From 44727d083a59ef14c430f82bf73e1ee5e54d4a30 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Fri, 11 Oct 2024 10:20:53 -0700 Subject: [PATCH 01/38] set _flag, remove to-be-fixed code from execution --- src/dysh/fits/gbtfitsload.py | 34 +++++++++++++++++----------------- 1 file changed, 17 insertions(+), 17 deletions(-) diff --git a/src/dysh/fits/gbtfitsload.py b/src/dysh/fits/gbtfitsload.py index d74010bb..1c444fc6 100644 --- a/src/dysh/fits/gbtfitsload.py +++ b/src/dysh/fits/gbtfitsload.py @@ -818,23 +818,23 @@ def _construct_integration_number(self): idx = g.index intnumarray[idx] = intnums[i] self._index["INTNUM"] = intnumarray - # Wait until after INTNUM PR: - # self._flag["INTNUM"] = intnumarray - - # Here need to add it as a new column in the BinTableHDU, - # but we have to sort out FITSINDEX. - # s.add_col("INTNUM",intnumarray) - fits_index_changes = indices_where_value_changes("FITSINDEX", self._index) - lf = len(fits_index_changes) - for i in range(lf): - fic = fits_index_changes[i] - if i + 1 < lf: - fici = fits_index_changes[i + 1] - else: - fici = -1 - fi = self["FITSINDEX"][fic] - # @todo fix this MWP - # self._sdf[fi].add_col("INTNUM", intnumarray[fic:fici]) # bintable index??? + self._flag["INTNUM"] = intnumarray + + if False: + # Here need to add it as a new column in the BinTableHDU, + # but we have to sort out FITSINDEX. + # s.add_col("INTNUM",intnumarray) + fits_index_changes = indices_where_value_changes("FITSINDEX", self._index) + lf = len(fits_index_changes) + for i in range(lf): + fic = fits_index_changes[i] + if i + 1 < lf: + fici = fits_index_changes[i + 1] + else: + fici = -1 + fi = self["FITSINDEX"][fic] + # @todo fix this MWP + # self._sdf[fi].add_col("INTNUM", intnumarray[fic:fici]) # bintable index??? def info(self): """Return information on the HDUs contained in this object. See :meth:`~astropy.HDUList/info()`""" From 84297e092f30b3eb5acd216bccfcd498fda84854 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Mon, 21 Oct 2024 09:13:46 -0700 Subject: [PATCH 02/38] convert channel selection to mask --- src/dysh/util/core.py | 50 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 50 insertions(+) diff --git a/src/dysh/util/core.py b/src/dysh/util/core.py index 25b9825c..e7121673 100644 --- a/src/dysh/util/core.py +++ b/src/dysh/util/core.py @@ -14,6 +14,8 @@ # import pandas as pd from astropy.time import Time +ALL_CHANNELS = "all channels" + def select_from(key, value, df): """ @@ -325,3 +327,51 @@ def ensure_ascii(text: Union[str, list[str]], check: bool = False) -> Union[str, for c in text: clean_text.append(_ensure_ascii_str(c)) return clean_text + + +def convert_array_to_mask(a, length, value=True): + """ + This method interprets a simple or compound array and returns a numpy mask + of length `length`. Single arrays/tuples will be treated as element index lists; + nested arrays will be treated as *inclusive* ranges, for instance: + + `` + # mask elements 1 and 10 + convert_array_to_mask([1,10]) + # mask elements 1 thru 10 inclusive + convert_array_to_mask([[1,10]]) + # mask ranges 1 thru 10 and 47 thru 56 inclusive, and element 75 + convert_array_to_mask([[1,10], [47,56], 75)]) + # tuples also work, though can be harder for a human to read + convert_array_to_mask(((1,10), [47,56], 75)) + `` + + Parameters + ---------- + a : number or array-like + The + length : int + The length of the mask to return, e.g. the number of channels in a spectrum. + + value : bool + The value to fill the mask with. True to mask data, False to unmask. + + Returns + ------- + mask : ~np.ndarray + A numpy array where the mask is True according to the rules above. + + """ + + if a == _ALL_CHANNELS: + return np.full(length, value) + + mask = np.full(length, False) + + for v in a: + if isinstance(v, (tuple, list, np.ndarray)) and len(v) == 2: + # If there are just two numbers, interpret is as an inclusive range + mask[v[0] : v[1] + 1] = value + else: + mask[v] = value + return mask From ce72a66e3d9fa8883427d65da8a470d7c394449a Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Mon, 21 Oct 2024 09:14:17 -0700 Subject: [PATCH 03/38] apply flags work --- src/dysh/fits/gbtfitsload.py | 61 ++++++++++++++++++++++++++++++------ 1 file changed, 51 insertions(+), 10 deletions(-) diff --git a/src/dysh/fits/gbtfitsload.py b/src/dysh/fits/gbtfitsload.py index 95770fc4..428efa53 100644 --- a/src/dysh/fits/gbtfitsload.py +++ b/src/dysh/fits/gbtfitsload.py @@ -12,9 +12,16 @@ from dysh.log import logger from ..coordinates import Observatory, decode_veldef -from ..log import HistoricalBase, dysh_date, log_call_to_history, log_call_to_result +from ..log import HistoricalBase, log_call_to_history, log_call_to_result from ..spectra.scan import FSScan, NodScan, PSScan, ScanBlock, SubBeamNodScan, TPScan -from ..util import consecutive, indices_where_value_changes, keycase, select_from, uniq +from ..util import ( + consecutive, + convert_array_to_mask, + indices_where_value_changes, + keycase, + select_from, + uniq, +) from ..util.selection import Flag, Selection from .sdfitsload import SDFITSLoad @@ -211,6 +218,7 @@ def flags(self): @property def final_flags(self): + # this method is not particularly useful. consider removing it """ The merged flag rules in the Flag object. See :meth:`~dysh.util.SelectionBase.final` @@ -221,13 +229,9 @@ def final_flags(self): The final merged flags """ - all_channels_flagged = np.where(self._table["CHAN"] == "") - + # all_channels_flagged = np.where(self._table["CHAN"] == "")j return self._flag.final - def _set_flags(self): - self.final_flags - def filenames(self): """ The list of SDFITS filenames(s) that make up this GBTFITSLoad object @@ -629,6 +633,11 @@ def select_channel(self, chan, tag=None): """ self._selection.select_channel(tag=tag, chan=chan) + @log_call_to_history + def clear_selection(self): + """Clear all selections for these data""" + self._selection.clear() + @log_call_to_history def flag(self, tag=None, **kwargs): """Add one or more exact flag rules, e.g., `key1 = value1, key2 = value2, ...` @@ -739,6 +748,41 @@ def flag_channel(self, chan, tag=None): """ self._flag.flag_channel(tag=tag, chan=chan) + @log_call_to_history + def apply_flags(self): + """ + Set the channel flags according to the rules specified in the `flags` attribute. + This sets numpy masks in the underlying `SDFITSLoad` objects. + + Returns + ------- + None. + + """ + # Loop over the dict of flagged channels, which + # have the same key as the flag rules. + # For all SDFs in each flag rule, set the flag mask(s) + # for their rows. The index of the sdf._flagmask array is the bintable index + for key, chan in self._flag._flag_channel_selection.items(): + selection = self._flag.get(key) + # chan will be a list or a list of lists + # If it is a single list, it is just a list of channels + # if it is list of lists, then it is upper lower inclusive + dfs = selection.groupby(["FITSINDEX", "BINTABLE"]) + print(f"{key=} {chan=}") + # the dict key for the groups is a tuple (fitsindex,bintable) + for i, ((fi, bi), g) in enumerate(dfs): + chan_mask = convert_array_to_mask(chan, self._sdf[fi].nchan(bi)) + rows = g["ROW"].to_numpy() + self._sdf[fi]._flag_mask[bi][rows] = chan_mask + + @log_call_to_history + def clear_flags(self): + """Clear all flags for these data""" + for sdf in self._sdf: + sdf._init_flags() + self._flag.clear() + def _create_index_if_needed(self): if self._selection is not None: return @@ -760,9 +804,6 @@ def _create_index_if_needed(self): self._construct_procedure() self._construct_integration_number() - def _create_flagmask(self): - """Creates the mask which is NFILESxNINTxNCHAN which will be used for setting channel flags""" - def _construct_procedure(self): """ Construct the procedure string (PROC) from OBSMODE and add it to the index (i.e., a new SDFITS column). From 1cf5c7631529e2a02a04fa84def08cca228e2bec Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Mon, 21 Oct 2024 09:14:43 -0700 Subject: [PATCH 04/38] init_flags --- src/dysh/fits/sdfitsload.py | 27 ++++++++++++++++----------- 1 file changed, 16 insertions(+), 11 deletions(-) diff --git a/src/dysh/fits/sdfitsload.py b/src/dysh/fits/sdfitsload.py index a36c386b..1f571294 100644 --- a/src/dysh/fits/sdfitsload.py +++ b/src/dysh/fits/sdfitsload.py @@ -57,11 +57,11 @@ def __init__(self, filename, source=None, hdu=None, **kwargs): if doindex: self.create_index() # add default channel masks - self._flagmask = [] - # if doflag: - # for i in range(len(self._bintable)): - # nc = self.nchan(i) - # self._flagmask.append(np.full(nc, False)) + # These are numpy masks where False is not flagged, True is flagged. + # There is one 2-D flag mask arraywith shape NROWSxNCHANNELS per bintable + self._flagmask = None + if doflag: + self._init_flags() def __del__(self): # We need to ensure that any open HDUs are properly @@ -72,6 +72,15 @@ def __del__(self): except Exception: pass + def _init_flags(self): + """initialize the channel masks to False""" + self._flagmask = np.empty(len(self._bintable), dtype=object) + for i in range(len(self._flagmask)): + nc = self.nchan(i) + nr = self.nrows(i) + print(f"{nr=} {nc=}") + self._flagmask[i] = np.full((nr, nc), fill_value=False) + def info(self): """Return the `~astropy.HDUList` info()""" return self._hdu.info() @@ -444,7 +453,7 @@ def getspec(self, i, bintable=0, observer_location=None): meta["NAXIS1"] = len(data) if "CUNIT1" not in meta: meta["CUNIT1"] = "Hz" # @todo this is in gbtfits.hdu[0].header['TUNIT11'] but is it always TUNIT11? - logger.debug(f"Fixing CUNIT1 to Hz") + logger.debug("Fixing CUNIT1 to Hz") meta["CUNIT2"] = "deg" # is this always true? meta["CUNIT3"] = "deg" # is this always true? restfrq = meta["RESTFREQ"] @@ -472,7 +481,7 @@ def getspec(self, i, bintable=0, observer_location=None): for k, v, c in h.cards: if k == ukey: if bunit != v: - logger.info(f"Found BUNIT={bunit}, now finding {uKey}={v}, using the latter") + logger.info(f"Found BUNIT={bunit}, now finding {ukey}={v}, using the latter") bunit = v break if bunit is not None: @@ -865,7 +874,6 @@ def _update_binary_table_column(self, column_dict): self._bintable[0].data[k] = v # otherwise we need to add rather than replace/update else: - # print("ADDING {k}={v}") self._add_binary_table_column(k, v, 0) else: start = 0 @@ -904,7 +912,6 @@ def _update_binary_table_column(self, column_dict): def __getitem__(self, items): # items can be a single string or a list of strings. # Want case insensitivity - # @todo deal with "DATA" if isinstance(items, str): items = items.upper() elif isinstance(items, (Sequence, np.ndarray)): @@ -923,7 +930,6 @@ def __getitem__(self, items): return self._index[items] def __setitem__(self, items, values): - # @todo deal with "DATA" if isinstance(items, str): items = items.upper() d = {items: values} @@ -943,7 +949,6 @@ def __setitem__(self, items, values): else: iset = set(items) col_exists = len(set(self.columns).intersection(iset)) > 0 - # col_in_selection = if col_exists and "DATA" not in items: warnings.warn("Changing an existing SDFITS column") try: From 1d96a61fcb2e91a081185050a207ca058eff5f3c Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Mon, 21 Oct 2024 09:17:39 -0700 Subject: [PATCH 05/38] mostly documentation --- src/dysh/util/selection.py | 48 +++++++++++++++++++++++++++++++------- 1 file changed, 40 insertions(+), 8 deletions(-) diff --git a/src/dysh/util/selection.py b/src/dysh/util/selection.py index f4de01d0..d67d1d60 100644 --- a/src/dysh/util/selection.py +++ b/src/dysh/util/selection.py @@ -15,7 +15,7 @@ from ..log import logger # from ..fits import default_sdfits_columns -from . import gbt_timestamp_to_time, generate_tag, keycase +from . import ALL_CHANNELS, gbt_timestamp_to_time, generate_tag, keycase default_aliases = { "freq": "crval1", @@ -636,9 +636,11 @@ def _base_select_channel(self, chan, tag=None): Select channels and/or channel ranges. These are NOT used in :meth:`final` but rather will be used to create a mask for calibration or flagging. Single arrays/tuples will be treated as channel lists; - nested arrays will be treated as ranges, for instance + nested arrays will be treated as *inclusive* ranges. For instance: `` + # select channel 24 + select_channel(24) # selects channels 1 and 10 select_channel([1,10]) # selects channels 1 thru 10 inclusive @@ -649,6 +651,8 @@ def _base_select_channel(self, chan, tag=None): select_channel(((1,10), [47,56], 75)) `` + *Note* : channel numbers start at zero. + Parameters ---------- chan : number, or array-like @@ -829,6 +833,21 @@ def __deepcopy__(self, memo): warnings.resetwarnings() return result + def get(self, key): + """Get the selection/flag rule by its ID + + Parameters + ---------- + key : int + The ID value. See :meth:`show`. + + Returns + ------- + ~pandas.DataFrame + The selection/flag rule + """ + return self._selection_rules[key] + class Selection(SelectionBase): """This class contains the methods for creating rules to select data from an SDFITS object. @@ -932,9 +951,11 @@ def select_channel(self, chan, tag=None): Select channels and/or channel ranges. These are NOT used in :meth:`final` but rather will be used to create a mask for calibration or flagging. Single arrays/tuples will be treated as channel lists; - nested arrays will be treated as ranges, for instance + nested arrays will be treated as *inclusive* ranges. For instance: `` + # select channel 24 + select_channel(24) # selects channels 1 and 10 select_channel([1,10]) # selects channels 1 thru 10 inclusive @@ -945,6 +966,8 @@ def select_channel(self, chan, tag=None): select_channel(((1,10), [47,56], 75)) `` + *Note* : channel numbers start at zero. + Parameters ---------- chan : number, or array-like @@ -992,7 +1015,9 @@ def flag(self, tag=None, **kwargs): """Add one or more exact flag rules, e.g., `key1 = value1, key2 = value2, ...` If `value` is array-like then a match to any of the array members will be flagged. For instance `flag(object=['3C273', 'NGC1234'])` will select data for either of those - objects and `flag(ifnum=[0,2])` will flag IF number 0 or IF number 2. + objects and `flag(ifnum=[0,2])` will flag IF number 0 or IF number 2. Channels can be flagged + using keyword `chan`, e.g., `flag(object='MBM12',chan=[0,23])` will flag channels 0 through 23 *inclusive* + for object MBM12. Parameters ---------- @@ -1009,19 +1034,23 @@ def flag(self, tag=None, **kwargs): if chan is not None: self._check_numbers(chan=chan) self._base_select(tag, **kwargs) # don't do this unless chan input is good. + idx = len(self._table) - 1 if chan is not None: - idx = len(self._table) - 1 self._table[idx]["CHAN"] = str(chan) self._flag_channel_selection[idx] = chan + else: + self._flag_channel_selection[idx] = ALL_CHANNELS def flag_channel(self, chan, tag=None, **kwargs): """ Flag channels and/or channel ranges for all rows. These are NOT used in :meth:`final` but rather will be used to create a mask for - flagging. Single arrays/tuples will be treated as channel lists; - nested arrays will be treated as ranges, for instance + flagging. Single arrays/tuples will be treated as *channel lists; + nested arrays will be treated as *inclusive* ranges. For instance: `` + # flag channel 24 + flag_channel(24) # flag channels 1 and 10 flag_channel([1,10]) # flags channels 1 thru 10 inclusive @@ -1032,7 +1061,10 @@ def flag_channel(self, chan, tag=None, **kwargs): flag_channel(((1,10), [47,56], 75)) `` - Parameters + *Note* : channel numbers start at zero + + + Parameters ---------- chan : number, or array-like The channels to flag From cbd2ccd9ae47584de222c847d5576e5f5be4a3e9 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Mon, 21 Oct 2024 10:51:29 -0700 Subject: [PATCH 06/38] flagmask propertly set. fix single channel flagging --- src/dysh/fits/gbtfitsload.py | 5 ++++- src/dysh/util/core.py | 2 +- src/dysh/util/selection.py | 4 ++++ 3 files changed, 9 insertions(+), 2 deletions(-) diff --git a/src/dysh/fits/gbtfitsload.py b/src/dysh/fits/gbtfitsload.py index 428efa53..e807bbc3 100644 --- a/src/dysh/fits/gbtfitsload.py +++ b/src/dysh/fits/gbtfitsload.py @@ -725,6 +725,8 @@ def flag_channel(self, chan, tag=None): nested arrays will be treated as ranges, for instance `` + # flag channel 128 + flag_channel(128) # flags channels 1 and 10 flag_channel([1,10]) # flags channels 1 thru 10 inclusive @@ -764,6 +766,7 @@ def apply_flags(self): # For all SDFs in each flag rule, set the flag mask(s) # for their rows. The index of the sdf._flagmask array is the bintable index for key, chan in self._flag._flag_channel_selection.items(): + print(f"{key=} {chan=}") selection = self._flag.get(key) # chan will be a list or a list of lists # If it is a single list, it is just a list of channels @@ -774,7 +777,7 @@ def apply_flags(self): for i, ((fi, bi), g) in enumerate(dfs): chan_mask = convert_array_to_mask(chan, self._sdf[fi].nchan(bi)) rows = g["ROW"].to_numpy() - self._sdf[fi]._flag_mask[bi][rows] = chan_mask + self._sdf[fi]._flagmask[bi][rows] = chan_mask @log_call_to_history def clear_flags(self): diff --git a/src/dysh/util/core.py b/src/dysh/util/core.py index e7121673..9413e98f 100644 --- a/src/dysh/util/core.py +++ b/src/dysh/util/core.py @@ -363,7 +363,7 @@ def convert_array_to_mask(a, length, value=True): """ - if a == _ALL_CHANNELS: + if a == ALL_CHANNELS: return np.full(length, value) mask = np.full(length, False) diff --git a/src/dysh/util/selection.py b/src/dysh/util/selection.py index d67d1d60..904ed142 100644 --- a/src/dysh/util/selection.py +++ b/src/dysh/util/selection.py @@ -672,6 +672,8 @@ def _base_select_channel(self, chan, tag=None): "You can only have one channel selection rule. Remove the old rule before creating a new one." ) self._check_numbers(chan=chan) + if isinstance(chan, numbers.Number): + chan = [int(chan)] self._channel_selection = chan self._addrow({"CHAN": str(chan)}, dataframe=self, tag=tag) @@ -1032,6 +1034,8 @@ def flag(self, tag=None, **kwargs): """ chan = kwargs.pop("chan", None) if chan is not None: + if isinstance(chan, numbers.Number): + chan = [int(chan)] self._check_numbers(chan=chan) self._base_select(tag, **kwargs) # don't do this unless chan input is good. idx = len(self._table) - 1 From f866853f2afd13b6ef5b8477211c467e345fb27c Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Mon, 21 Oct 2024 12:26:49 -0700 Subject: [PATCH 07/38] propagate apply_flags. fix nchan in sdfitsload --- src/dysh/fits/gbtfitsload.py | 72 +++++++++++++++++++++++++++++++----- src/dysh/fits/sdfitsload.py | 2 +- src/dysh/spectra/scan.py | 16 +++++++- 3 files changed, 79 insertions(+), 11 deletions(-) diff --git a/src/dysh/fits/gbtfitsload.py b/src/dysh/fits/gbtfitsload.py index e807bbc3..ce694dd7 100644 --- a/src/dysh/fits/gbtfitsload.py +++ b/src/dysh/fits/gbtfitsload.py @@ -896,6 +896,7 @@ def gettp( weights="tsys", bintable=None, smoothref=1, + apply_flags=False, **kwargs, ): """ @@ -918,6 +919,8 @@ def gettp( None or 'tsys' to indicate equal weighting or tsys weighting to use in time averaging. Default: 'tsys' bintable : int, optional Limit to the input binary table index. The default is None which means use all binary tables. + smooth_ref: int, optional + the number of channels in the reference to boxcar smooth prior to calibration **kwargs : dict Optional additional selection keyword arguments, typically given as key=value, though a dictionary works too. @@ -936,7 +939,7 @@ def gettp( else: _final = self._index scans = kwargs.get("scan", None) - debug = kwargs.pop("debug", False) + # debug = kwargs.pop("debug", False) kwargs = keycase(kwargs) if type(scans) is int: scans = [scans] @@ -997,6 +1000,7 @@ def gettp( bintable, calibrate, smoothref=smoothref, + apply_flags=apply_flags, ) g.merge_commentary(self) scanblock.append(g) @@ -1008,7 +1012,15 @@ def gettp( @log_call_to_result def getps( - self, calibrate=True, timeaverage=True, polaverage=False, weights="tsys", bintable=None, smoothref=1, **kwargs + self, + calibrate=True, + timeaverage=True, + polaverage=False, + weights="tsys", + bintable=None, + smoothref=1, + apply_flags=False, + **kwargs, ): """ Retrieve and calibrate position-switched data. @@ -1028,6 +1040,10 @@ def getps( bintable : int, optional Limit to the input binary table index. The default is None which means use all binary tables. (This keyword should eventually go away) + smooth_ref: int, optional + the number of channels in the reference to boxcar smooth prior to calibration + apply_flags : boolean, optional. If True, apply flags before calibration. + See :meth:`apply_flags`. Default: False **kwargs : dict Optional additional selection keyword arguments, typically given as key=value, though a dictionary works too. @@ -1136,6 +1152,7 @@ def getps( bintable=bintable, calibrate=calibrate, smoothref=smoothref, + apply_flags=apply_flags, ) g.merge_commentary(self) scanblock.append(g) @@ -1148,7 +1165,15 @@ def getps( @log_call_to_result def getnod( - self, calibrate=True, timeaverage=True, polaverage=False, weights="tsys", bintable=None, smoothref=1, **kwargs + self, + calibrate=True, + timeaverage=True, + polaverage=False, + weights="tsys", + bintable=None, + smoothref=1, + apply_flags=False, + **kwargs, ): """ Retrieve and calibrate nodding data. @@ -1172,6 +1197,10 @@ def getnod( bintable : int, optional Limit to the input binary table index. The default is None which means use all binary tables. (This keyword should eventually go away) + smooth_ref: int, optional + the number of channels in the reference to boxcar smooth prior to calibration + apply_flags : boolean, optional. If True, apply flags before calibration. + See :meth:`apply_flags`. Default: False **kwargs : dict Optional additional selection keyword arguments, typically given as key=value, though a dictionary works too. @@ -1203,8 +1232,8 @@ def get_nod_beams(sdf): if len(d1["FDNUM"].unique()) == 1 and len(d2["FDNUM"].unique()) == 1: beam1 = d1["FDNUM"].unique()[0] beam2 = d2["FDNUM"].unique()[0] - fdnum1 = d1["FEED"].unique()[0] - fdnum2 = d2["FEED"].unique()[0] + # fdnum1 = d1["FEED"].unique()[0] + # fdnum2 = d2["FEED"].unique()[0] return [beam1, beam2] else: # one more attempt (this can happen if PROCSCAN contains "Unknown") @@ -1337,6 +1366,7 @@ def get_nod_beams(sdf): bintable=bintable, calibrate=calibrate, smoothref=smoothref, + apply_flags=apply_flags, ) g.merge_commentary(self) scanblock.append(g) @@ -1362,6 +1392,7 @@ def getfs( weights="tsys", bintable=None, smoothref=1, + apply_flags=False, observer_location=Observatory["GBT"], **kwargs, ): @@ -1394,6 +1425,10 @@ def getfs( The default is 'tsys'. bintable : int, optional Limit to the input binary table index. The default is None which means use all binary tables. + smooth_ref: int, optional + the number of channels in the reference to boxcar smooth prior to calibration + apply_flags : boolean, optional. If True, apply flags before calibration. + See :meth:`apply_flags`. Default: False observer_location : `~astropy.coordinates.EarthLocation` Location of the observatory. See `~dysh.coordinates.Observatory`. This will be transformed to `~astropy.coordinates.ITRS` using the time of @@ -1487,6 +1522,7 @@ def getfs( use_sig=use_sig, observer_location=observer_location, smoothref=1, + apply_flags=apply_flags, debug=debug, ) g.merge_commentary(self) @@ -1510,6 +1546,7 @@ def subbeamnod( weights="tsys", bintable=None, smoothref=1, + apply_flags=False, **kwargs, ): """Get a subbeam nod power scan, optionally calibrating it. @@ -1532,6 +1569,10 @@ def subbeamnod( None to indicate equal weighting or 'tsys' to indicate tsys weighting to use in time averaging. Default: 'tsys' bintable : int, optional Limit to the input binary table index. The default is None which means use all binary tables. + smooth_ref: int, optional + the number of channels in the reference to boxcar smooth prior to calibration + apply_flags : boolean, optional. If True, apply flags before calibration. + See :meth:`apply_flags`. Default: False **kwargs : dict Optional additional selection keyword arguments, typically given as key=value, though a dictionary works too. @@ -1547,7 +1588,7 @@ def subbeamnod( else: _final = self._index scans = kwargs.get("scan", None) - debug = kwargs.pop("debug", False) + # debug = kwargs.pop("debug", False) kwargs = keycase(kwargs) logger.debug(kwargs) @@ -1658,6 +1699,7 @@ def subbeamnod( bintable, calibrate=calibrate, smoothref=smoothref, + apply_flags=apply_flags, ) ) calrows = {"ON": sgon, "OFF": sgoff} @@ -1673,9 +1715,17 @@ def subbeamnod( bintable, calibrate=calibrate, smoothref=smoothref, + apply_flags=apply_flags, ) ) - sb = SubBeamNodScan(sigtp, reftp, calibrate=calibrate, weights=weights, smoothref=smoothref) + sb = SubBeamNodScan( + sigtp, + reftp, + calibrate=calibrate, + weights=weights, + smoothref=smoothref, + apply_flags=apply_flags, + ) scanblock.append(sb) elif method == "scan": for sdfi in range(len(self._sdf)): @@ -1701,6 +1751,7 @@ def subbeamnod( weights=weights, calibrate=calibrate, smoothref=smoothref, + apply_flags=apply_flags, ) sigtp.append(tpon[0]) tpoff = self.gettp( @@ -1715,6 +1766,7 @@ def subbeamnod( weights=weights, calibrate=calibrate, smoothref=smoothref, + apply_flags=apply_flags, ) reftp.append(tpoff[0]) # in order to reproduce gbtidl tsys, we need to do a normal @@ -1730,7 +1782,8 @@ def subbeamnod( weights=weights, calibrate=calibrate, smoothref=smoothref, - ) # .timeaverage(weights=w) + apply_flags=apply_flags, + ) fulltp.append(ftp[0]) sb = SubBeamNodScan( sigtp, @@ -1738,6 +1791,7 @@ def subbeamnod( calibrate=calibrate, weights=weights, smoothref=smoothref, + apply_flags=apply_flags, ) sb.merge_commentary(self) scanblock.append(sb) @@ -2252,7 +2306,7 @@ def write( given as key=value, though a dictionary works too. e.g., `ifnum=1, plnum=[2,3]` etc. """ - debug = kwargs.pop("debug", False) + # debug = kwargs.pop("debug", False) logger.debug(kwargs) selection = Selection(self._index) if len(kwargs) > 0: diff --git a/src/dysh/fits/sdfitsload.py b/src/dysh/fits/sdfitsload.py index 1f571294..f3e27979 100644 --- a/src/dysh/fits/sdfitsload.py +++ b/src/dysh/fits/sdfitsload.py @@ -528,7 +528,7 @@ def nchan(self, bintable): Number channels in the first spectrum of the input bintable """ - return np.shape(self.rawspectrum(1, bintable))[0] + return np.shape(self.rawspectrum(0, bintable))[0] def npol(self, bintable): """ diff --git a/src/dysh/spectra/scan.py b/src/dysh/spectra/scan.py index 49891404..f115e0be 100644 --- a/src/dysh/spectra/scan.py +++ b/src/dysh/spectra/scan.py @@ -630,6 +630,7 @@ class TPScan(ScanBase): whether or not to calibrate the data. If `True`, the data will be (calon - caloff)*0.5, otherwise it will be SDFITS row data. Default:True smoothref: int the number of channels in the reference to boxcar smooth prior to calibration + apply_flags : boolean, optional. If True, apply flags before calibration. Notes ----- @@ -665,6 +666,7 @@ def __init__( bintable, calibrate=True, smoothref=1, + apply_flags=False, observer_location=Observatory["GBT"], ): ScanBase.