.5 1 2 \n",
- "16 53.0 1256-0547 0.0 Nod 2.0 30.5 30.5 1 2 \n",
- "17 54.0 1256-0547 0.0 SubBeamNod 1.0 30.5 30.5 1 2 \n",
- "\n",
- " # INT # FEED AZIMUTH ELEVATIO \n",
- "0 60 2 160.975324 43.884984 \n",
- "1 60 2 161.174093 43.928449 \n",
- "2 60 2 161.589629 44.000491 \n",
- "3 60 2 161.783395 44.041622 \n",
- "4 120 2 162.124052 44.100404 \n",
- "5 60 2 162.611075 44.183661 \n",
- "6 60 2 162.896506 44.237997 \n",
- "7 60 2 163.333508 44.306385 \n",
- "8 60 2 163.529285 44.343704 \n",
- "9 60 2 164.941425 44.559629 \n",
- "10 60 2 165.139436 44.593378 \n",
- "11 120 2 165.469522 44.639023 \n",
- "12 60 2 166.48287 44.776997 \n",
- "13 60 2 166.688378 44.808119 \n",
- "14 120 2 167.026583 44.849753 \n",
- "15 60 2 169.972904 45.179358 \n",
- "16 60 2 170.175815 45.201877 \n",
- "17 120 2 170.518885 45.232575 "
+ "
"
]
},
- "execution_count": 3,
+ "execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sdfits.info()\n",
- "sdfits.summary()\n"
+ "sdfits.summary()"
]
},
{
@@ -460,343 +414,112 @@
"id": "570e7d59-10ba-4826-9b98-bec3515cf783",
"metadata": {},
"source": [
- "The SubBeamNod scans are 43, 46, and 54. Retrieve and calibrate a\n",
- "SubBeamNod scan, then plot it:"
+ "## The SubBeamNod scans are 43, 46, and 54. \n",
+ "Retrieve and calibrate a SubBeamNod scan. There are two different methods for calibrating a SubBeamNod scan. The first, with `method='cycle'` (the default) averages the data in each subreflector state for each cycle of integrations. "
]
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 5,
"id": "d86e90f0-a285-4ce3-99bf-5aa48f524eeb",
"metadata": {},
"outputs": [],
"source": [
- "w='tsys'"
+ "w='tsys'\n",
+ "sbnk = sdfits.subbeamnod(scan=43,fdnum=1,ifnum=0,weights=w, method='cycle')"
]
},
{
- "cell_type": "code",
- "execution_count": 5,
- "id": "ea4cc3f1-5cc7-4fd1-b8c4-570fc30090e8",
+ "cell_type": "markdown",
+ "id": "3d3b9fea-ac07-4415-bee2-41dd2e544e77",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "GROUPS [array([2883, 2887, 2891, 2895, 2899, 2903, 2907, 2911, 2915, 2919, 2923]), array([2991, 2995, 2999, 3003, 3007, 3011, 3015, 3019]), array([3083, 3087, 3091, 3095, 3099, 3103, 3107, 3111, 3115]), array([3179, 3183, 3187, 3191, 3195, 3199, 3203, 3207, 3211]), array([3275, 3279, 3283, 3287, 3291, 3295, 3299, 3303, 3307])] [array([2935, 2939, 2943, 2947, 2951, 2955, 2959, 2963, 2967, 2971]), array([3031, 3035, 3039, 3043, 3047, 3051, 3055, 3059, 3063, 3067]), array([3131, 3135, 3139, 3143, 3147, 3151, 3155, 3159, 3163]), array([3227, 3231, 3235, 3239, 3243, 3247, 3251, 3255, 3259]), array([3323, 3327, 3331, 3335, 3339, 3343, 3347, 3351, 3355, 3359])] [array([2882, 2886, 2890, 2894, 2898, 2902, 2906, 2910, 2914, 2918, 2922]), array([2990, 2994, 2998, 3002, 3006, 3010, 3014, 3018]), array([3082, 3086, 3090, 3094, 3098, 3102, 3106, 3110, 3114]), array([3178, 3182, 3186, 3190, 3194, 3198, 3202, 3206, 3210]), array([3274, 3278, 3282, 3286, 3290, 3294, 3298, 3302, 3306])] [array([2934, 2938, 2942, 2946, 2950, 2954, 2958, 2962, 2966, 2970]), array([3030, 3034, 3038, 3042, 3046, 3050, 3054, 3058, 3062, 3066]), array([3130, 3134, 3138, 3142, 3146, 3150, 3154, 3158, 3162]), array([3226, 3230, 3234, 3238, 3242, 3246, 3250, 3254, 3258]), array([3322, 3326, 3330, 3334, 3338, 3342, 3346, 3350, 3354, 3358])]\n",
- "BINTABLE = None\n",
- "BINTABLE = None\n",
- "BINTABLE = None\n",
- "BINTABLE = None\n",
- "BINTABLE = None\n",
- "BINTABLE = None\n",
- "BINTABLE = None\n",
- "BINTABLE = None\n",
- "BINTABLE = None\n",
- "BINTABLE = None\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGvCAYAAACq64RaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtOElEQVR4nO3deVxU5f4H8M8wwLBvIpsggor7jguuuG+ZZttNr2mWt1KvmrefN+tW1jUxK+uWZYtltmmLS5trKmjuqCRuiAoKCiIqOwwMnN8fw5yZkUWWWc4ZPu/Xa16vOTNnZp6DMs+X7/N9nkchCIIAIiIiIpmxs3YDiIiIiBqCQQwRERHJEoMYIiIikiUGMURERCRLDGKIiIhIlhjEEBERkSwxiCEiIiJZYhBDREREssQghoiIiGSJQQwRERHJkmSDmJiYGCgUCixYsEB8TBAELFmyBEFBQXB2dkZ0dDTOnDljvUYSERGR1dhbuwHVOXbsGD799FN07drV6PEVK1Zg5cqV+PLLLxEREYGlS5di5MiRSEpKgru7e5X3qaiowPXr1+Hu7g6FQmGp5hMREVEjCIKA/Px8BAUFwc6ulnyLIDH5+flC27ZthV27dglDhgwR5s+fLwiCIFRUVAgBAQHC8uXLxXNLSkoET09P4eOPP672vdLS0gQAvPHGG2+88cabDG9paWm1xgySy8TMmTMH48ePx4gRI7B06VLx8ZSUFGRmZmLUqFHiYyqVCkOGDMHBgwfx9NNPV3kvXXbm7NmzRpkalUoFlUplxquoWV5eHkJCQpCWlgYPDw+rtMGSmtr1Ak3vmnm9to3Xa9ukcr1qtRpqtVo8zs/PR8eOHasdZTEkqSBmw4YNOHHiBI4dO1bluczMTACAv7+/0eP+/v64cuVKte+nG0Lq2LGj0eOvvvoqlixZYoIWN5yHh0eT+AXRaWrXCzS9a+b12jZer22z9vUuWbIEr732WpXH71UKIpkgJi0tDfPnz8fOnTvh5ORU43l3X5AgCPe8yLsjTGtlYYiIiKiqxYsXY+HCheKxLkN0L5IJYo4fP46srCz06tVLfKy8vBz79u3DqlWrkJSUBECbkQkMDBTPycrKqpKduZu1I0wiIiKqWUPLPCQzxXr48OFITExEQkKCeIuMjMTUqVORkJCA8PBwBAQEYNeuXeJrSktLERcXh/79+1ux5fWjUqnw6quvNplsUFO7XqDpXTOv17bxem2b3K9XIQiCYO1G1CQ6Ohrdu3fHe++9BwB48803ERMTg7Vr16Jt27ZYtmwZYmNja5xinZeXB09PT+Tm5jITQ0REJBN17b8lM5xUF4sWLUJxcTFmz56NO3fuoG/fvti5c+c9q5eJiIjI9kg6E9NYzMQQERHJT137b8nUxBARERHVB4MYIiIikiUGMURERCRLDGKIiIhIlhjEEBERkSwxiCEiIiJZYhBDTdKJq3fw5vbzOH0t19pNISKiBpLVYndEjVWo1uA/W05j88lrAIDVsZfQo6UXPvl7L/h51LzxKBERSQ8zMdRknL6Wi+6v7xQDGJ2TV3PQZ9lufHkgxUotIyKihmAQQ02CIAh4+efTKCuveYHq1347i4OXsi3YKiIiagwGMdQkvL/7Ik5ezRGPN8/uj9Tl43HwhWHiY4IAzFufgNuFpVZoIRER1ReDGLJ5+SVlWLU3WTz+YkYkerT0BgAEeTnj/H/HoG+YDwAgu0CN93cnV/s+REQkLQxiyObtPHNDHEaa3LMFhrX3N3reyUGJDx7rAUd77a/Db6euo6Ss3OLtJCKi+mEQQzbtWk4xXvv1jHj8aGRItef5eThhRAc/AEB2QSnWH71qkfYREVHDMYghm/burgvIK9EAAPqF+6BP5bBRdeYObSve//zPFOSXlJm9fURE1HAMYshmlVcI+OPcDQCAm8oeH03tBYVCUeP5HYM80LuVtlYm/U4xa2OIiCSOQQzZrJ8TriGnSJtNGdCmGXxcHe/5muUPdoWqsjbmx+Pp0JRXmLWNRETUcAxiyGZtSbgu3p/SN7ROr2nd3A0jOmgLf3OKynDCYFo2ERFJC4MYsklqTTmOptwCAAR4OGFwW986v3ZYez/x/u7K4SgiIpIeBjFkk05cyUFJmXYoaEAb31prYe42tL0f7CpP35JwjUNKREQSxSCGbJLh9gED2zar12t9XB3FtWRu5KmRkJZjyqYREZGJMIghm/TnRX0QM6B13YeSdEZ21A8p7Uvmfkp1cflmAZIy85F2uwh5nJ5ORBZgb+0GEJlaXkkZ/qrMnkT4u8HPw6ne7zGwbXMoFNr9lDYcvYp5w9rAXsmY/24lZeU4fS0Xaw+k4vfEDPFxlb0d/jUqAjP6h4krIRMRmRqDGLI5hy/dQkXlZtX9G5CFAYAWXs4Y0cEfu87eQFa+Gn9ezEZ0O797v7CJKFBrMPe7E9ifnI3yiqo7g6s1FVi29TyWbT0PAPjgsR64r2tgvWqTiIjuhX8ikc05eOmWeH9gm4YFMQDwUK9g8f6Wk9ca1SZbciz1Njq/ugOxSTerDWCq88/1JzHwzb24kVdi5tYRUVPCTAzZHF09jNJOgb7hNW8zcC/R7ZrD09kBucVl2H0+CxUVAuzsmm4moVCtwbdHrojZFUMTugVh5oBW6BbsBTs7BQ5fvoVP4i5hb9JN8ZxrOcV4cPVBvDSuA0Z3CmjSP0siMg0GMWRTMnNLcDGrAADQPcQL7k4ODX4vlb0SvVt5449zWcgv0eDq7SK08nU1VVNlZ8H3Cdh11njdnGn9QvHfSZ2rnNsvvBn6hTfDvgs38fgXR8XH0+8U49lvTyDM1xU/PROFZm4qs7ebiGwXh5PIphwwmpVUv6nV1encwlO8f+LqnUa/n1ydSs8xCmC8XBzww9NR1QYwhgZHNEfq8vHY9dxgtPByFh9PyS5Er6V/4HpOsdnaTES2j0EM2RTDepgBjaiH0ekXrg+Etp/ObPT7yVFJWTme+z5BPB7bOQAHXxhW647gd2vr747f5w3EiA7GxdH9l+/B9C+OQq0pN1VziagJYRBDNuXM9VwAgL2dAt1bejX6/Xq38oFv5ZBH7IWbKFBrGv2ecrNm/2VculkIAOjSwhP/+1sPuDjWfyTay8URa6b3xkdTexo9HnfhJh795DAKm+DPlogah0EM2Yyy8gpcruxsw3xdobJXNvo9lXYKjO6kXb23VFOBQwaZnqYgK68Eq/ZeBKD9Wbz9cLdGr/syrksgvn2qL1wc9f8+CWk5GPDmHpRxiwciqgcGMWQzTl/LRWllJxgR4G6y9x0c0Vy8f+Ry0wliBEFAzLbz4h5U0/qFop2Jfq4D2vji7Otj8I/B4eJjOUVlaPvSNhSXcmiJiOpGMkHM6tWr0bVrV3h4eMDDwwNRUVHYtm2b+PyMGTOgUCiMbv369bNii0lqdhoUng5p27yWM+unb5gPdGu0HU5pOkHMloRr2Fy5Po6roxL/HNbG5J/xf6PboY2fm9Fjj3xyCIJQt/VniKhpk0wQExwcjOXLlyM+Ph7x8fEYNmwYJk6ciDNnzojnjBkzBhkZGeJt69atVmwxSc1fBhs1RrczXRDj5eKI9gEeAIAz1/OQW2z7+wIJgoAPdl8Uj18c38Es06EdlHb4Y+EQ/N/oduJjiddy8dqvZ03+WURkeyQTxEyYMAHjxo1DREQEIiIi8MYbb8DNzQ2HDx8Wz1GpVAgICBBvPj4NX8iMbIsgCDh9TVvU6++hatB+SbXpWzkTRxCA41dum/S9pehUei4uZ2vri/qE+WBq31Czft6coW0wsqO/ePzlwVT8Z0sia2SIqFaSCWIMlZeXY8OGDSgsLERUVJT4eGxsLPz8/BAREYFZs2YhKyurTu+Xl5dndFOr1eZqOllJ+p1i5JVoZ7d0DvK8x9n1189g5d8/k21/SOmz/ZfF+w/2bGGZz3w8EovG6DMy3xy+ipe3nLbIZxORdanV6ip9dV1IKohJTEyEm5sbVCoVnnnmGWzevBkdO3YEAIwdOxbffvst9uzZg3feeQfHjh3DsGHD6hSQhISEwNPTU7zFxMSY+1LIwnRZGADo1ML0QUxUuC8clNrCmN8Tr9t0zUZiei5+O6XdkdrFUYkxnQMt9tmzo9tg6aTOsK/ckmDDsTQ8uPogLt8ssFgbiMjyYmJijPrpkJCQOr1OIUjo27i0tBRXr15FTk4ONm7ciDVr1iAuLk4MZAxlZGQgNDQUGzZswOTJk6t9v7y8PHh6eiItLQ0eHh7i4yqVCioVlzu3JW/tOI8P914CAHw6rRdGdQow+WfMWHsUsZV7Ae3+1xC0bu52j1fI01Pr4vHHOW2R9H/Gd8BTg8Lv8QrTW/rbWaz5M0U8dnFU4vd5gxDWhLd9ILJlarXaKCmRl5eHkJAQ5ObmGvXfd5NUJsbR0RFt2rRBZGQkYmJi0K1bN/zvf/+r9tzAwECEhoYiOTn5nu+rm/GkuzGAsT2nr+lTj53NkIkBtAvf6RxPtc0tCC7dLBADmObuKjzWp6VV2vH86Hb4W2/9X2JFpeUY+nYs3vvjglXaQ0TmpVKpqvTVdSGpIOZugiDUOFx069YtpKWlITDQcqlukibDol4fV0cEepq2qFcnMtRbvB9vo8W9P1dOqQaApweHw1VlnT1inRyUWP5gV3w4xXh13/f+SMb//rj3Hy5E1DRIJoh58cUXsX//fqSmpiIxMREvvfQSYmNjMXXqVBQUFOD555/HoUOHkJqaitjYWEyYMAG+vr544IEHrN10srIbeWrcKiwFAHQK8oBCt6iLiXUL8RLrYuJtMBNTXiFgU2UQo1AAE7oFWblFwPiugdi+YJBRYPruHxfw26nrVmwVEUmFZIKYGzduYNq0aWjXrh2GDx+OI0eOYPv27Rg5ciSUSiUSExMxceJEREREYPr06YiIiMChQ4fg7m66lVlJngyLes01lARoswNdg70AAJezC5GZW2K2z7KG2KQspN/R7io9qG1z+Jt4mnpDtQ/wwL5FQ9HeYLXghd//heNXbC+QJKL6sU6uuBqff/55jc85Oztjx44dFmwNycnp6wZBjBmmVxsa0LqZ2HkeTb2N+yWQrTCVPef1Sxb8va91amFq4qC0w+/zBmH+hpP47VQGSssr8Mw3x7HrucHwcnG0dvOIyEokk4khaijjot66FYM1VI+W+roYwwyQ3N0pLMXPCdohGgelAgPa+Fq5RVUp7RR499Hu4sKDN/PV6P76LqzZf5n7LRE1UQxiSPbOVGZi3J3s0dLHxayfZThcZUubQf566joK1NrFAh/sGWy1gt57cVDaYcn9nYweW/r7OUz/4igqKiSzWgQRWQiDGJK17AI1MiprU8xZ1KvT3F0l1mb8lZ6Li1nyX4StqFSD93frZ/xMkdhQ0t06BHoYTb8GtEN7q+MuWalFRGQtDGJI1pIy88X7HQPNWw+jM6mHfhn+oynyn2q9Pzkb2QXa2V29W3mjixmLo01l+YNdkfzGWKMZVP/7Ixk/HEtjRoaoCWEQQ7J2yWA5+rb+lllBt3crfV2MLcyQ2ZqYId5/Nrq12bNZpuKgtMMHj/XA04O1KwqXlldg0cZTiFq+mzUyRE0EgxiStUsGwzmW2gagU5AnHJXaXx2572idV1KG7aczAQBeLg6SLOi9l+dGRmCgQbtv5Kkx6r04lGq4AzaRrWMQQ7J26WaheL91c8vsq+PkoESXYO2QS+qtItzMl++u6DtOZ0Jd2dlP7BYElb3Syi2qPycHJb5+so+YkQGAtNvF6LV0F05clX+mjIhqxiCGZE03nOTl4gAfV8utF2K4BYGcO8pjqfpM0viu8l3zRqFQ4N9j2mN8F/02JPklGkz+6CD2XbhpxZYRkTkxiCHZKlBrxJlJrZu7WbSWo6dBEHPksjyHlARBwLHK7RPs7RToGiz9gt7a2Nkp8OHUnvhoqvF+S49/cdSm1vQhIj0GMSRbKVYYStLpG+YDu8qYaX+yPP/SP3M9DynZ2p9hz5becHKQ31BSdcZ1CcSm2f2NHnvs08M2UYRNRMYYxJBsXc62fFGvjpeLI7qFeAEAkrMKcD2n2KKfbwqbTuh3rDacNm4Lerb0xtoZvcXjfLUGj35yCO/9cYFTsCupNeX4Ky2HBdAkawxiSLasMTPJ0OC2zcX7cqu70JRX4Je/tNsMOCrtjGpJbMXQ9n5IeGUk+oVrtynQVAh4749khL+4Fd8fu2rl1lnHlVuFGLxiL1q98Dva/Wc7Jn54ABH/2YadZzIZzJAsMYgh2TKameRn+SBmSDuDIEZmQ0p/pecgu0A7q2pYez94ujhYuUXm4eXiiLUz+lTZqPPlLWdsbhfy2pSUlWPlrgsY97/9uHq7qMrz//j6OKLf2ouLWfnVvJpIuhjEkGzpZiY5KBUI8Xa2+Od3C/aCp7O28/8zORuacvn8JXvokn7fp0ER8lsbpj6cHZV4/7EeiJncRXystLwCj39xBHcKS63YMsu4XViKB1cfxPu7k1FYyyKA13NL8M/1CSgq1ViwdUSNwyCGZKm8QsDlyqLUVs1cYa+0/H9lpZ1CXGQtr0SDv9LlMQOmpKwcaw+kisdy2GbAFB7r0xK/zxsI58oC5gs3CvDgxwdtOiNz8GI2ev53F85c1+/03tbPDe8+2g2Xlo3Dupl9MGdoazjaa39/zmXk4V8//AW1hisekzwwiCFZunanWBzDt0Y9jM6QCP2QUpxM6mIOXb6FW5UZiHb+7ugc1DSCGEC72vK2+YPQ3F0FALh8sxD//e2slVtlPu/+cUG8b6cAtswZgF0Lh+CBHsFQ2ikwJKI5/m90e2ye3R+6FQq2nc7Eop9OQRBYAE3SxyCGZMlwz6TWfpadXm3IcChGLsW9e89niffnj2gLOzt57JVkKq18XbF+Vj+4qewBAL8nZuCkjBcsrMnhy7fEdYAAYMn9ndC9ckbd3ToFeeIfg/QrHv+ccB0bjqWZu4lEjcYghmTJKIixYiYm0NMZEZUbT55Kz5F8jYUgCNhTGcQ4KBUY1Na262Fq0sbPDf8e0048fvabE0irpuBVrlKyC/Hkl8fE49nRrfF4VKtaX/PC2PaYN6yNeLw69hI30iTJYxBDsmQYxIRbMYgB9ENKFQLw58Vsq7blXi5mFSD9jnZNm96tfODuZJuzkurib31aom3lrLbMvBJM+vCA0f8ruSqvELDop7/EIt6uwZ6YaxCc1EShUGDhqHboG6adkn71dhG+OJBi1rYSNRaDGJKlS1n66dXhFl6t926DDepi9hgM1UiRYfuGtfezYkusz0Fph2+e6iuu9nyrsBSTPjyAkjJ5Zx/e350sDiP5ujni6yf7wsXRvs6vf31iZ3E16k/iLuG2xLOLlpJ+pwj7k28i/U4Rvj1yBTvPZFq7SQSg7v+ziSRE9xezn7sKHlbOJvQJ84G7kz3ySzTYeSYTak25ZHeDNgxihjbxIAYA/D2c8N2sfui7bDcA7aaRT399HJ8+3kuy/4a1KdVU4JvDV8TjF8d1EJcBqKt2Ae4Y3SkA205nIq9Eg2e+OY4Ns/o1udopQDuTb2tiBhb+8Fe1z6+a0gP3yXjjVFvATAzJzp3CUnF2jTXrYXRU9koMrwwICkvLcfpa3j1eYR15JWWIr9w/KLSZC8J9rZvBkgp/DycsN1hDJu7CTby46bQVW9Rwv/x1XfzdGNTWF5N7Bjfoff41KgLulYXPR1NuY7/Eh0nN4VpOMSZ9eKDGAAYA5n53Ev/4Kl722Ts5YxBDsmO0Z5IVZyYZ6l1ZRwAAx1Kluav1/gvZKK/cN2hoOz+L7votdX/r0xLrZ/UT15DZeCIdT62Ll9UChhdu5OM/WxLF49nR966DqUkbP3csMwjstpy8VsvZtuf4lTuYuOoAzmdWXcHY8a41qXaevYEhb+3F3iRpDyXbKgYxJDuG9TBSyMQAQL/wZuJ9qU613mEwht/U62GqE9W6GZbc31E8/uPcDby/56IVW1Q/H8ddQkmZNuga3t5P3DOqoUZ18oeHkzYbs/10JgrVTWMl3w/3XsSDqw+K23IA2uLolY90Q+ry8bjwxlj8+e+hGNnRX3z+Rp4aT6w9huXbzjMrY2EMYkh2pDK92lC4rytCfLRbHxxLvY0CiX3hZ+aW4PfEDACAp7MD+jayg7NVj0SG4G+9Q8Tj93cn47Vfz0h+5+u9SVniruRuKnusfKR7ozNtKnslxlfWexSXlWPnWdsvZF2x/Tze2pEkHvdp5YMTL4/EL3MHGg3NBXu74LPHI/H1k32MXv9x3CW8uf28xdpLDGJIhowXupNGEKNQKBAdoc1ulJULOCCxGoKdZzPFoaTHo0JlWbRqCQqFAssf7Ip/GkxJXnsgFVPXHEGZhIeWVmzXd7wPRwabbEPPyT1biPc3n7xukveUqrPX8/BR7CXx+L6ugfj6qT7wcXWs8TWD2jbH2ddHG/2c1h5Ixf/+SDZrW0mPQQzJjm7PJCcHOwR6OFm5NXqGWxAclFoQc+aGeH9s50ArtkQe5g1vi6cGhonHhy7fQv/leyS5OeL+5Js4l6EvJv/nsLYme+9eLb0RXLm56p/JN5GVb7v7TK3Zf1m8Pzu6NVZN6VmnYN/FUZv5Mvz/8u4fF/CvH/6SfAbPFjCIIVkpK6/A1VvalVVbNXOV1LTPvuE+UFa2Z/f5LMl8geUWl+HwZe2u1cHezugQ6G7lFkmfg9IO/7mvIx6N1A8t3cxXY8GGBOs1qhqXbxZg2udHxeOVj3SrNXNQX3Z2Ckzqrs0yVAjALwm2mY357shVbKosXnZ3ssfTQ1rX+z1eHNcB47vo/0DYeCId0744gus5xSZrJ1XFIIZkJf1OMTSVwYFU6mF03J0c0L+1tsA3/U4xTqblWLdBlXafuyH+zEZ29OespHpY/mAXPNRLXwux8+wNMSC0tpKycvx9zRHxuFeotxhwmNKkHvr33JJge7OUtiZm4MXN+lldi8fWf20dQBvwvfNIN0zopl835sDFWxj+TpwkM3i2gkEMyUqKwfTqMAmuc3JfV/1fYlKpi/l0nz5NPqZTgBVbIj8KhQJvP9wNL4xtLz725JfHkJVn/WGVn46n43quvh1LJ3U2S2ayjZ8bugZrdzo/fS0PyTeqTjuWq/IKAa//qt/FfGL3IKPC7vpyclDig8d64MVx+v8vxWXleOyzI5LJzNoaBjEkK5dv6qdXSzGI6d9av6HiwUvWD2IycovFtS66tPBEnzDOSmqImQPC0KOlFwDtgoaPf3HUqn9d3ypQY4XBLJiPpvZEh0APs33eAz0MC3xtJxuz+eQ1ZFYGpM1cHfHmg11NEgj+Y3BrrHk8Ujz+Ky0HizclQhAYyJiaZIKY1atXo2vXrvDw8ICHhweioqKwbds28XlBELBkyRIEBQXB2dkZ0dHROHPmjBVbTNaQkm0QxFh5z6TqhPi4oKWPCwDgxJUcq+8CfOiSfuhjaHsucNdQjvZ2eOfhbuJCZ+cz8/Hf385ZpS2CIODFzYnIK9EGUZGh3hjb2bwZtgndgsR6r58TrttEVkGtKcc7O/WzulY+2h1ODqabtTeioz9enaBfd+j7+DSsO5jKQMbEJBPEBAcHY/ny5YiPj0d8fDyGDRuGiRMnioHKihUrsHLlSqxatQrHjh1DQEAARo4cifx820lt0r2l3dEXyemCBanR1cWUllfgeOUy/9ZiGMREGSzIR/UX3twNG57uJ3bm649exe+nMizejvd3X8SOytlmSjsF3nyoq9mDU183FQa31WYZr+UUIyE9x6yfZwk/xKcjo3I4bnh7P6PZhabyxIAwrHiwq3i85NezWPB9gk0EgVIhmSBmwoQJGDduHCIiIhAREYE33ngDbm5uOHz4MARBwHvvvYeXXnoJkydPRufOnbFu3ToUFRXhu+++s3bTyYJ0lf5ODnZoZsJZGKbUv41+SOmAlYeUDlUWoTra24nDIdRwPVt6Y57BFObnvk9AggULuLPyS/DBHv0aJP83up3FCtzHGGR7/jh7o5Yzpe96TjHeMhiOWzAiwmyf9XBkMDq30A/1/ZxwHbO/PSGrLS2kTDJBjKHy8nJs2LABhYWFiIqKQkpKCjIzMzFq1CjxHJVKhSFDhuDgwYP3fL+8vDyjm1qtvudrSHoEQcC1ykxMkJezZIdGDDMe1lwv5mJWPtIrf169WnqbNFXelP1jcLj4b1xaXoFnvj6Om/nm/06pqBDw9o4kcaZZnzAf/GNQuNk/Vye6nZ+Yhfr68BVZL6//xZ8p4nDciA5+6FJZuGwOCoUCq6f2woA2+u+F7WcysXhTYi2vanrUanWVvrouJBXEJCYmws3NDSqVCs888ww2b96Mjh07IjNTu9y1v7+/0fn+/v7ic7UJCQmBp6eneIuJiTFL+8m8bhaoUVz5xdnCy9nKralZc3cV2vlr12JJvJZrtAeLJX24V7/66MC2vrWcSfXh7KjEupl90LuVNwAgM68Ej39xFDlFpWb7TEEQ8O+Np/BDfDoAQGVvh5WPdLPoOkn+Hk7i7Lv8Eo3Vh0obKiu/BF8fviIevzqhk9k/M8THBd8+1Q+P9WkpPvbj8XR8ZjBzsKmLiYkx6qdDQuo2S0xSQUy7du2QkJCAw4cP49lnn8X06dNx9qx++tvdf3kLglCnv8bT0tKQm5sr3hYvXmzytpP5nbmmj8zbB0h7wbZhHbRbEFQI2nVaLC2/pAxbK/dK8nJxwLSoUIu3wZY52tvhw6k94e+hAgCcy8hD99d3mW1F2w/3XsSPx7UBjJ0CeH1iJwR7W74mzHDj0P3J1p991xCbT1yDWqMdyhnRwQ8hFqyt++/ETkYZmZht53DKBuqLTGHx4sVG/XRaWlqdXiepIMbR0RFt2rRBZGQkYmJi0K1bN/zvf/9DQIB2LPburEtWVlaV7Ex1dDOedDeVSmWW9pN5nb6WK97v3MJ86V9TGG7wZX8s1fJ/sW47nSl+Ud/fLQgeTqbZS4f0/Nyd8Pn03kaPLfnF9JtFHryUjfcM9uJ55b6OeLR3y1peYT4DDOu9JLIOUn0UqDX4bH+KeLxwZDuLfr690g7fPtUPswZptyioEIB/fHUcdwrNl8WTC5VKVaWvrgtJBTF3EwQBarUaYWFhCAgIwK5du8TnSktLERcXh/79+1uxhWRJqZXbDQBAhL+0MzGdW3jCQanNEh5LvW3xaZWbT+jX8jBc44NMq3MLT6x8pJt4vDUxEy9tOW2Sf++KCgHrDqZi2udHxTqYGf1bYcaAsHu80nx83VTiejSnr+fKrvP9KT5NHN7t0sLTaltwzB8RIWaTM/NK8NqvXC6koSQTxLz44ovYv38/UlNTkZiYiJdeegmxsbGYOnUqFAoFFixYgGXLlmHz5s04ffo0ZsyYARcXF0yZMsXaTScLSbutD2IsmQJuCCcHJXq21NZMXLlVhBNXLZeNuZ5TjMMp2llJYb6u6B7iZbHPboom9wzGR1N7Qjeyvf7oVbywMRF5JWUNej9BEPDLX9cR/uJWvPrLGXH38chQb7w0voOpmt1ggyrrqwQB2CWjWUqCIBjVwsRM7mK1yQFuKnusm9kHXpW7jW9JuI7NJ9Ot0ha5k0wQc+PGDUybNg3t2rXD8OHDceTIEWzfvh0jR44EACxatAgLFizA7NmzERkZiWvXrmHnzp1wd5f2X+RkOlcrg5hmro5wU9lbuTX39ojB5oHrj9ZtfNcUtiRcgy4R8ECPFpKdxWVLxnUJxMpHuomBzPfxaei6ZCeW/HKmzlmZzNwSbDl5Df/64S/MW3/S6LluIV5YN7MPHJTW/8oe3Uk/hP/NkSu1nCkthy7fwqXKFb/7hPlYfUja38PJaLr+y1vO4LbMMltSoBBsePnAvLw8eHp6Ijc3t87jayRNJWXl6PDKdggC0D3EC1vmDLB2k+6puLQcfZb9gfwSDZwc7HD0pRFmr00RBAEj392Hi1naPab2Lxoq+ayVLdl8Mh3Pff+X0WPhzV3x69yBcK0l8D5x9Q4mf1T9chGdgjyw8dn+kpoiP/rdfUi6kQ87BfDXq6PgLoOaq5c2J+LbI1cBAO8/1gP3G2zUaC0VFQLmf5+AX//S7g7uqLTDroWDEdpMequRW1pd+2/rh/VEdXAtp1jMLsilU3Z2VIq7CpeUVVhkltLpa3liANOnlY9sfla24oEewVU2ELx8sxBdX9uJhT8k4FaBGrcLS1FRIaCkrBynr+Xi4Y8P1hjAfD49Er/PGySpAAYA+oZr9+CqECCbqda6dtopjAvvrcnOToHFY9vDufLft7S8Akt/t852FnIl/Zw8EfRDSQDQ0ke6a8TcbUK3IHEcfltiJh7oEWzWz/vuqD69/0BPFvRaQ8zkLpjevxW+OnQF649q//IvrxCw6cQ1bDIouLZTaIOA6nwxIxJD20l3r6s+YT746pD2/9qx1NuIbieNoKAm5zLyxI1QOwR61JoVs7QgL2d8Mq0XHv/iKABtndHRlNvcrLWOmIkhWUgzCmLkk13oFeoNXzftlP64CzdRqDbfzsd5JWXYclKblnZT2UsiXd4UKRQKdAj0QMzkLnj/sR4Y0KYZqluT7u4AZmrfltg8uz9OvzYaw9r7SzaAAbRZPp0DF2/VcqY0rI7VL/z4YE/z/iHREIMjmuONBzqLx0+tO4bzmXVbsbapYxBDsiCnmUmGlHYKsRBSralAbNJNs33WlpPXxBWNH+jRQlJ/bTZV93cLwrdP9cP3T0fBTWUvTrt3V9mjmasj2vm7Y0K3IGya3R9vPNAFPVp6y6Jo3c/DSVyV+q/0HFy5VXiPV1hPqaYCO89q1xjzcXU0WjVXSh6JDBGnXeeVaPCfzaet3CJ5kP5vCxHuHk6STxADAGM7B4oFhdtOZ2B85dLtpiQIAr4xmD46tZ80v6ibqt6tfPDXq6MgCALsJTDDyBTGdglA0o18CALw6b7LeOOBLtZuUrVOXr2DkjLtwo/R7ZrD2VFa9UU6Dko7rJ/VD5M+OoArt4oQf+UOpq45jG+e7CvprJy12cZvE9m8q7e1Gxna2ykQ6CmfmhhAWwSpWw9i7/kss2ycdyz1Di7c0Bb0RoZ6o30AZ+NJjdJOYTMBDAA8OTAMjvba6/nj3A2LL+hYVwcu6Ye7+reW9h5i3q6OmD9cP+36wMVbWPB9AopL5bvZprnZzm8U2SxBEMThpBbezuJOunLhoLTDyA7aIaXC0nKz7DljmIX5ez/uk0Tm5+7kgIGV2xDcyFPj9DXp1XCUaiqw6YR+Ebmo1s1qOVsaJnZvYTR76ueE63hj69laXtG0MYghybtTVIaCyoJYuQ0l6YztEiDe33jctCtzFqg12H5aP+Zv+FlE5jS8g76zjbuQZcWWVO/ApWyk39FmcfuF+6CFl/SzuEo7BT6f0RsfTukpPvbN4avYn2y+ejo5YxBDkifXol5DA9r4wr2yYHP7mUyjzSwba+/5LJSWa8f8x3UJgMpemmP+ZHuiwvWZjYS0HOs1pAZ7zukDqxn9W1mvIQ0wvmsgJhsskzDt86P41w9/mXyDUbljEEOSJ+eiXh2VvRIzBrQSj+MumOavKkEQ8HGcfvro6E7MwpDltGrmCg8nbXB+5PLtBu8XZQ7FpeXYfFK7Lo/K3g7920i7HqY6C0dGoGOgvr5t44l0rDuUar0GSRCDGJI8wyAmxFueQQwATDLYTfr3Uxkm+Yvq0OVbOHNdW4vQuYWHWKNAZAl2dgqM66KdbZev1mB7YqaVW6R34GK2OAw9oVuQ2bf8MIdgbxf8+EwU7A3qAF/79Sze2nFeUgGjNTGIIcmT60J3dwv3dUXr5to9Uc5m5DU6G1NeIWDF9iTx+B+DW3MqJlncw5H6xeP+vGj6ovWG+u3UdfG+nDOUrip77P/3UKPHPtx7CV2X7MTPCddqeFXTwXViSPLS7thGEKNQKLBoTHs8/fVxAMCGY1cxtBF7uBy8lC3WIbT0ccHYzvL9oib56hrsBVdHJQpLy3HwUjYEQbB6MK3WlGPHGe1eZZ7ODhjUVt4ZykBPZ5xaMgpvbjsvrjkFAPM3JGD+hgTMjm4NH1dHlJSVY1KPFmjh5YwbeWp8/udlfHP4KorLytEr1BsujkqUlJXD3ckBQ9s1x8ORIZLbl6u+GMSQ5OmGkzyc7OHpIr+UsKHh7f3g565CVr4au89lITO3BAGeTvV+n7LyCry/O1k8/r/R7eBgQ2uQkHw4KO3QL7wZdp/PQnZBKZJu5Ft9naITV3LE1atHdPCXfUcNAB5ODnjjgS4Y2dEf/1x/Evkl+i1MPjLYVuHtnRfg66ZCXnGZWPAPVN2oc8/5LPz6Vwa+ndVX1t8d8m05NQll5RW4nlMCAGjZTL5ZGB17pR0e6qVNv2sqBCzedKpB7/Nx7CUcS9V+KTVzdTSa6kpkaQMMarH+NMM6SPX150X9UK3cszB3i27nh2MvjcCsQWE1npNdoDYKYGpyNPW27Lc3YBBDkpaRU4LyygJYORf1GpraLxQulUuf7026iVPpOfV6fW5xGb4yWNxuxUNd4eLIpCpZj2EQY6qZd42x74I+kOrfRvoL3NWXk4MSL43viNOvjcbIjtqFNHWrJxsa0ykAXz7RGwmvjMT2BYPw+7yBeDa6NTyd9Rnt7+PT8FHsRYu13dT4zWcFak05UrILkVtUhl6h3ja1FLmpXc4uEO+HNnO1YktMp4WXMxaNboclv2pX4Vx7IBXvPtq9zq9/Z2cSbuarAQBDIppjeOVqwETWEuHvhmBvZ6TfKcahS7eQW1RmtaHflOxCJFauw9QpyAN+7vUfrpULN5U9Pns80uixm/lq7E++iRAfF/Q22G3cy8URANApyBOLRrfDU+visfu8dh2dt3ckYWznQIT5yu87lr2nhcUmZaF/zB6MeW8/Hv30MNq8tA2tXvgdrV74HRNX/YnYpCzJ7kFiDZdv6nfHDW8uv1+wmjzau6W4n9Kvf12v8y7Ap6/l4qtD+izMy/d1MEv7iOpDoVBgTOUMIE2FgD/O3bBaW3ae0U/zvr9bkNXaYS3N3VWY3DPYKIC5m0KhwJrpkXg0MgQAUCEAS387K8u+h0GMBSWm5+KpdfG4VVha7fN/pedixtpjCFu8FZM+PMB1AGCciWltQ0GMs6MSU/tqd5rWVAiY8tmRewYyRy7fwn0f/CkeD2rrizZ+7mZtJ1FdjTGYHbf9jPXWi9ltsEqvbqiFqlIoFHjpvg5wr1yscPf5LKMCYblgEGMhKdmFuP/DP6Gp4wJnCWk56B+zB+cypLepmiWlZOs79jBfNyu2xPSeGdJaTN9eyynGkLdixT2Q7nYjrwSzvz0hHns42eOTab0s0k6iuujZ0hvN3VUAgH0XbqJQrbnHK0wv/U4R4q/cBqBdlym8uW19Z5iah5MD5g3T75r91o4kZOQWW7FF9ccgxkKW/HIGukxdhL8bLiwdiwtLxyL2+Wj8d1JnPNwruMprCtQaPPbZYdyuIXPTFOiGk7xcHODj6mjl1piWu5MDvpjRW/ziB4BnvjmOVi/8jvkbTiIztwSCIOD3UxkYsHyPUQbv8xm9WcxLkmJnp8CoysyHWlNhlQLfNftToPs7cTTXTaqTxyozwjpfHki1TkMaiEGMBSRl5hv9Qq98pDsc7e3gaG+HVr6umNYvFG893A2py8cjJWYc/juxk3huTlEZnlh7FNdy5BUdm0JRqQYZudrp1eEyLDirizBfV6yd0bvK4z8nXEe/mN0IW7wVc747IWbw3FT2+P4f/Wod7yaylrGdA8X722rIKpqTbqdnpZ0CswaFW/zz5chNZY//jNfX1n1xIEWcOCAHDGIs4LP9l8X7r07oiM4tPGs8V6FQYFpUK/yxcIg4Ze6v9Fw88OEBpGbXrfjTVhgX9dpuWrhzC08ceGEYlHa1r3Ia4uOMPxYOQd9w25sySrahb7iPOH33j7M3xL2LLOHKrUJcqvzO6BbsaXOZW3N6alA4JnbXFkGXlQtWrWmqLwYxZpaZWyLub+Hp7IBHKqvB76WNnxt+eDoK3pUzWLLy1fj750cs+qVgbcb1MLaZidFp4eWMQy8Mw7R+odU+38bPDRuf6d+g1X2JLMVBaYf7umqzMcVl5fjjrOVmKW012HxylIz3SrKWfwzWZ65+++t6LWdKCwfVzezDvRdRVq4dCvh7v5ZwVdX9R949xAs7nhuMxz8/ivOZ+Ui/U4x//3QKq6b0sPreJJZgmImxpZlJNfHzcMJ/J3XG00PCcTNfje4hXvgrPReBnk7w92DwQvIwoVuQuL/PH+duGO3ebk4HL+kXuJPzho/W0jHQA2G+rkjJLkT8lTsoUGvgVo/+ylqYiTGjsvIKbKnMwrg6KvHEgJqXia6Jn7sTPpnWC6rKoaXfEzPw7h/J93iVbTCcXm3Lw0l3C/Z2QY+W3lAoFOge4sUAhmQlMtRbHFKKS7qJUs29l79vrAK1BkdTtLOSAj2d0MoGtiixNIVCgajW2qHq8goBCVdzrNugOmIQY0Ynr+aIm3SN7OgPXzfVPV5RvdBmrljxUFfxeNWeZByvnEZoy3TDSQqFvHevJmpK7JV2GFa5O3u+WoMjKbfM/pm7z92AujJYGt7Br0lkqs2hj8GEgaOp8uhjGMSY0enKpa8BNLoYc2L3Fnisj351xXnrE5BbbLuL4QmCIA4nBXs728QutERNxQiDrTBqWvvIlLYmZoj3x3UJrOVMqk3vMH0QcyyFQUyTZ7hQXcfAxm9N/+qETuge4gVAuzja3O9OQFOHnUrl6Ga+WixiDrexRe6IbN2Qds3h5KDtXn756zrUmnKzfVahWoPYJO3Ual83R/QN4+y9hmrh5YygyskDJ9PuoEwG/QuDGDM6WxnE2CmAdgGNXx7eyUGJDx7rIc5Y2p+cjf/+drbR7ytFl242nZlJRLbGTWUvFtfml2iMtgIwtd9PZYhDSaM7BdxzqQKqnS4bU1JWYTSaIFUMYsykrLwCyTe0hanhzd1MNhwS4uOCT6ZFwkGp/UVdd+iKUSrVVhhOr24KM5OIbE2UwRD6c98nmG1zwU0n08X7D1Wz8jnVT6RBXUx86h0rtqRuGMSYybmMPJRWpuJMMZRkqE+YD16+r6N4/MLGUza3fszlm01zZhKRrdAV9wLabQjOmmEfuNuFpeKspFbNXMThdmo4uRX3SiaIiYmJQe/eveHu7g4/Pz9MmjQJSUlJRufMmDEDCoXC6NavXz8rtbh2By7qK/INi6VMZVq/UAxq6wsAyCvRIGbrOZN/hjVdbkIL3RHZIj8PJ8wd2kY8NseQ0u5zN/R7JXUK4KwkE2jr5yZOkY9PvW22DJqpSCaIiYuLw5w5c3D48GHs2rULGo0Go0aNQmGh8VL7Y8aMQUZGhnjbunWrlVpcO8O/OvqaIYhRKBR4YWx78XjjiXTkFNnORpG6TIyzgxIBXCeFSJYMNxfcmphh8g5xxxn9isBcpdc07OwUiAz1BgDcKSoz+oNSiiQTxGzfvh0zZsxAp06d0K1bN6xduxZXr17F8ePHjc5TqVQICAgQbz4+0twIT9cJK+0UaNXMPJmETkGe+Hs/7ZdESVkF5m0w37izJZVqKpB2R7vhZZivK+xYqEckSy28nNGtcojnfGY+jl8xXY1FUalG3PCxubsKPTiUZDKGw3KJ6dIu7pVMEHO33FztD+7uICU2NhZ+fn6IiIjArFmzkJV17xRlXl6e0U2tNu8OnYIgiIWpId7O4kaO5jBnaBtxaeh9F25aZE0Gc7t6uwjllTnicBb1Esna9Cj9fmBrD6aa7H1/Trguzkoa2dGff+yYUJdg/SbFiRaaoaRWq6v01XUhySBGEAQsXLgQAwcOROfOncXHx44di2+//RZ79uzBO++8g2PHjmHYsGH3DEpCQkLg6ekp3mJiYsza/jtFZSgq1a6L0NJMWRidQE9nvP1wN/F4xY4klJSZb00GSzAq6mU9DJGsje8aCF837Y7S209nIjO3pNHvWVEh4P3d+u1X7uMCdybVpYXlg5iYmBijfjokpG6bJUsyiJk7dy5OnTqF9evXGz3+6KOPYvz48ejcuTMmTJiAbdu24cKFC/j9999rfb+0tDTk5uaKt8WLF5uz+Ua/pIEWqOcY3clfrChPyS7E5pPXzP6Z5mQ4vZozk4jkTWWvxGN9tMPe5RUCvjtypdHvefp6LjIqv2f7hvmIe/6QaTRzU4mL3p29noeKCvOXKSxevNion05LS6vT6yQXxPzzn//EL7/8gr179yI4uPY5/4GBgQgNDUVycu0bInp4eBjdVKqG7WFUV5l5xeL9AE/zBzEKhQL/HttOPF6z/7IsVlqsieHu1RxOIpK/qX1DxUXofjyeLg4XN9SmE/o/1O7vHsRZSWbQuTIbU6DWIOWW+Yt7VSpVlb66LiQTxAiCgLlz52LTpk3Ys2cPwsLuvePzrVu3kJaWhsBAaaUSM3P1w1uWCGIAoGdLb3GTxEs3C7FFxtkYw0xMKw4nEclegKcToiOaAwAycksaVbtXXFouZptV9na4r0uQSdpIxgyHlKS8cq9kgpg5c+bgm2++wXfffQd3d3dkZmYiMzMTxcXarEZBQQGef/55HDp0CKmpqYiNjcWECRPg6+uLBx54wMqtN5aVrx9O8vcwb9ZHR6FQ4LWJncTjd3ddkO2Ua92UPl83FTycHKzcGiIyhUd762sclm091+AhitVxl8TNb8d2DoCnC78jzKGzQRCTlJlvxZbUTjJBzOrVq5Gbm4vo6GgEBgaKt++//x4AoFQqkZiYiIkTJyIiIgLTp09HREQEDh06BHf3xu9LZErZBfpMjK+bZYIYAIiOaI4BbbRjw9dzS/DurgsW+2xTyS8pE39+LOolsh0jOvijZ0svANoNbPcm1X/xO015BX6K19ZK2NspMHdYW1M2kQwYLjJ65VaRFVtSO3trN0DnXuubODs7Y8eOHRZqTePcKtBnQCwZxCgUCrz9cDcMezsOxWXl+Ol4OhaP62CyfZssITVb/8vSytfFii0hIlOys1Ngat9QnLiaAwBYvCkR2xd4w8fVsc7v8e2Rq7heWdA7qK0v2vix8N9cWng7Q2mnQHmFgFQL1MQ0lGQyMbbEMBNTn19QUwj0dMZ9XbU1QoWl5VhnwnUZLMGwgCzMl19QRLZkYvcgcSZlVr4aS345U+fXFqg1WGmQXZ5jsKUBmZ6D0g4h3s4AgNTsQskupMogxgyyKzMx7k72VsmCjO2iX377w70XUaqRz0yllJvcM4nIVtkr7bD8wS7QrUu37XQGrtThr3xBELBi+3mxFmZS9yCj3ZbJPEIr1zkrLC0X+zWpYRBjBrpMjCWHkgwNbeeHDpU7Z+eVaHBMBjuR6qTeYhBDZMvCm7uJWZSycgF///wIsvJqXwDv3V0X8NUh7foyCgUwdxizMJbQqpl+SL8uwaY1MIgxsZKycuSXaAAAzSw8lKSjUCgwO7q1ePzar2ckmwq8m+H06tBmrIkhskX/GBwudpBpt4vxny2na52ttObPFPH+zAFhaOMnrckctspwiYtUiRb3MogxsduF1inqvdvgiOawr8zZXrhRgEOXblmtLfWhC2JaeDnLqiCZiOrO3ckB6//RDx5O2rklO8/ewOJNiSguNd4y5U5hKbq/vlPcxqV9gDv+M76DxdvbVIV46/+QTL/DIKZJMCzqbeZmnUwMAHg6O+D+bvpFoD7bf9lqbamrO4Wl4pg3ZyYR2bZAT2eseKgbdIvtfh+fhg6vbMfhy9o/uM5cz8Xo9/Yhp6hMfM20qFCuzmtBwT7O4v2028W1nGk9kplibSustUZMdZZN7oJ9yTeRXVCKvUk3cTErX9Jp2MuGK/WaeeNMIrK+MZ0DMG9YW/zPYDPHv316uNpzn41ujSmVezCRZQQzE9P0GP7V4G3llSSdHJR4cmC4eBx3IduKrbm31GwW9RI1NQtGtMWzBjV8d2vm6oiNz0bh32PaMwtjYW4qe7EfS78jzUwMgxgTK1RrxPtuElgyf1h7P/H+14dSLbIbaUMlZxWI97nxI1HToFAo8O8x7XH0peEYXLm/kk6nIA9sWzAIvUI5ndpaQir35MvILZbkxsIMYkys0KAwzdXR+oWp7QLcERWu3Yog9VaRON4sRecz88T77QPqtoMpEdkGP3cnfDmjN+YNb4sWXs54YWx7/DJ3IPzcLbOJLlUvuHLBuwoByMipfSq8NTCIMTHDTIyrSholR1P76ceRfzqebsWW1E63yZiHkz0CLbT7NxFJh52dAgtHRuDAC8PwzJDWUNpx+MjapD5DiUGMiRVIMIgZ0cFfnMq49XQG8kvK7vEKy8spKkVG5Z4o7QM8OPZNRCQBukwMAKQxiLF9RWr9cJKbRIIYJwclJnZvAQAoKavA1sQMK7eoqvMGW723D5TuDCoioqYk2McwEyO94l4GMSZWUKrPxLhIoCZG56FeweL9H+OlN6R0PoP1MEREUhNimIm5zUyMzTOanSSRTAwAdA32RNvKbevjr9wxWt5fCpJuMBNDRCQ1Lbz0mZg0ZmJsn+FwklRqYgDtNMaHI/XZmI0SK/A9l6EPYiL8GcQQEUmBs6NSXLiVhb1NgK6w11FpB0d7af14J/VoIVb7bzyRjnKJrBlTUSGIM5Na+rhIKoNFRNTU6Yp7b+SpUVJWfo+zLUtavawNKKysiXFRSaceRsfP3QnRlYtJZeSW4OAlaazge/V2EYrL9Bu8ERGRdBjOUNLNIpUKBjEmpquJcXWUZjbBsMBXKmvGGM1MYhBDRCQpQV6GQYy06mIYxJhYYWVNjFSHRIZ18INX5V4Y209nirtGW5PRSr2BnJlERCQlAR76xUczmYmxXeUVgjgs4irB4SQAUNkrMalyzRi1pgK/n7L+mjHnM5iJISKSKsMV1DmcZMMKS6W3Wm91jNaMOZ5mxZZo6TIxTg52CG3GjR+JiKTEcDhJajOUGMSYkNH0aonWxADanWF1GY+TV3Nw0WD3aEsrKtXgSuUCShH+7twrhYhIYsKa6/+4vJQlrTXGGMSYkBT3TaqOQqEwysZsPGG9At8LNwogVM705lASEZH0eDg5wM9du1bMxZvW+6O3OgxiTKjIaDhJmjUxOpN6tIB9ZdZjkxXXjOF2A0RE0temcsX324WluF1YauXW6DGIMaHiUv1wkrODtIMYXzcVhrb3A6BdwGh/8k2rtIMbPxIRSZ8uiAGASxLKxjCIMSG1pkK8r5J4EAMYF/j+ZqVZSueYiSEikrzWzfVBjDXrKO/GIMaEjIIYiW05UJ3ods3hqNS286fj6RZfTloQBDET4+eugo+ro0U/n4iI6sYwE8MgxkapNfogQA5BjMpeiS7BnuLx14euWPTzU7ILxcX2OgUxC0NEJFUMYpoAdZm8hpMA4BGDna0PWHgvpZNXc8T7ka18LPrZRERUd37uKrhXzrq1iSCmrKwMaWlpSEpKwu3bt03ZJtkqLTcIYpTyiA8fiQyBr5t2GOfI5du4VaC22GcnXssV73cL9rLY5xIRUf0oFAq0rszGXMspNprIYk316mkLCgrwySefIDo6Gp6enmjVqhU6duyI5s2bIzQ0FLNmzcKxY8fM1VbJUxvUlKgc5BHEKBQK3Nc1CABQXFaOj+MuWeyzz1zXBzGdW3A4iYhIygyLe6UyQ6nOPe27776LVq1a4bPPPsOwYcOwadMmJCQkICkpCYcOHcKrr74KjUaDkSNHYsyYMUhOTq5XQ2JiYtC7d2+4u7vDz88PkyZNQlJSktE5giBgyZIlCAoKgrOzM6Kjo3HmzJl6fY45ya2wV+fZ6NZiezccS7NIgW9FhYAz17Uzk4K9neHlwqJeIiIpa+uvD2IMl8ewpjr3tAcPHsTevXsRHx+PV155BWPGjEGXLl3Qpk0b9OnTBzNnzsTatWuRmZmJ+++/H3FxcfVqSFxcHObMmYPDhw9j165d0Gg0GDVqFAoL9Uscr1ixAitXrsSqVatw7NgxBAQEYOTIkcjPl8YP0ziIkUdNDAD4ezhhfNdAAEB+iQZ7zmeZ/TNTbhWiqDIdyaJeIiLp62owEeTk1TtWbIlendfG//HHH+t0XmlpKWbPnl3vhmzfvt3oeO3atfDz88Px48cxePBgCIKA9957Dy+99BImT54MAFi3bh38/f3x3Xff4emnn673Z5qa3GYnGXqwZzA2nbgGQLuC77gugWb9vBNX9L8AnYM8azmTiIikoGuwFxQKQBCMaxqtqV497dtvv13r83l5eRg1alSjGqSTm6v9