__init__(self, gbtfits) @@ -674,6 +676,7 @@ def __init__( self._calstate = calstate self._scanrows = scanrows self._smoothref = smoothref + self._apply_flags = apply_flags if self._smoothref > 1: warnings.warn(f"TP smoothref={self._smoothref} not implemented yet") @@ -958,6 +961,7 @@ class PSScan(ScanBase): whether or not to calibrate the data. If true, data will be calibrated as TSYS*(ON-OFF)/OFF. Default: True smoothref: int the number of channels in the reference to boxcar smooth prior to calibration + apply_flags : boolean, optional. If True, apply flags before calibration. observer_location : `~astropy.coordinates.EarthLocation` Location of the observatory. See `~dysh.coordinates.Observatory`. This will be transformed to `~astropy.coordinates.ITRS` using the time of @@ -974,6 +978,7 @@ def __init__( bintable, calibrate=True, smoothref=1, + apply_flags=False, observer_location=Observatory["GBT"], ): ScanBase.__init__(self, gbtfits) @@ -984,6 +989,7 @@ def __init__( self._scanrows = scanrows self._nrows = len(self._scanrows["ON"]) self._smoothref = smoothref + self._apply_flags = apply_flags # print(f"PJT len(scanrows ON) {len(self._scanrows['ON'])}") # print(f"PJT len(scanrows OFF) {len(self._scanrows['OFF'])}") # print("PJT scans", scans) @@ -1197,6 +1203,7 @@ class NodScan(ScanBase): Default: True smoothref: int the number of channels in the reference to boxcar smooth prior to calibration (if applicable) + apply_flags : boolean, optional. If True, apply flags before calibration. observer_location : `~astropy.coordinates.EarthLocation` Location of the observatory. See `~dysh.coordinates.Observatory`. This will be transformed to `~astropy.coordinates.ITRS` using the time of @@ -1214,6 +1221,7 @@ def __init__( bintable, calibrate=True, smoothref=1, + apply_flags=False, observer_location=Observatory["GBT"], ): ScanBase.__init__(self, gbtfits) @@ -1221,6 +1229,7 @@ def __init__( self._scanrows = scanrows self._nrows = len(self._scanrows["ON"]) self._smoothref = smoothref + self._apply_flags = apply_flags self._beam1 = beam1 # @todo allow having no calrow where noise diode was not fired @@ -1441,6 +1450,7 @@ class FSScan(ScanBase): Whether to use the sig as the sig, or the ref as the sig. Default: True smoothref: int The number of channels in the reference to boxcar smooth prior to calibration. + apply_flags : boolean, optional. If True, apply flags before calibration. observer_location : `~astropy.coordinates.EarthLocation` Location of the observatory. See `~dysh.coordinates.Observatory`. This will be transformed to `~astropy.coordinates.ITRS` using the time of @@ -1459,6 +1469,7 @@ def __init__( shift_method="fft", use_sig=True, smoothref=1, + apply_flags=False, observer_location=Observatory["GBT"], debug=False, ): @@ -1472,7 +1483,7 @@ def __init__( self._smoothref = smoothref if self._smoothref > 1: print(f"FS smoothref={self._smoothref} not implemented yet") - + self._apply_flags = apply_flags self._sigonrows = sorted(list(set(self._calrows["ON"]).intersection(set(self._sigrows["ON"])))) self._sigoffrows = sorted(list(set(self._calrows["OFF"]).intersection(set(self._sigrows["ON"])))) self._refonrows = sorted(list(set(self._calrows["ON"]).intersection(set(self._sigrows["OFF"])))) @@ -1811,6 +1822,7 @@ class SubBeamNodScan(ScanBase): Whether or not to calibrate the data. smoothref: int the number of channels in the reference to boxcar smooth prior to calibration + apply_flags : boolean, optional. If True, apply flags before calibration. observer_location : `~astropy.coordinates.EarthLocation` Location of the observatory. See `~dysh.coordinates.Observatory`. This will be transformed to `~astropy.coordinates.ITRS` using the time of @@ -1831,6 +1843,7 @@ def __init__( reftp, calibrate=True, smoothref=1, + apply_flags=False, observer_location=Observatory["GBT"], **kwargs, ): @@ -1859,6 +1872,7 @@ def __init__( self._smoothref = smoothref if self._smoothref > 1: print(f"SubBeamNodScan smoothref={self._smoothref} not implemented yet") + self._apply_flags = apply_flags self._observer_location = observer_location self._calibrated = None if calibrate: From 4ea09d8d566b1b47695524a51922f5fb7a1af79d Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Mon, 21 Oct 2024 15:29:08 -0700 Subject: [PATCH 08/38] add masks to calibrated data --- src/dysh/fits/gbtfitsload.py | 18 ++++++++- src/dysh/fits/sdfitsload.py | 34 +++++++++++----- src/dysh/spectra/scan.py | 77 +++++++++++++++++++----------------- src/dysh/spectra/spectrum.py | 40 +++++++++++++------ 4 files changed, 108 insertions(+), 61 deletions(-) diff --git a/src/dysh/fits/gbtfitsload.py b/src/dysh/fits/gbtfitsload.py index ce694dd7..b16df87f 100644 --- a/src/dysh/fits/gbtfitsload.py +++ b/src/dysh/fits/gbtfitsload.py @@ -278,7 +278,7 @@ def index(self, hdu=None, bintable=None, fitsindex=None): return df # override sdfits version - def rawspectra(self, bintable, fitsindex): + def rawspectra(self, bintable, fitsindex, setmask=False): """ Get the raw (unprocessed) spectra from the input bintable. @@ -288,6 +288,8 @@ def rawspectra(self, bintable, fitsindex): The index of the `bintable` attribute fitsindex: int the index of the FITS file contained in this GBTFITSLoad. Default:0 + setmask : boolean + If True, set the mask according to the current flags. Defaultf:false Returns ------- @@ -933,7 +935,8 @@ def gettp( """ TF = {True: "T", False: "F"} - + if apply_flags: + self.apply_flags() if len(self._selection._selection_rules) > 0: _final = self._selection.final else: @@ -1060,6 +1063,9 @@ def getps( ScanBlock containing the individual `~spectra.scan.PSScan`s """ + + if apply_flags: + self.apply_flags() # either the user gave scans on the command line (scans !=None) or pre-selected them # with select_fromion.selectXX(). In either case make sure the matching ON or OFF # is in the starting selection. @@ -1244,6 +1250,8 @@ def get_nod_beams(sdf): return list(b) return [] + if apply_flags: + self.apply_flags() nod_beams = get_nod_beams(self) feeds = kwargs.pop("fdnum", None) if feeds is None: @@ -1452,6 +1460,9 @@ def getfs( """ debug = kwargs.pop("debug", False) logger.debug(kwargs) + + if apply_flags: + self.apply_flags() # either the user gave scans on the command line (scans !=None) or pre-selected them # with self.selection.selectXX() if len(self._selection._selection_rules) > 0: @@ -1583,6 +1594,9 @@ def subbeamnod( data : `~spectra.scan.ScanBlock` A ScanBlock containing one or more `~spectra.scan.SubBeamNodScan` """ + + if apply_flags: + self.apply_flags() if len(self._selection._selection_rules) > 0: _final = self._selection.final else: diff --git a/src/dysh/fits/sdfitsload.py b/src/dysh/fits/sdfitsload.py index f3e27979..0dd079e0 100644 --- a/src/dysh/fits/sdfitsload.py +++ b/src/dysh/fits/sdfitsload.py @@ -367,7 +367,7 @@ def _find_bintable_and_row(self, row): """ return (self._index.iloc[row]["BINTABLE"], self._index.iloc[row]["ROW"]) - def rawspectra(self, bintable): + def rawspectra(self, bintable, setmask=False): """ Get the raw (unprocessed) spectra from the input bintable. @@ -375,16 +375,23 @@ def rawspectra(self, bintable): ---------- bintable : int The index of the `bintable` attribute + setmask : bool + If True, set the data mask according to the current flags in the `_flagmask` attribute. If False, set the data mask to False. Returns ------- - rawspectra : ~numpy.ndarray - The DATA column of the input bintable + rawspectra : ~numpy.ma.MaskedArray + The DATA column of the input bintable, masked according to `setmask` """ - return self._bintable[bintable].data[:]["DATA"] + data = self._bintable[bintable].data[:]["DATA"] + if setmask: + rawspec = np.ma.MaskedArray(data, mask=self._flagmask[bintable]) + else: + rawspec = np.ma.MaskedArray(data, mask=False) + return rawspec - def rawspectrum(self, i, bintable=0): + def rawspectrum(self, i, bintable=0, setmask=False): """ Get a single raw (unprocessed) spectrum from the input bintable. @@ -394,18 +401,25 @@ def rawspectrum(self, i, bintable=0): The row index to retrieve. bintable : int or None The index of the `bintable` attribute. If None, the underlying bintable is computed from i - + setmask : bool + If True, set the data mask according to the current flags in the `_flagmask` attribute. Returns ------- - rawspectrum : ~numpy.ndarray - The i-th row of DATA column of the input bintable + rawspectrum : ~numpy.ma.MaskedArray + The i-th row of DATA column of the input bintable, masked according to `setmask` """ if bintable is None: (bt, row) = self._find_bintable_and_row(i) - return self._bintable[bt].data[:]["DATA"][row] + data = self._bintable[bt].data[:]["DATA"][row] + else: + data = self._bintable[bintable].data[:]["DATA"][i] + row = i + if setmask: + rawspec = np.ma.MaskedArray(data, mask=self._flagmask[bintable][row]) else: - return self._bintable[bintable].data[:]["DATA"][i] + rawspec = np.ma.MaskedArray(data, False) + return rawspec def getrow(self, i, bintable=0): """ diff --git a/src/dysh/spectra/scan.py b/src/dysh/spectra/scan.py index f115e0be..bac712af 100644 --- a/src/dysh/spectra/scan.py +++ b/src/dysh/spectra/scan.py @@ -11,15 +11,15 @@ from astropy import constants as ac from astropy.io.fits import BinTableHDU, Column from astropy.table import Table, vstack +from astropy.utils.masked import Masked from dysh.spectra import core from ..coordinates import Observatory from ..log import HistoricalBase, log_call_to_history, logger from ..util import uniq -from .core import ( +from .core import ( # fft_shift, average, - fft_shift, find_non_blanks, mean_tsys, sq_weighted_avg, @@ -132,12 +132,6 @@ def _validate_defaults(self): if type(self._scan) != int: raise (f"{self.__class__.__name__}._scan is not an int: {type(self._scan)}") - # class ScanMixin: - # """This class describes the common interface to all Scan classes. - ## A Scan represents one IF, one feed, and one or more polarizations. - # Derived classes *must* implement :meth:`calibrate`. - # """ - @property def scan(self): """ @@ -705,8 +699,8 @@ def __init__( self._refonrows = sorted(list(set(self._calrows["ON"]).intersection(set(self._scanrows)))) # all cal=F states where sig=sigstate self._refoffrows = sorted(list(set(self._calrows["OFF"]).intersection(set(self._scanrows)))) - self._refcalon = gbtfits.rawspectra(self._bintable_index)[self._refonrows] - self._refcaloff = gbtfits.rawspectra(self._bintable_index)[self._refoffrows] + self._refcalon = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._refonrows] + self._refcaloff = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._refoffrows] # now remove blanked integrations # seems like this should be done for all Scan classes! # PS: yes. @@ -1022,9 +1016,9 @@ def __init__( self._refoffrows = sorted(list(set(self._calrows["OFF"]).intersection(set(self._scanrows["OFF"])))) self._sigcalon = gbtfits.rawspectra(self._bintable_index)[self._sigonrows] self._nchan = len(self._sigcalon[0]) - self._sigcaloff = gbtfits.rawspectra(self._bintable_index)[self._sigoffrows] - self._refcalon = gbtfits.rawspectra(self._bintable_index)[self._refonrows] - self._refcaloff = gbtfits.rawspectra(self._bintable_index)[self._refoffrows] + self._sigcaloff = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._sigoffrows] + self._refcalon = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._refonrows] + self._refcaloff = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._refoffrows] self._tsys = None self._exposure = None self._calibrated = None @@ -1060,8 +1054,11 @@ def calibrated(self, i): ------- spectrum : `~spectra.spectrum.Spectrum` """ + # @todo suppress astropy INFO message "overwriting Masked Quantity's current mask with specified mask." s = Spectrum.make_spectrum( - self._calibrated[i] * u.K, meta=self.meta[i], observer_location=self._observer_location + Masked(self._calibrated[i] * u.K, self._calibrated[i].mask), + meta=self.meta[i], + observer_location=self._observer_location, ) s.merge_commentary(self) return s @@ -1077,10 +1074,10 @@ def calibrate(self, **kwargs): self._status = 1 nspect = self.nrows // 2 - self._calibrated = np.empty((nspect, self._nchan), dtype="d") + self._calibrated = np.ma.empty((nspect, self._nchan), dtype="d") self._tsys = np.empty(nspect, dtype="d") self._exposure = np.empty(nspect, dtype="d") - tcal = list(self._sdfits.index(bintable=self._bintable_index).iloc[self._refonrows]["TCAL"]) + tcal = self._sdfits.index(bintable=self._bintable_index).iloc[self._refonrows]["TCAL"].to_numpy() # @todo this loop could be replaced with clever numpy if len(tcal) != nspect: raise Exception(f"TCAL length {len(tcal)} and number of spectra {nspect} don't match") @@ -1257,15 +1254,15 @@ def __init__( self._refonrows = sorted(list(set(self._calrows["ON"]).intersection(set(self._scanrows["OFF"])))) self._refoffrows = sorted(list(set(self._calrows["OFF"]).intersection(set(self._scanrows["OFF"])))) if beam1: - self._sigcalon = gbtfits.rawspectra(self._bintable_index)[self._sigonrows] - self._sigcaloff = gbtfits.rawspectra(self._bintable_index)[self._sigoffrows] - self._refcalon = gbtfits.rawspectra(self._bintable_index)[self._refonrows] - self._refcaloff = gbtfits.rawspectra(self._bintable_index)[self._refoffrows] + self._sigcalon = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._sigonrows] + self._sigcaloff = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._sigoffrows] + self._refcalon = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._refonrows] + self._refcaloff = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._refoffrows] else: - self._sigcalon = gbtfits.rawspectra(self._bintable_index)[self._refonrows] - self._sigcaloff = gbtfits.rawspectra(self._bintable_index)[self._refoffrows] - self._refcalon = gbtfits.rawspectra(self._bintable_index)[self._sigonrows] - self._refcaloff = gbtfits.rawspectra(self._bintable_index)[self._sigoffrows] + self._sigcalon = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._refonrows] + self._sigcaloff = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._refoffrows] + self._refcalon = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._sigonrows] + self._refcaloff = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._sigoffrows] self._nchan = len(self._sigcalon[0]) self._tsys = None self._exposure = None @@ -1303,7 +1300,9 @@ def calibrated(self, i): spectrum : `~spectra.spectrum.Spectrum` """ s = Spectrum.make_spectrum( - self._calibrated[i] * u.K, meta=self.meta[i], observer_location=self._observer_location + Masked(self._calibrated[i] * u.K, self._calibrated[i].mask), + meta=self.meta[i], + observer_location=self._observer_location, ) s.merge_commentary(self) return s @@ -1319,10 +1318,10 @@ def calibrate(self, **kwargs): self._status = 1 nspect = self.nrows // 2 - self._calibrated = np.empty((nspect, self._nchan), dtype="d") + self._calibrated = np.ma.empty((nspect, self._nchan), dtype="d") self._tsys = np.empty(nspect, dtype="d") self._exposure = np.empty(nspect, dtype="d") - tcal = list(self._sdfits.index(bintable=self._bintable_index).iloc[self._refonrows]["TCAL"]) + tcal = self._sdfits.index(bintable=self._bintable_index).iloc[self._refonrows]["TCAL"].to_numpy() # @todo this loop could be replaced with clever numpy if len(tcal) != nspect: raise Exception(f"TCAL length {len(tcal)} and number of spectra {nspect} don't match") @@ -1532,10 +1531,10 @@ def __init__( # @todo use gbtfits.velocity_convention(veldef,velframe) # so quick with slicing! - self._sigcalon = gbtfits.rawspectra(self._bintable_index)[self._sigonrows] - self._sigcaloff = gbtfits.rawspectra(self._bintable_index)[self._sigoffrows] - self._refcalon = gbtfits.rawspectra(self._bintable_index)[self._refonrows] - self._refcaloff = gbtfits.rawspectra(self._bintable_index)[self._refoffrows] + self._sigcalon = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._sigonrows] + self._sigcaloff = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._sigoffrows] + self._refcalon = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._refonrows] + self._refcaloff = gbtfits.rawspectra(self._bintable_index, setmask=apply_flags)[self._refoffrows] self._nchan = len(self._sigcalon[0]) self._tsys = None self._exposure = None @@ -1573,7 +1572,9 @@ def calibrated(self, i): spectrum : `~spectra.spectrum.Spectrum` """ s = Spectrum.make_spectrum( - self._calibrated[i] * u.K, meta=self.meta[i], observer_location=self._observer_location + Masked(self._calibrated[i] * u.K, self._calibrated[i].mask), + meta=self.meta[i], + observer_location=self._observer_location, ) s.merge_commentary(self) return s @@ -1674,7 +1675,7 @@ def do_fold(sig, ref, sig_freq, ref_freq, remove_wrap=False, shift_method="fft") _fold = kwargs.get("fold", False) _mode = 1 # 1: keep the sig else: keep the ref (not externally supported) nspect = self.nrows // 2 - self._calibrated = np.empty((nspect, self._nchan), dtype="d") + self._calibrated = np.ma.empty((nspect, self._nchan), dtype="d") self._tsys = np.empty(nspect, dtype="d") self._exposure = np.empty(nspect, dtype="d") # @@ -1690,7 +1691,7 @@ def do_fold(sig, ref, sig_freq, ref_freq, remove_wrap=False, shift_method="fft") print("FS: shift=%g nchan=%d" % (chan_shift, self._nchan)) # tcal is the same for REF and SIG, and the same for all integrations actually. - tcal = list(self._sdfits.index(bintable=self._bintable_index).iloc[self._sigonrows]["TCAL"]) + tcal = self._sdfits.index(bintable=self._bintable_index).iloc[self._sigonrows]["TCAL"].to_numpy() if self._debug: print("TCAL:", len(tcal), tcal[0]) if len(tcal) != nspect: @@ -1885,7 +1886,7 @@ def calibrate(self, **kwargs): self._tsys = np.empty(nspect, dtype=float) self._exposure = np.empty(nspect, dtype=float) self._delta_freq = np.empty(nspect, dtype=float) - self._calibrated = np.empty((nspect, self._nchan), dtype=float) + self._calibrated = np.ma.empty((nspect, self._nchan), dtype=float) for i in range(nspect): sig = self._sigtp[i].timeaverage(weights=kwargs["weights"]) @@ -1911,7 +1912,11 @@ def calibrated(self, i): rfq = restfrq * u.Unit(meta["CUNIT1"]) restfreq = rfq.to("Hz").value meta["RESTFRQ"] = restfreq # WCS wants no E - s = Spectrum.make_spectrum(self._calibrated[i] * u.K, meta=meta, observer_location=self._observer_location) + s = Spectrum.make_spectrum( + Masked(self._calibrated[i] * u.K, self._calibrated[i].mask), + meta=meta, + observer_location=self._observer_location, + ) s.merge_commentary(self) return s diff --git a/src/dysh/spectra/spectrum.py b/src/dysh/spectra/spectrum.py index 8ad02a52..f50750df 100644 --- a/src/dysh/spectra/spectrum.py +++ b/src/dysh/spectra/spectrum.py @@ -1053,7 +1053,8 @@ def fake_spectrum(cls, nchan=1024, seed=None, **kwargs): @classmethod def make_spectrum(cls, data, meta, use_wcs=True, observer_location=None): # , shift_topo=False): - """Factory method to create a Spectrum object from a data and header. + """Factory method to create a Spectrum object from a data and header. The the data are masked, + the Spectrum mask will be set to the data mask. Parameters ---------- @@ -1166,18 +1167,31 @@ def make_spectrum(cls, data, meta, use_wcs=True, observer_location=None): ) obsitrs = None - s = cls( - flux=data, - wcs=wcs, - meta=meta, - velocity_convention=vc, - radial_velocity=target.radial_velocity, - rest_value=meta["RESTFRQ"] * u.Hz, - observer=obsitrs, - target=target, - ) - # s._history = [] - # s._comments = [] + if np.ma.is_masked(data): + print("data are masked") + s = cls( + flux=data, + wcs=wcs, + meta=meta, + velocity_convention=vc, + radial_velocity=target.radial_velocity, + rest_value=meta["RESTFRQ"] * u.Hz, + observer=obsitrs, + target=target, + mask=data.mask, + ) + else: + print("data are NOT masked") + s = cls( + flux=data, + wcs=wcs, + meta=meta, + velocity_convention=vc, + radial_velocity=target.radial_velocity, + rest_value=meta["RESTFRQ"] * u.Hz, + observer=obsitrs, + target=target, + ) # For some reason, Spectrum1D.spectral_axis created with WCS do not inherit # the radial velocity. In fact, they get no radial_velocity attribute at all! # This method creates a new spectral_axis with the given radial velocity. From 12b9f2b5e6e71647bf1296a064b8470da2a8bf89 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Mon, 21 Oct 2024 17:08:39 -0700 Subject: [PATCH 09/38] working except for one dang failing test --- src/dysh/fits/tests/test_gbtfitsload.py | 19 ++++++++++++++++++- 1 file changed, 18 insertions(+), 1 deletion(-) diff --git a/src/dysh/fits/tests/test_gbtfitsload.py b/src/dysh/fits/tests/test_gbtfitsload.py index 7726d6a7..83067679 100644 --- a/src/dysh/fits/tests/test_gbtfitsload.py +++ b/src/dysh/fits/tests/test_gbtfitsload.py @@ -253,6 +253,7 @@ def test_gettp(self): 8: {"SCAN": 6, "IFNUM": 2, "PLNUM": 0, "CAL": False, "SIG": True}, } for k, v in tests.items(): + print(f"{k}, {v}") if v["SIG"] == False: with pytest.raises(Exception): tps = sdf.gettp(scan=v["SCAN"], ifnum=v["IFNUM"], plnum=v["PLNUM"], cal=v["CAL"], sig=v["SIG"]) @@ -269,7 +270,12 @@ def test_gettp(self): else: # CAL=True cal = tps[0]._refcalon.astype(np.float64) - assert np.all(tp.flux.value == np.nanmean(cal, axis=0)) + cal = cal.data + diff = tp.flux.value - np.nanmean(cal, axis=0) + # print(np.where(diff != 0)) + # print(diff[np.where(diff > 1e-8)]) + assert np.all(diff == 0) + # assert np.all(np.abs(diff) < 1e-8) # Check that selection is being applied properly. tp_scans = sdf.gettp(scan=[6, 7], plnum=0) @@ -433,6 +439,17 @@ def test_getps_smoothref(self): except KeyError: continue + def test_getps_flagging(self): + path = util.get_project_testdata() / "TGBT21A_501_11" + data_file = path / "TGBT21A_501_11.raw.vegas.fits" + sdf = gbtfitsload.GBTFITSLoad(data_file) + sdf.flag_channel([[10, 20], [30, 41]]) + sb = sdf.getps(scan=152, ifnum=0, plnum=0, apply_flags=True) + ta = sb.timeaverage() + print(np.where(ta.mask)) + expected_mask = np.hstack([np.arange(10, 21), np.arange(30, 42)]) + assert np.where(ta.mask)[0] == expected_mask + def test_write_single_file(self, tmp_path): "Test that writing an SDFITS file works when subselecting data" p = util.get_project_testdata() / "AGBT20B_014_03.raw.vegas" From 025e5e15f4cc343c913bab23fa6e227cb0f18d41 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Tue, 22 Oct 2024 11:11:28 -0700 Subject: [PATCH 10/38] ok except some failing tests due to spectrum averaging --- src/dysh/fits/tests/test_gbtfitsload.py | 15 +++++----- src/dysh/spectra/scan.py | 38 +++++++++++++++---------- src/dysh/spectra/spectrum.py | 10 ++++--- src/dysh/spectra/tests/test_scan.py | 2 ++ src/dysh/spectra/tests/test_spectrum.py | 1 + 5 files changed, 40 insertions(+), 26 deletions(-) diff --git a/src/dysh/fits/tests/test_gbtfitsload.py b/src/dysh/fits/tests/test_gbtfitsload.py index 83067679..7fcdb17c 100644 --- a/src/dysh/fits/tests/test_gbtfitsload.py +++ b/src/dysh/fits/tests/test_gbtfitsload.py @@ -262,6 +262,7 @@ def test_gettp(self): if v["CAL"]: assert np.all(tps[0]._refcalon[0] == tps[0].total_power(0).flux.value) tp = tps.timeaverage(weights=None) + print(tp.mask, " ALL ", np.all(tp.mask == False)) if v["CAL"] is None: cal = (0.5 * (tps[0]._refcalon + tps[0]._refcaloff)).astype(np.float64) elif not v["CAL"]: @@ -270,11 +271,11 @@ def test_gettp(self): else: # CAL=True cal = tps[0]._refcalon.astype(np.float64) - cal = cal.data + print(cal.mask, " CAL ALL ", np.all(cal.mask == False)) diff = tp.flux.value - np.nanmean(cal, axis=0) - # print(np.where(diff != 0)) - # print(diff[np.where(diff > 1e-8)]) - assert np.all(diff == 0) + print(np.where(diff != 0)) + print(diff[np.where(abs(diff) > 1e-8)]) + assert np.all(tp.flux.value - np.nanmean(cal, axis=0) == 0) # assert np.all(np.abs(diff) < 1e-8) # Check that selection is being applied properly. @@ -446,9 +447,9 @@ def test_getps_flagging(self): sdf.flag_channel([[10, 20], [30, 41]]) sb = sdf.getps(scan=152, ifnum=0, plnum=0, apply_flags=True) ta = sb.timeaverage() - print(np.where(ta.mask)) - expected_mask = np.hstack([np.arange(10, 21), np.arange(30, 42)]) - assert np.where(ta.mask)[0] == expected_mask + # average_spectra masks out the NaN in channel 3072 + expected_mask = np.hstack([np.arange(10, 21), np.arange(30, 42), np.array([3072])]) + assert np.all(np.where(ta.mask)[0] == expected_mask) def test_write_single_file(self, tmp_path): "Test that writing an SDFITS file works when subselecting data" diff --git a/src/dysh/spectra/scan.py b/src/dysh/spectra/scan.py index bac712af..36b4e793 100644 --- a/src/dysh/spectra/scan.py +++ b/src/dysh/spectra/scan.py @@ -25,7 +25,7 @@ sq_weighted_avg, tsys_weight, ) -from .spectrum import Spectrum +from .spectrum import Spectrum, average_spectra class SpectralAverageMixin: @@ -432,22 +432,29 @@ def timeaverage(self, weights="tsys", mode="old"): w = w.squeeze() else: w = weights - timeavg = np.array([k.data for k in self._timeaveraged]) - # Weight the average of the timeaverages by the weights. - avgdata = average(timeavg, axis=0, weights=w) - avgspec = np.mean(self._timeaveraged) - avgspec.meta = self._timeaveraged[0].meta - avgspec.meta["TSYS"] = np.average(a=[k.meta["TSYS"] for k in self._timeaveraged], axis=0, weights=w) - avgspec.meta["EXPOSURE"] = np.sum([k.meta["EXPOSURE"] for k in self._timeaveraged]) - # observer = self._timeaveraged[0].observer # nope this has to be a location ugh. see @todo in Spectrum constructor - # hardcode to GBT for now - s = Spectrum.make_spectrum( - avgdata * avgspec.flux.unit, meta=avgspec.meta, observer_location=Observatory["GBT"] - ) + if False: + timeavg = np.array([k.data for k in self._timeaveraged]) + # timeavg = np.ma.empty((np.shape(self._timeaveraged)[0],np.shape(self._timeaveraged[0])[0])) + # Weight the average of the timeaverages by the weights. + avgdata = average(timeavg, axis=0, weights=w) + print(f"{type(timeavg)=}, {type(avgdata)=}") + avgspec = np.ma.mean(self._timeaveraged) + print(f"{type(avgspec)=}") + avgspec.meta = self._timeaveraged[0].meta + avgspec.meta["TSYS"] = np.average(a=[k.meta["TSYS"] for k in self._timeaveraged], axis=0, weights=w) + avgspec.meta["EXPOSURE"] = np.sum([k.meta["EXPOSURE"] for k in self._timeaveraged]) + # observer = self._timeaveraged[0].observer # nope this has to be a location ugh. see @todo in Spectrum constructor + # hardcode to GBT for now + s = Spectrum.make_spectrum( + Masked(avgdata * avgspec.flux.unit, avgspec.mask), + meta=avgspec.meta, + observer_location=Observatory["GBT"], + ) + s = average_spectra(self._timeaveraged, equal_weights=True) s.merge_commentary(self) elif mode == "new": # average of the integrations - allcal = np.all([d._calibrate for d in self.data]) + allcal = np.all([d._calibrated for d in self.data]) if not allcal: raise Exception("Data must be calibrated before time averaging.") c = np.concatenate([d._calibrated for d in self.data]) @@ -1159,7 +1166,7 @@ def timeaverage(self, weights="tsys"): raise Exception("You can't time average before calibration.") if self._npol > 1: raise Exception("Can't yet time average multiple polarizations") - self._timeaveraged = deepcopy(self.calibrated(0)) + self._timeaveraged = self.calibrated(0)._copy() data = self._calibrated if weights == "tsys": w = self.tsys_weight @@ -1172,6 +1179,7 @@ def timeaverage(self, weights="tsys"): self._timeaveraged.meta["EXPOSURE"] = np.sum(self._exposure[non_blanks]) self._timeaveraged.meta["TSYS"] = self._timeaveraged.meta["WTTSYS"] self._timeaveraged._history = self._history + print("PS TA OBS ", self._timeaveraged._observer_location, self._timeaveraged._velocity_frame) return self._timeaveraged diff --git a/src/dysh/spectra/spectrum.py b/src/dysh/spectra/spectrum.py index f50750df..e2871d45 100644 --- a/src/dysh/spectra/spectrum.py +++ b/src/dysh/spectra/spectrum.py @@ -17,6 +17,7 @@ # from astropy.nddata.ccddata import fits_ccddata_writer from astropy.table import Table from astropy.time import Time +from astropy.utils.masked import Masked from astropy.wcs import WCS, FITSFixedWarning from ndcube import NDCube from specutils import Spectrum1D @@ -34,7 +35,7 @@ sanitize_skycoord, veldef_to_convention, ) -from ..log import HistoricalBase, log_call_to_history +from ..log import HistoricalBase, log_call_to_history, logger from ..plot import specplot as sp from ..util import minimum_string_match from . import baseline, get_spectral_equivalency @@ -1551,7 +1552,7 @@ def average_spectra(spectra, equal_weights=False, align=False): nspec = len(spectra) nchan = len(spectra[0].data) shape = (nspec, nchan) - data_array = np.empty(shape, dtype=float) + data_array = np.ma.empty(shape, dtype=float) weights = np.empty(shape, dtype=float) exposures = np.empty(nspec, dtype=float) tsyss = np.empty(nspec, dtype=float) @@ -1573,6 +1574,7 @@ def average_spectra(spectra, equal_weights=False, align=False): s_.align_to(spectra[0]) else: s_ = s + logger.debug(f"OBS LOCATION {s._observer_location}") data_array[i] = s_.data if not equal_weights: weights[i] = core.tsys_weight(s.meta["EXPOSURE"], s.meta["CDELT1"], s.meta["TSYS"]) @@ -1583,7 +1585,7 @@ def average_spectra(spectra, equal_weights=False, align=False): xcoos[i] = s.meta["CRVAL2"] ycoos[i] = s.meta["CRVAL3"] - data_array = np.ma.MaskedArray(data_array, mask=np.isnan(data_array)) + data_array = np.ma.MaskedArray(data_array, mask=np.isnan(data_array) | data_array.mask) data = np.ma.average(data_array, axis=0, weights=weights) tsys = np.ma.average(tsyss, axis=0, weights=weights[:, 0]) xcoo = np.ma.average(xcoos, axis=0, weights=weights[:, 0]) @@ -1596,6 +1598,6 @@ def average_spectra(spectra, equal_weights=False, align=False): new_meta["CRVAL2"] = xcoo new_meta["CRVAL3"] = ycoo - averaged = Spectrum.make_spectrum(data * units, meta=new_meta) + averaged = Spectrum.make_spectrum(Masked(data * units, data.mask), meta=new_meta) return averaged diff --git a/src/dysh/spectra/tests/test_scan.py b/src/dysh/spectra/tests/test_scan.py index 8afa0433..d5ea4972 100644 --- a/src/dysh/spectra/tests/test_scan.py +++ b/src/dysh/spectra/tests/test_scan.py @@ -61,10 +61,12 @@ def test_compare_with_GBTIDL_2(self, data_dir): data_path = f"{data_dir}/TGBT21A_501_11/NGC2782" sdf_file = f"{data_path}/TGBT21A_501_11_NGC2782.raw.vegas.A.fits" + print(f"{sdf_file=}") gbtidl_file = f"{data_path}/TGBT21A_501_11_getps_scans_156-158_ifnum_0_plnum_0_timeaverage.fits" sdf = gbtfitsload.GBTFITSLoad(sdf_file) ps_scans = sdf.getps(scan=[156, 158], ifnum=0, plnum=0) + print(np.shape(ps_scans[0]._calibrated), np.shape(ps_scans[1]._calibrated)) ta = ps_scans.timeaverage() hdu = fits.open(gbtidl_file) diff --git a/src/dysh/spectra/tests/test_spectrum.py b/src/dysh/spectra/tests/test_spectrum.py index 53431d69..14a671b6 100644 --- a/src/dysh/spectra/tests/test_spectrum.py +++ b/src/dysh/spectra/tests/test_spectrum.py @@ -269,6 +269,7 @@ def test_slice(self, mock_show, tmp_path): # Check additional object properties. # Not all of them make sense, since their shapes will be different. for k in spec_pars: + print(k) assert vars(trimmed)[k] == vars(self.ps0)[k] # Check that we can plot. trimmed.plot(xaxis_unit="km/s", yaxis_unit="mK") From 7ca707f3154d3df60b580094c3af1dee2af2e2f2 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Tue, 22 Oct 2024 11:27:12 -0700 Subject: [PATCH 11/38] Update spectrum.py fix botched merge --- src/dysh/spectra/spectrum.py | 3 --- 1 file changed, 3 deletions(-) diff --git a/src/dysh/spectra/spectrum.py b/src/dysh/spectra/spectrum.py index cd32a1ae..a9cb71d2 100644 --- a/src/dysh/spectra/spectrum.py +++ b/src/dysh/spectra/spectrum.py @@ -1575,9 +1575,6 @@ def average_spectra(spectra, equal_weights=False, align=False): if i > 0: s_.align_to(spectra[0]) else: - s_ = s - - data_array[i] = s_.data s = s.align_to(spectra[0]) logger.debug(f"OBS LOCATION {s._observer_location}") data_array[i] = s.data From 60c790a9dc074bb0954a9a00f8300134e7a5f29d Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Tue, 22 Oct 2024 18:27:34 +0000 Subject: [PATCH 12/38] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- src/dysh/spectra/spectrum.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/dysh/spectra/spectrum.py b/src/dysh/spectra/spectrum.py index a9cb71d2..6ea7246a 100644 --- a/src/dysh/spectra/spectrum.py +++ b/src/dysh/spectra/spectrum.py @@ -1575,8 +1575,8 @@ def average_spectra(spectra, equal_weights=False, align=False): if i > 0: s_.align_to(spectra[0]) else: - s = s.align_to(spectra[0]) - logger.debug(f"OBS LOCATION {s._observer_location}") + s = s.align_to(spectra[0]) + logger.debug(f"OBS LOCATION {s._observer_location}") data_array[i] = s.data if not equal_weights: weights[i] = core.tsys_weight(s.meta["EXPOSURE"], s.meta["CDELT1"], s.meta["TSYS"]) From 89c20061bfee3d1b9b5288f5d6f285d9cf12c88c Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Tue, 22 Oct 2024 11:36:00 -0700 Subject: [PATCH 13/38] get rid of 3.9 --- .pre-commit-config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index de4e221b..4fadf5b8 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,7 +1,7 @@ --- # See https://pre-commit.com for more information default_language_version: - python: python3.9 + python: python3.11 # See https://pre-commit.com/hooks.html for more hooks repos: From 0ac860b2ff08b87955513241f2bfef16a7a73d73 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Tue, 22 Oct 2024 12:00:47 -0700 Subject: [PATCH 14/38] refix botched merge --- src/dysh/spectra/spectrum.py | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/src/dysh/spectra/spectrum.py b/src/dysh/spectra/spectrum.py index 6ea7246a..de972841 100644 --- a/src/dysh/spectra/spectrum.py +++ b/src/dysh/spectra/spectrum.py @@ -1573,11 +1573,10 @@ def average_spectra(spectra, equal_weights=False, align=False): ) if align: if i > 0: - s_.align_to(spectra[0]) - else: - s = s.align_to(spectra[0]) - logger.debug(f"OBS LOCATION {s._observer_location}") + s = s.align_to(spectra[0]) + logger.debug(f"OBS LOCATION {s._observer_location}") data_array[i] = s.data + data_array[i].mask = s.mask if not equal_weights: weights[i] = core.tsys_weight(s.meta["EXPOSURE"], s.meta["CDELT1"], s.meta["TSYS"]) else: From 50735ada494cd4d392cc4f2d630ac7128f361da4 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Tue, 22 Oct 2024 12:03:50 -0700 Subject: [PATCH 15/38] remove equal weights --- src/dysh/spectra/scan.py | 15 ++++++++++++--- 1 file changed, 12 insertions(+), 3 deletions(-) diff --git a/src/dysh/spectra/scan.py b/src/dysh/spectra/scan.py index 36b4e793..d3bb14ab 100644 --- a/src/dysh/spectra/scan.py +++ b/src/dysh/spectra/scan.py @@ -440,6 +440,7 @@ def timeaverage(self, weights="tsys", mode="old"): print(f"{type(timeavg)=}, {type(avgdata)=}") avgspec = np.ma.mean(self._timeaveraged) print(f"{type(avgspec)=}") + print(f"{avgspec.mask=}") avgspec.meta = self._timeaveraged[0].meta avgspec.meta["TSYS"] = np.average(a=[k.meta["TSYS"] for k in self._timeaveraged], axis=0, weights=w) avgspec.meta["EXPOSURE"] = np.sum([k.meta["EXPOSURE"] for k in self._timeaveraged]) @@ -450,7 +451,9 @@ def timeaverage(self, weights="tsys", mode="old"): meta=avgspec.meta, observer_location=Observatory["GBT"], ) - s = average_spectra(self._timeaveraged, equal_weights=True) + + print(f"{self._timeaveraged[0].mask=}") + s = average_spectra(self._timeaveraged) s.merge_commentary(self) elif mode == "new": # average of the integrations @@ -1166,7 +1169,8 @@ def timeaverage(self, weights="tsys"): raise Exception("You can't time average before calibration.") if self._npol > 1: raise Exception("Can't yet time average multiple polarizations") - self._timeaveraged = self.calibrated(0)._copy() + print(f"{self.calibrated(0).mask=}") + self._timeaveraged = deepcopy(self.calibrated(0)) # ._copy() data = self._calibrated if weights == "tsys": w = self.tsys_weight @@ -1179,7 +1183,12 @@ def timeaverage(self, weights="tsys"): self._timeaveraged.meta["EXPOSURE"] = np.sum(self._exposure[non_blanks]) self._timeaveraged.meta["TSYS"] = self._timeaveraged.meta["WTTSYS"] self._timeaveraged._history = self._history - print("PS TA OBS ", self._timeaveraged._observer_location, self._timeaveraged._velocity_frame) + print( + "PS TA OBS ", + self._timeaveraged._observer_location, + self._timeaveraged._velocity_frame, + self._timeaveraged.mask, + ) return self._timeaveraged From 1a248aaad0e4593ec9497733accdc8ea547cf41d Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Tue, 22 Oct 2024 12:05:01 -0700 Subject: [PATCH 16/38] fix indexing --- src/dysh/fits/tests/test_gbtfitsload.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/dysh/fits/tests/test_gbtfitsload.py b/src/dysh/fits/tests/test_gbtfitsload.py index 7fcdb17c..c7d7b694 100644 --- a/src/dysh/fits/tests/test_gbtfitsload.py +++ b/src/dysh/fits/tests/test_gbtfitsload.py @@ -449,7 +449,7 @@ def test_getps_flagging(self): ta = sb.timeaverage() # average_spectra masks out the NaN in channel 3072 expected_mask = np.hstack([np.arange(10, 21), np.arange(30, 42), np.array([3072])]) - assert np.all(np.where(ta.mask)[0] == expected_mask) + assert np.all(np.where(ta.mask) == expected_mask) def test_write_single_file(self, tmp_path): "Test that writing an SDFITS file works when subselecting data" From 1d0a71f83cbd1cc0a8f21b2088f4a7ae8bb42cd4 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Tue, 22 Oct 2024 17:18:03 -0700 Subject: [PATCH 17/38] fix test_slice test by adding observer location to spectral average --- src/dysh/spectra/scan.py | 5 +---- src/dysh/spectra/spectrum.py | 6 +++--- src/dysh/spectra/tests/test_spectrum.py | 13 ++++++++----- 3 files changed, 12 insertions(+), 12 deletions(-) diff --git a/src/dysh/spectra/scan.py b/src/dysh/spectra/scan.py index d3bb14ab..abb117b5 100644 --- a/src/dysh/spectra/scan.py +++ b/src/dysh/spectra/scan.py @@ -437,10 +437,7 @@ def timeaverage(self, weights="tsys", mode="old"): # timeavg = np.ma.empty((np.shape(self._timeaveraged)[0],np.shape(self._timeaveraged[0])[0])) # Weight the average of the timeaverages by the weights. avgdata = average(timeavg, axis=0, weights=w) - print(f"{type(timeavg)=}, {type(avgdata)=}") avgspec = np.ma.mean(self._timeaveraged) - print(f"{type(avgspec)=}") - print(f"{avgspec.mask=}") avgspec.meta = self._timeaveraged[0].meta avgspec.meta["TSYS"] = np.average(a=[k.meta["TSYS"] for k in self._timeaveraged], axis=0, weights=w) avgspec.meta["EXPOSURE"] = np.sum([k.meta["EXPOSURE"] for k in self._timeaveraged]) @@ -452,7 +449,6 @@ def timeaverage(self, weights="tsys", mode="old"): observer_location=Observatory["GBT"], ) - print(f"{self._timeaveraged[0].mask=}") s = average_spectra(self._timeaveraged) s.merge_commentary(self) elif mode == "new": @@ -1183,6 +1179,7 @@ def timeaverage(self, weights="tsys"): self._timeaveraged.meta["EXPOSURE"] = np.sum(self._exposure[non_blanks]) self._timeaveraged.meta["TSYS"] = self._timeaveraged.meta["WTTSYS"] self._timeaveraged._history = self._history + self._timeaveraged._observer_location = self._observer_location print( "PS TA OBS ", self._timeaveraged._observer_location, diff --git a/src/dysh/spectra/spectrum.py b/src/dysh/spectra/spectrum.py index de972841..c42a1312 100644 --- a/src/dysh/spectra/spectrum.py +++ b/src/dysh/spectra/spectrum.py @@ -1561,7 +1561,7 @@ def average_spectra(spectra, equal_weights=False, align=False): tsyss = np.empty(nspec, dtype=float) xcoos = np.empty(nspec, dtype=float) ycoos = np.empty(nspec, dtype=float) - + obs_location = spectra[0]._observer_location units = spectra[0].flux.unit for i, s in enumerate(spectra): @@ -1574,7 +1574,7 @@ def average_spectra(spectra, equal_weights=False, align=False): if align: if i > 0: s = s.align_to(spectra[0]) - logger.debug(f"OBS LOCATION {s._observer_location}") + data_array[i] = s.data data_array[i].mask = s.mask if not equal_weights: @@ -1599,6 +1599,6 @@ def average_spectra(spectra, equal_weights=False, align=False): new_meta["CRVAL2"] = xcoo new_meta["CRVAL3"] = ycoo - averaged = Spectrum.make_spectrum(Masked(data * units, data.mask), meta=new_meta) + averaged = Spectrum.make_spectrum(Masked(data * units, data.mask), meta=new_meta, observer_location=obs_location) return averaged diff --git a/src/dysh/spectra/tests/test_spectrum.py b/src/dysh/spectra/tests/test_spectrum.py index e922bd47..2ff5a03f 100644 --- a/src/dysh/spectra/tests/test_spectrum.py +++ b/src/dysh/spectra/tests/test_spectrum.py @@ -50,10 +50,10 @@ def setup_method(self): data_dir = get_project_testdata() / "AGBT05B_047_01" sdf_file = data_dir / "AGBT05B_047_01.raw.acs" sdf = GBTFITSLoad(sdf_file) - getps0 = sdf.getps(scan=51, plnum=0) - self.ps0 = getps0.timeaverage() - getps1 = sdf.getps(scan=51, plnum=1) - self.ps1 = getps1.timeaverage() + self.getps0 = sdf.getps(scan=51, plnum=0) + self.ps0 = self.getps0.timeaverage() + self.getps1 = sdf.getps(scan=51, plnum=1) + self.ps1 = self.getps1.timeaverage() self.ss = self.ps0._copy() # Synthetic one. x = np.arange(0, len(self.ss.data)) fwhm = 5 @@ -254,7 +254,10 @@ def test_slice(self, mock_show, tmp_path): meta_ignore = ["CRPIX1", "CRVAL1"] spec_pars = ["_target", "_velocity_frame", "_observer", "_obstime", "_observer_location"] s = slice(1000, 1100, 1) - + print(f"{self.getps0[0].timeaverage()._velocity_frame=}") + print(f"{self.getps0[0].timeaverage()._target=}") + print(f"{self.ps0._velocity_frame=}") + print(f"{self.ps0._target=}") trimmed = self.ps0[s] assert trimmed.flux[0] == self.ps0.flux[s.start] assert trimmed.flux[-1] == self.ps0.flux[s.stop - 1] From 2d89f3fb0cd9d4efd65c3e43d720d9470ea40473 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Wed, 23 Oct 2024 08:43:45 -0700 Subject: [PATCH 18/38] fix failing test. rewrite interface of average_spectra so weights keyword is consistent with other methods --- src/dysh/spectra/scan.py | 2 +- src/dysh/spectra/spectrum.py | 30 +++++++++++++------------ src/dysh/spectra/tests/test_spectrum.py | 4 ++-- 3 files changed, 19 insertions(+), 17 deletions(-) diff --git a/src/dysh/spectra/scan.py b/src/dysh/spectra/scan.py index abb117b5..c9e362ce 100644 --- a/src/dysh/spectra/scan.py +++ b/src/dysh/spectra/scan.py @@ -449,7 +449,7 @@ def timeaverage(self, weights="tsys", mode="old"): observer_location=Observatory["GBT"], ) - s = average_spectra(self._timeaveraged) + s = average_spectra(self._timeaveraged, weights=weights) s.merge_commentary(self) elif mode == "new": # average of the integrations diff --git a/src/dysh/spectra/spectrum.py b/src/dysh/spectra/spectrum.py index c42a1312..6354fa3b 100644 --- a/src/dysh/spectra/spectrum.py +++ b/src/dysh/spectra/spectrum.py @@ -1529,7 +1529,7 @@ def spectrum_reader_gbtidl(fileobj, **kwargs): # registry.register_writer("mrt", Spectrum, spectrum_reader_mrt) -def average_spectra(spectra, equal_weights=False, align=False): +def average_spectra(spectra, weights="tsys", align=False): """ Average `spectra`. The resulting `average` will have an exposure equal to the sum of the exposures, and coordinates and system temperature equal to the weighted average of the coordinates and system temperatures. @@ -1539,9 +1539,12 @@ def average_spectra(spectra, equal_weights=False, align=False): spectra : list of `Spectrum` Spectra to be averaged. They must have the same number of channels. No checks are done to ensure they are aligned. - equal_weights : bool - If `False` use the inverse of the variance, as computed from the radiometer equation, as weights. - If `True` all spectra have the same weight. + weights: str + 'tsys' or None. If 'tsys' the weight will be calculated as: + + :math:`w = t_{exp} \times \delta\nu/T_{sys}^2` + + Default: 'tsys' align : bool If `True` align the `spectra` to the first element. This uses `Spectrum.align_to`. @@ -1556,7 +1559,7 @@ def average_spectra(spectra, equal_weights=False, align=False): nchan = len(spectra[0].data) shape = (nspec, nchan) data_array = np.ma.empty(shape, dtype=float) - weights = np.empty(shape, dtype=float) + wts = np.empty(shape, dtype=float) exposures = np.empty(nspec, dtype=float) tsyss = np.empty(nspec, dtype=float) xcoos = np.empty(nspec, dtype=float) @@ -1566,7 +1569,7 @@ def average_spectra(spectra, equal_weights=False, align=False): for i, s in enumerate(spectra): if not isinstance(s, Spectrum): - raise ValueError(f"Element {i} of `spectra` is not a `Spectrum`.") + raise ValueError(f"Element {i} of `spectra` is not a `Spectrum`. {type(s)}") if units != s.flux.unit: raise ValueError( f"Element {i} of `spectra` has units {s.flux.unit}, but the first element has units {units}." @@ -1577,20 +1580,19 @@ def average_spectra(spectra, equal_weights=False, align=False): data_array[i] = s.data data_array[i].mask = s.mask - if not equal_weights: - weights[i] = core.tsys_weight(s.meta["EXPOSURE"], s.meta["CDELT1"], s.meta["TSYS"]) + if weights == "tsys": + wts[i] = core.tsys_weight(s.meta["EXPOSURE"], s.meta["CDELT1"], s.meta["TSYS"]) else: - weights[i] = 1.0 + wts[i] = 1.0 exposures[i] = s.meta["EXPOSURE"] tsyss[i] = s.meta["TSYS"] xcoos[i] = s.meta["CRVAL2"] ycoos[i] = s.meta["CRVAL3"] - data_array = np.ma.MaskedArray(data_array, mask=np.isnan(data_array) | data_array.mask) - data = np.ma.average(data_array, axis=0, weights=weights) - tsys = np.ma.average(tsyss, axis=0, weights=weights[:, 0]) - xcoo = np.ma.average(xcoos, axis=0, weights=weights[:, 0]) - ycoo = np.ma.average(ycoos, axis=0, weights=weights[:, 0]) + data = np.ma.average(data_array, axis=0, weights=wts) + tsys = np.ma.average(tsyss, axis=0, weights=wts[:, 0]) + xcoo = np.ma.average(xcoos, axis=0, weights=wts[:, 0]) + ycoo = np.ma.average(ycoos, axis=0, weights=wts[:, 0]) exposure = exposures.sum(axis=0) new_meta = deepcopy(spectra[0].meta) diff --git a/src/dysh/spectra/tests/test_spectrum.py b/src/dysh/spectra/tests/test_spectrum.py index 2ff5a03f..e9f3e265 100644 --- a/src/dysh/spectra/tests/test_spectrum.py +++ b/src/dysh/spectra/tests/test_spectrum.py @@ -254,8 +254,8 @@ def test_slice(self, mock_show, tmp_path): meta_ignore = ["CRPIX1", "CRVAL1"] spec_pars = ["_target", "_velocity_frame", "_observer", "_obstime", "_observer_location"] s = slice(1000, 1100, 1) - print(f"{self.getps0[0].timeaverage()._velocity_frame=}") - print(f"{self.getps0[0].timeaverage()._target=}") + print(f"{self.getps[0].timeaverage()._velocity_frame=}") + print(f"{self.getps0[0]._target=}") print(f"{self.ps0._velocity_frame=}") print(f"{self.ps0._target=}") trimmed = self.ps0[s] From 2120b2ad21d4e26ce61aa530364ec1a1d8eebabf Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Wed, 23 Oct 2024 09:43:01 -0700 Subject: [PATCH 19/38] fix typo. remove prints etc --- src/dysh/fits/tests/test_gbtfitsload.py | 8 +- src/dysh/spectra/scan.py | 98 +++++-------------------- src/dysh/spectra/tests/test_spectrum.py | 5 -- 3 files changed, 19 insertions(+), 92 deletions(-) diff --git a/src/dysh/fits/tests/test_gbtfitsload.py b/src/dysh/fits/tests/test_gbtfitsload.py index c7d7b694..f47d8bd7 100644 --- a/src/dysh/fits/tests/test_gbtfitsload.py +++ b/src/dysh/fits/tests/test_gbtfitsload.py @@ -262,7 +262,6 @@ def test_gettp(self): if v["CAL"]: assert np.all(tps[0]._refcalon[0] == tps[0].total_power(0).flux.value) tp = tps.timeaverage(weights=None) - print(tp.mask, " ALL ", np.all(tp.mask == False)) if v["CAL"] is None: cal = (0.5 * (tps[0]._refcalon + tps[0]._refcaloff)).astype(np.float64) elif not v["CAL"]: @@ -271,13 +270,8 @@ def test_gettp(self): else: # CAL=True cal = tps[0]._refcalon.astype(np.float64) - print(cal.mask, " CAL ALL ", np.all(cal.mask == False)) - diff = tp.flux.value - np.nanmean(cal, axis=0) - print(np.where(diff != 0)) - print(diff[np.where(abs(diff) > 1e-8)]) + # diff = tp.flux.value - np.nanmean(cal, axis=0) assert np.all(tp.flux.value - np.nanmean(cal, axis=0) == 0) - # assert np.all(np.abs(diff) < 1e-8) - # Check that selection is being applied properly. tp_scans = sdf.gettp(scan=[6, 7], plnum=0) # Weird that the results are different for a bunch of channels. diff --git a/src/dysh/spectra/scan.py b/src/dysh/spectra/scan.py index c9e362ce..95fe5567 100644 --- a/src/dysh/spectra/scan.py +++ b/src/dysh/spectra/scan.py @@ -402,7 +402,7 @@ def calibrate(self, **kwargs): scan.calibrate(**kwargs) @log_call_to_history - def timeaverage(self, weights="tsys", mode="old"): + def timeaverage(self, weights="tsys"): r"""Compute the time-averaged spectrum for all scans in this ScanBlock. Parameters @@ -419,60 +419,12 @@ def timeaverage(self, weights="tsys", mode="old"): List of all the time-averaged spectra """ # warnings.simplefilter("ignore", NoVelocityWarning) - if mode == "old": - # average of the averages - self._timeaveraged = [] - for scan in self.data: - self._timeaveraged.append(scan.timeaverage(weights)) - if weights == "tsys": - # There may be multiple integrations, so need to - # average the Tsys weights - w = np.array([np.nanmean(k.tsys_weight) for k in self.data]) - if len(np.shape(w)) > 1: # remove empty axes - w = w.squeeze() - else: - w = weights - if False: - timeavg = np.array([k.data for k in self._timeaveraged]) - # timeavg = np.ma.empty((np.shape(self._timeaveraged)[0],np.shape(self._timeaveraged[0])[0])) - # Weight the average of the timeaverages by the weights. - avgdata = average(timeavg, axis=0, weights=w) - avgspec = np.ma.mean(self._timeaveraged) - avgspec.meta = self._timeaveraged[0].meta - avgspec.meta["TSYS"] = np.average(a=[k.meta["TSYS"] for k in self._timeaveraged], axis=0, weights=w) - avgspec.meta["EXPOSURE"] = np.sum([k.meta["EXPOSURE"] for k in self._timeaveraged]) - # observer = self._timeaveraged[0].observer # nope this has to be a location ugh. see @todo in Spectrum constructor - # hardcode to GBT for now - s = Spectrum.make_spectrum( - Masked(avgdata * avgspec.flux.unit, avgspec.mask), - meta=avgspec.meta, - observer_location=Observatory["GBT"], - ) - - s = average_spectra(self._timeaveraged, weights=weights) - s.merge_commentary(self) - elif mode == "new": - # average of the integrations - allcal = np.all([d._calibrated for d in self.data]) - if not allcal: - raise Exception("Data must be calibrated before time averaging.") - c = np.concatenate([d._calibrated for d in self.data]) - if weights == "tsys": - w = np.concatenate([d.tsys_weight for d in self.data]) - # if len(np.shape(w)) > 1: # remove empty axes - # w = w.squeeze() - else: - w = None - timeavg = average(c, weights=w) - avgspec = self.data[0].calibrated(0) - avgspec.meta["TSYS"] = np.nanmean([d.tsys for d in self.data]) - avgspec.meta["EXPOSURE"] = np.sum([d.exposure for d in self.data]) - s = Spectrum.make_spectrum( - timeavg * avgspec.flux.unit, meta=avgspec.meta, observer_location=Observatory["GBT"] - ) - s.merge_commentary(self) - else: - raise Exception(f"unrecognized mode {mode}") + # average of the averages + self._timeaveraged = [] + for scan in self.data: + self._timeaveraged.append(scan.timeaverage(weights)) + s = average_spectra(self._timeaveraged, weights=weights) + s.merge_commentary(self) return s @log_call_to_history @@ -990,13 +942,6 @@ def __init__( self._nrows = len(self._scanrows["ON"]) self._smoothref = smoothref self._apply_flags = apply_flags - # print(f"PJT len(scanrows ON) {len(self._scanrows['ON'])}") - # print(f"PJT len(scanrows OFF) {len(self._scanrows['OFF'])}") - # print("PJT scans", scans) - # print("PJT scanrows", scanrows) - # print("PJT calrows", calrows) - # print(f"len(scanrows ON) {len(self._scanrows['ON'])}") - # print(f"len(scanrows OFF) {len(self._scanrows['OFF'])}") # calrows perhaps not needed as input since we can get it from gbtfits object? # calrows['ON'] are rows with noise diode was on, regardless of sig or ref @@ -1165,7 +1110,6 @@ def timeaverage(self, weights="tsys"): raise Exception("You can't time average before calibration.") if self._npol > 1: raise Exception("Can't yet time average multiple polarizations") - print(f"{self.calibrated(0).mask=}") self._timeaveraged = deepcopy(self.calibrated(0)) # ._copy() data = self._calibrated if weights == "tsys": @@ -1180,12 +1124,6 @@ def timeaverage(self, weights="tsys"): self._timeaveraged.meta["TSYS"] = self._timeaveraged.meta["WTTSYS"] self._timeaveraged._history = self._history self._timeaveraged._observer_location = self._observer_location - print( - "PS TA OBS ", - self._timeaveraged._observer_location, - self._timeaveraged._velocity_frame, - self._timeaveraged.mask, - ) return self._timeaveraged @@ -1505,19 +1443,19 @@ def __init__( self._debug = debug if self._debug: - print("---------------------------------------------------") - print("FSSCAN: ") - print("SigOff", self._sigoffrows) - print("SigOn", self._sigonrows) - print("RefOff", self._refoffrows) - print("RegOn", self._refonrows) + logger.debug("---------------------------------------------------") + logger.debug("FSSCAN: ") + logger.debug(f"SigOff {self._sigoffrows}") + logger.debug(f"SigOn {self._sigonrows}") + logger.debug(f"RefOff {self._refoffrows}") + logger.debug(f"RefOn {self._refonrows}") nsigrows = len(self._sigonrows) + len(self._sigoffrows) nrefrows = len(self._refonrows) + len(self._refoffrows) if nsigrows != nrefrows: raise Exception("Number of sig rows does not match ref rows. Dangerous to proceed") if self._debug: - print("sigonrows", nsigrows, self._sigonrows) + logger.dbeug(f"sigonrows {nsigrows}, {self._sigonrows}") self._nrows = nsigrows a_scanrow = self._sigonrows[0] @@ -1528,17 +1466,17 @@ def __init__( else: self._bintable_index = bintable if self._debug: - print(f"bintable index is {self._bintable_index}") + logger.debug(f"bintable index is {self._bintable_index}") self._observer_location = observer_location self._scanrows = list(set(self._calrows["ON"])) + list(set(self._calrows["OFF"])) df = self._sdfits._index.iloc[self._scanrows] if self._debug: - print("len(df) = ", len(df)) + logger.debug(f"{len(df) = }") self._set_if_fd(df) self._pols = uniq(df["PLNUM"]) if self._debug: - print(f"FSSCAN #pol = {self._pols}") + logger.debug(f"FSSCAN #pol = {self._pols}") self._npol = len(self._pols) if False: self._nint = gbtfits.nintegrations(self._bintable_index) @@ -1558,7 +1496,7 @@ def __init__( if self._calibrate: self.calibrate(fold=fold, shift_method=shift_method) if self._debug: - print("---------------------------------------------------") + logger.debug("---------------------------------------------------") self._validate_defaults() @property diff --git a/src/dysh/spectra/tests/test_spectrum.py b/src/dysh/spectra/tests/test_spectrum.py index e9f3e265..b1081b36 100644 --- a/src/dysh/spectra/tests/test_spectrum.py +++ b/src/dysh/spectra/tests/test_spectrum.py @@ -254,10 +254,6 @@ def test_slice(self, mock_show, tmp_path): meta_ignore = ["CRPIX1", "CRVAL1"] spec_pars = ["_target", "_velocity_frame", "_observer", "_obstime", "_observer_location"] s = slice(1000, 1100, 1) - print(f"{self.getps[0].timeaverage()._velocity_frame=}") - print(f"{self.getps0[0]._target=}") - print(f"{self.ps0._velocity_frame=}") - print(f"{self.ps0._target=}") trimmed = self.ps0[s] assert trimmed.flux[0] == self.ps0.flux[s.start] assert trimmed.flux[-1] == self.ps0.flux[s.stop - 1] @@ -272,7 +268,6 @@ def test_slice(self, mock_show, tmp_path): # Check additional object properties. # Not all of them make sense, since their shapes will be different. for k in spec_pars: - print(k) assert vars(trimmed)[k] == vars(self.ps0)[k] # Check that we can plot. trimmed.plot(xaxis_unit="km/s", yaxis_unit="mK") From ca3a7957dfe1d9fe2edb273a4a1be92343f8cd3e Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Wed, 23 Oct 2024 14:58:21 -0700 Subject: [PATCH 20/38] ensure all scan timeaverages use np.ma and set fill value to nan --- src/dysh/spectra/scan.py | 18 ++++++++++++------ src/dysh/spectra/spectrum.py | 14 +++----------- 2 files changed, 15 insertions(+), 17 deletions(-) diff --git a/src/dysh/spectra/scan.py b/src/dysh/spectra/scan.py index 95fe5567..0a7ccdd1 100644 --- a/src/dysh/spectra/scan.py +++ b/src/dysh/spectra/scan.py @@ -421,8 +421,10 @@ def timeaverage(self, weights="tsys"): # warnings.simplefilter("ignore", NoVelocityWarning) # average of the averages self._timeaveraged = [] + i = 0 for scan in self.data: self._timeaveraged.append(scan.timeaverage(weights)) + print(f"timeaveraged[{i}]= {self._timeaveraged[i].data.data}") s = average_spectra(self._timeaveraged, weights=weights) s.merge_commentary(self) return s @@ -885,7 +887,8 @@ def timeaverage(self, weights="tsys"): else: w = np.ones_like(self.tsys_weight) non_blanks = find_non_blanks(self._data)[0] - self._timeaveraged._data = average(self._data, axis=0, weights=w) + self._timeaveraged._data = np.ma.average(self._data, axis=0, weights=w) + self._timeaveraged._data.set_fill_value(np.nan) self._timeaveraged.meta["MEANTSYS"] = np.mean(self._tsys[non_blanks]) self._timeaveraged.meta["WTTSYS"] = sq_weighted_avg(self._tsys[non_blanks], axis=0, weights=w[non_blanks]) self._timeaveraged.meta["TSYS"] = self._timeaveraged.meta["WTTSYS"] @@ -1116,7 +1119,8 @@ def timeaverage(self, weights="tsys"): w = self.tsys_weight else: w = np.ones_like(self.tsys_weight) - self._timeaveraged._data = average(data, axis=0, weights=w) + self._timeaveraged._data = np.ma.average(data, axis=0, weights=w) + self._timeaveraged._data.set_fill_value(np.nan) non_blanks = find_non_blanks(data) self._timeaveraged.meta["MEANTSYS"] = np.mean(self._tsys[non_blanks]) self._timeaveraged.meta["WTTSYS"] = sq_weighted_avg(self._tsys[non_blanks], axis=0, weights=w[non_blanks]) @@ -1361,7 +1365,8 @@ def timeaverage(self, weights="tsys"): w = self.tsys_weight else: w = np.ones_like(self.tsys_weight) - self._timeaveraged._data = average(data, axis=0, weights=w) + self._timeaveraged._data = np.ma.average(self._data, axis=0, weights=w) + self._timeaveraged._data.set_fill_value(np.nan) non_blanks = find_non_blanks(data) self._timeaveraged.meta["MEANTSYS"] = np.mean(self._tsys[non_blanks]) self._timeaveraged.meta["WTTSYS"] = sq_weighted_avg(self._tsys[non_blanks], axis=0, weights=w[non_blanks]) @@ -1754,7 +1759,8 @@ def timeaverage(self, weights="tsys"): w = self.tsys_weight else: w = np.ones_like(self.tsys_weight) - self._timeaveraged._data = average(data, axis=0, weights=w) + self._timeaveraged._data = np.ma.average(data, axis=0, weights=w) + self._timeaveraged._data.set_fill_value(np.nan) non_blanks = find_non_blanks(data) self._timeaveraged.meta["MEANTSYS"] = np.mean(self._tsys[non_blanks]) self._timeaveraged.meta["WTTSYS"] = sq_weighted_avg(self._tsys[non_blanks], axis=0, weights=w[non_blanks]) @@ -1887,12 +1893,12 @@ def timeaverage(self, weights="tsys"): raise Exception(f"Can't yet time average multiple polarizations {self._npol}") self._timeaveraged = deepcopy(self.calibrated(0)) data = self._calibrated - nchan = len(data[0]) if weights == "tsys": w = self.tsys_weight else: w = None - self._timeaveraged._data = average(data, axis=0, weights=w) + self._timeaveraged._data = np.ma.average(data, axis=0, weights=w) + self._timeaveraged._data.set_fill_value(np.nan) self._timeaveraged.meta["MEANTSYS"] = np.mean(self._tsys) self._timeaveraged.meta["WTTSYS"] = sq_weighted_avg(self._tsys, axis=0, weights=w) self._timeaveraged.meta["TSYS"] = self._timeaveraged.meta["WTTSYS"] diff --git a/src/dysh/spectra/spectrum.py b/src/dysh/spectra/spectrum.py index 6354fa3b..773d0ac8 100644 --- a/src/dysh/spectra/spectrum.py +++ b/src/dysh/spectra/spectrum.py @@ -68,11 +68,9 @@ class Spectrum(Spectrum1D, HistoricalBase): @log_call_to_history def __init__(self, *args, **kwargs): - # print(f"ARGS={args}") HistoricalBase.__init__(self) self._target = kwargs.pop("target", None) if self._target is not None: - # print(f"self._target is {self._target}") self._target = sanitize_skycoord(self._target) self._velocity_frame = self._target.frame.name else: @@ -164,11 +162,9 @@ def _toggle_sections(self, nchan, s): s1 = [] e = 0 # set this to 1 if you want to be exact complementary if s[0][0] == 0: - # print("toggle_sections: edged") for i in range(ns - 1): s1.append((s[i][1] + e, s[i + 1][0] - e)) else: - # print("toggle_sections: internal") s1.append((0, s[0][0])) for i in range(ns - 1): s1.append((s[i][1], s[i + 1][0])) @@ -745,7 +741,6 @@ def set_frame(self, toframe): actualframe = self.observer else: actualframe = astropy_frame_dict.get(toframe, toframe) - # print(f"actual frame is {actualframe} {type(actualframe)}") self._spectral_axis = self._spectral_axis.with_observer_stationary_relative_to(actualframe) self._meta["CTYPE1"] = change_ctype(self._meta["CTYPE1"], toframe) if isinstance(actualframe, str): @@ -1124,7 +1119,6 @@ def make_spectrum(cls, data, meta, use_wcs=True, observer_location=None): savecomment = meta.pop("COMMENT", None) if savecomment is None: savecomment = meta.pop("comments", None) - # print(f"{meta=}") wcs = WCS(header=meta) if savehist is not None: meta["HISTORY"] = savehist @@ -1172,7 +1166,6 @@ def make_spectrum(cls, data, meta, use_wcs=True, observer_location=None): obsitrs = None if np.ma.is_masked(data): - print("data are masked") s = cls( flux=data, wcs=wcs, @@ -1185,7 +1178,6 @@ def make_spectrum(cls, data, meta, use_wcs=True, observer_location=None): mask=data.mask, ) else: - print("data are NOT masked") s = cls( flux=data, wcs=wcs, @@ -1276,7 +1268,6 @@ def __truediv__(self, other): return result def _add_meta(self, operand, operand2, **kwargs): - # print(kwargs) kwargs.setdefault("other_meta", True) meta = deepcopy(operand) if kwargs["other_meta"]: @@ -1577,9 +1568,9 @@ def average_spectra(spectra, weights="tsys", align=False): if align: if i > 0: s = s.align_to(spectra[0]) - data_array[i] = s.data data_array[i].mask = s.mask + if weights == "tsys": wts[i] = core.tsys_weight(s.meta["EXPOSURE"], s.meta["CDELT1"], s.meta["TSYS"]) else: @@ -1588,7 +1579,8 @@ def average_spectra(spectra, weights="tsys", align=False): tsyss[i] = s.meta["TSYS"] xcoos[i] = s.meta["CRVAL2"] ycoos[i] = s.meta["CRVAL3"] - data_array = np.ma.MaskedArray(data_array, mask=np.isnan(data_array) | data_array.mask) + + data_array = np.ma.MaskedArray(data_array, mask=np.isnan(data_array) | data_array.mask, fill_value=np.nan) data = np.ma.average(data_array, axis=0, weights=wts) tsys = np.ma.average(tsyss, axis=0, weights=wts[:, 0]) xcoo = np.ma.average(xcoos, axis=0, weights=wts[:, 0]) From 93866476c7876969cee26c1dfd19436a410ddcca Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Wed, 23 Oct 2024 14:58:53 -0700 Subject: [PATCH 21/38] change chan to channel in agruments --- src/dysh/fits/gbtfitsload.py | 38 +++++++++++++++++++----------------- src/dysh/util/selection.py | 33 ++++++++++++++++--------------- 2 files changed, 37 insertions(+), 34 deletions(-) diff --git a/src/dysh/fits/gbtfitsload.py b/src/dysh/fits/gbtfitsload.py index 1ff54309..7e3fad31 100644 --- a/src/dysh/fits/gbtfitsload.py +++ b/src/dysh/fits/gbtfitsload.py @@ -604,7 +604,7 @@ def select_within(self, tag=None, **kwargs): self._selection.select_within(tag=tag, **kwargs) @log_call_to_history - def select_channel(self, chan, tag=None): + def select_channel(self, channel, tag=None): """ Select channels and/or channel ranges. These are NOT used in :meth:`final` but rather will be used to create a mask for calibration or @@ -626,14 +626,14 @@ def select_channel(self, chan, tag=None): Parameters ---------- - chan : number, or array-like + channel : number, or array-like The channels to select Returns ------- None. """ - self._selection.select_channel(tag=tag, chan=chan) + self._selection.select_channel(tag=tag, channel=channel) @log_call_to_history def clear_selection(self): @@ -643,9 +643,11 @@ def clear_selection(self): @log_call_to_history def flag(self, tag=None, **kwargs): """Add one or more exact flag rules, e.g., `key1 = value1, key2 = value2, ...` - If `value` is array-like then a match to any of the array members will be selected. - For instance `flag(object=['3C273', 'NGC1234'])` will flag data for either of those - objects and `flag(ifnum=[0,2])` will flag IF number 0 or IF number 2. + If `value` is array-like then a match to any of the array members will be flagged. + For instance `flag(object=['3C273', 'NGC1234'])` will select data for either of those + objects and `flag(ifnum=[0,2])` will flag IF number 0 or IF number 2. Channels for selected data + can be flagged using keyword `channel`, e.g., `flag(object='MBM12',channel=[0,23])` + will flag channels 0 through 23 *inclusive* for object MBM12. See `~dysh.util.selection.Flag`. Parameters @@ -719,7 +721,7 @@ def flag_within(self, tag=None, **kwargs): self._flag.flag_within(tag=tag, **kwargs) @log_call_to_history - def flag_channel(self, chan, tag=None): + def flag_channel(self, channel, tag=None): """ Select channels and/or channel ranges. These are NOT used in :meth:`final` but rather will be used to create a mask for @@ -743,14 +745,14 @@ def flag_channel(self, chan, tag=None): Parameters ---------- - chan : number, or array-like + channel : number, or array-like The channels to flag Returns ------- None. """ - self._flag.flag_channel(tag=tag, chan=chan) + self._flag.flag_channel(tag=tag, channel=channel) @log_call_to_history def apply_flags(self): @@ -898,7 +900,7 @@ def gettp( weights="tsys", bintable=None, smoothref=1, - apply_flags=False, + apply_flags=True, **kwargs, ): """ @@ -1022,7 +1024,7 @@ def getps( weights="tsys", bintable=None, smoothref=1, - apply_flags=False, + apply_flags=True, **kwargs, ): """ @@ -1046,7 +1048,7 @@ def getps( smooth_ref: int, optional the number of channels in the reference to boxcar smooth prior to calibration apply_flags : boolean, optional. If True, apply flags before calibration. - See :meth:`apply_flags`. Default: False + See :meth:`apply_flags`. Default: True **kwargs : dict Optional additional selection keyword arguments, typically given as key=value, though a dictionary works too. @@ -1178,7 +1180,7 @@ def getnod( weights="tsys", bintable=None, smoothref=1, - apply_flags=False, + apply_flags=True, **kwargs, ): """ @@ -1206,7 +1208,7 @@ def getnod( smooth_ref: int, optional the number of channels in the reference to boxcar smooth prior to calibration apply_flags : boolean, optional. If True, apply flags before calibration. - See :meth:`apply_flags`. Default: False + See :meth:`apply_flags`. Default: True **kwargs : dict Optional additional selection keyword arguments, typically given as key=value, though a dictionary works too. @@ -1400,7 +1402,7 @@ def getfs( weights="tsys", bintable=None, smoothref=1, - apply_flags=False, + apply_flags=True, observer_location=Observatory["GBT"], **kwargs, ): @@ -1436,7 +1438,7 @@ def getfs( smooth_ref: int, optional the number of channels in the reference to boxcar smooth prior to calibration apply_flags : boolean, optional. If True, apply flags before calibration. - See :meth:`apply_flags`. Default: False + See :meth:`apply_flags`. Default: True observer_location : `~astropy.coordinates.EarthLocation` Location of the observatory. See `~dysh.coordinates.Observatory`. This will be transformed to `~astropy.coordinates.ITRS` using the time of @@ -1557,7 +1559,7 @@ def subbeamnod( weights="tsys", bintable=None, smoothref=1, - apply_flags=False, + apply_flags=True, **kwargs, ): """Get a subbeam nod power scan, optionally calibrating it. @@ -1583,7 +1585,7 @@ def subbeamnod( smooth_ref: int, optional the number of channels in the reference to boxcar smooth prior to calibration apply_flags : boolean, optional. If True, apply flags before calibration. - See :meth:`apply_flags`. Default: False + See :meth:`apply_flags`. Default: True **kwargs : dict Optional additional selection keyword arguments, typically given as key=value, though a dictionary works too. diff --git a/src/dysh/util/selection.py b/src/dysh/util/selection.py index 904ed142..a7829c0b 100644 --- a/src/dysh/util/selection.py +++ b/src/dysh/util/selection.py @@ -631,7 +631,7 @@ def _base_select_within(self, tag=None, **kwargs): kw[k] = (v1, v2) self._base_select_range(tag, **kw) - def _base_select_channel(self, chan, tag=None): + def _base_select_channel(self, channel, tag=None): """ Select channels and/or channel ranges. These are NOT used in :meth:`final` but rather will be used to create a mask for calibration or @@ -655,7 +655,7 @@ def _base_select_channel(self, chan, tag=None): Parameters ---------- - chan : number, or array-like + channel : number, or array-like The channels to select Returns @@ -671,11 +671,11 @@ def _base_select_channel(self, chan, tag=None): raise Exception( "You can only have one channel selection rule. Remove the old rule before creating a new one." ) - self._check_numbers(chan=chan) - if isinstance(chan, numbers.Number): - chan = [int(chan)] - self._channel_selection = chan - self._addrow({"CHAN": str(chan)}, dataframe=self, tag=tag) + self._check_numbers(chan=channel) + if isinstance(channel, numbers.Number): + channel = [int(channel)] + self._channel_selection = channel + self._addrow({"CHAN": str(channel)}, dataframe=self, tag=tag) # NB: using ** in doc here because `id` will make a reference to the # python built-in function. Arguably we should pick a different @@ -1017,9 +1017,9 @@ def flag(self, tag=None, **kwargs): """Add one or more exact flag rules, e.g., `key1 = value1, key2 = value2, ...