Afn4aGetpKSkIDMz0+j9VSoVhgwZgoMHD96zXYY3tdo8xavGs5PkFcT0C2+GAA/tduuxSTdxPafYrJ936PIt8X7f8GZm/SwiImo8N5U9gr21O1pfyiqAIJhuuxq1Wl2lr66LevW0L7/8MtauXVvtcwUFBRg9enSdP7g2giBg4cKFGDhwIDp37gwAyMzMBAD4+/sbnevv7y8+V5OQkBB4enqKt5iYmEa3sTqGw0mOSvkMJwGA0k6/KaSmQsCXB1PN+nlHLmtntDk52KFbCDMxRERy0NZPuz1MYWk5MnJLTPa+MTExRv10SEhInV5XryDm66+/xuzZs7FlyxajxwsKCjBq1Cjcvn0be/furc9bVmvu3Lk4deoU1q9fX+U5hUJhdCwIQpXH7paWlobc3Fzxtnjx4ka3sTpGw0kyy8QAwBMDWkH3o9x3wXx7KaXdLsK1ykxPz5besqofIiJqysy16N3ixYuN+um0tLQ6va5ePe1DDz2EDz74AFOmTBGDlYKCAowZMwbZ2dmIjY2tkimpr3/+85/45ZdfsHfvXgQH6xdiCwgIAIAqWZesrKx7fqaHh4fRTaVSNaqNNSmV6ewknWZuKrHI9nxmPo5fMU/h1pEU/bpCfcM4lEREJBdtzLSHkkqlqtJX10W9e9qnnnoKS5YswaRJkxAbG4uxY8ciMzMTe/fuRWBgw4tBBUHA3LlzsWnTJuzZswdhYWFGz4eFhSEgIAC7du0SHystLUVcXBz69+/f4M81JbnOTjL0t94txftfHUo1y2ccMaqH4Uq9RERy0dogE5MsgZV76zw7ydCiRYtw584dDB8+HK1atUJcXBxatGjRqIbMmTMH3333HX7++We4u7uLGRdPT084OztDoVBgwYIFWLZsGdq2bYu2bdti2bJlcHFxwZQpUxr12aYi13ViDD0cGYy3dyYhp6gMO85kIq+kDB5ODib9DF0mxtHeDt1DvEz63kREZD4RBmvFnM1ofA1sY9UriNFNbdZxcHCAr68v5s2bZ/T4pk2b6t2Q1atXAwCio6ONHl+7di1mzJgBQBs8FRcXY/bs2bhz5w769u2LnTt3wt3dvd6fZw5yr4kBtBmk+7sF4atDV1BSVoGtpzLwtz4t7/3COrqeU4yrt4sAAN1DvOAkkz2miIgIcHdyQJivK1KyC3EuIw9l5RVwsOI2O/UKYjw9jWeRPPbYYyZrSF2maikUCixZsgRLliwx2eeakuEUa0eZ7J1UnYd6BeOryh2tN55IN2kQc/CSfigpilOriYhkp1OQB1KyC1GqqcDFrAJ0CLTegqX1CmJqml5NWrrhJKWdAvYyDmK6tPBEWz83JGcV4FjqHaRmF6KVr6tJ3vugwU7Z/VsziCEikpsuLTzx26kMANpF76wZxMi3p5Ug3XCSXOthdBQK/ZoxAPDtkSsmeV9BEHCoMhPj5GCH7i29TPK+RERkOV1a6Edl/krLsV5DUI8g5urVq/V642vXrtW7MXKnm2It9yAGAB7o0QL2dtpFY744kGqSFXxTbxWJiyP1buUj2xlcRERNWdcQL1R2D2ZbiqOu6tzb9u7dG7NmzcLRo0drPCc3NxefffYZOnfu3KDiXrlTi0GM/DtnPw8nPDlIO829vELAd0fqF8RWZ/e5G+L9KA4lERHJkpvKXhxCSrqRj9ziMqu1pc41MefOncOyZcswZswYODg4IDIyEkFBQXBycsKdO3dw9uxZnDlzBpGRkXjrrbcwduxYc7ZbksQgRqYzk+72eFQrfL4/BZoKAWsPpGD20NZwcWzQrHwAEDeYBIDRnQJM0UQiIrKCyFBvnLmeB0EAEtJyMCSiuVXaUefe1sfHB2+//TauX7+O1atXIyIiAtnZ2UhOTgYATJ06FcePH8eBAweaZAADAOoy26iJ0Wnh5YzJPbXr/xSWluPH+PQGv1dqdqG4pkC3YE+0Nlj1kYiI5KVnqLd4/3jq7VrONK96/1nt5OSEyZMnV1kzhmxrOEnnoV4h+KEyeHnj93OIat0MEf71X5dn22n9dhHjujR8ZWciIrK+yFY+6NnSC5GtfDDISlkYgLOTTEZTXgFNhXatG0cbycQAQJ8wH4zooN2bqrS8AhtP1D8bIwgCfk7QDyWN7cwghohIzlp4OWPT7AF4cVwH9G5lve1jbKe3tbLScvlvOVCT5Q92Ee9vPJ6OolJNvV5/5noezmfmAwB6tvRCy2YuJm0fERE1TbbV21qR4Wq9thbE+LqpcF9XbfYku6AU3x6u30ylLSf1WZjJPYNrOZOIiKjubKu3tSLjTIzt1MTozBveForKdQE+2XepztkYtaYcP/91HQDgoFSIwRAREVFjMYgxEaNMjI1MsTYU4e+O8V302ZiPYy/V6XU/xqfjZr4aADC8vT+8XBzN1kYiImpaGr7oh4Hbt2/j7Nmz4u3MmTM4d+4c0tMbPiVXbox2sLax4SSd+cPbYtvpTJRXCFi19yIGRzRHZC0FXRUVAv63O1k8nj20tSWaSURETUSjgpihQ4ciKSkJrq6u6NChA9q3b4/vvvsOW7ZsQdu2bU3VRlnQTa8GbHM4CQDa+rtj/vC2WLnrAioE4LkfErDruSFwcqj+et/cfl7Mwgxq64uuwV4WbC0REdm6RqUMvL29ERYWhrVr1+KXX37BihUr4Orqiv79+6N5c+vNG7cGw0yMLU2xvtucoW3QLcQLAJB2uxgPfHQQBeqq9TGJ6bn44kCKeDxzQJilmkhERE1Eo3rbTZs24cMPP8Sbb76J0aNH48iRI1Doqj+bGFuenWRIaafAf8Z3gINS++98LiMPD3x4QNwgUrdT9cx1x1BWrl0352+9QzC0vZ/V2kxERLapXsNJO3bswMiRI2Fnp++ku3fvjl9//RVHjhzBK6+8ghs3buDIkSPo27evyRsrZU1hOEmndysf/PB0FP6+5ggKS8uRnFWA/sv3VHtuZKg3ltzfycItJCKipqBeKYNx48YhOzu72uf69u2LHTt2YPv27Vi8eDFGjBhhkgbKhVEQY4Ozk+7Wo6U3Pvp7L3E79uq09HHBJ9N61VgzQ0RE1Bj1ysQIgnDPcwYNGoQ9e/Zgz57q/zK3VU1hdtLdhkQ0x7dP9cNPx9OxL/mmWMQLAM3dVfj2qb5o5qayYguJiMiWmWSKdXWGDRtmrreWpKY0nGQoqnUzRLVuhvIKAfklZVBrKuDp7MDsCxERmV29UwarVq3Cjh07ahxWaqoMgxhbnp1UE6WdAl4ujvD3cGIAQ0REFlHvTMzq1auxdOlSKBQKtGjRAj179kSvXr3Qs2dP9OzZE4GBTXNZeXVZ0xtOIiIisqZ6BzFnzpyBRqPByZMnceLECZw4cQJr1qxBWloaFAoF/P39cf36dXO0VdKMh5MYxBAREZlbvYIY3RowQUFBCAoKwvjx48Xnbt++jfj4eCQkJJi0gXJhPDuJwylERETmZrLZST4+Phg1ahRGjRrV6EbJUVOcnURERGRN9eptt23bBk9PT3O1RdbKNPoAz0HJIIaIiMjc6pWJGT16tLnaIXuaCv1wkm5JfiIiIjIfpgxMRLdPEADY2/HHSkREZG7sbU1EU85MDBERkSUxiDERTYVBJoY1MURERGbH3tZEygwyMfa17YpIREREJiGpIGbfvn2YMGECgoKCoFAosGXLFqPnZ8yYAYVCYXTr16+fdRp7F005ZycRERFZkqR628LCQnTr1g2rVq2q8ZwxY8YgIyNDvG3dutWCLayZ4ewke9bEEBERmZ3ZdrFuiLFjx2Ls2LG1nqNSqRAQEGChFtWd4ewkB85OIiIiMjtJBTF1ERsbCz8/P3h5eWHIkCF444034OfnV+tr8vLyjI5VKhVUKpVJ28VMDBERUcOo1Wqo1Wrx+O5+uyayShmMHTsW3377Lfbs2YN33nkHx44dw7Bhw4wuvDohISHw9PQUbzExMSZvm9E6MQxiiIiI6iwmJsaonw4JCanT62SViXn00UfF+507d0ZkZCRCQ0Px+++/Y/LkyTW+Li0tDR4eHuKxqbMwwF3rxHA4iYiIqM4WL16MhQsXisd5eXl1CmRkFcTcLTAwEKGhoUhOTq71PA8PD6Mgxhx068TYKQA7TrEmIiKqs4aWecg6ZXDr1i2kpaUhMDDQ2k0Rh5O40B0REZFlSCoTU1BQgIsXL4rHKSkpSEhIgI+PD3x8fLBkyRI8+OCDCAwMRGpqKl588UX4+vrigQcesGKrtXTDSQ7MwhAREVmEpIKY+Ph4DB06VDzWjY9Nnz4dq1evRmJiIr766ivk5OQgMDAQQ4cOxffffw93d3drNVmkG05iJoaIiMgyJBXEREdHQxCEGp/fsWOHBVtTP7ptB7j5IxERkWUwbWAium0H7DkziYiIyCLY45qIbrE7rhFDRERkGQxiTEQ3O4mbPxIREVkGe1wT0dXE2HN2EhERkUUwiDERDdeJISIisij2uCZSVsHZSURERJbEIMYEyisE6GaGcziJiIjIMhjEmECZweaPHE4iIiKyDPa4JqBbrRfgcBIREZGlMIgxAY1hJoaL3REREVkEe1wT0K0RAzATQ0REZCkMYkxAt1ovwEwMERGRpbDHNQGNQSaG2w4QERFZBoMYEzCcncRtB4iIiCyDPa4JGM5O4joxRERElsEgxgS4TgwREZHlscc1AQ1nJxEREVkcgxgT4OwkIiIiy2OPawJcJ4aIiMjyGMSYAKdYExERWR6DGBMo43ASERGRxbHHNQEW9hIREVkegxgT0HCKNRERkcWxxzWBMi52R0REZHEMYkxAw20HiIiILI49rglwdhIREZHlMYgxAcPZSQ6cnURERGQR7HFNgJkYIiIiy2MQYwLcAJKIiMjy2OOagMZgdpIDZycRERFZBIMYE+A6MURERJbHHtcEylgTQ0REZHGSCmL27duHCRMmICgoCAqFAlu2bDF6XhAELFmyBEFBQXB2dkZ0dDTOnDljncYa0HB2EhERkcVJqsctLCxEt27dsGrVqmqfX7FiBVauXIlVq1bh2LFjCAgIwMiRI5Gfn2/hlhrj7CQiIiLLs7d2AwyNHTsWY8eOrfY5QRDw3nvv4aWXXsLkyZMBAOvWrYO/vz++++47PP3005ZsqpEybgBJRERkcZLKxNQmJSUFmZmZGDVqlPiYSqXCkCFDcPDgwVpfm5eXZ3RTq9UmbZvhcJI9h5OIiIjqRa1WV+mr60I2PW5mZiYAwN/f3+hxf39/8bmahISEwNPTU7zFxMSYtG0s7CUiImq4mJgYo346JCSkTq+T1HBSXSgUxkGCIAhVHrtbWloaPDw8xGOVSmXSNnEDSCIiooZbvHgxFi5cKB7n5eXVKZCRTRATEBAAQJuRCQwMFB/Pysqqkp25m4eHh1EQY2qGi93Zc7E7IiKielGpVA1KMMgmbRAWFoaAgADs2rVLfKy0tBRxcXHo37+/FVtmvO0AMzFERESWIalMTEFBAS5evCgep6SkICEhAT4+PmjZsiUWLFiAZcuWoW3btmjbti2WLVsGFxcXTJkyxYqt5hRrIiIia5BUEBMfH4+hQ4eKx7rxsenTp+PLL7/EokWLUFxcjNmzZ+POnTvo27cvdu7cCXd3d2s1GQBnJxEREVmDpIKY6OhoCIJQ4/MKhQJLlizBkiVLLNeoOuA6MURERJbHtIEJGGViWBNDRERkEexxTcBonRjOTiIiIrIIBjEmwHViiIiILI89rgno1olRKAAlMzFEREQWwSDGBHTDSQ6cmURERGQx7HVNQDecxDViiIiILIdBjAnohpNY1EtERGQ5DGJMQLftAIt6iYiILIe9rgnoth1gEENERGQ57HVNQMzE2HM4iYiIyFIYxJgAh5OIiIgsj72uCeimWDsyiCEiIrIY9romUMYp1kRERBbHIKaRBEEQp1hzOImIiMhy2Os2kuHmjwxiiIiILIe9biOVGWz+yJoYIiIiy2Gv20iGQQxrYoiIiCyHQUwjlRoEMRxOIiIishz2uo2kMaiJ4XASERGR5bDXbaQyo0wMh5OIiIgshUFMIxnXxPDHSUREZCnsdRupVMMp1kRERNbAXreRNBWGU6w5nERERGQpDGIaicNJRERE1sFet5E4nERERGQd7HUbyXjFXg4nERERWQqDmEYyrIlhJoaIiMhy2Os2kuFwEmtiiIiILIe9biNxsTsiIiLrYBDTSEY1Mfb8cRIREVkKe91GMtw7iTUxRERElsNet5EMd7G2t+NwEhERkaXIKohZsmQJFAqF0S0gIMCqbeJwEhERkXXYW7sB9dWpUyf88ccf4rFSqbRia+4u7GUQQ0REZCmyC2Ls7e2tnn0xVMaaGCIiIquQXRCTnJyMoKAgqFQq9O3bF8uWLUN4eHitr8nLyzM6VqlUUKlUJmmP8d5JrIkhIiKqL7VaDbVaLR7f3W/XRFapg759++Krr77Cjh078NlnnyEzMxP9+/fHrVu3an1dSEgIPD09xVtMTIzJ2mS87YCsfpxERESSEBMTY9RPh4SE1Ol1CkEQhHufJk2FhYVo3bo1Fi1ahIULF1Z5Pi8vD56enkhLS4OHh4f4uCkzMcu2nsOn+y4DAH54Ogp9wnxM8r5ERERNRXWZmJCQEOTm5hr133eT3XCSIVdXV3Tp0gXJycm1nufh4VHrD6ExuGIvERFR4zQ0uSDr8Q+1Wo1z584hMDDQam3g7CQiIiLrkFWv+/zzzyMuLg4pKSk4cuQIHnroIeTl5WH69OlWa1OZhrOTiIiIrEFWw0np6el47LHHkJ2djebNm6Nfv344fPgwQkNDrdYmDicRERFZh6yCmA0bNli7CVWUVTATQ0REZA3sdRupTMOaGCIiImtgr9tIHE4iIiKyDgYxjWQ0nMQNIImIiCyGvW4jGQ0n2fHHSUREZCnsdRup1HDbAWZiiIiILIa9biOpNeUAAHs7BZR2rIkhIiKyFAYxjaQu02ZiVMzCEBERWRR73kZSV9bEqByUVm4JERFR08IgppF0w0nMxBAREVkWe95GEjMxDGKIiIgsij1vI+lrYjicREREZEkMYhpBEAT9cJIDf5RERESWxJ63ETQVAnQL9nI4iYiIyLLY8zaC2mC1Xg4nERERWRaDmEZQl5WL95mJISIisiz2vI1glIlhTQwREZFFsedthFIOJxEREVkNg5hGMMzEOCr5oyQiIrIk9ryNUGxQE+PE4SQiIiKLYs/bCEVqjXjfVWVvxZYQERE1PQxiGqGwVJ+JYRBDRERkWQxiGqGoVJ+JcXFkYS8REZElMYhphEK1QSbGkZkYIiIiS2IQ0whGmRgVMzFERESWxCCmEZiJISIish4GMY3AmhgiIiLrYRDTCIWlnGJNRERkLQxiGiG/hJkYIiIia2EQ0wiZuSXifX8PJyu2hIiIqOnhGEgDCIKAn46n40jKbQCAh5M9h5OIiIgsjD1vA6zZn4I3tp4TjwM9na3YGiIioqaJw0kNsPFEutFxsDeDGCIiIkuTZRDz0UcfISwsDE5OTujVqxf2799v0c83LOj1cXXE7KGtLfr5REREJMMg5vvvv8eCBQvw0ksv4eTJkxg0aBDGjh2Lq1evWqwNak0FAMDT2QGHFw9Hr1Afi302ERERackuiFm5ciWefPJJPPXUU+jQoQPee+89hISEYPXq1TW+Ji8vz+imVqsb1QZ1mXalXl83Rzjay+5HSEREJClqtbpKX10XsuqBS0tLcfz4cYwaNcro8VGjRuHgwYM1vi4kJASenp7iLSYmplHt0GViVPZcG4aIiKixYmJijPrpkJCQOr1OVrOTsrOzUV5eDn9/f6PH/f39kZmZWePr0tLS4OHhIR6rVKoGt6G8QkBpuTaIcXKQVQxIREQkSYsXL8bChQvF47y8vDoFMrIKYnQUCoXRsSAIVR4z5OHhYRTENEZpZRYGYCaGiIjIFFQqVYMSDLJKJfj6+kKpVFbJumRlZVXJzpiLWqPfuZqZGCIiIuuRVS/s6OiIXr16YdeuXUaP79q1C/3797dIG0rKmIkhIiKSAtkNJy1cuBDTpk1DZGQkoqKi8Omnn+Lq1at45plnLPL5zMQQERFJg+yCmEcffRS3bt3C66+/joyMDHTu3Blbt25FaGioRT6fmRgiIiJpkF0QAwCzZ8/G7NmzrfLZzMQQERFJA3vhejLKxDgwE0NERGQtDGLqySgTw9V6iYiIrIa9cD2pmYkhIiKSBFnWxFhT/zbNsPtfQ1BSVo7mbg1f+ZeIiIgah0FMPbk42qN1czdrN4OIiKjJ43ASERERyRKDGCIiIpIlBjFEREQkSwxiiIiISJYYxBAREZEsMYghIiIiWWIQQ0RERLLEIIaIiIhkiUEMERERyRKDGAtTq9VYsmQJ1Gq1tZtiEU3teoGmd828XtvG67Vtcr9ehSAIgrUbYS55eXnw9PREbm4uPDw8rN0cANJskzk1tesFmt4183ptG6/Xtkn1euvaLmZiiIiISJYYxBAREZEs2fQu1rqRsry8PCu3RE/XFim1yZya2vUCTe+aeb22jddr26R6vbr23KvixaZrYtLT0xESEmLtZhAREVEDpKWlITg4uMbnbTqIqaiowPXr1+Hu7g6FQmHt5hAREVEdCIKA/Px8BAUFwc6u5soXmw5iiIiIyHaxsJeIiIhkiUEMERERyRKDGCIiIpIlBjGNEBMTg969e8Pd3R1+fn6YNGkSkpKS7vm6Dz/8EB06dICzszPatWuHr776qso57733Htq1awdnZ2eEhITgueeeQ0lJiTkuo85Wr16Nrl27wsPDAx4eHoiKisK2bdtqfU1cXBx69eoFJycnhIeH4+OPP65yzsaNG9GxY0eoVCp07NgRmzdvNtcl1Is5rvezzz7DoEGD4O3tDW9vb4wYMQJHjx4152XUmbn+fXU2bNgAhUKBSZMmmbjlDWOu683JycGcOXMQGBgIJycndOjQAVu3bjXXZdSLua5Zit9XQP2vNyMjA1OmTEG7du1gZ2eHBQsWVHuerXxn1eV6pfydBQAQqMFGjx4trF27Vjh9+rSQkJAgjB8/XmjZsqVQUFBQ42s++ugjwd3dXdiwYYNw6dIlYf369YKbm5vwyy+/iOd88803gkqlEr799lshJSVF2LFjhxAYGCgsWLDAEpdVo19++UX4/fffhaSkJCEpKUl48cUXBQcHB+H06dPVnn/58mXBxcVFmD9/vnD27Fnhs88+ExwcHISffvpJPOfgwYOCUqkUli1bJpw7d05YtmyZYG9vLxw+fNhSl1Ujc1zvlClThA8//FA4efKkcO7cOeGJJ54QPD09hfT0dEtdVo3Mcb06qampQosWLYRBgwYJEydONPOV1I05rletVguRkZHCuHHjhD///FNITU0V9u/fLyQkJFjqsmpljmuW6veVINT/elNSUoR58+YJ69atE7p37y7Mnz+/yjm29J1Vl+uV8neWIAgCgxgTysrKEgAIcXFxNZ4TFRUlPP/880aPzZ8/XxgwYIB4PGfOHGHYsGFG5yxcuFAYOHCgaRtsAt7e3sKaNWuqfW7RokVC+/btjR57+umnhX79+onHjzzyiDBmzBijc0aPHi387W9/M31jTaCx13s3jUYjuLu7C+vWrTNpO03FFNer0WiEAQMGCGvWrBGmT58umSCmOo293tWrVwvh4eFCaWmpWdtpSo29Zjl9XwlC7ddraMiQIdV26rb0nWWopuu9m9S+szicZEK5ubkAAB8fnxrPUavVcHJyMnrM2dkZR48eRVlZGQBg4MCBOH78uJiyu3z5MrZu3Yrx48ebqeX1V15ejg0bNqCwsBBRUVHVnnPo0CGMGjXK6LHRo0cjPj5evNaazjl48KB5Gt5AprreuxUVFaGsrKzW/zPWYMrrff3119G8eXM8+eSTZm1zY5jqen/55RdERUVhzpw58Pf3R+fOnbFs2TKUl5eb/Rrqy1TXLIfvK6Bu11sXtvSd1RBS+86y6W0HLEkQBCxcuBADBw5E586dazxv9OjRWLNmDSZNmoSePXvi+PHj+OKLL1BWVobs7GwEBgbib3/7G27evImBAwdCEARoNBo8++yzeOGFFyx4RdVLTExEVFQUSkpK4Obmhs2bN6Njx47VnpuZmQl/f3+jx/z9/aHRaMRrremczMxMs11DfZj6eu/2wgsvoEWLFhgxYoRZ2l9fpr7eAwcO4PPPP0dCQoIFWl9/pr7ey5cvY8+ePZg6dSq2bt2K5ORkzJkzBxqNBq+88oolLumeTH3NUv6+Aup3vXVhS99ZDSG17ywGMSYyd+5cnDp1Cn/++Wet