` If `value` is array-like then a match to any of the array members will be flagged. For instance `flag(object=['3C273', 'NGC1234'])` will select data for either of those - objects and `flag(ifnum=[0,2])` will flag IF number 0 or IF number 2. Channels can be flagged - using keyword `chan`, e.g., `flag(object='MBM12',chan=[0,23])` will flag channels 0 through 23 *inclusive* - for object MBM12. + objects and `flag(ifnum=[0,2])` will flag IF number 0 or IF number 2. Channels for selected data + can be flagged using keyword `channel`, e.g., `flag(object='MBM12',channel=[0,23])` + will flag channels 0 through 23 *inclusive* for object MBM12. Parameters ---------- @@ -1032,7 +1032,7 @@ def flag(self, tag=None, **kwargs): The value to select """ - chan = kwargs.pop("chan", None) + chan = kwargs.pop("channel", None) if chan is not None: if isinstance(chan, numbers.Number): chan = [int(chan)] @@ -1045,9 +1045,9 @@ def flag(self, tag=None, **kwargs): else: self._flag_channel_selection[idx] = ALL_CHANNELS - def flag_channel(self, chan, tag=None, **kwargs): + def flag_channel(self, channel, tag=None, **kwargs): """ - Flag channels and/or channel ranges for all rows. These are NOT used in :meth:`final` + Flag channels and/or channel ranges for *all data*. These are NOT used in :meth:`final` but rather will be used to create a mask for flagging. Single arrays/tuples will be treated as *channel lists; nested arrays will be treated as *inclusive* ranges. For instance: @@ -1070,7 +1070,7 @@ def flag_channel(self, chan, tag=None, **kwargs): Parameters ---------- - chan : number, or array-like + channel : number, or array-like The channels to flag Returns @@ -1079,9 +1079,10 @@ def flag_channel(self, chan, tag=None, **kwargs): """ # okay to use base method because we are flagging all rows - self._base_select_channel(chan, tag, **kwargs) + self._base_select_channel(channel, tag, **kwargs) idx = len(self._table) - 1 - self._flag_channel_selection[idx] = chan + self._flag_channel_selection[idx] = channel + self._channel_selection = None # unused for flagging def flag_range(self, tag=None, **kwargs): """Flag a range of inclusive values for a given key(s). From 0666d5cf2a80811dd953d2662ff25cd52f72002a Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Wed, 23 Oct 2024 14:59:22 -0700 Subject: [PATCH 22/38] use logger.debug --- src/dysh/fits/sdfitsload.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/dysh/fits/sdfitsload.py b/src/dysh/fits/sdfitsload.py index 0dd079e0..3a10c60e 100644 --- a/src/dysh/fits/sdfitsload.py +++ b/src/dysh/fits/sdfitsload.py @@ -78,7 +78,7 @@ def _init_flags(self): for i in range(len(self._flagmask)): nc = self.nchan(i) nr = self.nrows(i) - print(f"{nr=} {nc=}") + logger.debug(f"{nr=} {nc=}") self._flagmask[i] = np.full((nr, nc), fill_value=False) def info(self): From d306883dbbaf8acdd59c87a3ad6d28d82b653faa Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Wed, 23 Oct 2024 15:33:14 -0700 Subject: [PATCH 23/38] add note about zeros and np.ma.average --- src/dysh/spectra/scan.py | 38 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 38 insertions(+) diff --git a/src/dysh/spectra/scan.py b/src/dysh/spectra/scan.py index 0a7ccdd1..843bf72b 100644 --- a/src/dysh/spectra/scan.py +++ b/src/dysh/spectra/scan.py @@ -45,6 +45,9 @@ def timeaverage(self, weights=None): ------- spectrum : :class:`~spectra.spectrum.Spectrum` The time-averaged spectrum + + .. note:: + Data that are masked will have values set to zero. This is a feature of `numpy.ma.average`. Data mask fill value is NaN (np.nan) """ pass @@ -413,10 +416,14 @@ def timeaverage(self, weights="tsys"): :math:`w = t_{exp} \times \delta\nu/T_{sys}^2` Default: 'tsys' + Returns ------- timeaverage: list of `~spectra.spectrum.Spectrum` List of all the time-averaged spectra + + .. note:: + Data that are masked will have values set to zero. This is a feature of `numpy.ma.average`. Data mask fill value is NaN (np.nan) """ # warnings.simplefilter("ignore", NoVelocityWarning) # average of the averages @@ -878,6 +885,9 @@ def timeaverage(self, weights="tsys"): ------- spectrum : :class:`~spectra.spectrum.Spectrum` The time-averaged spectrum + + .. note:: + Data that are masked will have values set to zero. This is a feature of `numpy.ma.average`. Data mask fill value is NaN (np.nan) """ if self._npol > 1: raise Exception("Can't yet time average multiple polarizations") @@ -1104,10 +1114,14 @@ def timeaverage(self, weights="tsys"): :math:`w = t_{exp} \times \delta\nu/T_{sys}^2` Default: 'tsys' + Returns ------- spectrum : :class:`~spectra.spectrum.Spectrum` The time-averaged spectrum + + .. note:: + Data that are masked will have values set to zero. This is a feature of `numpy.ma.average`. Data mask fill value is NaN (np.nan) """ if self._calibrated is None or len(self._calibrated) == 0: raise Exception("You can't time average before calibration.") @@ -1354,6 +1368,9 @@ def timeaverage(self, weights="tsys"): ------- spectrum : :class:`~spectra.spectrum.Spectrum` The time-averaged spectrum + + .. note:: + Data that are masked will have values set to zero. This is a feature of `numpy.ma.average`. Data mask fill value is NaN (np.nan) """ if self._calibrated is None or len(self._calibrated) == 0: raise Exception("You can't time average before calibration.") @@ -1748,6 +1765,9 @@ def timeaverage(self, weights="tsys"): ------- spectrum : :class:`~spectra.spectrum.Spectrum` The time-averaged spectrum + + .. note:: + Data that are masked will have values set to zero. This is a feature of `numpy.ma.average`. Data mask fill value is NaN (np.nan) """ if self._calibrated is None or len(self._calibrated) == 0: raise Exception("You can't time average before calibration.") @@ -1887,6 +1907,24 @@ def delta_freq(self): return self._delta_freq def timeaverage(self, weights="tsys"): + r"""Compute the time-averaged spectrum for this scan. + + Parameters + ---------- + weights: str + 'tsys' or None. If 'tsys' the weight will be calculated as: + + :math:`w = t_{exp} \times \delta\nu/T_{sys}^2` + + Default: 'tsys' + Returns + ------- + spectrum : :class:`~spectra.spectrum.Spectrum` + The time-averaged spectrum + + .. note:: + Data that are masked will have values set to zero. This is a feature of `numpy.ma.average`. Data mask fill value is NaN (np.nan) + """ if self._calibrated is None or len(self._calibrated) == 0: raise Exception("You can't time average before calibration.") if self._npol > 1: From 144abbaa59b1dd9cd01cd60bf63946c28fb1eae8 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Wed, 23 Oct 2024 15:33:37 -0700 Subject: [PATCH 24/38] remove debug print --- src/dysh/fits/gbtfitsload.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/src/dysh/fits/gbtfitsload.py b/src/dysh/fits/gbtfitsload.py index 7e3fad31..6ec88553 100644 --- a/src/dysh/fits/gbtfitsload.py +++ b/src/dysh/fits/gbtfitsload.py @@ -770,13 +770,11 @@ def apply_flags(self): # For all SDFs in each flag rule, set the flag mask(s) # for their rows. The index of the sdf._flagmask array is the bintable index for key, chan in self._flag._flag_channel_selection.items(): - print(f"{key=} {chan=}") selection = self._flag.get(key) # chan will be a list or a list of lists # If it is a single list, it is just a list of channels # if it is list of lists, then it is upper lower inclusive dfs = selection.groupby(["FITSINDEX", "BINTABLE"]) - print(f"{key=} {chan=}") # the dict key for the groups is a tuple (fitsindex,bintable) for i, ((fi, bi), g) in enumerate(dfs): chan_mask = convert_array_to_mask(chan, self._sdf[fi].nchan(bi)) From 8ee1f5c38e3d6949048a15078b9e75c418400983 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Wed, 23 Oct 2024 17:29:23 -0700 Subject: [PATCH 25/38] fix NodScan timeaverage --- src/dysh/spectra/scan.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/dysh/spectra/scan.py b/src/dysh/spectra/scan.py index 843bf72b..2a1c4f7a 100644 --- a/src/dysh/spectra/scan.py +++ b/src/dysh/spectra/scan.py @@ -1382,7 +1382,7 @@ def timeaverage(self, weights="tsys"): w = self.tsys_weight else: w = np.ones_like(self.tsys_weight) - self._timeaveraged._data = np.ma.average(self._data, axis=0, weights=w) + self._timeaveraged._data = np.ma.average(data, axis=0, weights=w) self._timeaveraged._data.set_fill_value(np.nan) non_blanks = find_non_blanks(data) self._timeaveraged.meta["MEANTSYS"] = np.mean(self._tsys[non_blanks]) From 94c4cda258b04a48bebc77408717ec80020221f3 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Wed, 23 Oct 2024 17:31:58 -0700 Subject: [PATCH 26/38] fix goto button text --- docs/source/reference/modules/index.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/source/reference/modules/index.rst b/docs/source/reference/modules/index.rst index a2c05f05..36346350 100644 --- a/docs/source/reference/modules/index.rst +++ b/docs/source/reference/modules/index.rst @@ -41,7 +41,7 @@ Modules and APIs :outline: :click-parent: - Go to dysh.spectra + Go to dysh.plot .. grid-item-card:: :shadow: md From c17dc8ce61c6ef66c013ecac43f90d1660badb79 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Thu, 24 Oct 2024 10:10:03 -0700 Subject: [PATCH 27/38] don't plot masked values --- src/dysh/plot/specplot.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/src/dysh/plot/specplot.py b/src/dysh/plot/specplot.py index 43bbb1f3..3cd0c0a1 100644 --- a/src/dysh/plot/specplot.py +++ b/src/dysh/plot/specplot.py @@ -7,6 +7,7 @@ import astropy.units as u import matplotlib.pyplot as plt import numpy as np +from astropy.utils.masked import Masked from ..coordinates import frame_to_label @@ -150,6 +151,7 @@ def plot(self, **kwargs): sf = s.flux if yunit is not None: sf = s.flux.to(yunit) + sf = Masked(sf, s.mask) self._axis.plot(sa, sf, color=this_plot_kwargs["color"], lw=lw) self._axis.set_xlim(this_plot_kwargs["xmin"], this_plot_kwargs["xmax"]) self._axis.set_ylim(this_plot_kwargs["ymin"], this_plot_kwargs["ymax"]) From 6254f648187b524f80f5ab18239625fb9acf9bee Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Thu, 24 Oct 2024 10:50:00 -0700 Subject: [PATCH 28/38] UMD Icon for posters and other documentation --- .../_static/icon/UMD_Globe_Icon_Large.png | Bin 0 -> 205360 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 docs/source/_static/icon/UMD_Globe_Icon_Large.png diff --git a/docs/source/_static/icon/UMD_Globe_Icon_Large.png b/docs/source/_static/icon/UMD_Globe_Icon_Large.png new file mode 100644 index 0000000000000000000000000000000000000000..972364cb5b1f03bb0016fdaa47ae6bd310d23c80 GIT binary patch literal 205360 zcmYgYcR1B=+&(tP%qDxUgb=d#9*1LZ$H*omB-tZ-@4Z)75RNk7?4AT}lq4|E}2@;=U3p{$DsP`;=&A-0T}{VDWrjr8L- z6>MRbd|?gf+o!J2-2CPE_FY=oAW3X4lPu^Y18OAq3)WcD5ZMJhi%GQE1?w8wINCqU z!aDPPnJC$UdcI_0JPJ8Gi=d0{!?XLEBYO1mPe6?Kix>0A;Xo|a8|IzGa_#nlk2UYH4VA{OQ~9^nU*QDnPP+ z4)?CDal!;HB{~RZjco~CDSlj`$42iocRP6aC{tY^v#Ex( z^KHGf)Q?@{lhJ6EcO$uEO&&TAknEq5kpJn~X2^RnDPAaN zCEMLh{_pnV_XOj7CK>`IrhAzdS?X*%(eCnw-Eqj7nugphgN-(apmt>Tc!PH-^8C;sd4bS!OF*@8{#Bd$>k0W1k z^~Qo%xti>=RG>Mrauhl6OWMGJ=)GoK1#Csu+=7FYsWsD7{}8k7Ope!&kMhmHnz#S* z&QgE5*?2~^n3luVj@QD5XH=$|AEg92oU!}cw{L&{x?5OS7#L9G=8kQ}$TNAx8M-5T zOLDhSj>9nP17_SGc9}mE4P<6!CWr{}XFsXYmoL^ipr2*94y`1E*W1BkrO_JZYf4mk zk5?xq!1DCu<iMToat5lx zNXDD4mQ9M;v7D#Q<|3T^RY|L?Pr6l(DX}1G%co-}rOVung}9JpPNf^1nxIQ`TOqLh zx2g57CmV=cwB5g83uSq5Y_DLVqImv0KP7^O84C4Xwhbo<+-s`AmoZ?Zj!n8>zcq1m z5dcOZ7%q5#_)c*VK-VmaYz8G|1}u1i?g0Efy^?S?K04}Bm#kn#IAxSPCKlF3i+7u; zAoj_WThdp(06hf}nzDB@hPafpv@=6J*vUhPpWGD_OB8oaIbhzM6U^`@zB1XL@jb1% zk2le(L7V%#yTt!45)<#`kCh+X)8EyU{oX+kqYL28L2$S>C921+k$?142kI;nn5yAm zV3J0Cx6aO;8{Mr4pRi

|fz8 z)bRr~IQ{2=f#!hw>MKJ0{5|g&FG4pp(W2y;V2h3m&MnTuY7}OKk2L<3rOY^PERO#< zGk}LVEKBPlp|4*C`D>ba-7Hj=v3zRBrz0XFqP(nZFh+5yg z=t{UhX}gCwot6iyL2kO_hNL*ZSeOFVJbm~qa?15kkr+39Z@o#rc)~iY=)69hH>Ud_ z*vy77`N{L3hvdD||1Ys3p2&6$)yw3J*>EIB-x{7GBLUeY472M^u@)+ z&BJ)$;(UCT+XCE<--%!t zBTn2mH+_AfbOIq@$p+Dp(@dF%5Kt*=o7!2|=ZNO7m>VcW)vKB>qzhNRt;Z1*2>h7u z|19f5n|t_^LB%H`m;wuNWyvSd8DqlY2@Z6y7x{Sa`cT0a797y|;e({WXeu<6j+VAI zU-pvPUqHxhufiTdt`uafLmnqfMi;O2Z%e_6^no8LeZh&lrDgYy*JP*cV_nb?(_KTp zA0nus3jCPf7b2!S=X{qvdndzQNrn0x0=@W&Wh@OoY!Bj_l-rko|NiZobsxI{j06n@ zxdeD?o_Bjs#jaHqs_^=EOz9UmVTB!NlXrbiz50wqHa|3j)2IEN{3`e5rNcF7#siSBxES=XptavO=K z5`gEM6w^xd2;wbwk-^xxiv-9FN%FR#m?x+01|OCB~Nt89Tk4< z(vF*Y?4hh+^#7WjrV~gUlF*eaq@<#J^6)o{PT#=9$sbjETf?4 zM)_+){i2&8+}iw4+@%@yWo)&^hjLu1G6~4O5$zow3MhiUI?950RL3VKRy8dN!qFc= zYf1X}fsh`{QZw5|BeaWuf_dxC%FC*2TMTW%FmBq@)6+?o%GQqJjt-N1qjC5Qqt8gV zjiBEND)m&y95Dv=dtdjiVu#5#h0baTk|4i?oK|hLK@XUIq2(>5E=Nf_0@YE0ha49j zRnf1?s228k;#_plBUDaK&imU;u(*pSY3i<*+*kHx4{x#@*{#L7x$>h$8RGxw(TH1# zLMpj*V#7nQX>4UsL6CIV6;D`oYF!NJDS(M#P))rvboTRWfBUS`zo7Qhs{6bY6|Zle zIE>(*lG<6eP4(q*iUZqJX`+R7GQW_}hEK;H7gZ?pRqux9&c&Nh-O26m_S~z7(B$M~ z&?6dLS^g%~vy&6Rk1rkdo`SiHeT^ifRk}p?26r`Bh@(3>*vf4j{r~83w_rYq~=bjz4kXvWx=u%dTgC|Gs5{hV`y;=yOc_j(+|1XL5y| z7zeE@Y?G4e!I)-Mg!)|9*HY-naP_SoSE;2l#vY#ad(6i$1I7=9vs*jZp?Z-u+lNuiz*O>5hfHqb-SG71}Pe7{0X98@7Wa@ z>4Bh_Y+TT{^t*|L!gyYtD7aH&q1Gr_M#N4Czur|hmMb;&eS-*k4 zN3*rF^Ou?-1{(I##b5Eh;^r+b50)90xT=C>$S(r&^aG9m0ZJGQ=&iKOUBD*nhxT`O zOB<;fb0K(>C&UE=in?TVe$|ch*IaH)Pp9Za4|&ML9Ztpcs_yF=>~qO$Y92mF-G^Dt zB8cKDpv!izQo6*NjJX;(I4KeQ!ouMU0D!fLs`KtUph1GZ11gN5PkuV0)1aAgdmEVh zz6^nQ?(I!>JMw)WO3crc0(Xd;+WPq46wtj)njCIW#m1W3e+ zMX>=zo%B+$D8J!QQ##i&-7DHO-+gEIc|UE8LiSa`DTkN`7-R((4gsycDBiUqY+&{8o6U-j&4I9zR}9 zR7SYFYfrKX?lt{d;NBvBLPH>?=i*9~7NZowC^Zg$684_jQ9Bqh}k?=jzMqhK)OQ0`3VwI`Wh)X1%m5vU?!HG~n77pp<&F$s zRWpAqnu$%CzHVvXINw0)v%x1KqI_H8ah2iu#h&(SdxJelh^jZTOrg{i}9Dw6RH7JdUp|;buj11}J^Q?lTUg?e#zb>Y$xrR={ zZBm-&9I+-MH2OZR>sph|kBZn;oUoNzf(dXP1!x@+h?2LcjmJ4zG;f$h8LIXD(TxCM z=Bt1M+?t7INWxJc>N}-h>{+f z5Z4{1U0q)GZIc3`oT@5QuKiaZE>0D?i8&(AH_YH3N#On_Y~qjr0JVgKM3`qDWdKB4 zBBTPKgf_0gV})5x4op!7sQ6-yer5LHE9!FTVJTqh0>GX;4$>?nUSHr`q(WF*e< z8F?Nn6c~tpywwF1+!0*H&NukP?r2PGD9MmBBva8q4#jy}dm=BBKB5kyq5y zoWz~tQyOhyDv+&;Njb%phRkxH!GDg^Nlv6aC@IvAbUo7J+Bmz~ph2spL_ zT zc|U*tyv?9fD(k|OI5;>MIcleiaPz9&ncTYw5G~>&f-wS_349^7?a;r=+*mLL+E4(` zBB#&#)^E&y^XupWj~0prfs_{LBZum=v`jKETXa!PfS`(Qy$A8D(J(dZZ zIK!Kj5zDUS{?P%-3U%p{-mD*}ACGf#$yC!vXj(PS_o)-=4+ZnipP#>9`D4JPq~a?9 zX6!DIT3UX~hBaIq|5`gxAzN@lx79ESVUxPgPmJ*LO5v5M<*J&+S(ht=abCEtf^>nv z!swYgU7We-3EFcRjY`~yFLi(h*l!IrC*aVAKuC}YkfmPH1jmb#nxo)6X0v@Ce>b=K z>Dscgvh}7hz2PR-^e>UITzJNpuX)=S_Z4e3nzuxkjRdOiH=HQBwPFrLqeQe2N0Uyc z9A{voqpD&U`HIsC%3?w?AV{=d>mlw33>o_RvbVR_FOb$Hg(jhaQV>i2AZQn6A0!^_ zE}|~Q(P5wUO&J_2@-C(${1yT-SX@KBGKsd&Md^%mnP!!80>%mnn1Ex;+;2^%oT z&8OLZp_&c3a12}dGpBM)GTQa}HHu2M!^3duFoeMT+#I_%H}#maaJAwlh8de!i8cp| z-HS?o`{GDhh@di(yz^DB0`!UD%KmR-o0lVP*XTGX67F6KdfVT z`fPzOd59yMkQfhh$MT0(75au{JT9LM`6|bDR%kV_Qd+dW^yFhC#bV z>rJlRc#!m>fpZ^J$GG+euO4K6tATDb;pP>tCG=3hFlu} zku%wJrLd3@gWDElknI?Mv-G-NFe%jzZXJnnZhm5fcbC^T5jYrW>+YJ?8s8%i1IMil z1)!O9`MPJDGRx%546CU}P{1cc9>wp$x43!F3=@pSWKsS40C!p)hP!w2>#Gtl#4F7I zjRs6wjCMKAnqRERYuxN}E$@y@Rl!UWb1VidY&umNl0H%@lL8%`sp>an1hMD8p=ib` zq#ZC`^B?jWD#*#@q~u)%B{)40Ur@xW`SJHGWg+$FD%nNA2cWc$X}rM4H+$&X|N0Mp z=g+f;1NzDk9rxNPp0fD7=cv_CB^zfzRvsV$<1&~=yngOJ9%l6{p^aGB>l&92G(?`E z)0*MzQ=Pk4@ZM&g4PP6cMk;xuKMHo7p>R9`f};3JKN2E$-R0JxuyKuO5C?oS` z(BIgopPCr4CO`y&J)xncWp(S@o(qo450LF5`w=P66wnSEeTWsI_c|e3HJwL zl61WEDHfz#9Z4;=gB=8Sy~IeOLI=mrPEV;P*rr1CdPt#SNpW#;mV6wNDc$a(3^X%L zdWWJ<{o>!e;Yh`kO@9+WCRe^5DqEPBmj}r79&~+kr+kBbKwoIibo^GXvRUW)k;6>D zZ0`Y}W4+#~m=FjGk_I@ci{-NIIRY}LKH!^4r!abO5dhz7O)t_TP!`C9a^mT0GWEi@i~BEMzKoI&?ya^Ow-rb;?pc+pF!l;! zt8Ex!0N}IkPW{eHVW)ILOEqTIF}NLE*9de-5DYmVP2o#Ov7;(hIqW6QTApO?6AOaK!2sVw6WKzdwtClA6HcI! zEl@dCh%S-g6YvmWk5h1N5Kgg{Ik^P8HeB8_eY0`sp>Et6_^=W!&0-T@Sp0F)<}GE%xD zhI!&j$!3UGHJ=PIgho`!sI?ZBpc$Y7bVqQ<2WuFU<2oG_K6S>r+8?#0*jijBj#9@e zK9$yka~$tzRq<;zsmp=67R*?6H>{*hs#hqlX(cGI*5b9ihKqQ6v8xHZOab`Pd=nIoVrGumKaI>KByAb)V= zZ)}o3pJLB2r~~o9%e^WVuhs&A0>y`=Mb$XK5dQ-=F77s+29lOI{n)6}~Pws`sb z``f(x2IdsMLAhgg??itXonO^5Os9wo3g82%1bRErLz`vS*6v(GZuCxD37T4#%A)X6 z`g1Q1c{ph=d+dZl{S054BZ_egXX%r4x)oGhf=?h@M6Tjz_kJ}rtifSMtv7FKRlj=* zQrGU5Qxy%!z?)tW>epzGlOg3;3AqEqAi zpbOi5wUSiR8K|I4Ej0Dla9ys!3tKHLYGGiM4cKzZ4QTva-?yIS;amr1b%1(yC>#d4u9vuWrN zkBh4Dm`_h(^TRKI#%^Y2_F7tctW6Kd_6yI^RM?V#%8@xZ&hTA^tl0|Dy4P|A?Gm-m z{_M4nHZYT5nHcv*ynr>EMSufT<%ogYMgez0FtJK!xD2eE+9S591Wr;!ts}_Oi)YLb{F9ZQ>A*AkHYM<{5S1*x1B zDDARW1-}uG`*vGd$vO2V2=fDP#QoyME7=1C5oVhUNaw&TsW*;WqRTtF{Ks%Y)QLQ0 zl$4bEUzuO6r&xomPH7LSOooAHpsl+FYW0Z<=0xTw5F$b(2h_aR;{Rp6;;5fD*2ITEAl@gh+Y08iw&jk6E~c)$bjRCX2YMM zhx>bb%n`a*XneYQ3I{obCepEgqfsvc0-c?m-Q5%FjJ3413=GnnX#(8JMU`2I9nXaY z-!z%1h=q-8O#Z6j?%^l!`WA`J!K3>5K}F@3f(p!!`v1^FJfT{DQSet4EbM7kkfFZ$ zLyEIGBDbxbf2pLp9D{^BBADUW5%*Tmidt;c=nS}0VV!pBOigfrbGBX0O}vC>Kwlbx}e@#L#4~uxcU%)Q`4w zQ~Z<^`Bh>)bG)+0V~GeN;KNvz&@-38n{bQ3HDWfHNUo;w21}Qjy;vBXHHip|lsr0V zI01%`)5$b1F0%i3p~W}EK~Qz`3aGMlJdITn-_+UQ?(eez0wwNP&!F4HJ`nxhOw9A% zO)m4{h0z+ZG3#LOy-K6;!Ul3-qz0$}jrr;Yjl0GGI7|18#-y;IY~dLm!1W+l4JbxX zg1|D5g*Zt6;Ka059-hgdUk(3J-z*{ApJ@Coo*(F&TfYm<>z~5~fFe9@Xj9atAz3>O z2!HvSV9v8oyBL!%dnV|D3F8NPx6J;UQCM;I?0AvquwJ(DO&J<#i`vMRtDsdUUr5hA z2Lj%%{@b%}__8D+a@#7UFl@ENf79e4LwUa-5F;Km$Zj@(pw~YG*57JqY0d3^3(XEX zzX^O~774asoRH~Oi1sOTGG*$Ja&X{>za%g`+=9E3PTHS?)39UfV@|hS*xsA+ z5>#RkK4Bt{@lc1f$MbnH=^#c6sWiDMF-agn=tO`P=)+yTyqYGl4le@mSKOwxNQiJf zrH{|N0YePm!!`-}y$9y}4BO}$6al)rx}x6`<&k|_d{xj)*! zfcwY0zWcYePsKc0sM6=QVB6Aj)+f*VUz#mgaiwz6;61}O3J-I`Xi>jM6Qy%lIPmwdVkQb0E<Zk{R5JPUE!9ZCjBtmjg2N^h+4#QktH)k!O!a?O!E7@6)+<1GAft!N8qan9du%8HbvWZtOV z&_q?LrpyX2QL0=kUaKa`H169CMI;+XT=16aOFle2+=}k zn071SR-Og-5@Uaq8hTZ@;HdTzy-vZ+X@Xds5y}oX71nxpRbJ zC{r~aV;={C)N?pUMji8K%=)$qBM@p7qK?y8U zC@iECDqgEM%A|=Nsh5bzR=cW?=%K;O?;ACy*6pb?1pWoV+Hf*oJ z$7I@Rls}^se3v%TfT&|Ps`h`(oU7Hex;H^8*Gk6Pw#t22-+M~(pOb0QVqjokV_JEw zTB-`0F24K+<`m~!>6e{*XjQykhwQZ%Tvw4;7(zmFjz$_0y*et>cD9X%B6u&~+{W0F z2l=4^^)>_Qw?0*D2KxpS=Gmjgma2!%Ukqr29%2EFR@ROG`=`2lW+D=5Wc??oP&k@) z1nTs+Kis0$LamneUrwJjuNIy{qdSa}yS}lL>{d#W> zxS@W-eN0Tu64z99Hg9jCu&boOH_8;e)=YHiBk*zN90f}i6zYdR9A9BP;GB2XcMD4v zf?x>YOC;|UD$b#T$v(jW2j&apNJrFM02G04Oduz-=%Hp51eL)&o;S*5KaN0>Hcb+7*)Y5~@_Y8!ouG$BEq;#Z@8|ME%jY{%>l5Q5N^%gok70NV9NmdoB~ zcnGj#g};S_uH3ljkU+2 z8iuJZj*oX})zL3>}LGt7JYpw^tmhmpwmeqN5?_`n| zp*oK`PmeUKjiaDLnJfq>G}BK;opZ)w7^+iV$V|h zsUTQtj*X^0=Jovfl(EcX$=Xm*H>=d+q9Fi?yWlK*@PywY)rfQ&c%6!o4oe%NDEUD; z+sb}NBz~7wVd5X1|MeCBq}jmvP%OWnXNgIVH9cq(_;!Fgl-m9Pl^awQ^|O zZ4#A3!NZM5hXr2dGh~n{?IpbC_rm2D!^Bg&eG}~cc8!czz`%Np2Kd2zJmm9~j?T==f{mXIA_PFWg!lF0zP@T9 zzy`46K!srQC=mi_4$Cv8>2W}3>Rh);nbhGa!Jfl~(xfn#zldR(chr5XCgdE`3HvQp!T5e!WDVch@T7~b^kz3P*tnm9{TvYpQ+Zg9-NPiRB zNXQ=~NG3JZA-ZSygiwJLnicA`E_lBX)DfCcFoa}gs9-ttg8cli|3V>NNQA+Is8x~v z^T|!k{88bd9R)U6`IOP(V?ysm^uAB`4P{yk;IAtU3n?inwOM@9IY~j8`gs4qcPT)F z2nEs}R)2BND_ZPzo~muV5a7h)>_8IWgRGaTxv(kaYq2FG1t=S!KLZtQhCJibv3)NvLkQMm+W>i`n00y!|FmWSmH zKp|Y8ovn(0x-5)h_4masP!WZBLUZ0yLN7Hy8pTJcr&_qZzYppr;H+wMKp>u$2O$Cd zY~PsUZMaFNYZze`y@QXVfi{C78H5~t81Q*h6+?pBhBiFS>kWF^mw3}-x{~ModK!!| zZp8!ytgWR)Gu2N|PC#u9Y1Za;aCSn4d{Jc}0!dC5yHe_WkByePGp-!$aeY9 zkdX~)YU-@KyfPf=SvoI}?=b;A{*w(W@COs)v@U`=8Evd$b@<`L+b9814aojZwy2gCGm~l4O1P7u+eghBny=&HSVweHU>-(^ck-Cl>*O8<>y^Rd9SV?2`x9K<<1>23+m}nJGu| z_vz`C=xteVpv){m$}iu}a_s=QsuDG*Jw#}a>o+$qFzhLQF2bBu6wCd+vvcn}sEtC< zs#MX4h9F{WtM~=#8XlwoB~$(LzK_#&X&J?PrymBC8X#D$heST53E3rsI1my`Ln@va z(oX@HEA`13+w%AG69mWMq+jxlW~K;D-0kfx@Dt2(ql2I-ecz#(u^ukMV1Z9h#!M&= zB?99NIt4MYKofY*qtE!kaH>xEYq{X0?Vef0Ctu^rP+njox06uc-U;yZ?Ck7-54orw z6|^-pP)^5E{2P=zfkFf^0on6*p-6J#GDSBb2C_)a+ZMk8(=iR{$(^Q#CkSXiC{pvL z%Q5jnqzOUQ9N4g9E&!rD(1z~rlop`JH&k5K$x4)b4rKy)>nOlN>8|@>>k#hm11ZpCUf3@}nxsK3+mNRWmVi+Lm45c77@HKiB`^V81nIi+ ziPk|+`SCGBxV(c%T6jjYAW7D+e&D%2@(4(9C}Y*L-cJ zyrj^?wohGH$kQhbHW#FvVL%Aj_s=)E5|zi9O+Dna-$S#4H4IPW1gU{Gklct>rme1} z#h$DpaM`@WgA0K`ixd;Wej0gqbG*$N02rEiWwlC1okE6HAc^#7`1TU9bZGRT{yN6C zzta25uvdkHof|W^w-Hy);6w)nN~$`?eFO?&BSF-_+OZ`Vf$D~yvHoy$<4+4pb4Uu( z!}mi&pFyIZ?2k>ArKCL^RQPPW^ku?DGS>jqs5hR$L893n4B~<_J970li$w;5J4B8_ zxmC3-S~_Apl#zsq63_RqsK(>L_F#?sqff})0h-c zkgH5OyRl&l%tiwFk;l?pfh6A-7u9$xo@yqvO&xE;9V38C)fxLYH58$mq`~aHd;wYd2sd53yMAKxoy0u+)tO z%uV?BY^6^#2N|2^oj*+dCwY_k#t40zS0PIFg-L z>wLFKxW~K%)(~hf99Pq9E1q6nde>|q|L$+FI-vLHap%gq zxjn=e`Yiye$~OC@1ED3n2FE|tN@0{@RwB_RLmyKDKU&;t4E2#6kOE2Ya~45~=m#WU z$RVUC;PSzbi9atTSHR_o((+{hFC3%-8*PozwxApX>_{-&#H?bFG5{5h3(hg9XMG~$ zUJpDw)K17t4D1*ZHBV>A8dW6omDnQd3PzN)hCppco{8~MMsO5qlUx?rk_S-@n-f=R z(SYBpS5m5akOFKlg$dVQCG6Uze|7wROf(KJtzOn_RVW{6;?*>!mq?bCJw^R=90?Fg z78qEi(YCELs_Qbq5h-PaZx7&cN0JIWSD?tH`_N{p83%Utd<5c4fjkC86{(`)jFTuA zkTOki?iLE6NlXlN>bAsJF7A{6^P&i}V66P+@51OGQ-eTamNs`Ex)H+{4MGlH*jrj_ zOO(4(Fp-)#9sBckSdP`rHYvtn3z$Y|S{Y$2<6H@UQPz{D?Q0O23)!Q&RT3F`=#fdMl1u8k*h2Zr^Ss=bc7_j_~LEHqPMVTddVmvQcnNg}T882Lq%k~mx z4apz`=LDM(v=n4?^)iy3Iu>A(VEz~=E8@ggJ>>$V1eC&0$@mD2i^7#(r_n$t?}0b; z|h+X`cO z620IPep+g3m}A79$X(t9$cP?>i){)U19)G08AikjOe=`rRSd9#W^%|TQX+8+zBU1= z9~fRrl@P;TtTsmpu%P9S8PrG?-~g)*#L|KE9_Qe{O1Y8~HsFe1QU8p=f=rXJ$vJBEBcRW}Vy6hT1um(C-3k1r~Z;|ggf(voexU^WZXI!&KMsA(3NE7ngN{Ob;Q7t1GRsddG5$PA5S#%8efl1%3KdKNl0uAVhT`%>XV>aLvdD8v}PO#66@AXjS{jbS&xJ;{NfM zG+pbd24XhIzf7C;cGqDCHLH4Yx1egw3Z4lxm!6vz`$z}o*MLEh6S$dT|B&+`(COj%M{oI_KH}Xv2Sc5xFrdDDYkHq^T491_4SJFd*j9&x$Ea_Vaaa3rI z1eil?@+F|JX>;iDeF8`8=JVc(H3B(4RjYd-P}zp*A@cHw4z*7+#MIjAH zkUH2Z1$Y8$EDyK~lfcE~ufoU|NkeO5q#3%G`$Ky3?!F=kup>yo{S3klfC*f$;Y&h3 zrcDGQh<2p02MB7PX&?;9`$8O;)WOKVNk@RK3T{iQmV%_R$|4lG2}+SBP-sXv1M-1! zc98QBN9om?_h2Dc5DMmCJJCzbWyy!q;qGEPB=^3tqh7r*pK=nzX0&x`A*HFo`*!|h+chLY8W0~1}AGfO|3+MCRE+TqusLX4MwsYV!p zs+nFTpb*$4(1M3W6WiV0kgNH%1D0f!5T8CEZh-{mE8RF~kztNZwDw7kh=;Y0Yu?S_ z`N0~yRvtns8UJllQ_135t8pzpK7LrfiLvpwvDjFA`x>*6K*_6LjqZggKNNfZMuU1? z`BW4m286>76ZHC$@lMUC^_*KfcrO!zyFGZfMUTO)p$toFaN*N)d)(^sxs{d2!8iU( zD-VxEi78xFd9#V}am!}oorp~#Cu-{Z56aOVFDxv~*0~HgqZANFhZ-;d;6Pq~4l)Ow zH?MCMeEP|*aYAmofE{E42+1q_Tx>K*!qB_50sF&8VHuHOVHlUspFUNYu|NAx;qzsb zj`QYbX=3i|gIB@dmCQ_LFW+N1U7NMS-iY{o(`O@_xUI)at`b+MFA40{q62$E-=uAB z&d#Ql32FFb<4@s1Vt)ON1~o`QQ>;6LF2MC{%bD8YF!;(@`jq!mQxh6}kZuPbodQJUH*9X788$2k_ztz1um1@~Pm~{EmzW-U* zuP<@_XiV~CW$0yu*jK~%eHUpIryqQNV{T10G&j2}t6inf3f8y%4Sp2=CHLCz+CEB( z(6#eb(MEV{i%&?_Z zJDUCQ;q{W&{LF9_B~MRiX&M6&+H@`dXIk^uzX&0qENA&u$)+@o3UHddEIWxO2L&a< z5H?*_!&ywV`5#~Be0}B!_9hcUBJ2t112$5&|4tUp7dIaF7JnS-ygnTHwCK9@{viB$ zr;Dr4hrM7SEW*v%mIoW2^=7*A$6f0us_laqj>qvjS2CevBqs79|hu;(*eJwS9RS!J!-`NU}OWS;q-tzG( zPI16C!2Y@C?)*ku@xZBgm*C^))+^lXjaTWOF}8Z)v3t~CMd4HBRxVCc7!)n=HMNn2)0VO_HqsOHvQXwu)IZ>^ zGB`x@1@^!^WC_MQ`wtag2HXu{{PLY5KkJE~`&r)BgAw-p`NroyKDXbm=#q~2>HYpa zuy3mO$Z6f=Ssc2U4`Gj|H8d6Zdwg^>Z;;j^b@F+@u&-|;J%^a>>yCqG-byFz&7>#a z$Aiq5d(X9u*w1L&&ThR9@>V?d;q>oopMjOFZN1?&WcL42H1=w3&}K1@=k}X!M_%D8 zEku6aZS})6I`boZH}P^5W1UT^&n;IDZ#!C+d^A2d z-MGcPdbL7gB1KE};O6hEf7cYhw!+@|+uxo@jZ~v;)jNInd~xOf+tqZ1b5k8xU-exx z%&|R(Yv1EFWHyb<H9sOKe>+G|Wdd*cT7Z*6ud0|cdijgy{&CT8}{)?IRc~QX>-R_Zi_1(CDEdt!aL?3<( z0>2+e)=3|7fX|#r{4KtDYZ;4#ZG}lh) zSD$q64de$}1&+lGm@jplH(GqynSXifH?sd&SVXwR%*Sd(bxB@sN0M;;p|9P_$R=#dSOSka zi#=N>x3PLGSwHU7Jj)Um z?T?|r*!cOtz6*n&qMHbe_V3jVD8B=82N)yXbvKDabfRkMcKykV-%K(GToAoZm7|Md zCA+PyEsA(rl46Zt-!J}7Pp^MSKcyGR_;*YA>hoFY^X1?ByW-EL+Vls)FGil^KVWg7 z$&qB$62JQN&gBWkaJc6G5cL&qRejIbh$1D@pwftRNFyE6-OZ(x2I;;Cf^>I>ba%t0 zySuyV(hc`Le7?WudCy<4=j^>_)~uN|TgOT9VjI7v#7lZInfQ2y6P(8TtABHJz79I1 z9`)e^wEnt~$DL!j;>u6e0H^!mu5*-+DZ@5K3YUBuMQm~h&1x33Xm@dZUTA}o$R=II z+Dq(Z%*@()d&p zV2Hq{P;zVl#23JS!1C_%aSI^+E&>!2doo4*FIdI#@bC&}k`s8`OrgO%&d?RU8XK7R zpUIn*o3E>!t(yx)rTeXGF&q`(=kpPh;u+4gZbUr+GE#XRSF^z!{92H!?coAPQQI>W zy3To@ocjT%yEL6b@y7jOEjat;F^w(_<96tJw+VKiUdSfcvMb^YJ6;ordj{_u!c5Na zvAX8toSPPGE;(9`lQ@fzgXU-lJCeE&ZM6H7}o zGc)4`;)O_KWQHAdI*j=9cICiiBfuHA=T9ZY0Bu$q7k4rONG}+|Dls*c$1dofp)eH~ zpR)owO|&@*Uo27c&&Cpq0@SUhtyj2oZ3ubP1+EKbXB5*deq}-%V<-Furbrm$6 zwH4?i%v^h%1A^tcZS?bzG+%`sCYLs3OHGNG&&CNn6{V{zFRuCvoVB|1YhKHX!=6Ap zUgrdoozvyEx{I>vbt?|io!?TUIAV;a=|_hN-90RU4LmL4%esM4J_#41O;@{mP9p3E zsxWG_iMqQdFI$TkVP?=3{#6GONK>{T4GMRW2zND^4u?w2v(B1Cl0XZs7T1Bg;!rP#{n*zj z=e{a_0BK0#k+&Tr+f)cEeK5{}Forxi?0}x5joxWnFD*Geg$}Dj zlq3B`at>P^^j9mWy!am0J`}aPYK181HtP?FUhGJB8wazovkTS2-3!UMAbg}XK3=Oq zd4U6CJpZZ9{YS&tzMK>IWQ2Z$lj_HAa_0A-Eir-?q4QVka!m>)0Fhs>VZPO@v%k)f zSi{D>V90*fjkeq9q4e(3Nc_ZeD^#R$M{1BqrzBo)&f_@NBp{M1;16r+jg^3UvoM)t zc0{(aN-S-HmhENJXX(jc!hZ|(wz`8egNv)178+jO66?R^JGh>2J6Tts3@Y?1?xVB1 zQ47pI7fYC2>;xxsg7j*HsfN>AXwtFR=7%pR6#WwbA`vrA`2 z6A=&q6%@8Nuk>+y!$`cIP7lSy2z51da9nzZiTJ7?3RaK6CwF=2!vn~v)P30T++iSa z`-*BJQ8zB*AT5s9?ekx0ChpDiV67&OpyM~pb+>WHqs~u9k)JzaS+)akfbmGoN(i=w z=ZTM}0_h&Ef8Fzwm&0ZVN-eIM<8ACCDMuflVBa1#VR|D>jKL9oaMkS8hG3Ul;(8> zhz!5-M3X#kRGiU#`?ESWKGD2AaecEiJ$1#AvolI-VY=Ve`Y7PF-<9_IONXz{S(Ziv zhM5n$wNBm6L@9e}@{Ep~pI}kM#lRWPvEjQwzTvZh)u;7LB(OcA`rDkXXNMO5=*5N1X3j7oC)ug9UP#-?dj80?b@iHHSHs4Im;Z%ZtZ~6+@@}__* z#>hPll%`Fs%GkAsZy1Am_6i^EI*vV_Cy8mEo?g3Lj+}_diA@k8N%523OPQ(9+Y{)v zP2*~EH&0UMBDStbOZno5_CP)z_X#UybX0CpF z6-!`~>xk*mag|6NR$DzC@O3fm@L3{Y_YnN}RHnlyT{4)?UB+rw+W~d3ROo z`6KP#N4S6Mxek0}&vdj{r_NW9m5?)^_<8k%mWxB3Qgrs2hxS8Bn%XE4yb#_%65op% z?$-rI?s;Lyb1f+#6}5&4oL}ux-?f&sXLOuYbD~m!eBR2+$|QB#+b~5?Rl@}#@t5%% zL$?275%MzBt*E076I_V`I15TP*NeMO|2zOr(5Yqsv34)eN?`S3X)D}|g)+|`akF%> zWw!B1do}4$3)b8x`(7rUaMAYC#7LYZnQPkka^a*#yUY~w>$6GDZ(aAY+wJc~Q|34b zrNDIqy&1s*@hH=z`bgrc>o^AAj^Yo68!eIycs=n*H;5wS$sRT}Em~ieHavck)b6hi z08?on%~#zP@%b#g3AZDYtTkO|Zq0cJ+8K`L)OB*q8D-<-T(mkI;d6eC_o6t6pcV8a zgS>gIOqVro`s7eA2w;Z~s>;0YTkfZ@dB7JgJ9i|Hr{Fu#jsG)GozB9q;V+t!`&b1; z;+k2#x}4hXE4DlAHXvXW(owX_mx=ZDRPAhzE9%@T`^jFI{-D403ge|{ER3z`*Nh3o z7VoAG(1>)?6AhEx-IUQk>R8JDi2N(PDYm$v-7>6gZMrnp&mj3LL2?j4L+P#_>;1jq ze63A|Z$4+}sKhc95`Utz9N(}*H4Z4h#8BCIp)LVN7NJ3BWZz+6iUws$z8nrI&DU7Sy8gv8$_6+$q1#yhP}Oy5 zH8ZJ)Aql!JgPuH$&$Bi*@z_}B?j()J*w8^M>i9FVC~q%t5n-y2%jqt<<5~7mi-9kp zmz(yp#VYq*B@23(;b!htkMv?Gq~b2gnI=n0f+Z#F*hM4zCt0yhUpxblnSd^4P#3ND z3RFU>Dk^M`7o6DmUTEI}__o!!->cAYv42+z99U>Vf-Sa3w`Z>(&{1$Q%hR~ZZ~Umh zcZaD)5b%A4mHfbCqqB~?>ZoI~HMnUGC*06>ef?Oxx0dJ|cOAV_CI;g>Thi6L&I+`p z2I7#B5n0&ju8mi(cJG(eKH6v3%Y!}jEhlV`lRJEzM09(B$GQeYa0A;gNr*yVPiXB- za;bIG9Us~u&ld?|@*xW5^vFWZd@Aj7!xVT`1|W|b;WA=i1NsVHyzzVl$Uc+)YH};< zFPae0XYv%of^e@+{r=efXuLPA5xUOzi4Lcz*$q$ZY$~n05SVvxLVWbP=~~ZrwQSbo zvu)W>^!;a;Zu;r5?xNcqc}0Z;Gy3t;eXrLyT9^+%OdDKaSo4L2ll9`*3pX8|e0tiZ zC6e%}NUO!!p87qx0L`hlUqw1&SUBozRRoQ80D6sS!+Ht)KG_&Ous$Fr?vUZ2prNA! zdaTZMpai5>7O!J?o)esG6YR|abVOZ6EN6I%L;#U=Hta7x=Esa$6w%I#f`-@Oyp^7- zbG7OxEdnK>!ixQ)UM>&g%S`mOb(+?#Zn|bUGLaqMnE^Y_{`eQe&i)`8r>UFl<}y9| z9TM5#7OkmpPvPq=dIZA^L`#ba3$o~`ZlFB(EjB1uh>-@62m+g$x@y} zRUi2VF4q_A1?Icazuy{UB}6Q%w;Tts?10Je+9YJ_%OafqZynpNZ-TFVD50F{uCyw8O|F8KI*1QPkfqjKA9BE#K8Cj zc%P+K`;)QDiW2qWmW>Uy$OYe15Xnlz)k?+3#4FMdUW6`CDi3A)1mSE`rMQ0=Cd+sI zgwBKLH906ffq8XAAMeh9D9{BBtN+rp~7^u;t34-%S^AEfHVm+1NPy50TDm%qSu z-7>`sC75LgUDZl`VaNaw*Gs4i5vPo{ZCd^TqaZ{RI&q-JiBd^5Ff|R}V19}iut6dh zE6I??MtT#}3o`%y77m_}+u?R>ebx^*=ye(I)mkk(?D=2s4<~|>LIoAa{W?B&0Uj?q zEA7o1^;*^CY&Vte0SIt{k|bIm4_A2^y}oLG?RHE~SJ|3)9Of*GAz96=RZ+yC-vK8k z#iwGCuMKlrSJy0iI3CJE&8V@B$vDfi4nXlHCU_(y$w0zJbxjyyD~DwqT<9t9$Buf5 z_ENh560JX$96%?Su9`K*MI3*0e?%R90hS40{bUdhHEzCy)I**D6T!5SfUf#)tt!rR z0hcv}9P598=62|rme0UztG}D%ac|eIHTdehzQ5*|=FPK`$g^e(mf9Y zPw_DMWa_7XKIDGe4qv-JTKVJ7FLIJJU!#KVD}2-+>zJDJL;fnv(|>F5T0QD>4nKCe zrcj6Tk#L4w#hqLyyCpF~)RLw$BkTaQxj&Bx)xGWZZH`u8nG)8hGPSm@U7SgEKY2^< z1{ege{hwW@HmZs(YUF+Sh0Kj~GyePU5Z=a`tb;Qj+j!k4k;2ze;g zZe@F9x7wLIAAfwD8{Hw6sH)AS{m3j!U}drDY;riQH@M(P?w&xKuR}jNGQ@YJ7$vt`rp-yax&#Q@un4@~0#G>?R-S-+>?(Jpbf z?2?5fhsQ=@ z{K_?OBw30Sn{UF>c&zy^7NjW`we@zDso#${gdOujP4+#L8MzLD2!bDs;{gzuo&HYN zq2bh&N-0XOPCRz01dJQ@miVNOe>tre^YCYC1fujnSM6_hVYB6ihQ3^bTV26TVIDU; zy**WrSi0xuN9iRuRuU!bCH^R@g7 z*9hZp<-H+&;=QhZ@D>jrFgs|MQe3hfw%9Gk&Y=hD%udHG8<8>=mqq_(L3LN7PbRt* zX83iy73M{G*Lrs)<3<8^^PMQ~p{tMc5ByGt9Gc;GQP{W1Hmy(Ys}Rt6C&(nNi37noB0dP=RTc*um z!p7c`(;3$FvWq|fYF#q3b7oC^=WH%!mf2efRM{4~x;p6~WC0(>o?i#}UJ(v&U;M!4 zlZ(yjI&s}k1 zB_p+bGSz@}{nMA^d$3uOcu*&up3#VGy(yax{|7@gfV3MPU>48MAjWO{91lOdB+)-D zIop)Z^YAY)8Ym4Bi2%j`0h#@CbpO{pt>;p%dk|3UimI}j$$En#OiaDI9w{R)q0~G4HSGz_OtV@u#8AlZas|J?; zu#YxgMuAImF#7y*<`y|xmGO3z$A<@Y@|raZZ%uHWn(4&~*G@aP5AnC+>Xw}*7kKz7 zB+J+07}RL+0qRX0auIt6GR}sAJ`QJ@GY4NgU&YA2GqbklzgfDBx`}iBO#qsX!<7r!~O2Lu6pRVPJxk21qCpinU`3Dw1AJ&A9je1iOKPp6UP~Y$C7@ z-d!Y#rl_T`=1`dJfO+JkcG}B z`)T&z8Rv!t>-vWM$|CjfMX88x1pJh61U$e5fbr0$b^L&N+Olnuv4@xQ$>-}qrXR|h zNXDn`f-vGLd5!b^?QRe*m_|IC`u)F%e+okkX;-Hss9v{i(%ooWFDGX`Dg?dY{JXcm zlirgv2&`lq*-;sFIqnr+El09}8-jlWTDU+&FW}UE%YRiN|Nha6AqRy&N9eC_#R0Ze zUHxn;^oD@bk`@D5PfHT5ctJ-Z;OmxTfm$*8kXKOmg4eBN^0 zbgI~o!wi_zfJs>i^ zlBWZRfFeD)j@R-G1S!RFTPhs=+xeT#f&w~7fy1A0crU`{2W8KB)`j{R?&=Aprj4Kr2tS!#wcP82K^38gao7u;hh+MixI20h*t`ljjnm-F@Lu{Ei)S zzF_fy4&nDa-|C+bNG%jQ+xd#pGdFqS1?#6HT;{t6e3ERb9~~zjgLtMsc{h452M&r7 z&TWUuJ-^4KQ{s8oe%TyO6YQw0*Q+ot9X5aSlxC7l9`#*QMfQnW0{6y4g`q&WO-@sW z%D!_|b)D`knH1vHhTyU|-&$za`n%8o=SPn321xG2>(Dd2gbtTx#a(=qO2D#V&*4sn z-_?g1NDt-fij?Af04PAS1lh)$b=pop$s4`&o1Kz<8WSwU&^Lpv{P8+B8$b7Hyziz( zOhd*)Bj7GF$5vus_U21%Osx}$c{r$xm-knvA6(A!RgO#gpi~egYHx49i$D;G3pD0M z(7qs@$ieNtUSMb|E+kMB)k=ziYd{cF_LNfH!^wJ8nkk+kalZUCg#AV^vp}5L|0f6d zis~8)JB57loCWyd>8hOVRCRtb<;?Qp>g(Hfk(o*cVaRD>t2>bBil|CR1xKIdOUVwsnjYJ=<*8|s}9o`t&&lNG*CF%b8FBLzTE^n&hBKpV;3 zE+rjtV!!c{bzQcs!guUuGEPEnkF~W-Y$~}JUR*V)pRLa=+t|@L+QSS^ytiATUJnrQ zFP`eKUTEu6Qer9E=%5OikqD z@XbN&kSvEHkkiVJJJxus!h-*5p2Xs7>Qo%;OgYS$f^PWpyARlbj^wN*w{D{E;MLn6hmy`#I_ZH&@i^ELCd^(Vbsw2cP_4H`%uf zi3FV1kCWkg3@L|X3cee|t##W41LO#p_sXlV`m1iKA2i*pO}`2;_d&3h#*?S?r_t8% zB=F*B;q^zEwZc6VL>cCmUNB0}M4_>3NT_sPOoP;|sPy!5U>qmhw-4(pO zii~FhzI-a-)-W5ohpiJW4Lm9~nv@ zQ#+^~%kASQrOrZ*G+b>3awn6)+t;}FZYk#lpX6L8?SqMK1Z>B5TN7~ZbZdAlWYOBlS`+e@|7aS4RpJo6HnJyk}uaq-SNt_ED}c$|W4uI}G=35mUw{uW}-wFJI4 zUq^vfj*`@tVUd7^sMaj;bd!d)x256t(7^$(2W?{$)c4rC@ZVjpl-{;}{Cqr?x}!i` zA$mOD`Q;++gQIG8o?$!vEqi5oB3*WO+ip&fbyuiTLA4`a1)TmXcyGbqw1T9sg3Y)? zeq!iP?0hkrO#o(KsnD*U!AXq2Q8KNIrX=YGEZDebLTJg{M)&&rTx}OTjJ@o<>dE~1 zo`01Imey9Zgp5F*-4^#W*>eppq{7O}u&ZgS-Q9B5t(YGyU1uFed){7TOw|IdVTz6I z%?^R1O-h}&F8+qm)_1@c=D0W1noe{z9&(HOVCnVwLEH3R*?3Z1$1n1}Cz4l4O5aMG zrer8)zlr*qfY7KOVB(SwTQd#b%5_;9zCK=TFGv4BGrVcPeRF-hJ=@#XUD$xLxcmL; zwJFMXadBX>q%ejor;34rVtdJ=qoZS7r{^()xTYURzj!u&a@!{%^ zK^<-lsqTl~>2)sSA}Hg_G9;-BI{HG?0R-yM6BFoZV*R}U9`oTpxVRLb%wq&6Zv-tr z^Ci{Z?~@L^g&B&&`>#boBb)KRPf?ljucfwET1WZTZ_eHK5G#7{C_T;2ifL-_ZRUBy zTM`j0$}o6C{BAax;L72E=Sc){Nh1cSfmU4(j@o&|1(l*{MMXuncw`~AS4tRP3P!Lk z>NG`AvdR!!5ylhX!;?Oaf0_NHR8ER>Rb-*NN0L|)?Nv^MX>^JzKjKywK|6_P*fXi@ z%BOBwyimOjLR^a3!%x4z{v+%~;yXpLw=ZBSO<5A2Q0MaJPdXo228zrNnu{xfn+sKf z8|0|Ke#YT=9Ubb2d8X zfCD3qA8cR#@FpMrO=U}ndV$Iw4X>`XLAWQMKIk3WI2&02rC^Ylgu$)6PW1@4c`kc4 zM&?K5vFz&%e;mW0b2pKq^g8G7-Z-ALWEYek?>Kf@V@i>n4BLSu&tBoVqq!to1o}-~6r2e}}29 zuWdPoQpw6S-q-PSNp{ubuNDQ0H?V$;-iB(;PoZx;l^CM?JCaejv0v71SesC%CL<$b zXIFW;{H2`fU96O-qZ!6`Y*GZ2Y|?wTwZi;D&RmViT0h_hn~NDRW^h*DUr6NTKr(zfK`7O~;Z>ph1IoFR9z_Wx=J_8AO987Lf{Nt>Bbl^ag36PT|QIXm5;$DJD{#!SygtrxMidAQV z4=s%PGb>7Pix+WVLS2f`MCi7?iVKD;o-e#|gHb5WSJ_7w)5o#T*Ke`$7Ba&ElFQp^ zth=5X|>+X2aYQKEsjK6t)RWZKpA$aEbUP z)OS^ck#!AVZdyxit>}3+-ityEBj<5`BOra3r;dt_u0a0!4|J;`k*SccQV8_;>*Ku~ zeuWk+;KRlqA4FZE6)I3snqO-OQbp=3jS$vq6<4X8SBdsRqPhGVN9XLMQSN~KS)zSp zyt7yY--0~fqM<3**1--KE{z@w<#3Rl@Jk!m%F)KQLY?CW>~)tqy<(^k=>;CHTE=7WPO(c?~$pap|Jz z+`K#^WpQ_G6s4b-BqSsR1gKSNz#orjqGM;rCBPVGm&2- z9s10hEbJdp`}jky4sO^M5g>uBA4Q{kr*x?GCkZI8+kD2qoFdV~zkVGPq=1RE)iYtr zHn;R4`S5&iyIqc%nR)IKcgR}^2nE&*$#*Qpu`w|?BqU6278T{#m@FEvz9A{85Mtw& zmjA`U3j8r8voYa(+}f%PkrnsFAsnXuG-2}hIV^6i(?>ZQyxd?U5+;~8>}-TVw08Lx^`o^nIp1}gz#_kGWVhw)7E!QS;>!=;1&+TNdN{Lw^;uj} z%fC|ZRGB&W;4_bOtEQM^3+0ZdG1X_(*53%(>Np|CneFgSpn}0G)39L+};~A?W@Jri9gk-7Iclrua5?!;LYcML8@}> z1#J#bZw2ywZfKBkOZ11Cj@V3u6GJ3@JRbc8b{{qf$OqaI=@UhTh9s0HZI-0uE>h^JD={0H3SjXX*f77dhhoB`|M)r{UP<-x3d*sbAW`@86HrRk= z?G;`gER&r+F;8%0viUL8PN#jNzDA93+LK#wGHNI_-ifclw+?$_b2ho5&C7S@)iu6sh0n;E9=v>%eGxO7Yr zCU?$w3dmElF^B2)P&Wx=wzZbSFU;k3-LCi6K4NV=>7)1a9aEIxIyRUTjuc)U)@trL z)%4Tr;AlkTvd2p0lt5b$e|t&EJzwZ%|#fU}|P%8K^-;tA@4Yz?XuRUA3OwC9`=8e-$AiGVVA&4S# zczu(4E*tFQ5xkmm3CryQ?bR-Q^%&D zfAGJ06aTPZxd+=rK+sF^SP4s0}pAWm>0*4JWg{jnGPVi#lwwZhxCA z&*w~_k-s}m#i!&WLg}O{A9x^t1pq^gsi(&=24$ke!l1@rf~32{69AKPo0Npvqnud6 zvybJfGS^T(&L<2DyZlB7rlmKgpWTle;yC)&`vwImNk{+BUnpw}yrEchlDdWw5UEQo zw>JhL@{awQAdTbDkrX-o%UMK5!aBF&v69{Xq^5zvK_jh_ubn;KFMB3TI8)*Mfq=Q)^Luw8J8l;$XK>Yu+&JNI;8FLi2&L2joyYdhN5PBitn$aq5@nZ(lws zZfs29G;#ViQ$B>1m37+O@#i0m5&_Z~%9m~P^h5L7>-ClfVW<8omD_&Eu%L_`4v_(n66#%gg-4fCwL>F!U@SmpI$pqV-A_#sQq% zT`ib(hnqq0HD6wNUdLk=C~|3Xr5SBsgqw3tB%%h^9XghwZ@(R8owcMM9g98uV%7-w+V%9pwv?k7grVq>Gs}IgxsczoG z(Bm`L$>rI^#cM;*`2n%p-`@Ph`T;s^EB=MM;IdoIq`$ttrH{GNc^tcnNC>$ex_iYq zt3dQe@>k{xkYy{OqT}?4(3hcI@zA|mZq8x6q1=G#Pq!a0bkoetbEir$av7oqE@?ma z_ond?*R*OVsaoo(*7Bw@gY*$TjfK(^zNHVLoWdc)XoIJaDVRRU&!=`r%mXG#R-je( zqC0ApaD4mrjh%fu7l>4$uK|nNHNt7vnn-_wdQ=Q(tjj7TPQ6QPx(zGdd{o*)V^BZY zOK4^j`Q9fy@Lp+*sYD*M&-}0}9Ne6zb2-^eNh8ozjm(yEc%Emhj@a z&B4mPzw|E$N=KL&g$b~KPXRtHi#GJL2Y9Q@W#u>h33_N2mg}&4*5|TTdG20d97w!< zE_DTSbWz{PN6BN%o(|$RAGVF3gBheq`mgNh-ag_^(*CW58 z7wkx^0p{^M*rHel0c3fwYzUEu;{UKs1`ReIUR+`#vc1hqHp>(C0E`2cd2Q7ZfSeUc z36(N4OYH8sFUP6F)9M;AMxps?^=-jfSh(ekgP7++Z(bFEW4QpH_qx`_gY3K;XX3A+ zeuf{A(z7vTzrfG?aStH+lsUjyQXiIrHpT9g>>ti0P!_C1Fw{xI>g7&gEpf3~@fcQKs-d`}8 zR0$UkZySG!roBM@fL7MEW-S>tP(D!@Ap@4dfyO zSy)(@lcLV%bCaRHq}MmdVRAGR_xS#6o8w%l$l_bGly1uJZ#ttrO2{ow`Gxp)uf=ek zC_Wkce;BN}mo1{JHO@jTU$Z55ga#Sg9*#98Cq>;=S&ZU-)v{5pp*q!74US)_p4Yv_ z>xAq#A{1ei#RNzCVf;q;7m%#-ik{n1B}kCepN^K+{N`l2S)BklfWzKImXboW$q*v= z5;)-Mu#2n*rj`g4O`BV4uzCG7SD=dSS5j7X4fKC!{+9geHXmI&bJ?2qF7oqBN+Wes zQ8hv>ya>LPIt1So9lxUa`s7Mscv87}-S)-;Ph8--%{CeJf#@Khj*9zR%?r78@D1I; zIyi;Ohc!9F**~#~(Qu^W%ExU1!H3r6-v=~5O*qt(t&W>Sy~+w@C`L4kuI4~T&@ok{ zyi_l}2Ql>1ZF^olYrybGL5s%%xr5&@>egVNkM5Ez&nwhIIK1aFw3`EL(GSwyR*Thd zy)Ys^`<1Nk>r!YSCHGQNQ0TLx9!OObIO^ySPU{6!{&(G8{rLG)%WKBG#=K_Xah~~G zN>o&oFUP`}GusC71Vz`^vwp8~s15K{oTQ*?)J;!S0Bi4`6c6Yz)HppG0x%Ii- ziiCFr#@_;BjmO;8l>RTGNcY`!&t~4)j?}i>It}(BW(Qg+pE7R9%?=bsORbEdUTfn8 zh*CEC_6A&kRkdSusc@l>8k)7CS+ZM^g&$Exjj!y-uDY{BK^<)MFM@m=Ni zBP@#Imn0cOdAXJUM6=)Ve&Xj6`)b-)CBer}G3~msXog4pVj(@p3L~0kwa`p%Y`CZf z3Ne{qUs?}N0uZJu9xs3}MLyxkztRC;V%RgvFE=D%u4X<_ZsJbjM3I~U5x1W~8Oer6 zQ000{HwXPb*VtlcBGx_QWl`c|eICF7ze==${}gw1->@@5bDWY55PrE9HWq}Wk?w>1 zL04|KAG?Uh814tkHz}|t4F>6TK55*xoM-z9NC4fZN|-1hKhg)}WGsJw{|l~Has9?X z$`K}c+OBmOC`U>{0)*oLf5je|kNF{_ghsb(aNZ9o1ci;cl=AjD6Z)py9S2{!31k{o z@hlVpOB2G3{cYw!JR6dV=-nTAgn|}xGEryd2NU3Dchb|)l~b@3IiV_ga}SepJe*tz z$a(sHR9rsDsK}Gq9R~Rwfn1$BR@)<2u}wE>M5EhzS{){Wc`m#WxOpGs5)0XPrk}tOrT#8Jo%9p zzvchPdK8W6fA<5Ma5Cw+{BC`}Y8Jlm7k77lQ)1rgqj)z&yxzqxfS#*+&WuA_<9?F& zsmD`CZEZ)i9>Bh@4aFz7n7wM^8fQXoEj({F>D(8X9GRsiy>!HyQ6DWneK@xRGM<+iMRe7Z=A zF+$hTdZ5hyCM9+CS!4Y#gJ%ZoXWmFOzvLoa8z+CK#Xorf9r`rZ`$yI?Waht~G|oh0 zL4OVr%@(6(#F5Cj5CHn&4^@{(Hmr?~rVJ^}t&W08{&QO$slmWrc+VFuR6;IH0~MmV zpImNpziwr8k)?lZKLe(j=EeXeR{`%xnM-N#OLqO?R??jh-eY4lEWO}zYJ z+_Qpx=5IylS=6S8FR}BaVw+D7NwyztT>bWnyU${^85$^tRL@s-FjnddNZ?hYsU>?7 zbux+{yms?%Q2^~n(4m=k)kmp_VYs@wj;UW`&t5h!=UAYY+2=>2q`o=Fo);(jC zdcRV3JjT5!7XcsrI)vtz6`@+JW6S^ z&tYv|US6C`GBB87jR3n#an3l3(mwA&M%L_}40s`ukB^8L7jQP~L7>I27)(Bb$;0wm zsV56H1aa%EXs|#V2Da%PtoYO;UjDDg+{-3EdP4W1cbh3bC`uY9hVV3(u_dj~$NcUD z%4W)Jl`7+?ZC5<>AE<=zfff4d7pm`;QV3F%jm!+oPTq_-pLQK8C?I5v{WJd-h|WI>;P7MDt< zHZkq>4$(4+R~ILX`afS;=9U4Kl`dEBnqF~hq4+6C z^VR*q=t^f)j%El7sKh!w&uZobo^Cej&m}%0og%)@8l% zmUC8)J`bbPAgMq84&m%A#XgcIqgGk}5Y*mC+xR;2u#1)%@H@(QYSsen&997$;%_5c z<*mM8;KT>^9G zE#bMx@`S#*o>ROjG3AI7#AhQYm^NPv@KF^Ldwb1pblvo-0eI*&m{F&%b`57D$Ovng znmn&fEn7*lg&Bb_&$PV3v{KZ@w806qYO*>qby#E)LffqF6ssX7vxXyE8yq>)wqtld zptf3kao^H&LkIH>$F66oGl3-pA#>B&;WWmfu7COHMyw^vhlyEI@&fMzjAT!FE##98Dl@liMQzo_E$8DS znw~{xy%pe*13L9m-4SmyxPS^4R#tCij2snOv&v|nMMwK6obxdbbOVbue-iMV)udIu zFAB=R>nJ{8V89q|Y5spuUABK&qslqAu%<4Xb2rhUfLt-hHJ2_jAP0+p(A!}%k#0Hf zSs}Ide%0AXFXi%H)@#-91^iB`yMbHle{SY_5zRP4A$%@d(Ny%Gl=VI~n=0RYw4XuU z#moDGeh6Db4s-GOoLtUD2+JEmOHX_(i&za4k{9?i^I$6;_1^vSyOY>*t^p3k@+fDh zIG>ig8WHywyb7uR)9pZB2+igJSwMf5(Z@f~6?Y9Hh z@v!t)+K)c$i-2!dTGHf0Fhtk%eYKh4s$8Ua-3&vXr-%%y@MPga@~7kG`57}I4F`Bs z|M!?R^8U!{znbp)LS?P@v|AXs^&K4@6O)tc>NxSrj)-grniS$dMidjAtdK3sN%yBK1|XmN1axw8y7iNagWv0?L@af9^1s5 zQonHA+JV)l>n+5?3jFNjS3QpXy5_L=oG^-yDK+MFw&JN*VIFyHAnY(T+-nTz&Ig@B zLtE0%%BW_C3hAea?-0=w-Z}1M{uz<;zQ1F`Jt!I>K0g^xjZxEJL#Erjkbo^L6*nep zb z=zuz$A)pCAzd*HKt{r+~kQ%H)UXi-_$6@n$B0`kF*kZ=I7xrlDbQ#STo|rc>(_2}U z-B!&?M{e70+w1SU2h-?+R#{_|nZoY;DLp)ex!P&IqtOUVd3i2CBZrn9yU5vk1nboK5>IkJ^!MYuMmC=sU{C zef8Zk{NzD1)+_z%nZr7v$j_kL+VWFZ?&fY*CW%<|3Eqkt7*Rq0U_q-(=6y&{eh~|_ z=6#)6>M+g_o#3SsZEUvn`vCJ5$vuGno)J)ah62qlDg`R1NUsXvzR5(Ue5?s}BlRG`W6d4 zem9ZTD4Eg#>4$pCQ3(sY-Wn%FA9y-ax~6^x z(>j&Tekn5?_!AMrkqOO5`*`tC}`><}XuFRC`Kepn|%&A!$ST3Xmbbx^IUulLF@ zZ*Fd`x|+?YcfgpXMr-+KlYNXpjpEA}A-C@U0-!=7@XX4}BHi}i9RG7=qEHpN8A=2A zEw7~c0;9v=M`0A1kNyv#$s25JzjbGG{jSE@Dn_^eu94I^;E?7eM1LjUDG+(ziB13h z6U$vIpF27-tXuQmbK`VYylKE6g2_|9GxfYNznaWP z`UZ)9EFA6rNVhB?Pl5~~%hk`d%HZZ_r}t}Bsl-gah{?iJX5;mYzF7Ib6; zqIP|7Lte(#KF*4LLgk=Uj1pvce_1{8<6RmFHbcp&r+Gq-J3{v>0BGaN!WObi#3U=o zH1yY5zw(~`8Qmj8Xmmw*R$neD+TOQ#Cq9~JU$a&z_a5uRhYS_pj(C=U;HzrwAE}*j zqC!GKD(-pm>F*^e{!5=Mb&p2?bjhdS`PSR=z%ERzY?kvQp@oekN?cOmH8y?`M<`7` zUNv41jx$$xu^bV!MPiibgAmG*5m3i05a0s(I)JV_@@Lb4Tvr;%;p6Ie_${2m_Sey3 z`1f^d-(o0dzb46slRzZ)zDXVX)B3`(bEzHqYT&9B&Q-|qczxOY8DaI#!#MzSsXcS( zH4#?WR6vu+*>vsU9l!zhjqnyNYEaH0dKRY_MW9K53%*Ae^EB(Ob-cHFp#SZ+N+(~d z(47Q}k;;)0&3~!xI60Y&e?T1@M3Y4}<^55;3*V^*(1CGinr zk2X(!E0ai7N%Me(&FuQXl69<*Y(T|1w@J$siLL1OS?F#2KtioAlci#VeX7$66D1~H zaColQ{rdw364qFUC!6JOJuFtX8@pU3`e^i~rC~;K7|H&tP1a~;n0k*w2WD~&r3Z5- z=a-O!QqG?pwH#&jH)(4eR$862)r+*Wv_ZN_6FW(%F=Cfz;>+bCzy_xL`(GM~+8oJ} zI7BEB^+6@-fE8(r-t4?ICN7Sh2>U9E;KGGDw~eE8*}_c5dp~CvamcN%Z!|AJTtbl% zE)QMjGsyF~=|-NY{&eiNOb#hRS^xgW`soXM0iULCH|lW{pcL(=M*O*Q9 z`o2y&LO$`s@ga(3GP)Nwo(2zstNmk(Ds{+B7 z14?F+Ly2$+XAUkbEog9{$*ToCkD`{XjLO$ha1T!LHw3h74CK!J&f@6(rz$(`-Y^i; z&_mkod_cG!cUO!8*Kb)2RXxl{U%D-7M_m;IDsX!i{6lvkY2nF4L5CTut(K4!+E^k2 zO-aTpyhf-AmKg#XQ#n()zNwyf?-WH-i9>{spDRLbw<+7lYfDBL!}1Z<#z$gW0@nVN z0UYhJ|Hso+Mn&0mZHXZU=>Y^p8tG1vlx`SGx}+PVI|MJ%$3vNn`GA}~wHw0(5*~)9Y<=On-F-=0 z87V7x^E8ViQHH74om|t^Jdk`MM%%22r?R>P#{tpJZy}{LZk_zHcue9GMkdi=*Pq3$-8Iyvo(wvpUaHIPQw1^#`xc4;)(jL4 z0M7s<<$IMmsB+LJUt*dUJ8kvTzI^#+EofPB4ww62I(FONv~1LFxqB|M4&0CuyTh0GdKAL^QE${&^utSSrNF)7DlZi$D8~jlUb>N+=oTjJL;h4DDRwhqadmmG zrL(4Y%5%#$#EVC(X7T@Tt#w0t@K$3f|wFk2EVTH!JePWn8_<6L<$=kh?ZdZ zc&n+Z&w1uJRE8!PZqdlE+2~p*YbYml9$Beta+Z3@L1EMJY>g^Wj>eDk@rMYwUTsbW zjt6*29=4tHY=PtFfd;I}VWFXuFd0R~&>g4> zB;3ERzkjNLPJ3-|Wz}K3^46?0cTFfv#zbsDE&S+`TkJJ&8lnWOQki^CMbqBwv1B zh^tsGxYY_^xJIf?_aSZ@Pw(RK%FlhhEKm8eWqz*yMa0l$MkLVI#zTu8EGTEZcM?7V zg*{Yz;xwU%x^;fDPOY@yh4%8au;XPyj+JS_4P;KAjV0@El(Bcd^nB$~=nk8i){mLa z$hFo!s;4wGO*!uRpcE`Y?Ck&>3j~+SxPvHtKt`IH5(dAw3*RKh3w1Uz6 zID@nyihI=`$#~nS?GrSg$Lo>(`<|iXb`+^da6FJ(v2VC%r!XFC zd#Y<`8Mb=J4wu8(Wi0nk$eW&|5#9(m(<0b98+#Y2*vaJsg-T_X5H^0or`oDw-VmwX;$ znNHEe%FXC4OF=)3Fr#}rBGim<$rbQaXb(P;bE~FEbz8~4%55gX5)=TVURD1-(8t>PNhoPr>FF{@9+s{ zzpU-0iNr^=WsHd(x>6OJVi=Uwv%Ucpw?sfcXoNNAX&ACHy;uKiMZdtVE9y|#LBzN) zkN;9;_5hTWpT9akj4(0pcjar%kgrj(8_o2Bb3s%2j+U#P?a}Vz@6*jVJVz9(B$MVm zKxE91kl&4(&x`=rf0vdh-B1(-hZ4vNXVWynYzYb-(e*Qat4+NaaUAxlCp<{T@J2uc zPp0Jgxf!%eyZ%AVJ_@Q9uhB}|8yBEJIiu1XbK=dh;q*;XFI z8C{(NPy#7!wRc{Hf4aesf|EO5kE}@$lvK}zn%@QHJpeLNDv)=2YO1@ZXM+c&sctY+ z*#6$K`AP#`jLq8*yTs*o3JnQa{0S=n0J{H~Zrh&?)ofcBthkfaaYb#m))&ikbjAHk zJUe;t9S*@<2I4|Mkl_J3Obho1W(fnvQ&>EW0OjwUic}`U56@bc^w`Uyq;Fzc1jM>o zY?+u1U_(8X_9gXpp?yuv7TFJ9lhA90S{fPz_9G6hj4AV2jD;Pp&=nW3*A`1sgFPYj zTr&3-wOnXLgk|$N#M6E4!nD(P<D% zi{>eTYE+snJ28>q#S5%JUNKfix#H;a{?}>rxZJW9c@|$>i$CUA8T3ECF6Y857QMX1 z;Xy9G-ER~Y$50B?Ur%eozVttR_OO#X{T|WhDGd7SQ)5*;4m3+MxV0J`qv?&PqD0=t zvym<`gHw6d6q-NlQEw+EptwCUgo#VayIh)TJj2bj{FSHsl?B9<;CP!P#~CDJ?i>HY zR%_Za`;|1iyYX^fvWjA9iDu5+w_|16;9;R6K-D3k@|GY&47dqWz>5dCxN#^p_76*L zuo?@y<;0knn7Fv07nWRXY;25-(C5vfti^|i!}G3D-z0&w*T?s3Dc$gEA~Reu{Oo`) zE2JEk!AIQvFmt8J(oskn4+=v;wY^NB(pg`0*RUEddJK?gdSg9ubx8c~Q5JtrPpGg* zwywKtgang%IL&wl1$*u%G(Dt37Xea5;h2gF}Bj$&Gf$YR-RG{hfdNXXru+s6@Jb(1vYw%TXZaZD? zXpoDEa+9dnA*52?HNf>Pow+=22K1-J#}Q`vZI(!Zsgd z2*)V%dfgn-n5LTDmEd=!9Q|;5aj^ZUrp#n%6s#ft)3hjV3i=`t@+Ul9ag<4p=)rtG zkZ~pN3D*Ie1rRw{vC}d z0gwtK5**Lr0?n77jGmsJtu3=FnanyPGjlhc1#hNsct4C@iQI!@dCzoIXXy;9IO<5T zhe0L)BKbYDn99J%qI@FAQpW|VAc%#=`X$Qxv~#|=R&^cG{dHHUBF_6-?bPc7bB|au z1rCouBBd_E=cy1Yp%?nyx=Np=P4F6a1MDBzKKRe&*Yz(yCDGYSB7P^O-ey~+uTyH+hRsX7GAu_UZB@2Z6l%3s*>QW!T{e;O2hGSw4;+2RuV^078%`;DEIQjF{3pQ|`lf`vyt#ABuW zV_i7djcv^mwr>Y`k5kR}InM)P>B!!PVp+!E<{d}1SP+3lqf(TxPYF5dtnXRvd zjI-9AO%f20lbjVhs_guK1HumD77P4VIRxb79Y$SXD#-*jD8yg!F?XNafm19);zXrDDSzndg!A>j8$D1Dv_ClSmMcFmdb>HbL)C{dgF2}< zd;EjPA3YV0qqTm3efh`o{FNBb`#pEI=w1I9BJnP&RpbK~%-2>L#>Amy6xcEg*Or7)mq97}!G9#v5lid$WsI*~w9t~~{H-4v}z@n(b{jyE?;=@^&M&lXpm``QMm zPmZ?QVxTu+pQkiu01&gvpiMbc3T}$YtYx~*%8b15b-^5vtmX-K0k6P zhX2LnVzQl=%QuDRHuNP6Kg5ew?ShzX$DP0kN0F;|clp{U{&^rKQDN0nLRc|qYin1V zx>(U5`KS2IL1YusYs+rEq^p)iT&g6wKj4+CE;fftivp#)8R8OXTPpQ`L=NZw;=YmJ zR;+Bv6?5Rqw=r80pvR_3)OmgJ^|5-OkGCbj>m{qH?EACBrab3N$%|bnmKejW(Mvf_|A`Q9(=FHo|Q^h1OCz--C#Ajj# zVB%WbS`3MDyU4XTZ_LHb6amQlLq%O(-Q1jRS~T5=8{+(hb;r_vg_XuWHt7Uc-#hwQ zMz?tp_SDB5a0RXZ%KqVy z>NIfYvr^lB8Xg&`OASpafnX4ps55$ui+v{I9ew3b3C4)=JI~5_tLMel_)*YCr~<0>JAS;i4|&dG|FS z1672SFHcyIp(-SZAk@6n6HX3BZP50mV z_^XZ1=c~I2-Ao7xq{tyEh@7y z!0Gg4=h?&BmO!V!8)jx^CLt-=RgUFcaCsLINyMh1rNyVTsNl6XE4%%v;3`#k{*~`v z@3Qd{D*=D|mC)5JNjN!oF&!;UQti>1F>AGvX-5s57p=OS0Q$>eZDpE3|Y`lL>r-s7vpEw9jxEkZi5K_Y3k!!B!d z^SPu>vvN4UQfpzyI0$>oYu#$m*dU`4lw<*ZgdZ$2b(m;rS*r?6w-7@5Hik33+Taq>Wkq7%@l>Af3$at8>xugFF$0qmG|nTom^qHcd*X5YlKn=R$OTw z<%;jM$*tq?zrNEmGIW@sxlT};XQi*fuz5j|zu^gd6{E=czB&v6;trg!qbBbbtJ3xF zSDxd{8d|CZZ+FHOr1DreQ6Y%xYT z1znm6FmeCYfZq)HsQ$7Lkx)V>5Rqgz5Q4woHQ$;SsA)D4fHF5mp*|2d8F4pGn9Ee5 zp{M37AWe;kt{bjN5aSw8ubub=q@7p*h7yF)#;WEh+J=V!t*7?^5U^-{(WAECc#(m) zmd96@k+ryWU}nBSIpAO5#jqJZ$QVR7YL-^5Rl$d>Y(T=?Sx~@VtSwZW1)r!w!20_V z7CB8EZ@4#mMk6i0A@f?S!tTW1F1_oZ6s<|iQZY~bS##l9$`Qk}nf|%MJlmsVU55eU zYrEW16||9{2eCxtIZ(vL@G-<1{UlIpI+FPH`91ebS_t7>9U`u_%8FdCmv)NQF5yGj zqp1LwN7+0yR}+j@5Ju;vbKu z^*{?@W?ZAM*j&Zz1I0Oe{S_Eql-wSoKl5vlYL6u7J$mugjhP#c83KuxjmtDoCaYGc z=_+b)iQ0HKAd26cP2Q+>=WV{tP8nqaP6~-yT*8s=ZOW^<&2p=`y6)?=HS27*)uA$^ zrCo-PJk`}X1XKfe!7&De8eBtKC-nN~m>BrzUKdc2hQKlyv z+(eWpWlz9U-Sl_8WYY3kAw*U|;Zsyp=oh53*1D3?-zUqVa>2PyO6F7YRpab?nyJN> zyut98F+)lBU^sh}1u-7pouooxhXXFgKQCUZz}xWe!j`}V7Rwd@p8Vs)a)vnO5a$Pt6Od*FikB6f3_b z1r)BwY`E`(v6$=D9@X6$hPR1X0)Y8>gRm}0uv)a@-@E+lb9|wEJMW63S2qi{{)xk%M)*P>&`w^IpBEO3c zlTT9Twmi(mG*)j?HxL|zq&pgS_PZxTV< zE0x8rT6X$sHkW{+(={a#6v`E@QD2hFL@`lh1o=Sl37`Pr={c5U0)QAG^gjE^XlfGj zmWj)d;<(2mPjdf#*)E*=Od=lc7*P<#ti$uJdqVmJzp(&Y!8(i(zR^*8*UsgXZzSlm z9TFCv5oF#LWjEfmv3H4r{n5|-)Bcm4cUk#o5x(a5 z$~c_BDoyh3E|{IOs-#Iph0{h(|CktHG(G~s6VC^^T_MPeup$+4^X`hJW$b?6$=H0)4(@YJ{a^L<~NK|p`!Z-isw&{GL--6vaY_FAP%v!Wo zx2Ubxx8o@g6S;5NBx$Hr@m=`)--2*Dao$>QN6xQkX)(LMDRl1C7TbVaFtR;$D7<*S zfPktPh+xPKTyk^x&z4&1f+9U3o}PXeDVu@3#_CQ2>ImB--+;3>7au&5%c>y5{@;KV zn5D~L3}p-y?lz&g7k|qZ5j;1XEdg`FMs9DmYuz;C0)G`#c>f^oW@Ytu%V)SCd3*dN%47oP4(uB*`O%;4Z=)4k5(=bCe+(7~F459% z!<^rg|BS-DAauatFBT1hrOY%bxn+{!{I*=?TEL=!>79m*c9-+L2)tS0;5=M2XXc1m z)$~5akO;;wb<)@%`pC2JQb1}~)PhhCstrp*9@6zaE2S9>!=~?ng-o$Q%f8GBg3CZ&HiOoJA6lIglsF6A6#-8$Q^0w8 zuaMU>^vijd`+qAeRQnk90U#N>VFiVS#?;K(MS&{n`f!))jtg+9N+_w4OVpaQcy7{K z-F{4f6l;Io%SE4F5TtD*;`1=NRV`8?|MfvLJ{big74GxOZQjKfEB_5tFWLTpHZZx&^v z5%g4xD?YFaJv!w^YfLYDscJ2%fE82>;UN5}Du!xi5kvQD;TK0eu_gXg5Sj$&&7q+| zMNdX*0CNCnl$2}6*E-;a8HIy}^%J6;|e7eMe|5U0*#Y)$u4v;YLG0LYwJ}fou93t98aTT(|9DpwreH2a39mp4a&&*bq%T ze;+P=IQbOBj@*miAN=N4xP$OYQ)8@INY#0K!M<-&36Rv6)%YIQSH#J3znNV( z3iPST%0Bp^n)9>d$Q%MPqoF~0~@AWr`ZLjBNhh|gK9g8AZhGE#t<0`lcjQ7~inyz~V1Pb0nSv)pweWo{*= z@qnAKEk~)@)M+e!YH4$0#xIO_R5izOi*vFI>=@ppZwFt}+)2EzMVGck#5f3{;DrZj zPeTm?AVQZLmIjnxpVl#ajpsspRe5?EGqt?785aitPxe86EntYcge?Ew=^PnRAgo6D zZ!ZEi9me}=VyWOQJuBJrckm_b-fcV)H!j9lNQM};e1>1`4Qs}-{vJo{ z&eWTcUdZ5CD)^DxiPpl2LFgUauXN^9jk(vIg={29ldJ|EL!vl*&SuLHJtf4Xt|vlfTwHx?$6zr{PvJ?#Ep2^wO*@!M&8`} z48v_c@3^eNa(jo69g)@rRnWZai_%ov=99PO-{G`ktKnuLMJ-ncHzaOf-k{R<9+`u7 zfY}4RQP$taa?BD-U-h*oH>E3t^w{V~QhZ2|xub)`ow5*83TC)QdxNVq^X1)ontdcA zxGqzrN^!)B)Ij@x6RXFnRXz(&6F>|_b#PSNuHR7=mnh45`F<$%3HE#?8GjfoT(KRe zi0zwM7we7j(&sgef>VUGo23x?*w6tmG6Ys$caY)B{Dh5|pJEEKt~rk7U8XBjBmRYY zzJ$3spXE#**XpOO9Xwxs!yuJJO{y6`Y6-O=^5{a-RVN>vWw}p-L>o=E{Uv!Tv&b0K zk!CK&v|EaxL6khASl*J*$L-G0zH+m-fk2Ilt890XwAAWbpcT?Bs4~KIIzdoxfu(ck zF7*OVY9+S6zYlIb!ALJWkNnB+^< zf%Bws_BX}?Fz?60XI|1)E;?jMPQLt;llERiy?!(0u%`k%>+V^jxoI#RWq)@w$=2I3 z%|MrkS(oFJspE|B+<~yZ&$@j|GLN_y{gG^!LT1?F8@DzK#cnqr+fyp%b0VI9);xF} zj{&n)eHeJr)6P=iiF`7G*f)sycsNO`z`L(;S4)8&-qN!}#AU%MT2S7A%v zsTVqq#Yc#<7D&?q;YX72or6bhDI~Iz3K|I?!QdG|{V6(*Hjgtr8jkl=l{pLPSy{*S zWO(G{Ri;0Cl5Wm8jA1K?J#6cnv)&mIVJ1pFymfFj)KN!eKW4oopVZm|Gw zPS<`TK+&*S`e|IR$rm`_1)+fi8CdqPE`b*)nw&_2^?( zT8gae#J6w!gv1|2 zzYH_%k4mRIN8A+@xC=lc3ktr0SHa(I3bUQR@1W{6ANwI1Lvc0hAzsF2a%fNXflCVT z0M>gy5~K3@J$%wyY?ztXJ4a7dNg*m6o%-`;kU3v7zoxhcU1Yv{ai&{aPa}>yc#`&F zkeMGbva_*&eNSEhF*41CuU>X~Pg$;3$kHbdQiE-lOB6-KUftf#m7`;ItbZ&ayqW1p`sApi8 zbv?;}b-Ojv8Esp8cMx1=_$J)`)6N)!hpe33Oe6e5ebUZHOD^B#4VX32IxM~)>(S$s z(trYTePZr}irVPE_^0cOIK9f0#zWIR@+TC;*v#LMA38PCGU=_$>R(JVR(c3)*Cz*q z${3vjUVF^x0rHIXYRgxPldqCjH|pQYhNYu!_UF9-&Re+=H4=l(!ozo`+$QpL$RFHO63bE66ZT(k%p z)aj-axvCxGV_~GM15u=5|LgR!?h;J1O@%6^_dH55dzV^r{^3pa>#!nSL!QrK3jC0b zmlTuR`M#dAa@Lwap=q%1E^9WN(yhTC3TP#4!{$$~AVf=92|G5wKHGw+M$}&JYSV1k z6_la1ry+_*!qekjybKhd|8_UccWawWI4I!PjLAgwGk-(Em@3=1>eHIWwSov$(?7U< zDOHG^_c$=GOXCtF#!)WrE z=FeZhc)WFDf#uEbug6>%6AUWz2&6CSY|91RCi%Jo(#AsnxKV=_q{jJqdD>wRP8X;F z_^5*nU-X)!mZ@g#xLhJWP^2Yf1kv52UK>00zrioM@bNbdTi!W=TL#0!^*+F9q8Of9 zs#R)X}afQDfH!8yN&nLzO`fi^lwH5{et9oxVLF?(>7V;IQ~p9C7w? zl)*;b1c4|MGA$TAj{mFD6Ey%{K3nldJw*)rwKzD0NpuAEoIx?ne@#r4vtECvpV*F} ze4|Za465aK@815{77i5G3x+S>O{yoDWf9CO`YV${z~x+^b75#gaM_7%+=Bd>QPUP@wdm)tTEP%e~w;$ z_CYwq@oN)59d8eoLhgS(01OR3^xiWU+s>LW>VWLBa9|jUZ-))Hl{Tk?9@du;{&|c7 zFSU{TTVYLJ28O%i(@K5-W+OW%RA2FGsDEp1ZQUlRLBuXB-69-Mq}~H?k|iA#Pigq) z&u%?2wV>Ai2cIF@_4oC0yr=1rvI9Ikh9KKBFZ4)wf&=iYbI;+==>j2+qWoT$U~!2w z!FV`BaixjYCM;!cq^(1~#f1>xkTqsgX@~TAUDk8F`w>8u6@ApK1VK8ap zn_YiNe*ryN9STq_TmLahLm7_>lhloF`0oom;O2-4BmsyDq*Fz(cq-#sPiwZzz@wUN3r7RTunh~A|Srp44U+? z#tXLIA1z|KDjB?Os% z4-(aEry}k;)kK*>C~a4i2s#alr+K)j?bW8O2oXl}RiiGHDzT zp7~az`Zwif?{Vz0@Q12XnT#?#EH@9ou=9H_8mOp*%hv_rhh(KCgbtt% zoiA}%19kWmi5mYWm3bsbZif@>uArx}WVP{&q`KUiq7K?!Bpf;HSOx*1H0&j_KTCHh zc}uN%lb%JGkADqBvAh=p%YsDthWYXTTxktroGa3D2+iK-`28)mOJuCY{Z|#(y4Gi# zGSSD;F$R&^3JW*}8DcUloD)`|V0=4x7?ViVU(A7wDNEktaUZ7$5Rg?}3(`IExJ#ex z(5t>7qy-PinGrsKXGo&@z1Vo6Oo?)3T^NEyPi2AeF3#p75Q)(xRNm^IZ4{ zSIFeAsQfF(wGJbXQuBR%i*r)LHTrId>Cg`y8tPoJ&l#&SPpalf2@Ag_8eqEu8+K>J z0ntbHERgy)WM_JoT<7<=xl}ZLhZNy%y=vt};ZZ`Dp%RV@72g%lkH7A z8~3}l=N}ywB(Sg9tAPCE5`L9D5dBn1&a&3ZcR1uXf`js@r**irF0I|UD(WQkAm7pw z%v?4*%DJ~knSc&pC^t&i6Q#fAL*m0}=MNpc?}h*kS#0D?f%uG3DI_x(I}^BWB(Uok znh%}^k%i-%*vpk%M2VkOy!)MH#HemCQX}UKZTvz9T!2^er+n}8N zfvT667GYxHPVi5t>^N2KY4S%DU>jBYN4^B`{%Z_?Z7_x)s(LH`?p$Aoc`_30KJP*} z4Z8X`#Pwi&Gr{?eu+<|ph7Nl6)L-vh#INd~kL$B<7;GT|X zZgl}ET?mzqV>j(`lJBZBl9PA#AFxQGKCmf)6bnoYjvtArt_X&CoTWHTZ`0J$k!%2U zc`f4Q`aDx9d5$8Xd%gs7)e<-w@b(J|sBrbwrj~=el$@^i2?TlmY|Xbn2#3j9>0v`vt6a#pgn1)HkYC4Q>TkG5k*?`rSi(5d072!sNH#oN@nJ38%clF2jrI%H zzscCM$|4-yVRXiwrm%}${Vlf@y^USN^Rn!;uzl~C_72;-MJitR?1xjUSNuo)j*s&G zI$H}hkN~(q;&Q8v631qt_ETENf}R2XW6_S@FDLt2$Jr556pc& zpNZ7j2s&Tq0VP@uN4TmEj)d|1uY>QQ&bmstcz7f$CvoLK+R`!J(xDjBe=e@=1Rctz zKXPCre@v^oM}xFvyEIumY4WK2BhqrsbMj+NM3ipi!|%)8Q8N1ZrESEThY0=0oQ_KF zr$KDg7;eVQW+#f5Uezou{d_^`ag0ZKl6mK9y=PH%rD9w7zEmx-s~Bn5k!VKU?kWzC zd?+gyN5z%?IumXe{hC~Hh-<04Aa%haTADN%u7W&MeJk2LJk%MexC_;_5*u84^Db7b zq;j$$?|hwXE_xbzK?$Hfi?OWoFQtL#ar(5N((Y~sJecW)U2+S(E!{YEaf-0-tG`B1 zOAuXAHAG+LL|4x5f=8YX3dj@VkN~(5`Ge3^jJ`nV?q^xa*m9Q$4Gd{lD{m|ah}n5+ z3FQxffAVv%JW+ZXB1-?w;t8eo_}(`8^3B88&Bxz_A{XhrM@L}&d3csm7Zqe?r~IktdyFRk1aSe!M}~7sDyqs7fh4O| zk0rgL>+Z_01Q#T^ag!cro3uFu*P0$4{2Da;w)N4KzxA0cC4GE+08wW6kFyp{fNBx( z2b|{5%&4c`Ky}4~jUiUW42eU)?{=*5-Hfw>SLXL*27lk5?056^zZ4Z1dleVg#WSd! z&WFdZ1Z4Pzx3|wI-DFO??kv;ZV0hBNump#S+{l@NRD))Zs(nRl?~6UTszpD9Wv36v*$TL+VWAYj7gGl61=LIM83nN9Sd{z$ZH?N zHJoDWJ3jOoz$|bM4$SxGjD?35?LxM3e3DD^Dh?a#uNDR*O}19zKKNHVJbEJJ)8Se5 z-QT!hpI?R;kNR~ZHOIb^+p6oPjoY;1CIKT?btWxn)jJ>>hVKhw;z8`k?IHcwa-}ApL{D=!rzl9Wq+N9k9P70xj4fs^o8#Y zPstyUZ*H_2O%(0ilEPVkp_1h^y7$*X%d?YQh%noVQk%?7S%`Xv`DjMmP{l)z*g)`E z)!Ldd(Uhm*mZ;qhA{@1o3|Gh&CQCy3*O{WA-BHA@lZsP6M{&s|08Rj-x=o#oAg}8! zihsApozzcb8zm=3wh;~fKKy8r*IP#iiaV(z+xOxDuoM&t;kzMxB2O_SB^p?PJ$0(Z zVz=mqUc|<9e!7rl!d4ALQ)4!lOF`dM`w52BNDxnTjQ?qqfF%TKNRe1mP-ZrH!<`a< zf|G*b?TU{5aOeH|wzo4jzpaOy2zAiTKpr1R+>>o3e#L4o_d#hC*F!b6jW8nL$R+z~ zwLRvApJvFT>1!n2S*g zU)KmM_AOMo)x@(@2Z#!znaow6Gi6Vbdu}1oph45qa54Gpiv$~)R{%RQ$YhRg#uP0@0<~&XG zOggH~KX1UpDWMaa=}Rm{(*nh=k>yDq8yW(JUGduUexWWdPLHfxt{y_^-Rm5_u zqah*4jz}AsnjlvC%@FoFOaa8UmU-RA$t;^G`GAEDjF(#_@dK{)|(kBr}FN zC5{oL-IAEFTS9pA8ywwo!^TGIN5cl$K$Z)r8>y9)Mp0e&>KFwtCM}MYAFrvo^ZnUn=tK>!&Ew|diq0)Fugn{HqKit zlZP#KhXZB8@`bJBSKW>qe;JelmLp}qLBmq@t4#?tEXLI~p3o5sJ=06m4-8d)Btn#u zz!MB1tEPWj-R;3OPRD?=FxwiG%N6eOMk|Jnqh67TaVVnr(@STlmyYp_W@6D_vocEs zCS84f%(`v_7b`CvTp}VOQqltn3!EsaU>+k-v$eRNG)UjiPdyP=|EJYx$EK$vkkCP( zljZJ4VPljQ#MtQ9f1(%&XP+gDhl(RX>!3uNu&Z2dRPvv=YW%BPJr&>2*r@5~-&sg? zQRf=vw!JlZ#u1W3c>iMa7jgBpeAnPi-u4t`dUXIpt>^#_J0}Bf#)7I@38WzJV*Im)HiVz|Y$oWr7g#xJ4<8Z4%!vDm=hb+#O%mY|O1oVB? zs@ec|bw?;RVg#_k@)HpA_9@#}FBJYX+{d*Dm`@jJ3~2DEK=x?JlE+RHqF*kO;eo8d z{%^Y;Ts~srUMddH=V%5GPD$hW%4eQ6SY3qbWo>0VNmjTdduG%a`zg3dOSBK?IUJ^g zKjsuZ1Oa0BT?ezcG>zT}(``ik9%Eg12^)*L5C#VdTSLoq7+`kP&jfK30-uu?@<< z^qLKM2_+6IS;ziuf4yIuHoLR90VZpUDpZsq&cv)O-gCNVK<0p8RoAt+@ zo+QusJj{_Qv_A~^lC>Sif1UB05Bl(S#z0*8t+nC5j9@?+8U%8T$6r6mmrAN!)~s9& zTg3waoNfPNK`w#jTDpm~GG>B)>tw_}^<#n$N2$p)LV8Zv2Tkn)Hi*tf^JPT#XYL(dZj z*uL7JA9TBw1-dF$|6;!_I?LJLO63t)c>n8{hQ-*HZrSI#m$)&=zdhXAvDY?N+RA6v z)@n_Os)SXO2GWl|$v-G#(hH}VI^>zW*YV3L6nwvWuM+Ry6X~?ni&@E;YltTIw%1xV zQX_L2?(aWdQZvfq>DhlSmp057%M*85*BmMzOmvBZIyj*#u0x5@Fn4&RD z!^5qYSGs`*EOD&LUe4qm7>DIMAw7%H9{9vwXZb!mL7Sw1`OS;M2G zshNbtitmmd9T5>Eh*g3(Lq7*jvoTL^U*AR@A}IyMc~D80%qMdPU=EP$bQ`eh;e>cYXP^J7f+3z1;__kV41pOPJ_d!L#0J&crb z?Km<1lTLQECac&c{dipTbnjSek^VN0&xYqv>+onnE7oBmEwGJu7|1fBF}K2Kw8VI} zLYIoe7D!!PqRDp}KD6U&YxdRih%SV1PH#4e8E}ci0+*N# zMFevi3!OL(I4GEv6s2>mtviXDF`N7Xdr}lSw&Ub_A=z}n@$F8o6UhY1K2I5YO!^~ zCaWgN8~^<4M4woC^+jyGd{joR`gTK0hcdn`Gwt)dI9?1Gl;#_48^U^yHuNc|tcX;S zOb~PVNI1WD)qn2w<+C5`=0#I+5l080!Tr*t*4-u>M?tNIg9rB zvUGLZ^?$kN+$Ye|i7fR4F43mE20s_Fd{9~S`8~(OBaXc9W$7M!Q+QR=@2uZ9C&Ku! z7#UW`?(Su}6qAj)NvTb2`bHoc^*B*Ejm{o-{-+-VQtz;aRit~Z2~KN6uTdH?OgG(V z+WB2@#f|mxP%IE{?e1D0HXG?b0ch8G_ds9YLcTd4Dxr0KvsRUXx=?V`2lf{Nv2dff zRRCMIcM%9ciYotQZ_K<&dgm|n+H~xdRucvQL=NI6c*UAtlfc0(8 zP3$l+C@K!LmY2-$FcJI5lQL2Dm8*;?jbSG2jE1n;U<=C_|4S|w6imLP#ATl&p$%7( zgVbbD*4~Wh50SiLHzDlj)K_%7PkHNpV187ISW%MOg+HKf1@>R?aA8dmf%*WRGNav| zukyJMunmlk<*s9d>jhJGWvgcgQ4G<34f%x;od!r%Fs9`BKF35*8T; zN;+y=!b-K$=UWLIPiSdrjfZK!Rf7AQW^<(gF#z%fs3X+EURAsS{83l?aO^*ey2n}E z_^Zk~^2MxEGWhg3-T`k79ddAa68@J(J+T^bo4R876ZCj3vQdgRjwB44F zhPm5HznNM8cs9bLIzWqwn}Q(0YmD+N>Fpyb*7FakwXGH+7Tfo}%?8g_J;(pFTa0;+ zU1VA~d7u`1Sgs142sxqLZxF47gpS*(PJA4^ci!$z|6Jo(v@W#yrqKCAG}{h;W*uZ& z*dP!7JlAMuR6bkz_V!{FM`L0sBMMV7-G!vqAI~dfe|Nn);k#yAJI@JrQ{{_kX?A7x zE)s2RwhY&_^a=7srR?5S+dUfG&q2Ri5am%t8H_2ai=e6in27I$c=Wj=2Qa zWnZ^P4|Mzm_6oFh4Xh-0mme`?WrOR)89|yPt8RnBBs@Gaa`^lAKq&+X0+n98vBK_w zKuLT1<4?p~XphJjcS8~IobBvv5>=ey-CHzY{)?)!4yMm=W^d0iu4(Mr>iz`*xQZzB zFzk^(p&1;DCx1MJ|%G*P?Ubp3<&8EdMRc z9qsSi!?eF`GYyUT-@^%@PTYKNj4`&iUzus&k46a7%AOL|UKW{Ca|j zG1o=WW`H~2hM1u_KlZ|Y^&b8wP@J!b00kdPgE8l#sX}0hA#SCoibg=6I2lU&G%uLdAO`L@lj*K-yKyuWw}0?*^f5a~Nn+^U z|9(4B1jO0{!#frOyHM>bVT%>4IWDhvdl^4oykhp3=_-s4iZp#W_Wi1qESRCpk(c+G zi0^o7Z9ol2^lk4J^ytk(fJW6)8Iv84#(dS0MY9{ajZz2o` z+FhPuF`fUL!$+JPF=z3>gPu|M_Ukc}>_v{n#icG%T?}RJ3LQye!_Kkh>#>)_$Jmxi z9IH&s)kc~2(~oH-<-&Io1TQ2paOrcAIjl-&}1lQG7Z50rWuY&0~--BzB0=Fv$O1XDQBkK z)m9Ih)Lc47Y~PQix$`?mOzo>ix2rM}(1m{_ZobdAIreW57t27LZK!&srap+OW^`wL zLngmwl*%60T_~=@2lYEh626?n)OEfQR~PGNur~DSQC(wQoNq-jmKkK0Kq36wtQ9hv z1*_T3rqB+=di8|YbkmWNu(Db!v7YGA;rCmca&|Q?v{)<2)1Ti?2eNK#J@2pb5s?tr zFH$V04z5b>zq%dic#1<^ZP`(t=RxTyVw=<@q@?ov+xl*oXDLaNH__sCg;9T;{X4>c zIWs^e2#@0lFFxaY2wZ2wmbc+C>xYiYgx|XIIBi}bK^=={E&=Xi3Mu!QL8G~Kz1K{M z4JBakoiD1vUGav642>a&qRfbbGZ`u+OJ1+TVx8d%au;<-UAMETgH6{-xwq2y8wO(SKnYZ-w#W3$T~rz7ZMqqmq2b~0 zRRvZ+g0OmFSVdq%yv>&zguZ|Op5&d#<NySuyMiZt|vRV3<3Yu89Xb1+ptya^#y_$Ls#1mA+}8w{mGE%`tt zG?P;9@u@rqNJk{16A0d&lTTFaAwjlp&|JBjQap#XJ;le;ky?J}zQn(LSM@;$wUGy` zNv`3UK8CbSWY9HwERrpe)+Cnl@4Q1D_EQ%nV=-!^9#C!m!)`_9F+Q}FvFyfjX)qGk zR=_o4L+MxL*SE)8NPSSgXAmUPL>XO^uk%5Q>WwX%qMEnK_54_(R3j=*Xl|YaE{~FI z2r1WoJfC$T%jX)vr8mr7cZO(iY|P%$@^rHfQq=ZU+b*`7W0@^W6O@JC@u(y(KVw~A z_OQ(?D1Sgnw4Wb|Lur7fm8xz!JF8dRsyiF0rt7tMP&VLqrB=HE*=_K9@f10o*g(SA zbK9dJAjjFu?iql%vI(lG%aEOI6rY~$$TPxQ)T{E&2sCi#S=aa7&*H4GB|zpO!_Z0Sma#-Zz{n!^2Fv?kKgt z9={Zpm!5`bm#fxpLL7V+9R?}{G4==vK3ul>NBcUS!9YJT$03A*{A#hSW1cTczM-F& z28V_`>>nD%d}O+kkU>r0i2hYRi&ETU8c0$1;)3$SRBh}0L%=o?66Wc2;L{>I|82=E z)jf7NC=|WU-;5Zm8?(I1fV(bJ=#P7A)>EU%5MDryrDX3#3`(@Zx$SFGQhsAk79@IH zKro@#s3jft-`ej2H2?)xRs9~rt6Z3$zq7mhive*Gh^$v=A}V+qrwrmr;F|ALcv_B& zDA_tcl54ce{hz;N6Bia~?bc;DZ$Z%Ym=v0w!0Hb?D{k6U&9@1^Kk*SmZ(go)={0o; zlwPgV9Hc`X|1T|`UW+_h9M|dKKrvOT1n&1*j&;wMP^ng=-YWMcMA4UbJa6>5B(XLa zKAAGUsft}_qqST)eSXpYC{2}4I{}vJ?5@u*zm<=4cX()~)iL5an5N?m>+*t1cxoN~R9Q9Fsf~Q*a{2Ul z@^X86ze4e%*4sQ`Y5elA;Wm%MCk-O@bS^N&hI06}?L}YCi+zw*RBU&7_!P_=E6xNY z#B4Jj`?1xnU;)_{xkYMCF1yE-%QFTid9yH9K*aPxym-;5meNRp8L!F^ z&+l(Cf9kg*>FfHR54mjuy}`Tt5&49Nahj556>n_$Oi#0(pB}mfxZlD*mCiCSGI|T% ziVc9NyXsOe0jnBm5&6Z%#fn8Uz|S!Z(22i8#B zr|FyJ&zTB`FWb=947=Osi?Hh9grdz{!l&JS?p5;(T!EtmuO#HNSetl`Nru|G)Qrj^ z^|=pdWF6X{A0BfKo2~ja*6NS=Hin>hpY{X@Zy|zyjt@Ug5*4PA-=6-Z*`13J1L?(K?GhWa z801l4c;+*Xnb%3kjZ=hj%`wk_US6d?QUBsp^R&V@a-dom*972#(-G?r z_Sh*e5Tg(N{x4(>O*q1XVo()XS=kJb0RaJl5ea&|Awt;uUI!T&S65Cfj5CGT3JjWx z*$pJIhq#U(6<6&>-)%xHMx;gp)qGx_-=?dPKf0vTDh}wdk0*R6q;?_gFxo~~x)FZ= zJ4Pk5&M~0gTf`xday$4fOUI%GAG}c8y*!DpP&6-^JWdvd$wo{!-RO9dFz}D?`o7`o zEVHcfU-TP&#V%?JyHtflHMG?Bm%QUy3#LNFQs3)u{o{>wCocqBkdUpyThF2ZP1zKk{)etyCdgm@aFhGNu$p&(t2%uR@y znNT|_Q{iW~1GB=~b{qD6^f9+7XK>@ZT&c8B%VX=dn)gGq(>%^0l-<9f*WkI3Zs)m! zEnO9*8(PE)4t%esOn$bM9XJEfbU5t()eq#?MDkL`ff)Gw-o3JCZz7$ygKbvj(-MFG zfa%00um4IbAaD6iZQ$yRzVcMvoz3^B#LpE9-><{UW#;ck{K;TuGX)~PYydpMAI#EwB>vHZ&PvYhny3L6q^K)`u9oH%A(*=ULMAZ@VJq-gHS3?BHiA}4u z^-hj~W^MMvk@U9)|-|bHFM2w7#?QJ%zp+hIvqFdf9d!NJLUY=kxSqAAHN)hjVcXia>aMJr*ifaDmqG7 z*HuJQ55Zp1WztF(C8vQ~0&gZ-h;bb!ST>uDFlrD^`~lNFSqZ_A=Bqb|2vxipd74+3 zH%*>sHL&1hPWSV(@l|(di8*Uijjh6Tqliwlhgp_#Al4|4B^(?DYl^OYQqF#o5Pn@= zR9qgsBbWVy9!!b&bEWv&B^fp?ApEovZ*R?+y0Wrzd+XVh@uv{Dge+{uCy&;`19I`d zoWZdW!rRDkUqNf2RI=LJ(LP6}T1f0^6n+|xaTca1#$8Ri8ii^r1|o=j-AoV4O+fmy z-k;)!ihQQv@zM{$(x`g)4hxIJbX!-XU?=q$K-Tg7;@vfEtsQM+lh}Hs=He0I3bD$V z))J)TzjOGv{a$>@H347gH%{i&+bh+r@u4|Pe(B$4a#l{uRC`An*w-#3%683u3yNVMjv>A} zJEK6oL9)DCvtLVVA^Afz#s8T@53jw_D`S;;g@^zb`RuW@P1S+#PG{PKicG|(_IRg| zebvq3w}^h}i0*XLwS`<@MywiM220M56bWH;ru(=LdUQ3qGJ^Lo1a3M(Hn*t=9CIUU zhv$1b5fQG}TFs6dv_Ad8sv%QTQ}RFjL?^0|a==tbL~@BN;Zde3yLKDh@ckVW;%OUo zO^SI zw8_X#KDG5vO&PZ~71Ad+Y6yAjvrU3d?Tbks$?)RZYASMttKS0Acjv0;-&pg&SVmsu zvafKvFMkUO<_KW*PTJP(U-LNJ^3GS#?(-mN{!Z zDM!`#>mbr2dD=^)-@_t-K%|>mcgX8S}a6u*;vPX%I7~63*|n2LW-IQjXuKDxCQ(Q za{wIlGcx974p1_NhI13Lj(?{rIaEqcWN<@91o9aB{T}yF;q~KYiq;Tr<3={W8m)nY z4{$Sg?odNIvT$XoK@8oasWFPkZP`^-o4m7Ec%zOp8O_-CT**t(l!1|=XOn6eQ_Y%) zm}0BUGrqw={kWKS%L`$3-uJ9JEB-sonkNshpH50{o~LiF5;kg&(FBuk>yT6!$_;0t zQenJIWWROV|CXsqtyEN37grpESM0J(>1V!*V^;$rQ?)`x#CCdSW=w7UjPp>r^{Y-= zz^>uRQAJ;Hjufs%ZZLqD)L^rof*qkey2*HYD#=W*nrqqCc$F7-0!{&?IpZF zs@Su@cZrA|x6A(AV6nZ$Gw>Du$o2(Q!5yE-Ke!MPps* z7N2by!TI&^mz(ND)7-w$-lEs*B@IV{D;CBz{{OzYw**&_itg-`2>afLeEr(#i~0#C zmbO%l;j5(e#PxoQ;S@NG$p>F6i|Xl8akBqY^Cb9^b%IJZoQZ96*;Z(gUf`2o9aS$M zoOE=;jaeb}?o0f3HK7)h!h6L)>s8#A?JrXQRm{CDFY&@3Cw92stna>CHhR;nY^?EQC2v$W*K=MJ)`*F%=j;$ zyJ>lL);k@Zz7?kwGYKhGpNtVw(K`jN8zxVI8!tBDbvZY&BwV@r8m&&#^9Ir#Pl1`4 zOXjr%W53iLNVpEQweV0rg~uWhn^$(RhtrgtN&+h>0jvcuI|9~N2X`Udvaz&+r@&^# zIXP3d$4+ePs^`f5XW!T#DEQME?`HVbtTJe~AcdD_`~S>5rK%=y3&f}-*uj0!HQ}0NaCkJrc;uMOP+~$+X4X zbNUJhS39OBz%k}^Jw0U0Z0e0ie;|Tx(ZFHtJv`gzHym|awVb!G=exdv{yQ&$Ygs^1 z_dMWdn>T$x(idE&*Fxk=EMHfgd^BZxsBzw7{NF*;;rYn^DEERK>yg7@&%vO?-4`@?*ZDCB?4qfdIwx z6C%;`JC*0)`;zV;WMh*_gW#7b{2KgZ4vg%x7*WeWP?NXhZO;pE{af0yv3(XEQG@Zw zgQ8)|DNjL@;LT@Q4ivW!q6TDTP8W$nh$i+IWO%u-QoSu5C!he`eDxHzQSB%f_)5X6 zO_-4}6xeSGQUT&?I~xlnN-l1|{A@QIb4viEsk94V4m&$ZUdP9ZwTDw9W5LqeI^AL!Yhwwk&`C(kDM`w4P6+Ty#r&~ecJuy zS&ibKq0IODFv84p2$!(*JC!v18x~(RFU7e3!V@KjvI|&!&F)s#-U5h5zGfMe6C{a1 zvNRf@d6EO}Ycu;vK%pEwV%{kN0lI*Vz);d@%K8<9YiEo_A`*P|m+YVa5#A*=Vvos8 zcJ^UxRVRM##60qVJgs-+G)A(3Y~NBFk|4>O?c?TMg9}zre$;z0PsDQS5h@zaa%%E7 zpmIwQEz5_$?_S9IOK0~z!$e+j)w^~12IVFbcLWE0CsJJ(7YHo^DuJTte}r0x;8@)> z)L_ImXCPg!{~ChX7jw?m|J9ZAD@t*Rm`YWtEE8nCYc)3hDttrz>Q7;Gs#-cgH_M3_ zE1?=#Z~}kfS8F=#S3$%y>)}`q_0sl45w%#C%UM z1<^DUS!VQcD@jQ+85wk7xX{<4+yZ4}l;)KQT-NBg5P^qhB?Vu5gee%|$^QUSmHvDX{KL_{1urUSUa zU+?vV(p7%rT61>(diOIDh46irTczj=gyTJp?RD=im49wNAv)R(SU)0pI1?7YX`+qS zt72un-1g4%P`8fn-qWO!AZljA@yCz-$`1QCD?C}AArL^`0T?fBlH>5hfEH<%uB;Oc zyUe)`LmGonGY6GROAB#_D&aqu<09Yd;-B64kPpimQeX z^DH^5Bh?NUs*&f?#W`grpLiF}Y!7UJ7zLbcMB5dEEoiVa2vm#SYE{Kl7rb|myZ=`t zi|)GtAt@<`F~l0Dq=)WFnx3P{FBt({0^tUXLQNU+(;LK%%F%{)sztYK_(%jA>qH-{CySfPE2j@aFo!mWl}*BFszRIX5hl+r zPHkq5He^CwBqTcBOm0O$NXVE@HJZw;^X!78%amk)7YK;)=e_i&UT}ko+;h!`a{CF%+G*;N|4pU;6vY9|yO| zuS_(ur+|RL!3jK_{EOa=2Xa!bpKdOsIa~U!ne}M9jsrzV;NafFdkABK(MnSSxqmJC zDf4AEt}DFpQZ}`Oa$%>?u*J4W=Q3TV(R9o8?>E~9tq+U~pQJi&N(}ye({icFBP^=u z@Po)}|L<2bv$Ny&uYRlq7qJ14Gh36vOIBHv1I{K}qYAuac15QhfqC^*CRj1&PA62^ z_x3PZOa(+;PyklZYxPO+QH+oxcsT#~O@9}>IN`rI=@}-ZF!Vl`RCqzhdYN79bTV4(c+G| z&)Fq+H&uZBH%I?-VB6xjl3nd0#(YCj(QN@)WvC7pBn(h^+S^x<10}ZW8=#B@27^Ux z0F<4p*$3EB7pIw-nTe^>M6%ABmN;1MZ$N%O{48+0E&r*<^jq41J+WuzkB`&!Po7u_ zrJ@z8fC+y&wh>Eao%4Ox;0H<=UZEijFK+}!)xuuMEU{ns$c)S2^&#){-$^gX^Y6dJ zRklzSJXNgs1T&Qmj-7+07(nb{>1XF0y>R2{4RGy)MeW!;`pn{8eKPE7<3(>VjLiy> z&Guhjt|{$2a2lZbh!7U~?c1p)k%X!Cms`Km-{IV~10arsoB`GSC~hkIQ|Qgiw1i zsX>w!Ad8Al)*|nenJzXXOqOk)tW1B8Jmd+)j~|g+a%tW|IJv{o^#|PuTSV+zIWWmr z9F2%r0^$4gBApL;BovD@-BdnxN2jl)KMGJIiSjZo{YZzQM9*HP@V?tmeCd%JHy+u{ zP#`ExbiOzWG~wQgCd~VZ32U!A8%b}cQtS+sNUZC&<<`{Dz$N9xvtLlI3HmRN1C7mo z2QYY~vq7a`Hmm@@^*Fe?H|qJS(kQE-(0BM%R5ssb57UlY=f=zyrpaQGl+(?XU_Mtk zRXEkFrXJt|uG_f<`Jo2uSkTd{6|P_X>KGmq*gy_*(E7hN$uE zi<#dH=}g8&&>kcT%ii2#&v`}@=@5LzjJN|^i?(uD0WS&!z%bj;-(dv?4CIqB8V3HHadAfF6U9Pks5{ZGTzW#1*`Gq!j zR%x*3!4=~BYwlBUP%JGgtKCACkT;+^ zvM(O};UsG|!lX=rb9M&F?maf-+4qORB!r$h)KIAXwebbdzP4A2aGgGUn;dUHNPQn~ zD`i@j6TCZ`dUVZCr!B^m?0JAF<&c|$vHZ=syvjyv4Y&iom5#I>hi)@H zHOGEYTLAD>h6)pbs+kc(O!75 zY@VEjp?y?_a5=D3g0OAdb%|N7)!Dqpxk;I+3U9P6$UAhVuKVg+m&YG6UO$q>V@W4# zQyFHYfnF)0o0~u~mmC8>p8bXvjQQF~{GtF$(5@DKY!*!}A$6_VyOc0sJ&MjXZMi~) z#rSy4!Y?a3n^FMlU2bpyk0?Qf^9Bb8C;ncU0@YKw3Ft_35WwQ^(k*R#MAd1++4Nbu zwm38tYfBFGh!wMGTjSJ#(QCZGB``D}`rkPD4o!mv=zXTZrQ2Kn_u(nwJQVREY6we6 zc+EI zB#6q9TtVICtZzJip1j)Eicsk8nxC2bTn0lKzM+-`_{MIN2!Yg+=H}+WW*9qfYxRwh z=>H}T_{{Y5@Lyg36>Ci4EH@Cs*-Qbue712rpt-ZZx9d)_@fZeRM-iUqrLMitj$ri! zE^{li%E?~g54q9TG$cY|fO}@N5Ov*nJKIvMNCXS3jFnaR^{AcmR|pg3cM~9XZ>>vh zGmP|!8>H39CxfU6jBr^(BGK>xlhz~D<*UYkI1CzpvVmwA_0(iU02!*3Fkfx3vd^ug zS5HU!_tU&eJe!}avR;~)#lPQgnw{09)y&gZ} z~PdG zQlJg`qiztmgUzh2Q)dV0fT=L~j~%h0Csb4uQQ*w{OB3FMo6x6>F&#ie#=kTt0D_yA`oiTjUgh?4<$yRkUR0xHpI50U>lD7i^#?!(4-P|30*5((S=5Rbw{uQn$wt z%Cw^I^EBe;ER!F8_|rcm^rqNk0Lo9vyA+&9@lxv&+_wiI_dc!L6T9qV@QUO-8I|dO z0;57hl&>3?*WH0DxH#g7KUf8?M8x#F=52q6!dsp-I5rU%m)+tBHK+?3l2WkkE6okM zm!}|m5G1!3K+JCiK4g6{043uUyOnoCF- z%1;?yf9nV6N3ztC`uZ8L(j6qIqly3w*idknWde7|23u->cqLh(Ek98zPOhP$(b!Ob zrCV43H+`-`g68LBa+I37>B-M36U_|rg6rqBT4@|UrHi-H7{-c(atE<54-j319wJ z{E;sF1jtMH+4Wfhy?^kCMVO5w$|6B6I~L7Mzo_s6i(MJ0T+2>r)C2vJzhaXm0(UeJ zWKe|k2_@w>D_6acBAOp7Xl$32x6m*yXLBDOLRe}VmqTl|r01XM6LL=z&5!$K;J%JO zpVVKP`}aZLqciw;2r6pwF+jnqtVf~aK9KWIdduE<0{$N~CFc?nYK_|EjX&M#RE_W7QTXz}j=R`W`_e)c%I?W;Xi8pQ z8$4J?E9h3u|2`}TRwZ98ixZ%WYuquj&yjv1i12v|oc4Q{R2ws&*Ql8JolIcrSq=pc z7gv2<-46qqz{p>aFkF7vEnZ1yy7gRz9wq?10RlDXGq{bZcOeX0$cU6l2V32riV(*bA`5_H?pNuG=kHC{doZzuhHTGJzVKHba;37>I*q{8srqj_MV((siunLikWR@iWiJL3-LVSi6psjfemc7!h7= zrMp(~ai}s^N`5t^UagfE00g39X(Dtn7dqBcv@da?`_Mk%Bt{}b)s4l#D-A2{4=5`? z(9QUC4lHf)40qaIn}!XsH))svsNu$K7i%1(xf|RCLMR zyM+ql=6fL{(I=n55#ex5;`1x)cQ{aGHO0Dcfb+=)Q0**%|Gp%=^Ya0y0Wk41G)dMG z=q;Kx8SNIj-%0lI)X1uwZPQH`M)Q3dfm&u#(3h!4SWN#wF2tkVN7hsu3BcBgc_&Kv z1+A{oVGFa&F&&+~|4qR#GuF` z#?7pa|75(>nSS-O_DBublXcq9V~B={$}x-Tv0A3#PlCsTsPX*`ME@Y;l_M~c+5^#O z8S`9EP|~XjEyV=hvk_1)2M>S%{Rv=d&#Szi;r0rRiuNO56NlBN514__r!I!EQNT^$ zU52Mn?G1t=q^FQCeq~&w*z7~v*;yg6-fmOC!0_w%8RIJ=DAQQtw?yE-0*ny$(RTrk zU~RnVnJI(sP{Tz|p-kiaO-R75kbs=gz)5a$>OPPog`@C?s6p8WTFRUx$8r#B0WS$k z^Nyf9_&hQu<+a2v9X>5dum9j_SY3yT29}W`b1L^Xe`*xEP7>ONC1^0U2`B{89B>ty zgA-w~zQQT5up4RWGX-U3^xj&6%Jha?lrcwUQz!`UZS3vY4Awt#rpPn6vZ<&TTa@Iu zmz@?@A!LdYhFCzP`~wEjA~y#mj%Q_Ugq=4aOpXM^583(UYqcZeBc|2{Y%g-jHg2j7 z0D;%(ifc25YNP<_`bvQ^UaiWdp!4eK+PUCD`)s41;R2yg41CDms088PXqU)N^z}!_ zN2W#TP)4c3^GaR`gjXd8YuE_VsV<5-!n_&2Sv$fT~uDIuicwR|x}CYuI{hH@44UC@K0I-~oOt z3Yy5L1vszt^dNisI)1l9h%U;R#(z^?x2ePNpAD)>(rot=xQ)aw^+sXxs_Le#yaK|o z0btDVsZz*APQsFcJw1pZ00HNI-I&;Nd<9iCcScRXk1C&6Myy;Uk__+dr*JCd&DCx3 z-A-}XF`=M1c4u`_PcAKGs+5p?L0yj1(fIYJw&XhTd?Y5^u^ejjU&1QvEcyRJB48YL zTilK#XCEa(3ySr$k$OaL)wH!!EsXtUI)PPY8%!+BA$33@W-a;YypOg1q~pYA>-ecC z=u|f+DdKia@DJnRJ+<;bfE~iFsj=1JuFhz;IPKQ#uE}WjBgc5!fq>g~i8ZuXA=UG5 zPdxkiAe0S;8Yu|h?p@wf;AcToM6}#?As@xC=NcYtV|n4=H5FFY$2#m zZG0)~H5y6R4O=&*5w2QaZ3`MO!~@pOaQ}VRk^I)rO7iK@|3e@65%4e>NxF||;``SH zjXF{5gmOc_!|E~xC7tz)tdq1^5}A?;+268>e`6763QT>P0kHrWXCk37Fl0v!_I#~W z%t|U7VGk@h1vKh49XXLb{8^|u;Md_3`A8dd&5`UfrL(F$SrxcQeTu~FiM&5oHDqK< z;)BwD<^wY}ooWpRHSeqH=QeQ>gnp$b8<)rhcgg;EO=yrB0_oihOmrt20vzQWe)Tvbl|yhCo|)RK2$*u=LX_9Df}1HGYdN(p3!5x+*&cWW zhFs--&=*-XMIb`!QYKpOb!9z+_wfbr&;_Omb!UKrMq(_L&-ebawN;RX0+pXKVg-*O zUiND=Apm&Q88CfRr?CMP0i7&_0Xb4p=w;W#jR4A}U>7qTm}%8m`(!u|A1>jyy8g2f zibFhTWDT7@_Bw2*i{b?x#WUS67k3lAvpD-V$`248PlljHeRWdBg)kq{bX~PqGF_9M z0#1Lhc;0?bxcUocawo6VW4ay-AI8%0d|kEfG)9XO+=TPS_}OPdfieoVpm%OF90Uu9 zMLLfqaPw4O8`XUK1#R+Yq{~#qb^O3kQdkLT*l%-}@($EKNk|G53$^EPwlv8N%+;*G z5TA@Jr=Y;f%KH2FZ-q~vx()K&jAFA*;OwSlr{?Nn?$5d+Ny?BMGdF;F%&eJM36SdU z>u-_KJl#|u`*Mk2)d(lZkt}2476VJR*8e4wZVOt^E?=PD%wl#yMJYSJ$ODgZWBcdp zq5sb3{^<8po*E===HG&Cul(lR<)Q7Yg}pU%eDLdMbZi!_%9wztkC%pchk+>cZ+`K^ zPQ{r=m(NchQ-K%BeTsBBfg-de%bb(Ql64f~Jq6bMJf5J+1|lpkaV>x63cm7>+;%5Ix5ZMeL%|`<3*2#JpRe&jXi0-pXo~i#6gcrSQ2Q=m zWeC!7?%*tO8O7Ii=YRW~`7eP%8nAIxMVMooB^$EFglBbXOWQJ7UlyPcShbaL!D$?MMbX*I6Goy^)pKY~D5RnJEjRoky3=en6tjBO$1 za)`zh_?-K?hSvDz+n;(l4Db5oqgdD}?Tl*dT=joxijMAM<-7@8vWQGg00vNnWi3IU zgH+{#N3{QsxGi%?`bP}G+6~^02ltT z_>3#c9JRLX+0KSkj>pz#zP&kbWd(`>;)a>muMgscs8b6IC_SQ{aq0$?Td_zKqUw-+ zO&rJ_S6(WnWRR+rrdFN+sXozU8sHo(70AR%`px5lQ6B<8q3N!rW zW7bk}OVVGr;M9~|c ziC3G0ioMV=+JN@_+LYWO%eD!pzqTUN)q0ITkHYxt^vYa0>+snmI~p^OJ{$-WNx!j~ zZgO`s8Do>uQ= zVZ#m&H^myS3_GMPE|tnQxdxn7c6UEda>dYK1lfnXyH(e%D@QbfCAKZSqU=!Z6JSlr zdI-`A((u?=LG&OVz|_O1Ae20xoSIT~aC5s6uLLi#5bp2cehpQYE1aI38B6YIT!$u-ku2lHz=>r4anr_=O^-VWHG z8_^?|k;xZ8)+zo{OU^9z(!&SeGhb-+W!%6QlajpkS{UWjQ0J)iMih6na7{Rf#Ev$n zJF<>E)aiO`-%71RIy)^#=xA$!drmY|&yzw?PXHF@0_xYm(=aB9U`vW}QjQ8xZzCULs$ z&%XiiT%G< z$Ds~D?_zlWuP}VPwT99jX1c`damea5qZ%s-Z%k{3o}O4=q)mM4Zuehpy_kqp|Gguy)d3UU`GL4!kqNbVma{s zkL4b?$xseUOHXH!7!MB*2WBphet{9Gp_s&MdAvDqXikAe--U`lX&-E?txGihuuo3R zE&v*Pt=%&B48!>F@GFshnX%#Dzw>t>`x;=y@(l+mg(q z7+6wtNQ#1wrvXq1VpjBei3?-(oWb9@TW~PGi#xA2)P#C^N#NgM9{h&{*5)V|1s@`t zR63NttoM|{DiGzh#U6fF-Be@Q4jYeQ>X=aChS~iSLNzrBt}oisH+QhEOLSd9|HsAE zkQ%)le`Wlij&@WSjSr8#4#@y4-ZhU3*|#hi;}WPC7*YJZ>bZ zwf|NiQitVMOgR{0^*OtBEKFkG@9((2s;geK)zFv?M#T;x6DBtLUnTb*FicSH!8=MB zB^9^Gp0)0~VUw1wcRf%AU;MV@^vZPG)hG($mV+0{GfV^Yrw;<4Ku|$h8Ostk5W5_+ zc_a2ps2-%r`CI?5XgBh8HNECwPZvkY7jd_d*cSu1`$?5iw*Z_2*BbTxg4RHl;{Q^f z4$g|efS#II`3oTPFtgR9mzVh(oprLe?;W%jwZ1Z1zj$Rw`!4{VTTCgZx9DW9>DrzC2pFx;eF8FKJLHu&m)>An|={NM{rzHq@ z(HQ2{A=Sb-EWp|lad9NO5A0){%+ZI373%sG-Tqev6EVaYDOcV9ax<55o_}IP#O@+{QSR0zaNqtIJD9zlmvG=11>F$J?~%Iv|gsb(v$? z{^{1?80=(U!z4-Q+;MH=`i%?U7H=ts3|LdM zDF9P`paiV^4zIk}UCK@~>QY&BnN~vd1%XE^A(GUd?nKa=Ps_%J;|yj4D0E4sCEmPn zE1rRg7>lILq@kJrs8?Sc-n}l&Y7p7kQVKi_=K~aug`y}jMF%Cno4o<~VKo9;juUv? z1TY=@`asD3{)89yax6zHGTtmJHbTFfY?Gm_{LaaFXJr6j*nfMnc=TetHW+CaS&Amg zeZd%p;=$?z)dg2yO>o)&xuzpt?yMCXoM{GFg)?Mq(=2IoE=fAq_OxljhV?klm_Y&g z3wab#Yt#xIHzF9a&A}Xf3>!TG58&9wt_N3U32{!6lE+kl?gCJNk@^&L+b@*<*Gov+ zaXQ)J&8!!WnLRiKajeT zy|d#CEvP@Ne`n--h@fWW?9&cW{7|6O?9grGumy3Q3%I_t13F&x`?Fi;mf*>f2opWk z9|Ei;%789w3M_3Btd6Wq+l*&ai zH9Kjm4s2%^20t6$cIW#hiJbT=K-Mjg^W3dE6&h7Dg}be({rr0SCwEG$wXj2Siz00X zQB>D~;ciS+)SCwzKfiXYNP7UvfBj7=jOmB9$wxymR?!t?6%g@jg@U;TN`EW2D+@&n z-}!MSulPSlfaC5PpJw+$`GN++KWoRW*$9r?y1GmuemRPnYtkr+h{h3^KhwK4kmzSz zHGt^^nAtv&EH6trn{sz%I|Vk=UZo|jEhfbVL1aN8wE%cc-Fx&AQc~Np%z)I0bekoB z2R((K=d@qUwop<~L8lp?S(k~X9HAKlShPHD0$T9_)F>k8vd!_kbcnDPbwWZ3Pl;|q zM_>G>&*cnNG3kmHU+(Ce;v-FL3_r=s|3FbS{GMh4S1io6GkKr#rZ^w00?N$vMrRph zL%>`4;Ct_?^$;8hC??J_pHgoGmRnx&)L=e&{?|v1{>N~-xFE%-LRy0Y2aHt&)JCIW z1hkG|{fwo%O-MIz#ObdFJztXJPGgZQm>owpH4|$SxFRX*i71m8F=P1}@GL{{i^p%T zuwUK3U9S`GD{G4osIt5}NN%h7QT!LhEqG9xDti@>scMGo$Ogn3vx=@uFI!16F&l8vP_pXZz!x1@BY z(=_!_B*S+*v1`&RAE1C@o*=Ih0*O|%pZiqpB|7(G?_GM?t)a17kqK7!5=MNL& z{vK92^v~GX8kh!_OSdWMP66rFpc50dP-$tQ=78eQY@Ahw3mG5EZ_Na{1t)@Y#3qtu z#kNAv z!u}E~D*r<R+wg z$=cVhg(}Xo9aK<;`Rk6IBzP?=$)!dMAGyg!Y_4TA;7Kg z0x@THL0bE*RhD{eP#l;!XrqEYJ*t#vj?H(}y;uvDTSGqotG{sYwa%$PNochwk{v^aw)P5mo;0&N#B%{lRK+6qDvAUm;Cnn}v`9h&lS@!E2T3rb+Ljqgf7woIv zKBa2e1yE8RVFkN!C$04mQb%cS5%C}w)*GL$^gqF>h#AuJ9C+^sBKrFok`3ag?Q@GZ zNsA_>kF;o9C$VSb0m;aJ(66DlE3i)tV4*e3d{?SXLd0~%7Aql_mXhk;$DJ!FDQQ@= z)#DK_{H$@I5<>wxUEjRU@9Te}!=Ye{9h!NspH4wl`cXZrmij5-9$x~I6w&qc3Ao2) zF=MG}SrpH%ZOO!5o?lq(MYB*6+uF;|{$`f!j&q(o>Wj-5-FunM2IHoB zkYkbyq5R9G2exXD7zXt-fRsqamUxLFS^y!tEKqXf1?L?czYbfFoY^yrkX3|O%k`nJ zkWjR=OVA3`7qBYGQgJ`7`IIO^^`5@VC2*yH>U=(=6C)mD{`-4PkeGM(V`>pVy$B@Z zC02pViy9o_OG;8g8tLxt?ru@(?(Xhx1ZkwZOS&80lk5JT zkDvV6a~?6XW{x#$Q20KwqoVn%kXWtIS?#=M5P0okDkpI$TlZH<^11VOnQbea$D}q7 zE}?=-=sU61q-3K15`W{I{=ahjN@bSDJSD2Dv zw9EVy2k8n4ERj0!K<$0_uE3sUGqRX#pF7)Uz8my{`Oc+wkWC z+?9L+Ol;R#s8Ipfgssdk4eFZftD>dpDAKsvv%d{PeY^v|m`Z<0=jna5fYwi_KXaQ( z_+^bSt{0RupyGSAIw-EY{+e=t=HgjgOngcVuSX zurCF}(L3{uaR0vZ`_nHz1(=1nM0mJf_P|UG2R7|z)zi+-PPs-s5QiXDK9vCD!YOL0!5Y^5yAW?vX-%wUfmtUY1awnj8}p~e zTw$42%2KSo!JyQu;KnFC-ZLCbx(}uJmQT5TE&t37GW(_wG+Kg{utu++)QioF@CQ{v zkLSJ+bfT?yfl;J8ydb&t?^hzRTbaen$b+jc>*>>~hFhA9z(BnWzCfwxR`Sr}$pLjt zi;yKplnE&kju%H~mEdMf<_H368rP_=S)5=xU4Tl`r!rG8xf#C5m~Ygim7rPhwU+YX zs?28}C14QOrogwl>?cWBxPpm}^cp_I_x60$3Dp5^Ji8z2yOyA^rGn0!-A#h?#(v3RmrDQ9 z6v1V~`=p_9eUiwEmU?Ug`CJwJ0v`ESKVG^c;UTe_J@37!qL}i?{DZG&;$Ltni<`7E zBNuuy$bsLnB8fQABZ3c*7Yi8t{I1X0dbx)OF_0IkS5Qlb^gZnP?QQ3I$l-ds-w*W@ z^K_X^em+i4)sS4^X<}%6oa)gMP{+2gb!dDX{HX;fwWb($sB8)r7s2o;1H9WyFFs!0 z)J;qSA68T~c?2zYS!k1DJt}|@rKT37Yv7~W;g~Y({QOQnYnuGZ@aZq-PK~`>iks!l zp>?+Rzhy2EnO!)z5l}&fOsmtjB`IdL@Ka>fDGjmjma(ZIK3Lntx(i;F51>)2=YWME zj$hwl(Qi0n4`vg}yiYtyE)SDHf}afds*CDwP#HO>-$zzigw0f zIoxV>m<8v=sxTX%-qE%+d`#odsD^pYTsa}pY9tLrxISG&S^Y4N#K98so;)lHD0W3< z9|%2)+5(@wNXgH?>X_2p+^nvy4m{tF)}lM+1*gc79jIVfm~(%iR^z1 zRQ@LcM|Pw|i#b4p=sC>my)+%lDeAjA=O70KvU~^TW}4)@HbHO~~*g zl{9sTgmj4B+dCxFak=%`1;FIhDe$z}j75FLjF^;^l=-34Ivf=X3mS*Ux86}x0iy5` zWuYVt<=jaq6ZY<*A34OB;XQ0mlKkBC6Q#jug@C$MU|K-BV2wG91NbU4E%R|WRFOXE zmNOy^Mt_V3k>e_*gJAFCp|%l_OA)L;%=+?yxNzj?t5}q9(Ei;Pww|mEbvK1REArx2 z$g)c)>I#?@+vJx}DyQujX)5_KS=2L44x3?c_=ZxL?UxmS`Qcx?=9KdkmLH8WNsH8EdIZsqfWKy7iCDuy~42QG8!<#lYNI3Blrct@J zw)XPkg1L7zQGjUZ3q%csJwE5?;DB>ae@9X!xCfN}-i^_0w_ECPT+h41 zR$pkM#_a&cLaEJQge+6Vq`5t|NrZBp!$@!iha<>N8WEjMnhFeUY{fkvHw5IIv-)Eu zg%7=b9j-s@MugN&;d-Ar5Q5!KRfOJb0nH?h<0d)uHv4a{(XMrKO}U?Z0L#DGBW> zumB07OW~BOAL!vb!g%g?^FJ{ZXJq@d+g-(nVXG#^+QNzat2Hdb=QyM zD9RVf8oz(kiofHRd!DCq3J2=|1X`+Ht={RLLZ1Vyx$JtnR<*-GhRWlb z4R2#04}g2>4|raWx|r}%EywIZy7~Y?RHpKDtE;f_6`ans?9_hreOmyFjWc=sL^0#2CLileW+aj1V zQAB!X07qT57^I}aO0gkVqPnzbDX%#Gnz8LJ@gZT%Caz zFW}7g*o6zJUhDHE0tAKARJ(ajfC0ZJ=_$%TCk15rK77vj!yFr$G7PZ#$0*e1{=xGu z{F7)4{eD$!uJ<_*TKHcFOP@~fl828F@z*0DKhMDw3oAPeGb%Ad<2Ln{_vOu>PN?YPQWnHro~elL=# z86vxHP1)&{25mNpiU123KscIlm|;oq(}Ej+@rTYvqyYw-&UNnPuzpqvag*f##p8yj z`|}KCfj)rbeIw0Q1vKzlO)leP?qDV!idl`Vke8O47|X`*VfNKIDXqLhbnw8OEY!)& z$kCDe50>jmyzZxpX~@Y;8v6ISH2^9(t%GqbBOzu8%!8;|E>{PLYjpbpRmw(Wboc;2 zW<<*4gI>WBON))wevOK?NT9L?Ohe2{Kx1Nj_XOxGIrw8TKL_3Bf`O0nNx6T%AU-8- z|2i?&4~(lrhO2z+C~Re5yf6V1J)Vd=m#y`iBTzZX!W;S*qMQg>NF zsr3cNj87{RtT^8$gmnkY$RUi$?0v!A`-j^s<2QVtKulK56vo=@f(bB8;st6J( z(4Q-uq&Vej%n+vr%~_10qglXO@2jB3m4{GDk?D=+Aa?}Un?-OJ~uX?CU&}xNwVl#r4=$a zR#QeUvkQ$5JPk7!7BCGj&=2&KDnS3pn#^@OQv6<*0|=UW8q=KCksZAhLwzw;K@FO% z1~@JKlw3zqayW?nT|tAD3wrDtWhzaHHHrWo%fkH+Hy2EORnnpgFda6jnf40`S{Q8~ z6c!1Gp&A`6t)!QpJ~NI=rA~TU+D{_FbZww{LZvi6;-|29n9eFr_Sdgp1=q$tD3GM< z(0aMM++~gICd@W8WUL)_^w>Jk*ZkK&A(pl|8P}xG(^v>TQ$tx*G&k@i=^yEc^QZi$)0qNIh2giM~vR~99 z#`DvnJ%h);jihEu{FV?ddOP<`VE#Nc2PR0dDpM*{3KXRY-98W`sSjvjj`jN2vQ{%UdIWey%Vznor%HxiT8vQaEAZgTG?G(Sm~c`zM_r8(~gVaziBXK zTV=Ba)H^m6srvt2be;xDLgHlDfHLRE(vRhgk9Xi_D00HQQ=mOy+=)kuxO2vo8?-3z z`Oxt9FFIiC!kP`Qi@&K3l+7WQ%9T)7lG!{(w3VklYDj&amii$Rdlg~^GXa`jasRuw z0pWc zGj>!3pmEqg*biX71Q)Y67v<#C3{XuN*nP6?wzZNRFF4T1QVRN)7ZBnDJn%VE>8!72 z3j-3DnICwzeL33iGkMMdmOnB)@A4?7N$Dk+sZ2EdiBXBGR+n%!G@X>;xT^UGHlwcR zLOg$`DFJwQqPvSI{RU`CgM$0`>d+W`YP>43japIm_I zOI;KhFE73@pm;%2g_@vPMb{2Hb4_4aKg-E}wcKmrnbwztMQv?<*!W3RY<#E!Bq>@X zI~1TelEe@4dRtHq`n-hMu|0*0FJoyr#l~IYna|X($o~?(9|e}UzZre?FRtnf6LiOJ z)BEV@oqDWLO=imQGgDabbXghT3Wwcy>&eiKye`3ZTq?*7@zUt7HAQ5GzMw7h79UcM)@WeOHv}wQj^28 zgVh06lXdXV8gu^7uR3jl#oIFye@3o_RQ)Nj?Hr5O(-qI4u!FWSi*7QNq^ocL{*6K5 zyvD{*$a<)KVzT>kN#h{&lXfgk;fdfL7VBRXGie2f1R}DkMzt$`t~O4P3bRw0V3(rR zr}9@kL_TIY4QPI2`yRor)=j?70?S6gH3DvZqoP!6n2~~_A436{Pzk78BGQnQ_;m@} z8Jn8+K4C5^E94CL-dL`lYGlPlOMxEb#>StGIqLWJlBtXQw`pjruo12=VUv-=q(I`b z*)g1jMQyCYXp_WED!vcoxlbv}@6!dC+?5NAs9olJ93FBKMq^qAIz}j_4++&WyB+nCFsA#jJoLmP0TASU3aP;I@wUv`%7TI zg=khBjVc{d=o?Ym&iFrj)y&ybfUZVivO#SV#~=L$2QALrqhF5;@2r2C`~PJ#&h6A{ zRRjX-MzXpMaB@p!!GKh5a4^(NTBd*@%!$HAU>eLp*b7ch(;+f*C#A0L8CE>GJgVmW zyZ2xjRZ@Z~)Qx|!4CP(M43=g~ow2SO8v;gZgY8>QD1VQ+-k@uOZTAX+nI8xBFE^)Cidi;)Z+4}P^)sM2Z&+3X{m*gIzg4H zlmjG%;29^kZ`v#I03+)6YfDm`tl01Sj;Sr9c$v!uaT|Nb;w+rDtZZWXU$3hk+}>kZ z9TZ`h#q93enCs(f8P;@_Kj+h0#lNdAY^u&;?9M46$@8$BHcr`T1`5yAoN}rz_3~B) zBc4DcacM0z05VIHs)J0``xF;OXjPQcSSNC(x*p{uLlCuxAQud_4N0If4x+xQ^ra=t zha|%dg}{z?C#CZ8|LO7N1H-tSpa3T9nbR4?T+YJ3MdvbYT8+gA2B43V|1$hLF3;r+ z*<2yqhOmHIVNn;y%_2q}TaPxam%kz^{s#ExOILg{Ax+x1phJa~Fd#%Ul?yqm<(V?N z|Mqi3sMX^Ei92GD59`{WK%~t@9Zx*4me`NAdQLLChv$(1C&AQ#19*gEG`u~;T{;w{ ztw8M!g`N+ZON%2W`}GJQKv3MlFBo7^9XF{_CZ(kj>`Qm&0&nm@A6Z3eZ251X@wC&q znp$2%hmm~qYgd(L@G+namI}_wmoV<3K{XchT_1XJ zS*k3w!S2CwP}biO1Z>{0SZI%5TvTPRg(7aN&-+TUrJG&X({_v4I-26a*lmar_#4HL zUpU2+9eV&=-7DC%@oo;=eY6s3njy?E*s_fo6BAPe0*1l@7*GHah)fWigd~P|?ND5F z>RzPG)+RnwE_jgly>YB%3vpo`^!{1TB6BN^%(|OB+yvz*QyX1Yhz*3s9qf=RV8`IG zrKUJ6C{&)%!zus=28%;F3E)`r;)m(s2)QG_ezU3TnVgudu?$45BeQZ~y+!kg0J09$ zY!{kCzzxh`P<2vHswqj2lP|;@SF2?ig5FG%Q~-$UvW0XE4B9nDNS(4+X0~RTX5**| zh0WR|mDR|k(zWtNnOMZsK zU#SL+q_-o;IC%YDLF}-u>~)Pt3-3B&o@N>It%?n%+19P2rF>)U=6figke5zz+ zWd)#Tok{`si|rESQb31Q-4%k3-Dva&y^gq!vrewgw5biIxS?VoT}Qb!;UU_8bIhZ` z%4xQ+`677^SnXB5UFw{=iO8ly;XfW3eB5Dxk}xAmeVZMaD6I1r^ z;JMCb{=UUpbz2<9f!XdNlsAbJ7ovvB-1H4l{5z?5b2M(S4St6tavV6G7v`lEPy2c7 zcr@?E$g$CZ{s)>&cfQZBt3b9B#7-UetA0dvAAzF~hpi^QYA2_eg;u$l$r0Q~mm{EM z-gDc@e>d&@lp8MV`^%xJS*ZC>oy`i=Zc)JOOCm4`o3I=}OYI%MupfyxVAaBEGf040 zF~iY={c#N}gykf0JfCT|D;wEuhxR@wE{jbz`Ot;X&QF3hsMjZ{4vvyzkR<~IFBuna zV@QYu{|QZ&6OtSuNQo!EySC+j3IHb*0Q*9E##zsD)hk&jLe;y2eXHQsC zzmMXB2Bk}m>4mnB$MtVX)5Tiez9~Jbozv>K*MsN#%WsAekg~ZbAih6j99&qUyY%pN zQd(~)EV8FnydPv$X`(a^4G0J*f&quiH8(4*H&SaPf*bLdfnf9YCOX~*(2)f*J3fM+ zao9G2;SK=)jMo+GidQ^Kk;FJ-nM%zOuru~D-)kQqc9w+$hkq?