57388svIzMxEv379IAgC/P39MWPGDKxYsQJKpRIAEBsbizfeeAMfffQR+vbti4sXL2L+/PkIDAzEyy+/bInLqVG7du2QkJCAnJwcbNy4EdOnT0dcXFyNvyR3r5QsVK6taPh4dedIZYVlc1yvzooVK7B+/XrExsZWyc5ZiymvNz8/H3//+9/x2WefwdfX1+xtbwhT//tWVFTAz88Pn376KZRKJXr16oXr16/jrbfekkwQY+prlvL3FVD/660LW/rOqg8pfmexJsYE5s6dKwQHBwuXL1+u82tKS0uFtLQ0QaPRiMW+5eXlgiAIwsCBA6vUzXz99deCs7OzeI5UDB8+XPjHP/5R7XODBg0S5s2bZ/TYpk2bBHt7e7FmICQkRFi5cqXROStXrhRatmxpngY3UmOvV+ett94SPD09hWPHjpmtrabQmOs9efKkAEBQKpXiTaFQCAqFQlAqlcLFixctcQn10th/38GDBwvDhw83Omfr1q0CAEGtVpun0Y3U2GuW0/eVINR+vYZqqhGxpe8sQ/eqiZHqdxZrYhpBEATMnTsXmzZtwp49exAWFlbn1zo4OCA4OBhKpRIbNmzAfffdJ+4PUVRUVGWvCKVSCUFbiG3Sa2gsQRCgVqurfS4qKgq7du0yemznzp2IjIyEg4NDref079/fPA1upMZeLwC89dZb+O9//4vt27cjMjLSrO1trMZcb/v27ZGYmIiEhATxdv/992Po0KFISEiQ5Oasjf33HTBgAC5evIiKigrxnAsXLiAwMBCOjo7ma3gjNPaa5fR9BdR+vXVhS99ZdSXp7yzrxE624dlnnxU8PT2F2NhYISMjQ7wVFRWJ57zwwgvCtGnTxOOkpCTh66+/Fi5cuCAcOXJEePTRRwUfHx8hJSVFPOfVV18V3N3dhfXr1wuXL18Wdu7cKbRu3Vp45JFHLHl5VSxevFjYt2+fkJKSIpw6dUp48cUXBTs7O2Hnzp2CIFS9Vt30zOeee044e/as8Pnnn1eZnnngwAFBqVQKy5cvF86dOycsX75cMtMVzXG9b775puDo6Cj89NNPRv9n8vPzLX59dzPH9d5NSrOTzHG9V69eFdzc3IS5c+cKSUlJwm+//Sb4+fkJS5cutfj1Vccc1yzV7ytBqP/1CoIgnDx5Ujh58qTQq1cvYcqUKcLJkyeFM2fOiM/b0neWINz7eqX8nSUInGLdKACqva1du1Y8Z/r06cKQIUPE47Nnzwrdu3cXnJ2dBQ8PD2HixInC+fPnjd63rKxMWLJkidC6dWvByclJCAkJEWbPni3cuXPHMhdWg5kzZwqhoaGCo6Oj0Lx5c2H48OHiL4cgVL1WQRCE2NhYoUePHoKjo6PQqlUrYfXq1VXe98cffxTatWsnODg4CO3btxc2btxo7kupE3Ncb2hoaLX/Z1599VULXFHtzPXva0hKQYy5rvfgwYNC3759BZVKJYSHhwtvvPGGoNFozH05dWKOa5bq95UgNOx6q/v9DA0NNTrHlr6z7nW9Uv7OEgRB4C7WREREJEusiSEiIiJZYhBDREREssQghoiIiGSJQQwRERHJEoMYIiIikiUGMURERCRLDGKIiIhIlhjEEBERkWjfvn2YMGECgoKCoFAosGXLlnq9vqSkBDNmzECXLl1gb2+PSZMmVXteXFwcevXqBScnJ4SHh+Pjjz+ud1sZxBAR1aK0tBRt2rTBgQMHTPq+v/32G3r06GG0zxKRFBQWFqJbt25YtWpVg15fXl4OZ2dnzJs3DyNGjKj2nJSUFIwbNw6DBg3CyZMn8eKLL2LevHnYuHFjvT6LQQxREzJjxgwoFIoqt4sXL1q7aZL16aefIjQ0FAMGDBAfq+mv0xkzZtT4V+fd7rvvPigUCnz33XcmaimRaYwdOxZLly7F5MmTq32+tLQUixYtQosWLeDq6oq+ffsiNjZWfN7V1RWrV6/GrFmzEBAQUO17fPzxx2jZsiXee+89dOjQAU899RRmzpyJt99+u15tZRBD1MSMGTMGGRkZRrfqdmAvLS21Quuk54MPPsBTTz1llvd+4okn8MEHH5jlvYnM5YknnsCBAwewYcMGnDp1Cg8//DDGjBmD5OTkOr/HoUOHMGrUKKPHRo8ejfj4eJSVldX5fRjEEDUxKpUKAQEBRjelUono6GjMnTsXCxcuhK+vL0aOHAkAOHv2LMaNGwc3Nzf4+/tj2rRpyM7OFt+vsLAQjz/+ONzc3BAYGIh33nkH0dHRWLBggXhOdZkLLy8vfPnll+LxtWvX8Oijj8Lb2xvNmjXDxIkTkZqaKj6vy3K8/fbbCAwMRLNmzTBnzhyjLzy1Wo1FixYhJCQEKpUKbdu2xeeffw5BENCmTZsqf+WdPn0adnZ2uHTpUrU/qxMnTuDixYsYP358PX/KQGpqarVZr+joaPGc+++/H0ePHsXly5fr/f5E1nDp0iWsX78eP/74IwYNGoTWrVvj+eefx8CBA7F27do6v09mZib8/f2NHvP394dGozH6frkXBjFEJFq3bh3s7e1x4MABfPLJJ8jIyMCQIUPQvXt3xMfHY/v27bhx4wYeeeQR8TX/93//h71792Lz5s3YuXMnYmNjcfz48Xp9blFREYYOHQo3Nzfs27cPf/75J9zc3DBmzBijjNDevXtx6dIl7N27F+vWrcOXX35pFAg9/vjj2LBhA95//32cO3cOH3/8Mdzc3KBQKDBz5swqX7JffPGF+EVcnX379iEiIgIeHh71uh4ACAkJMcp2nTx5Es2aNcPgwYPFc0JDQ+Hn54f9+/fX+/2JrOHEiRMQBAERERFwc3MTb3FxcTX+MVAThUJhdKzbj/rux2tjX69PJCLZ++233+Dm5iYejx07Fj/++CMAoE2bNlixYoX43CuvvIKePXti2bJl4mNffPEFQkJCcOHCBQQFBeHzzz/HV199JWZu1q1bh+Dg4Hq1acOGDbCzs8OaNWvEL7C1a9fCy8sLsbGxYtrZ29sbq1atglKpRPv27TF+/Hjs3r0bs2bNwoULF/DDDz9g165dYjFheHi4+BlPPPEEXnnlFRw9ehR9+vRBWVkZvvnmG7z11ls1tis1NRVBQUHVPvfYY49BqVQaPaZWq8WsjVKpFOsBSkpKMGnSJERFRWHJkiVGr2nRooVRxolIyioqKqBUKnH8+PEq//8Nv1fuJSAgAJmZmUaPZWVlwd7eHs2aNavz+zCIIWpihg4ditWrV4vHrq6u4v3IyEijc48fP469e/dW++V06dIlFBcXo7S0FFFRUeLjPj4+aNeuXb3adPz4cVy8eBHu7u5Gj5eUlBj9ddepUyejL87AwEAkJiYCABISEqBUKjFkyJBqPyMwMBDjx4/HF198gT59+uC3335DSUkJHn744RrbVVxcDCcnp2qfe/fdd6vMvPj3v/+N8vLyKuc++eSTyM/Px65du2BnZ5wAd3Z2RlFRUY1tIJKSHj16oLy8HFlZWRg0aFCD3ycqKgq//vqr0WM7d+5EZGQkHBwc6vw+DGKImhhXV1e0adOmxucMVVRUYMKECXjzzTernBsYGFjnQj6FQiGminUMa1kqKirQq1cvfPvtt1Ve27x5c/H+3V9uCoVCnKLs7Ox8z3Y89dRTmDZtGt59912sXbsWjz76KFxcXGo839fXVwyS7hYQEFDl5+ju7o6cnByjx5YuXYrt27fj6NGjVYI0ALh9+7bRNRJZW0FBgdGMxZSUFCQkJMDHxwcRERGYOnUqHn/8cbzzzjvo0aMHsrOzsWfPHnTp0gXjxo0DoK2lKy0txe3bt5Gfn4+EhAQAQPfu3QEAzzzzDFatWoWFCxdi1qxZOHToED7//HOsX7++Xm1lEENENerZsyc2btyIVq1awd6+6tdFmzZt4ODggMOHD6Nly5YAgDt37uDChQtGGZHmzZsjIyNDPE5OTjbKPvTs2RPff/89/Pz8GlR/AgBdunRBRUUF4uLialybYty4ceL0z23btmHfvn21vmePHj2wevVqCIJQr3F6nY0bN+L111/Htm3bqq270WWaevToUe/3JjKX+Ph4DB06VDxeuHAhAGD69On48ssvsXbtWixduhT/+te/cO3aNTRr1gxRUVFiAANof9euXLkiHuv+j+v+mAkLC8PWrVvx3HPP4cMPP0RQUBDef/99PPjgg/VqKwt7iahGc+bMwe3bt/HYY4+Js2h27tyJmTNnory8HG5ubnjyySfxf//3f9i9ezdOnz6NGTNmVBkyGTZsGFatWoUTJ04gPj4ezzzzjFFWZerUqfD19cXEiROxf/9+pKSkIC4uDvPnz0d6enqd2tqqVStMnz4dM2fOxJYtW5CSkoLY2Fj88MMP4jlKpRIzZszA4sWL0aZNG6NhsOoMHToUhYWFOHPmTD1+alqnT5/G448/jn//+9/o1KkTMjMzkZmZidu3b4vnHD58GCqV6p7tILKk6OhoCIJQ5aYrondwcMBrr72GlJQUlJaWIiMjA5s2bUKXLl3E90hNTa32PQwNGTIEJ06cgFqtRkpKCp555pl6t5VBDBHVKCgoCAcOHEB5eTlGjx6Nzp07Y/78+fD09BQDlbfeeguDBw/G/fffjxEjRmDgwIHo1auX0fu88847CAkJweDBgzFlyhQ8//zzRsM4Li4u2LdvH1q2bInJkyejQ4cOmDlzJoqLi+uVmVm9ejUeeughzJ49G+3bt8esWbNQWFhodM6TTz6J0tJSzJw5857v16xZM0yePLnaYa57iY+PR1FREZYuXYrAwEDxZriA2Pr16zF16tRah7SIqGYK4e7QiIiokaKjo9G9e3e899571m5KFQcOHEB0dDTS09OrrFNRncTERIwYMaLawuPGuHnzJtq3b4/4+PhqFxskontjJoaImgS1Wo2LFy/i5ZdfxiOPPFKnAAbQ1tqsWLHC5NOgU1JS8NFHHzGAIWoEFvYSUZOwfv16PPnkk+jevTu+/vrrer12+vTpJm9Pnz590KdPH5O/L1FTwuEkIiIikiUOJxEREZEsMYghIiIiWWIQQ0RERLLEIIaIiIhkiUEMERERyRKDGCIiIpIlBjFEREQkSwxiiIiISJb+H+FnmXXdSZmLAAAAAElFTkSuQmCC\n",
- "text/plain": [
- "