_J`Bo&xshj zA|re4=&<1=#Su+sz0nJxx=HsPK?)VxP=Ksl zqU!$!k5t3hl>ZlEgwE+%6T`>$OnG?Yk3+%}b2xHmAP3$RZ zjkEnRqUU(e?0pb7=s=pJC_A~juoTO7$cy>%vf@f_s)ECe)`FQ#sv6reP4!dGg zwtY2dAgq8e<; z;fKfp3~i0c8du(RLEKR?Giif~JN-IXc^1vmF}VvA{3iM=Gkub}L$Qq)BsEwF(8w($ zqy!DxQFZ`QNB~RL#kYL6VRbCNJ8IpkNmNKLMsyI`0h3>eb^K zoA~pGU^ePXEx|BW z-Z-c=DwiiBZImW!L0bHW9$-N*Ki%IS{$1Ivg&tRc z1~>w<)d4w<;kUy7XH4A34lP;>X_m_JdD_xqhNe=yFquJ)E7+-e)upq{y{F7TLtC9L z8r0KYFJ1krIA4YInU^=S%x0=C$Vqzyw~^?}f(IB(>4Hg+b;RfvBM9IK;d_~*qFQYb z+A&zNAq=fxtN46CHp#H1+Ykrwx!MmNHYyck&=5w*?C@t(Ck!E77BFhUF97|HG@dFk z{B;*4W~S|m~7pQFP&G><_ya#4F6 zu1x4@T{5A4_=uo4S!YbXpwss_hzX=~yvV?~9pQ=as$}!FN`<*U+OHgjVk9a!h~1fY zK$XJ*Y)XU1MH?!*9Y0fQoJ!)I@;6Qy_BL zLnFfS70xT-_GBMLt1ZYMGXZCV5dlPY8L@U>4o@bhr{Ah%wQ4VI*0j!1mvh}^1K$f( z009&e%PeR@fhJ?5Nte5yxeJ3%6x<>Hb`Kb(!0GT2I#k;@U=iYV7&rOG1=ygU8@g;!uoj!8s3#+Ju&_FTkcRi zFaqQY{dqJoW*70gm#+)F*k?s0j;G_>vcl*vI2Z47X8160FT5Mkkl=rIVz0 zTbL|Q+ix;nPtVVh*dA+UTjv%n%U|0Ly#q6bC#uQ(+Bejoq4K~`A5HwEf;)l&rGhbr zv}tk1az$1jx=lhnD0B}LUs-;PuZT|30OJIbCvxRp)_cpdrzA3UO^^TTj+ZYeaY!pb zcfpTNje`m6goV3%{<>vbK7W|(18r8yozH-$TocQFVI%Te&aFjn6*Sc(TvSCy#$I`% z*hfPtecpM;DECXwOXhbYq5&h93KUc^43s49y251j6bE9pbMfG-1()(Q*@*($mDZ-Z zz-OB{kCm)en`RNgYgC;=R42ycCbx}Zd(s&RPVef&biyqzoFO5@N4>TkD7vy^_|c2C z@G_M!N;R`J9rBu{EU5aNy&rP(@&4zZP*2P9MaZ-?59=RRUN`l`Xd3;i1pG=3K|hX& z%3`t~9LpvSuG}hN-Yl9mW4C5Z3}@~&Z#~aiii-}G5;b1wbH;B_RIc~!%mrR2QlNJ^ zg|uns|6zW}A)9&U7F5y_@JR?y4uzlBzJ5s*w0am_7bDM;2z>(vS z%uzvPP)m~h;c=@J&cryVUCvCvXsQiwVj+4I>4TPl*}LS#&p&Iu2B{knwuRL%)H;*Z z!ebUd{DIX!R2?8e8}$$()}{pQrvwdUxlDLDZJi1;4iD3$B6u%aE7-&9_j`y4-)kB)6rsM2IuF?DnD7*nRPVPLmjflS%oKiTQEsIRpQ56dVB^)Z4yIxVYT3DkWLO zZ!6gEIpr!%vM29jmZ8V-(3B8pYHDuXZKyY*Alx`DavEL}U7GDMFmxdAXRrGzz9>#Nn%i6MDgO(IEHIDf-A3Tr^ z6Ty4X>|(`gd6YW}LcOyn2&VWpiwbA;hnZt`5V*bWCqozJVsfC_m8t+ffQ>0X3Y3K7-od)$t4>d#^9>wDZc*E3(D z%8iq_ROaj9pXXBNAB5~`nS;Mec@zH5Nl62m!P3=qBf}t2f+bKSI5IMc51wBivHcNV zP#ua%2xVel0jn}krR-k!x*d>j!43+zN-(Idf7QNpjU-LXr1FHmB3 z8)|2b?Mh0xQ{SqtmwvXA_DqNMNOAj2GJ)k?*&!jXr6$ipe{Th`V zM{C`ET6qKnUgNmJgVjCF2z>*|KuVIGEdhGF27Us|gl9ct_Lj#Wo2HXkcH8mX@^mEoRbRV3+2o!svS+6bgSN#>8zMnYvS(q_N zBF>czhyU(qAL>T8eSDcUX*njwh?Ik_@3Gf*OrO#ux}cVd_+> zMhSI477pl}ivyZ$_c)rlRh-P~X`$Y3#nXmEm*SE$?eSj4JuF>f`0Uu#e~!PhE%vaE2CFmSXp7(o}SA^WxEQn!?!-^C@Q(-t^rh?0ArOPa)< z6KV?7%^DlkWPdxVYo7COMW$$kWy&XfYXj$2o_+DztUJcnQ?wXnU#pAr7XLa$*B-!y zSN^%+iQ!dYE}_8~0RMvj!VMKg3w0*?h>Jh1Ya8 zr+A=g94E-Bc)j7exBL6$)D0%l8Gl*Z(1^u{KKF~hOR$mioBQ7lSlRC(T7Gp(_B>H= zjRFiEjUOTD)LwY`OU&?+%MebfR#aj0VCH_*eIoZGj|MhAkt|}vj{7yZQD77MRh}f( z$+t$Qf2KMhs|;!YjKENyczyu~r2vBBfAejxxwT#OT<==aT!=X}d8g){a{Wp?_#SH6 zb@8ARzmxbTg2^-m2)vxxhxVdv+iH`?rB%~VAx6L&1{eO$e)Uk)_CCKyVfFS2z9JSR zaMC4ebsEq83&v`wxEbSAsi)Uw6t)Aa7eRWsRn-2~{r*dq5qxdXPIyg9lgv*f;x7yCWY+Xj)JRoZLUlEgF z!Xay_dd@wlrkwg_Jx&QjKre{dSt?gPt*NIg&tCXg0v}JP*uqjuPYq3H6%-0EsO@Q5 zHNWnubw3U9-}-SC*$U1oy!kigsM+C^7hfl=X3BTn;><1Dv_7}P$wyZpqS$VKPnGZG z+wJ2QABqmf{x}8>4nxO;{C(%KW8Es7h5XoSdZLi`3Z;OARX$8Kb9$%79-VX9etZ&5 zGp&G(1&1tHs4?lej~Pqn*y_35B_D( zw*GjR%|1a-gZ&BUrptnmfd6t)ldqcIIhPfM8iL+#NRyc2RQ^kKo~6L0c@)q)u*!Ut zE0eD@bGX;cwrRjVlGstEMf>r4LGcB#{8WEJKxOOopN~}aF(E~Wl0cwnvD5qX1}l#j zDttd#{O+O@)Br%`O5y;cz@^5N_7C=P{>jVAMwzulyN;Cn^8lZLfrvw{iruDyts!Y0 z@t9UsYGnY?af{>_bRd6nJ5OH@6hnAwFx7+>`T~ly%T{4am90wpG1y<-^Xz};RAy(K z3ro@`q{RZI1V{|eP25h!F8;MRUD(8P!`Y>Fu6e%Oe|TUjDp~yE+Q2-AX@n-DxFe9Y z>o@aQT2 zds*Ph+i!@)w8pWt*z*?*0YTln)g2@~y4yo$FRT-UTAu#)6rxPGt-FTo?1K<|vGw;z zz==cs*VL*M$c|ZV|TpctwlWDMa7aS0quY|6=Wh-guBDA_m$#G29=)E)x?T zxD7c+WydGU(sX^7;vB`o<~Q}L4U+(36lOB%F&rmideM_!JiDYYMd-#0N};};m2!jEvvYIblq-1)@s-0Ji>XTphPRgujb)6Sz{0FSsHC)Mm@0a- zy>WESQfqQfPm^WU-FWPS1kiroBD2WTF{|1ahp4s=5AAC)%{7%%2uy8XD1J&-EICqF z$%y=@l(6grj|Xyp)&=q#esYz0t51L}tFmwInDm#})Gm5$uT#E@r{~&Q2ZDL$W$1g5 zQ@@}G0Q4MKhq)!;>spk!7+)6V2&E&I72VdYdPUGoI$*4y_4x0(@A+bEYSy1okXIM^ z8;k3)3!-wPplb((S^YFNvRqGHZz?{pHr_mZGC7g!3F#|J63;NWnu(7rzt-q|A++iP zb))EcBtfCkc_nA|(}y?bY@9yNE-#nByxEpL;zy8woLQw!%@et-$?`n0fnM^@d0<5E z5(ip~7EVU~A7D!#14x&xP595fh)#WMpzMa;vB0Nn?Ap!m0^V(&}5Qi0yS6ni;%w3Bm10k0T7DSSKmLTGdq+sow^N;m_fEFY`#*9ocm zaH8SZ%!t!qkLmDLa&a~71m%;z-OVV7%u(9S32aT2OFJ!s2vz7G`kcy0I+WqmrQT9C zKPp&5>W>9Vray93kKqLMkLlNKS0a48Umw|}`T+WO|{%O&Ea;)THCE}Jn; zaWUh2MhMjy89OWXs;3x05C!p4Yc~6F+|jGe{9Q>2Q4tX$!uul=J8LA|U|K%;}5v2LNA+3+ABT?rh}HdFKyZprJ`M-S1Y6lKBD^iZkw1XW^1y zYCu`?9P-1>XBmz^Ej|&{ zhD76z_aAo~M5RMeK14u>x;egUN=HOM(o95-6oT$Nh3Z|+&Kdt_0#9qp!)x~QGDlaH zhLUdwQ*eXF^CKYx!CY52jN{jRg~{oJ>)*Vo3p&SJqvGm`GC9rM2#)b-Qld<|f;UB6 zd&KUIC%!KC&&*$oWJt5r1&r`TK}X?t5%*b z(X0eFA%3Impq>EijuMCL$5KVaZG~?C%~-^DW5G@HFP*9k+;(!SWb;9n2C}>Tp(fo< zG6f0y9g^~NYA4X&s_n~g+Ri@sTb-h5DT?xVQ9egNIxydVuoa(Gm-6;GAyRw)hLNZ< zAK)9ahSEhVvV)7$e6E{%6xFYVr8j6O__V0|S_%XKK&eh~Y|rOLp;BI;fmj zw&9q^KVroHV9R6W^*d@RR7$W}kN?p$_yvcKcAoJdxfH_U=!^d8W5^%*9)0|;6YD9o zKIa_j+A>@NVBa~aj4g6O2?PMJsiic-ltRDNVRj5zQ)MU>*SPe}>+w-qWYpBRsh^+d zS_1IK(%B9hkSK;6i@BDV?WMZsmaP;XwDG6@#w3l07yKUp@lJ*{|AKI5NY&Ti^HVJp6jO^1&7CMt zCno$yz}@}-9o5drw;^L(>3pf+Lmt3cICKmGSR!??CTt&5xJ;Kzw|3j=9S^H`vB8~t zq?`?|t5@$KN)Ibk3MkkjI3?hB*PfGRYj&d<{>EdAH^g%w5;uaz3PI4)yYPIQ|K%q7 zcXhxT#`ZeJ2Galn(13s00o(IGdq8aKzt-xfIEt!aj8@_vknsyXP9i!2RG?5o7u^f&V;Y0yt(WlDlj z-VY0mfWuzfG$-Pgq;M@>&&;|SN_mxHR5@5cE?NLzcWFmJI>ggQ5 z@xAvRssRSvEWKW6lrr7jx+6+h`0}Tyd0rD_C5PuR1_ zuv_YJ#*E-j!xT-8^9yLeYshoK!qC*B6df4tO^Pi3i+>EXDFDM{@35c$BI4(kAG_s< zf1PZ|ST)*^q<-Ou%p?ws82MGq`TJg(#XwU4q;Qz1B%25a#*IoC=0AMQ@G z($#+KYs&-M%MHzEj)co;<*;&MFBP5$N4d23;^MnvURGJQQz4n+VKQA>wSF4V^#P;+ z_Af%@RuRcF7F|iAjT&`caz$f_m;iq83hfhc5h)Nh=1<(<-*~B`qYQ4(fYvn(B@}7! zqb7fuV`KXHa=&(NXG(4zkXEg*u!R%{2%3p9L`aEl6a(*$G_S1$)U{7e1@dgVEPIEt zj>p{dejOvfj_^HTiPzs%-w&Shhm;36T2pCLBV&zSf1xggxa6-*Zhd$3T>c&Im{y6q z4<(M=_Mm)p>?mC*aC!Zn7vICzm}kZ6KZr*s7;VL;(c8Teq6pbd5xYFt?Qp)XrxRUG z!b^_EN>0XQvlO}u`?jj8r|19D!t4d-9SW)n$W&B=jI15NGUaUEgq*qG-h8l@9JU8;D4MI>! zIq?_}h5;ettR}?tC^L z-@PrD;b<#4+GBQ^q*EezCU-MoAap~U?dD*>`tir=wIl*l z93?j`oJh!ZIv6)S)5Y;5rVNl0U8lRPGD$ycY)9-5^c&%<*scT`I3L9?$r~60k3as$PEDBYo6?X`*|94Ga zcM$;pe&l8e^Any#ZK7CZaI7PNr@a0=z-}(G**e;;Vdi+@*lIGN;77R}{iHRmiG$4q zF}H_nd;|ae<4NSI64I91hBu|@D`JMa)H4m9Khw^oRO)EK@ll^8*4qw$<61qcfD+Yj z!5AszJz)%bl>N5n={qojBif?GUTcnf z1^C+yE?W@vIH9_Qi!Fi&BOnj3YZuKXdO*w$U#t1=j@s?o?+&_NppE1<@K8* zlFf?ncg1^M?U$9@-CARjqq5zaE%GSlZuPmddW4`6-ff3ccqX;C5Ge{2aTi}B$6#y% z2O@erN@#c96&?8YQFI1jjpiHZQn)J*I-(#(T7-Whyruqg?)ZIwI8B1^x5ugUYWXAD z+o|)@5HftG31m@I`-uHT=Hs*^JtxB=EUi3cmd4NwC$LqP?Aron5MQA3nKJzf32m+)@LZra*g+0G<0euQ`H45N}ZQN|)ajKJo!TwH4Y0RM+! zU~gSpG+KWg!}W8gOc2Y*DlRf0%`OR5()XR9P>B}){w}~qS##a{r$L))BAvVUqhhg~ zj%UusSg@nM;Qw~Y?270v{C+dx7+N1m;^o3G%F@-M0ipUrYyY`K>2giZvj{@}5$OXM zX09y1qQ$ZuCw@yj>mmi$8Z=hco=S+4E(hQGdn+WzDB+Dx3+=!j=lL(aRH+>8W zN2=)@8L4$c|A&dF)Qu66Ea{!mPp25RDw zQ=_ISn!dM|m(8pKF>rIHeU)oy?<)@6gEj_lh;2~VB& z);1o{Tif}%n75AeND}>0q!DB)bZ~N-mAK|T0s4?<`^!y%ly$E0VhmbQ0Lo`hdubf? z>XUv=JuyMaa>RwSf;#i}WTlYbvDi3I@LkV-LNAwoVMl5#XK*fsYWO@HzCPXB<$8}K zVMYuP`lf=EudtTZ%|9bh0Ix&h3Ewu_8s7ZA;R<2;ijzD#U8;W}jFz9{Y9 zrUWoKP&f-rgPoxI(#gEHp6cs~ItztL-=~CXl&w;w7SxFUu74?vooFrdaSgVod=n_V zPg~ji^KQ|$yed@r8V_XOA_3hT?LQ8PwAkoJ20Y4ZOOb8Az1@w4EsxaFW1d!@M$3 zwSdb(I^b#V6BZKA`Vs+wMyx^*5d-oG3(!_w?!PSGT8{!aSFd+oa2Yn({!AyAQl&E` zQwQhZH}@9B5^>wKWxYDL?418BqdPii?6>Hb(kuW>;QSf=Op*Dg8%~>6N%-W&uBKU! zvyqQvvq|ZW7ulcI4V`#cD$njb^l@w@wh{3L&Ir3@2#a2r)J*hhl-$51!sTi2j{GdT zJ#^^%Ao0rwz^EY2{(Ofr`TN`Q^%J!Xxw&<0t*KUx5o1LD%CKR)_p6zL3nE=`f(!55 zB3-TaszRo5Lng809Z%BK4Hd?#GQ6r3$duZ0)a-QX@%@Z?*I&=)!qeq76J5TK!1FF@=C?XB6kU8EIv!K@CbwYBnFkpFCzSm z7_4NzdRuM2Gj>Pi;_|{_CHuchiq@aqyBAjz=@%5{^sU=aGd?Xc{*;(Tk_g0Fp4Ple z?@Ywcru@D5H^LnhO3OPF9(TK@IzUx(OsM*IQkOUX)Yj+P6(Aqfh?Mc1)s&P5JNr2F zPoJ!{>>o^SjK0;8NDQ@3?d$VrY#3dCA^5xcHodktl1b&4WR)m%HXXv(w?vPZ%nwu& zJ2fdGwm;M#`{Tc?S9&xzmbr+z|gruVV5 zO$)zjCDhaRZM%I%%kNGLLtl54XV&2gV&D>UbleF}jL)zr5sUH1G_R0RrESo#3K|wZ z3)C%G@uc%JGOB?5guCHUvy2FA?Uw3QJ(Es?9_RmfP1cyJ!dhQzuwTQFqxnC6mcvT~ z$Dg$dJmiJC~1F zt6`t%VTGr)_E9A9S+OD<1*_-c`lFBYO6lR>jz!F9GAr5YE>FRrA8Ort%*u|Q3cGBh z$CkPuGwS2y?~vAjtoqg<6Whw7CCHWX&EwGHRz2ogGKFrGw-^&xLvs-Ovb&y<+_Yjy zz}2p^2}ER>12gpkPT`8qsKN{Wao{}z_M za2wiongb?=yd2nWkk^E@z4mT~{vLTQ?#$<1GFj(6ewg7SG0Ke4h@&FPYWeML%CqK^ zY`wOz5cvd}`#8@BYx>D~9Cq`v06rJZR_e_qsQ+DAnY#UL+WFXf|C%mdjErhGz+mCK z)xyOsiI6ckN%wb;y0em1nVqfUYO%A$`OlSf8LXV=+u=Ac|KeW3=yfrWi7jvsjJ99` zECkTnD@4RCLM0yo07(ehMRZO_JLDsgn_;G$)G5XX55?nZ}b+aV6T_aE|U zP5S+GG0&xL^$Z9tfoyBU`;pj86&%0yG)mojB9Y!&?W9W@Cn>&Yk)UDw4=ZzheZRoeWDheNVb)_Y+ z!WhX>+^-!nb$EDKR5I=TqmTs&G~}L6pDiV-s5uKHy8Z0C5#B-ZXd4AIZ^0{5Xn@P= z;f#{B!g!R`(8L7m=Q|OdOsI|N@H{GC{wq1AP>PTCwV#(_gXHOeyZ(){K$2DO+^G!F z3-IAquS>{2CPHvG-fp}qsB7mN+RjJN&~H^bZmrW3X2tRqg<}>EmWAhU4vUhS`3}Al zqaF@o!ab<^Lu9)^C{IOpQJq(d9)aqa& zKV4;5%f$QsOaG`)-{VZWXUT&g zhCTeoWNn;HzG|`s=BDzP zRI!Q&_@Ods10>j&f^VgBF)v#xkl>#XjAceiNr#NxQthpG!=m`%m-quMZc^rJY#Olw zS?9A}^1}zqlkM2m2QRacDpDv|eU9~@ehA~;w~Gg^M?W7@h^cSLc#zKEBN@31JzbL2 zLwfsYCF~&#*`?;#UfCd%x{u`i@y+bT!AD#c%pqtS2f~i+K^w<^tCRX{?eFiKt!O&9 z;}GZkO*-&bm^K>3qZXt4(CPmZTMVR{KjNz!Zgh1zxvjCE3I65%UW@xaajQv=*3HJ@ zxT^2aKLr$OP{)JPpLTtC6kpsF=_Cwy7`rO41$SIpgRTteb+z^cqQxZ5Hya!ZarntI z2eg_=JWY32`0kjO7amVr(DPLHubRFQMfun$pkBSLb?^o-9zPuxBNG*+?1wvf(y6VU z#cE_XoXG71Wc%uBf&r6|1Qmmqk;R1 zQ&oD4n44uxKW2qj$o&t(e?QG+$-1qk49FAO19`-V&FFQ!j9gsM51WFmVZOldU>pn9 z1gy!*2f~3Av`s%R9U7|c3_A%%)mG#?{85%VeT?gU8{6oJay=3Ke>BX>hxo)ZiY0S~ z{iJV4dqVs&o4=5R%Nh6RpzyPBD|LhfGE)qwPf-rZ+1d8{e$wticqYYpwbG850uvTd znA6*GC0O{eH$NljN-XL~!pMzPD~(d}E3?E-_02`2QdZ#zx0sI>*n z+mLWAo^nWLuGC#MQ_yyT)Oc~$wBO=M$UYjW3jIjWHH96Qa-e}HdC(Sm=aE=! zCYu)KuV0g$!AEzf%{TnxpbDH=`R7R=WWEtPnD>E%%$0PeL4?rDw+Cpi+LI6m z9t$dGMf;l?sa(n7^GF`b%|eS;%$!Rvd>v|#->_r#!>yeBw{&#o=sLsG$|UJd&%^J=<55}XZg4wZ2a8ui3#zq%j3IY0qjzSHsPzA-RWYdH2htp zz28p_58bbMvcXJgR6J%_8{nNNA50UtMPsKbblYTvj8RQr{6TzNN-Qio<|qMaJ^Z91 zTFiOJ?09?CNBz&t|GSuO@%@IuIZScF@dxn!k%v9gbWc33(jUD`fA>z$MLF58H|;y* zo$KDl%+_}2ofiJzuoqc9c{E7EJ`SXzP%r??A#o2o%Ym38JR+2n))6GvF_T-cmxz*@ z_yPDLaU~2G4+G=;QrSiPEjsuGI3W$A!>yqe4&-R~Y}9mGbq&VL$E-~Pe=37*!W}$+ zO?!9vR4_?bjtx3}L7YkDwcYi3zg_mt)N3tg#J|a|k$g>5BXO`qc+9LtUPpBS1Vn6C zsaioMI+fwRF?u3rYYF7Baxxb$(51#3i^dY_qhq!y=ipZQPT(&*Z0#IYUn7It52btG z(43PpQ(E=%vx%hI-osSWDy2otN!_h?NQ*asL9m*&5>YjIM-VFe13oMjl*!dT`*s7jN^gsDF%9=<3!6{P0OM z?<7q9N?*bm^P1F5HSyBp3N3ebVIqwG+0!?_CX&&36mXX0Mz3H$c&P8Co>P=4kw&be;^DO_&t@b9AD(ACWs!v)uDoD@NRx}@LfBJ`;!4o}eR4dSH0D_^~RAoi5h zu@ptKhX;yV${;oTT4a7f3VQ$(nO}D?nY2laWnqNB;Pzx;V=Scca)(xvNuQe=1z1@{ z2YyyiLMsrI2z`L#EBWX6s%tVG95k7HKDI3v+t_j1nm+vQ9+7_muC*Kk?I(s6ymg6R zd42JBS|0eloDUS@??*|5i(_JWthSZQfbz-tE%;GJ}25MJuE zZr58b(fx;ifMdj#C|keZf4~w*&-K1vXaAU9RK(;aA1$M7y9BLcynYHTlXrpPEOJVz zi*up>ZcsFO^XkU}5`T8gIHN!EF_6mVZA*!afLxkstZ5cOLUdP{vfyI)%z($Q3M$n`% z?@pFA`G_DjLU*{<08GR?2~ZioBIHqKmR2i#@y4tmJ=ePK$Jg0z+aA=t3lB&CBJJu3 zv{NhnZ{L`{IREpP8Iza4;yR>j?4>w5czhV-5PTa2h~3%aBn~j$vEgd@pOG{5401|m z)5sJc0cjr^Ll+9Ci=JWHjis$ALe)*6pUVkeZwv8r$7nf*wH)Q&cT0vVUCWlG;H`=F zoHt5=FEpcm4g;C5O?8I+g$F1@XTN#Mg42Z!rt8t+vaI-Ce55DlOcmHCY z3PdK4Q>wDY&)SZEkFfEA>m#?@6!9-&hTe_F>7v5a2pRtV+x#{a}h+Zbv z+mV@cj@L8m8nzJ~&6wo(4K?em3yx42?Npd(sEv&jFq1GVRVreJZ`mdC#SZSsY#T2Y z@0ZtFCEgFbH3fm%LhLIAIj`laH)dU?7DLj1>0U&OI!ttVVWe2ElUCd20Va9u^O*|r zEn+M`gn(wJ%6d%kF`q5C3lE%woQ&XOz(nw9iiAHCaD2ikLxN8=|Ce*XBVjtfsq)UH zD*-j1ElU(7j+M$=iY3bfru1BBm4EAL;Mecg4`Q>l-xTkFcxBL~Xon_40b6G$)QTPd z8$gYrWioAguyPE)KQUzHhM*k#6SEzD?M)L}LPK1DYk&3O*km_{i1FU5n;5IW8Bad; zUqB9JkTHqBJ;3bJ6a93JHDgM-b%41+?+u0F*p^n<@od!d?HLU}e2G0=@WDr;>-B8q z0n8MPc%>xJ zzLzt>14c3Y26)6<=?SCTuDs|>eXf`RZi_I98WqU@)_4L~&WPD`9Lcu7y4M?TDJ~D* z{hq$hz@u*xi5R>jE{qcyodIrqZO%4w^E9kc>GN2o7B(5bGBMc@$rshTy_4JHCID!b zCpwlt=#h_zqM2gS$77W@Oe8-mPRMVXKX#Ca*OG}0&69jgWLF!@r8_sA=X@#4X01Jn-#Anj z$jo1&%qa3*XB%d^0N4I~d#zwe1V%rcQV(}5lJ^fWLs^WMFDSGL30$eocWfQHgWBhT zC+OTqI##m=#kA-g=mA)@vO6Z1UD|Y(_PhiF~Eix^4o3wDC7*-%#h@73BQG)akg5z8O+ICO}ct2oIFiPn6{byA~ArZ)I z7^n(FN%x^XU}-e_bZJAP$3~43J`xy)LLx+Pv`@t7y3*1=_Qx2QKLmlv+L(#0Zxv}> zTBTMnK928ZL&BVqb}zcMjzCZxrGnFVdIJWjH&Hy$@Ykhl_D`Bj+aHFBq+sDiQnQfK)yOpNcnEMzDD4kM`!L9*%i$Vr20zjx!hpi6PeC?K??!XQQ@#bu=LnCsz7AgDE(S-I= zt8u;*5P;TjCkXNg5nK~yNjc-c7HtUl9rjDo3wc4cwktdJx%j(uoy+d#ATn!nLvn6q z?zdw(Ef4>qi!edbbE?rFvVehIEkSYgf<%y;t{@lwhTX9CfC|eJQQUk$Ce~Cyei<)W zv_G#)GoERRDK3U&9RvgXka(L16!%85cJ)58N@3?Idmjd2RKm`zwo#ydpy;D=FNXmH z=t&=J1`4|(w{kWDW9)~ZxJIV=r1Y1Wr!D*9@9?^aVkJE!3SM=1zIhgGs+gOcB5_3YP@*OXe+xz+;e{9hi40iI31; z?ZH?HOvuvb;>m>5yR>Is*UhEqV%gBE;(tG50kej&a>PcG8k2<+a+p5p4I*gT<=>uYTr|Ri? zh$BWfg??_5Ya&E&0HRNmC1HRwspOF4KpvrLRHJ&^|5==zQkMTg3&Yn4(ahz6`)?Wc z?#bK?hwRCKbNKeoIw{?zZq!I)xJH5n_yd@ltJT5aw9jq=snqE@10TMb=zO?vpusKm zdU#I?XtRfQCFD9J_+|Ph@v~6kMeW6d`<5(%s?hD+z15yMss%@43O2*0lf}{CWlVMN zukl~^WunUCMhLp5Kd6As6XH4nf0K_3Int5)YpX{4Ocx;Ym!(1zF3>yQA~|AY6&M`E zY*bQ}hDMj0g+BX~dCh~1#9B5&g+a~gA?2*zgt^h^k(S#mjkKnmC9|J(4M6D~WmjzJ zP83ie5%CWHuadmogXQ8+5ayRFV0$O|&SLQ}L#SAI*i0Pd$oF9inz2~tC%XN?LThMG z3rSBdG|j;(6+dw!JN+qa!Lo_+@^DF(jRKN`Ms!)rPVbZ>5(g=AsRc(y{pbsLQLNtX zrVT?&AerIM%!x!5w8FiCs`fAZg?xY3O_)XhmVNn}hgD)(=2AVFSvhvJ2}yX%FUS)22{^7S zqbg<`+^6pMJv27#niT!b-cvOYVCsY~v|I)vw=MZkW+Ic+;xj|`1}eNvMvS%ja{{sCkBTvhs5=9>rtg5^2d$@qD^~IY6t|1Fw(R=PjPOjM z&2BbwTE|<9MgeY{mEs>+%uSV%p9!9&VVvLINNi2Qt1;8~>|M8yz{wZjCgAx*Bb}tz zg-prfpw7Xua)!1PV>wdi8d?>5Of|kU`I?A*_FSl7`A`;yIa(hQ-aA-Vw@S(0=_Y|I%iZHD*C+?q#rS|y4DM5~kSxC&(;novrd)4&vLtg2 zfkR*_H^1ap9*v~N!$)DYYPRy`=Z-l*E7B{8?0Z=d(K$pzHHLN>zg^}p{CY)EmNGNn}onacWqU?*J}vUD0_)~s5VjX>u^p>bHfdJ1E*kD zp1<+NB={DNzL1P42!eQ1^^Xqgc{O1L0|i=w&{N`w_`ubn)b&M@`LxPKqxae`IUr+j z1+YCR7I_+Hh97EfXVs`Wptyi`eaw2eAte!_%kt0la5;0r+rJGx~ z2KLilc>-O0aa_9Bi%1^zkRawO>814)(N=v~eqoEJWy&sKQ#PXg`jAugm*u z+3J!80WG>>BpaE;54A936UiiYwVE0ZvJq~Oem9?7t8yw-^Gg=$4%PIs@|SQ%7YXR- zgQ^_qvU!YN4;=^ay$ToIlC=ZvLWtw)fbc_w5kUNhLz)KF3A_F}e*(ZqafMqeVp48;nK zdmObI9->K+cYJr5@kx!*1=>C;>Q5z-RS-}_;V3qtk00c<{FZNPQ53`D)srXiVX&_t z@}ysDy+*Xl=NMMu6fJ+hK4Jg|&SFVsN&kPPxYr)s42(A{T1~Wz4Z)UaJryR#{k9I( z4?N$Nwvq(vs?n#UF(C6#8`W;ucyU`5S>w$Gs}vx+?O>5HA^c=+3n$a5Y#|1)=;UJ5ilo*|C>dxs|8}@+*a^T%~1CdRmY?Y6E2@*_7PlLmSlwlDk&89R~oz z9!o<}@WNNP^l|S=hof>cBlGVXDJ{`d1ZjT#`sFwTWdy&vGDB>V32t^^z4&j*SBdlz zUVS(vIdR|#Gp6N$a_esJmyN4{FjFEgVwPEyf$#|_L0d}G^zGu^tamvamW8L-F6kgpwC3U-05rC`Qwe(dn*X$p`D;w!9}L z`?w^B17mN`Y;O4Pf9KjlInTPs*e5DpFNVc%$t%UlAuC!nFW^*K)HK|zyn9!b@XD$5 zuTLq4@RDy1QaX6{QQgHwukemvnEtOFW)A`GHoC5+%+BX5XpP?UQlSz<$LtW^l*gV# zHxUfs33zK5fNC+4^-Om{JN|L#j9`DRlG4Rr=IhRuj>vs2byq)^P`b}f$Ij^5Ahxxr z?C%j3#RVbH)E5&pG4#wewSN(i-`M2qoucVGZ16Y=C30vV*abA3; zFp8%gFTHhA7%67ZojDGZGFu`_NkapB1-u-*G9sh3Cv=FIc??{2iz_$2J%lV67*0y}=|42=`PGAypO_{wGF;@##64wehvj=Y}^MC~qAe-DoUpnARLv+)26K zH1(TYQ`)U>t0r93(wFgiiyFz{Squ`4HBTwXGq&-{lvj#h(xv!P-x(=O%7<2_P5$&l zW>-ggymd?eog@B81`ps&D>95YfM|~)h^7e0GU)z)^gp|8paIz+4f!|8oVo)Tvu;XF zk+rE;Ki_`^o1gIvTpdhJ*zy_0zKc0ofvmo6w~c6a32Js-#6oU0UyBHpD=;udpmy;1 z^6iK_L;~D-VO6c+z@N1pGq%rbPs9`r6Lpi;BaFW#xg1U+-*MH<54h{gv?x7wkgLJm zJpFvZ7RVl+LR9b8r%}oIg}(mhZ~WhPdD4%K>EHc%G=51`5~Z^EekA|+^&hltfqW4nxKXw9XBa&OWc3{lU3W}%q;&x zH4`bUKus-4T*J<~vH=!{yJw0V=`W|WaF(4FmDTnIPMQ|kJ(3kb;O)rhz@dTq55K}T z%cCcIA4SmQ{>}SagRdGJ!HN@fQlBF^OpsLsV~=+IB*ve+BILK4N~?1mQ$aHROV)CEFEhSn^gZ;(>c{_%f9PofeOH5Y?cQecL;r zP&uGrJ8GTj_4bI?;f;}m61q7otqzC>c1#Pf?;vCopKx?b_nC1lqRKMhYs~aFXiICf znR9fGev-x{MhM*{T)VnP3s1a?hyPs`k@2KXM3sBG%5XP1TBioeW!r2uWA|OW993PL z^`-G7j#vt#Bq}Rr2U~+;HWJ<>>^*E0vk(ePJ)OU8PhybQ(14-S{YmzKXE-n3n-uy; znLm1Ygj2-deixqSR^}aVbnB5Upov>e&y@gnLGT;sh|`G02(DeQT*?*H8@>U z#EtRL$iD&$kL8dF(vPm_@T6a!&fgmpuCJLie`1_Hs2uLKE9GPVX#bI!kjy}l`R(=- zG{@uC8>>_#|H?O0dqg_|9{%aBLEkYBt5}#AaKvt*f53dIU@|69h(Ggu&^47rds+!} zJfVj5TVblhAcJd+5Yie2LK9ch1L+5-N$ICuJ+iXXy<7g(eUAoZAGNxJ2p=TobcznGnNOcRpO2uwbu9 zz=7QK`i#$9&KM*-c(=zVDpdaY9!5TvcW!v&6h&QBTZi2ltCc*#5 zAV81L%&(P^yHS5)Cve1WtW*RQ6UO4aX1o1p6`ZGhJ)=l&!Y)Gz17i&stn}A$ifx?t zNER#{Hiyk0@DMlI;!`aoMS~55ZqAo4*WP-)?y1!NOG)5KD#rlXK7a8YJH-CO<>oG3 z0n__sdUE*@{kbW`L|VfMVY@plT)TJNlvqrz3x9QMmk^kPT1O+VFp#@H*WU!&JD5F&v438AA>><%`HL$eA_xLVLs>_1<7m9T;Epo6y-001> zk1T2pQeVuqB%r@(6^vB4i1^Y0&FNw4>@xp?F5z!E?`2<#uj04?`KL`=UOm&)Vj*c6 z(cj$!-FYfa*DBfSq^9Hb;sl=DOmE&Ft*u_RKlA933=x92E{=E?$(8fsE98v;jnG(i ze~%T9>kPe;Agzx$>`D+45+ns!yW(ipuEtFv&=~$oxeko6!!{}Ei&u;tsX^B>o#3j@ z8fMjTy@^@M3V+lWsP)7GWq6zrQuv}+<*W=?gsfZLZ~&IE7^JQKzR-_Mqgy7%(v9T6 zc0We*Of3M`S7Gs+A0DJ?}$t!7? zemztB-Ka|(VrUk|A0Rhqck5(fVDLldA<^1L94iy~BtEVjlVz$iJliiFDF{8C?V}}|}30LALqp0<^;1=jh!(ag`5OA5c{veu#inH*~ zLnx4u#!%DEc^A}>DCz^mmmg-~F#49KNMug!3y!|z7v;>g2?pDz4_9Zj!I^^ao8M)) zI}6EVohT>5$9%;vqa?yAhRi|q^Kp)BKf)nn!4I#`r|nBpR5=EG4{ScJN6$$}msf#e z?w{Ph=Vjtw)Fh>GQaRO;DXMOgZ)Xg}rC0Q1tLmD5%eJY!z+&M|@APub@%RG1!p5#~P@8%N@{sLa=}^Os8d^WG08^kD2%)Jv4`J8pWTQb#=OcX#kiV(Nf%t%UpE zI>jIP6r@xff6X->l4c?V2;gdej6&SS%jE`NdpdK7uKEC@wxq~VI{H!vwbflh8uxdd zXAk}*C26$Sge@-9h1lpS$xVqO!o^2ea`}BimoKC!$Pur>P5x#1SJC;WcWF9GL9aKJ z>?4`2^nlb1Wwk1Gy%GI6sl}BquIxN2HjElGfDz|YrwBMcX8H%}E#8WpSZe-7ma?$z z&8RPMxWNihscvKeUZf(=o<)8exDW;Zd;l2cnJ)Xqy?$Qpwpz;6oaiJxFT;EJwdbGi zezpfzc@OC(ETtBVCAn+K-Szp~=ukb=zC{O>TZH_<_p)+(PmwR$o*#;c!_)o0p1CqK^9X z=Z2l~Z)-g*Ny&(RTEjr}%WGdUGPw&mo$GQKVUeQ*JbJO*_AlPL_lDPR_U@<(h>>-Hgb#U?Kp9OB*9)+7rq zFa$!W-g~K6Xm0wrOY))U=1W#%wgi-5;63>_X$iO6oGX7fno5J;Wd-SW74eZ}IC7`} zGa&W9EuG}@md>%wdF<&Sh+)l+y|oRjH1QMw6Fj`~ zojF{6{@5||`%ZXf#JxY|J2v)P=m{NU#C?c8P^CmuJ=B7S zW@s8F1xTDd-1cHkH;{In_Z4y7Y@OfGiFkDP_?(ecGwbbHQTtQJc>oHY?vBp2j^L;s!t2D7((7ds$mLX<%0TN z%2*g}#@bg@#1#fnV%A7e$_6+vWj|th`9@*B2SQS_$73GpHlHiiDF}pztam4}?PR2T zdSnO=fjjFxT4$Fj@oQuz)SJX%2-M8mU zqG0ws?Oq^++q3&kI!+u{;*9FcD~#Q?hYvA|O8T~ia>vy3DKB%*aYb%0{Xp+{kOgT! zVOm&gX}l1GwBILt-tv0eXh10^StZ=Mpg`;sMO9vqjn?Y1>1gl$La?iZX-WMoffK7el;D(}JP(JB}^X8pCZa%&G7?Z#li&PhJH zjH+&ON+S|#)9+HtD+T|wF?>FWAgu09dhZVjc}>`P5e+$+CPixDvZ(o0MM4D7|IvN z|06xw6|wW{ch*FP4=bzn1UD)I1r0XKnyO69tD~km@GLCKovp}F!XhhWZ_8V$L%ULU zUr9Yw>*=k)Rgog0$?n5mahdd7i5IMHKtChyAq0Yh|U zPsIW?$!TNLxwh;oe)@~8R2ybO=6y5k$K_wJ7&>cOks%NkJiA>7Q)(frTP~6HHdh)C#x+m$3HM#M~Kq7U+tEm;;y=*_r<&dtZLd3iJ zKhakN6m@~~S7$*$4r)OPfj|*{xzIB)xqCUK%M{}I7vmj8W_6>;K^CWYLvH4ie8zEp z$J-XHI|lzP{d#5wB?Epg^k1!*IYq}!w=R{jpq=90Kj6g2(Qa&;Y>>^s)fr*a#{E8O z1(b~1{P+b^aUl9ZuI@`5N}L=_pFeIIVtL6@l8f+lOLT|2)PB#(R?bsKA$DAu=^Wpa zg@Gc1Utg_PSH~t0Un`xXr|?pQ;6=6)^rQ0jkYuOY$1=B(0FIxs|7a};Ym@DUs~5lf=< z_d^A}x2Ih1>=Go67AYH-qdG!saa=?37>Gdo?cG0c3624GJ`ImU;0U^TqvC`8reVRo zE>y2;}p zF1p}WJQ<=rG3`HNC>6rQzyIWnPa&?f1*{1&!$Md^Sgw(a_x(!G-zAbbLT|eyrB)H- z$3dH!?XSm~93;1i>xXA%E@^`%wtwFY?{v~=(fLcx@`m``zoRu57(1BPc0ya^s#Gs= z#D_r*^gx050tVFubqo)~CcL^KmbTC|k}vuf4s9LEES1HJ#G)R`|L<27>ct74O}_@$ zZ31Khc_Lwth;Ng*jW>z~ZQNhQwpyj{y`9Mwa2>MDZ_knAMj;`3&F>YbU7}pDPoF!= zz<(|IGef|d*6{D=Ipx(AbA7Bc(Z9h(>^d5v&l8WM%$^dJjsYlb2(~J{*GP*3xTA7nQ^vvdCuFv;uEs6sKZF2+1^|4 zG^HD<6@DZbOk+tcWPZhGV8L~jJRuw=fn7xoyUu{YtjG4Ml+u9$FB849@1Yfu!uw-h zcyO@DAc7)r>O;sKan1gXbDdpZfKhXI{Vrb<3QKPfv*=Nz$8EWh7(Z43eT)@oxey2> zG0x8~3;)%lU4cC}BLQ%G!r)EoU4Icunnn^mK07L=#^osy>dt^vZo&Q7#ih+j&M`H%1x=f&E*6iE4gC{qg7iM^6ufp zhU|4UIaw)!1v&RxDP8enfyU!faBcw4)*iJriwBHtRmbFs4e7w z$UD?n^G`5k3Cu{?;N-)}{oRdXRwOW|@m6dbHO+ z8Vd1g?;?M0D1-gk&5S2uy?8Kk7CJJA2$M=T&2@(Q-e2`x)zL&v+3s9K^(9#Mot124 zYa5yAp1uUV8Q-T@@9h{eQV*m7tl7)qZhK7cV%i-bf`efVy2U?d(UO*1UP1TGowfSM_bbrzjOOYbd zr_TvE-o`DvbNV~@K(Uq`RCGYOm;nQU2zeguiUqhU*m<#M6!hZ{9>>v-(Rb^M#|B&0 zs8fYFr(f`h)l8djX?bw=h~si_aD@3b6k~jnlZ!}8Yq8r^uBEZJw?AkMT0IO2387N) zEJ7d&>1zJ{7eJh4hM8l|GBe|>Jk--~jcPfC5vJPMp*Mc^PfzX~=oI%qb7Xrc33#IixxA@&d2HKI4gWVml6U1*(P zhe%YM;)TugG4U6{GTn#I^1jBZOsn|MF9VsKk&t<=Byqz;8ubLfeEGuI{RbZx_bqt8 zHc$Mxha#MN2fR_eD^J@*$H34xILJgxd(_jLbj~E(0tB&cYk8IaVv+B|-4|>ig!My*RW&!rvZ26S2&1A`DozL8jb|23BL;CkoxDQ zzQQ#{bx6L~D!ObluZWx5Lo}U2Qwkj_8ro#BT8DDBrO|YyfryAm6wU3_hx%`e&45jh ziHXT*t9X^JuDQF}+WW@V4_Q@8KXH~>l+|FzXUd}rL-1>ZwaNK-C=KutYo&DJvcjmB z{S>Z#JZ8I8zI?*ci4bi}`~o2`a@0X|yf=y_E+*zVif2Mp)T(UB*501&9IUA?bgV}B zlTvE3bo;Llv`84lar>T8r1K#17k?(kdPMuTWdMdp=C>& zRj3a2L6pj4>7(-$aBy*-hq&_S_h9AYlHzcyskan#&$( zK`Q8pQIse&-`)Q7rSExhwJTH6=&BLzwpDSBie^@Bu4o&F-Pqp>K1^3>_*sUHjSYIy zJaK91H?*`%RofjjVQ9RJN#N(Fw2tQ}lfDfQkTztCt6k8~%|peUcaM`)%DAE#AGd(o z7>Lg>_nM!BW1%5#ao88&S1ETg($AuUg?O;COp2$ONq^bqBlv<>NSb0?GXw5kJvlw2 zMy<4y-Pzxa?R-|4g7%+M?Jn1E(SjX!aSDrWe4#%)S1ZGUH`mvl+}D}4!Ru?T40ntk z?;17T!7x3-)bSE7hF;`K0)Z!NxIvGm%vkc({7dzA@MmTO2t-`q_h=j>hHSV_pD_G$ z_9Bju(OGn_^b64?Up=z754vC+O9RuAl8XDIa=Fm5KDY~~n}e5il;PTLb_qK;f19!w z(wM$9O>J&wTWZc(p&jy3Jp0qvm-6Mk<8#^{!`tE#7>E%m$~4RK*kBmSd;9PIIdMKT zkU^DIYU^#Jl_?kDR7uuwI{0|OLkv7QCxDrKTjV$CWB#_lhoCxA@nWzgXwZTX{7J>W zK}qjn4pLg~Ph2ih;Er86dua?j81YJI5lYa|pZo7M*6Wf6hx{)R?)~Yv>7-xPrDRv0 z{APGBfKd__qe^N4(*;V_NT>2$1M9bZ2e+K%evEz0fskkY*7gX znQ(;*Ej3pP@={N(m?p#Q;pTddkCs$3#N~g41eNJ2XrL3be*n3S zu!KbHqQgOIlgOVcOE9m_*bwXk`*JUxE*&_Lm{(EE+;D;$>+9EZ{Hr*0K|w(qgK2|D zUT!(4CCX3tyTljx;QHcXX*|~OtYrRy==k`aIVfN6z<}M{-^Ds|bD>D^n&13)xR{(8 z_aW4L4Xp#oI1__)Rsxr#mY*2dC>iDquRxk!l*TT)> z5pjykICQZfZnGV=uk}Vv2jP5dzk7QEo=D}hkKvA;18+RykvHZ+udrdkVAEuHYI#3l|qq@qaHj9awV#?WI8ox{Nb()V#)QJ zP2#tm#}4K zWgBnG+UcXEuN*SJ$~^gp78|IHjLg@s2VMwhcLq{U57(QoyN^(smU#TX)S6F^68)xsHFY70FQ4Hg7Dn%`K? zQ40uYg~5mi2L;`Ir>YdibQI>%J5X#g#lVdx0>&EzimUl+n3 zzOT*!F=yX=6UuSG5h?_ktoW_Wi-q?mxr(O_aYr~fvkeh2K19a$1(wu@M}Gx&R<1YG zXkxZ22a7V((_1OHec4!j_mb)6Ld7K{V5M-63YTPi9;iu|!(o67$Jh~F;-z7_l`qL` zB^XeV`V0c;L6fqn@^Qcne(58Yo^C?v%CO}-gKz}`W3F_ZV&mQy6ZK1qap49}5N(B?5-hVjFCippg!OGb~!DAM2>TDRpM zMjjpLSXt`pk-<;x+gHXZ7VI$>_vq{Ew<0VAvh4_aP+d@j^HmxS5LG^q>VT)a4|sjq zV#EanJ&WyvT6Z5IE+0J3^q5^1tNLDZI{zU-ZQ%kVUH$z2BtMtfAB%l^IB`G7*g`T0 zD3>*_Yu#Ty4&nXT26m8e2{=>>I&#{01gzHHAxGa4dnU*H&x+odH3j@|alAsc@ zKs!a8AsC47-)I)hzr1~bpGYrtY}U!i$sJYkQ_!NPUy0hFfaqLbUw@4BGNOM@NLHyLqHQ1y(~f0n zB(Gdn{s9NUlP7Uz>9K(JziEI}qwRTev1oV@2z;kJ%{noWqo}M0^@@D#MntBSxF>Bm(b1;;c<}}y= zdyhN}ILr4snPFgZJGB@NE4ygNIjCoPQ6NJ^f3`FJ$*R{5RjJ2W$=2TfDY7TKARvcU zI3DXZJ%iPjeRv%LC5vMZ&;x{8Ju+d8@&Oqq41^RXf)gd6XDG@>*y-;6+u*^}_1nEA zn~Z}S4WDst-|;j7_vRMTMEd7;s4-qSK~AR|2>jX|ei#S{2;_WwGc)S$ivY5$*kM65 z`a^egWZRxWn*pOqRR&uYrx7qfIF0oe0?F_N)BwsMF^l|IjE1WDtJHd|rn|Vuhpkm6 zZKNenn?)olUSG*Jc?4{SlqXQUkkXb05oBRyWfh`Nq~j_M3?B1-Ow*LS1*N+J_~}S- z6^WZIevZ0>QtN+6nH}-L^akx!zI;HpP>Vd8SA2 z`CAH$laOyArU{IL`zTITmo0a5-j1#yl+olKHlx*k#ow9ul(4Nk!LAGcBj$zP;eo9C zd6JR6dlgeF%M;R9G_EwCu59J)1Yo`sleKWIJQ2MHlBX`n_f1cPL|8BGjyM06O7;M7Ai3is#?edAmw=90tssO4q{5_l z5nLZO-~Fz{Eh%}+j1VP~ynBe%J6^Bb8HDkY6P{c9c%?HlC)-l2SKhZH9V{gswzs#} z-`7WR3wfn-x+z})TwG*|QM9K8h#-^i^PasFwLmE&DZGp3jjNV04kBwW%o#tU0a{W) zRT&7hN5_IolAu(Gom?zuRqa%4)b-%{@yo@D*X##kY{FQW(MYdWT> zl899wnc-XqcxvE8g*m;si8m)oG`_o?w;_>e?;>4R@VKSE-#^^xc@+=a;{}}O$y-+; z&Avnf(LW!|KN19zmO(t^0QAAt?fMz=hbRy0*{eGxxmuz=MQTY5@ ze#iFBFD|z6V#n1qvj8X>Ivr@?``0Iq1aekXg>@b8 z6UrkEwiuGBjV$ZN$TB7fCed%Rf%!uLW;Xym_){|VyX|XT2eLHtUR-OD0AN+DzT&(m z1YJCqxhGeTch?1rkITL%K?>!F?%6X}q_BX@U{D4FHTuEkX4gPfY1vu3^&HopGu|Rx z?9bL|x54^(iKwY144PL1%P{+Lt0;nW)$dHZs);kMMb95Ef^Mo*q~69^jJ zt}Pi;>A+ThIE+>5ve)zp*#?>~D z2n7@snFgc0ScC5gl_|?nT0X>+*Y(hGL zwKGfY-GP#V0)+(P%+OkCQ+F-i-R_|KU5t-Gy<32CK%YFv^43Js@RU##P)jR?`zpj> z!H=LoNPiC>K8oHYi7rIbpS>j?@fQy1(dSVk=hOHRJcqqtCz35!!(UeU1sV={O#8*= z8D80Z`p9NP%_c#OPljdf`3i;%1sRqcB@;I%Fa6Lcp7^ONLoSwQ3pIL42xVJ2x z^0gcqH6uxpZ%~08M)AV|Y*mJHPGzMvc&Tokq z&<3DXhZ<`)%!OV?u3~PzeJ?Oo^WE$kZc%=1P98ha?{5S&;_VO(58-Vce^gfL|KsW{ zqw?sQXu*fz?(PKF;O_434#71zB)CIxcXxMp2<{NvJ-ADd+j+m4xogdD)@u6cQ>SF_ zT~)WUX_cCy)Hf_L$ZcCxVt%hgPeS%qH57>i z+Aw3}F!>CQwhenyUefO^z$*Ydh?$s}zBv2=(h+=o{EG7Oks3#QYVonBvMpWxx`Rc* zP4A;BOT=6f)%whrj?&DZZ`A)n6K&pO?@4#f!|`Ri-qKdklv(}ODya(ST`ZAQN>;n? zQ&B-kJ6K0aV`F1`I}fL(CDdNCap{F#mlykiG+3Mn#l%R~$6!xQ&C7U$`<8alZy-JjloM8rDRG;$r1rivzf?n02C$V}!0_lzay`;eZYNF(3H zX$`tf&A5YzPVBe`UrIq6D=X`YgO;kQsyD3q^uBhhTI{cSnE>$0Uj)IPo}T+2z-mOT z7W=HLuBN7@xbHUB)&UB69OnC5S7Pso?(5%%4c~84QVgm^0wH#9Q7O^W!LD{f-7k)h zyZ@FbzQM`^$?w?Q{lmqRZvFsVR`N<>rE5LU5C^mK}dQ=1!_X(M&r>B<#Q`4qMS>gtffKyb(7RXyiDt9-uyz3(l|c}8j>hlxkl$(@*mqo`-5@bCy(Sq$w9)#_ z)W^pMfH}>~ipZAgjR!))PD}Hyh7U>*e-TRqi%?Zn=Zobt#4zYfz4Ptbb{(ZM<^(C& zO&8sLYwv4(zrU~KFzB!u2BK3^1mAt8svbl!Q`Aw3>1O&ewb*%|MgX}OQKrp^0N@BX zT$ktXr?T~gQyf+iF2J<>dn^hIZJ7?bRHzPmyGz|@0V8`_(p3YJ9~R7=m_fj95*ixR z3qRtKZtuUPF9izHo^d|Z_eKnzM|+0r+grM8HF`t8>-%()Tx0gPp+eFQt%s~C$m0k zGgmCDdyGe-^4*bplJ!(-L5~4p1cbo11mHhREG#JV;aCigF)4fdY8f=^=yhzIV1JJg z)bpm<-_7`5Bn5`V|}&yuA1 zrn`?@A1HBU{FkYYWa@NnygHp%^m)=%nZs#{v%OURLW@Z@Ipjtc9h2p8nD#3!MMz^} z05yDplbcM+bbWDgNR;%r9$~;btQEbcrY7rU1e;H|G3GA^d2DR#gpe;W6$3K_H-*#; z43kq+l#IRPM!8E^+mb4Lfgtf0wL-aAI6C9cQEdUj$V`caDMrIH6-}{ zd?2VUpynf3a+Z-WmsM}rx-P#lYd7FwI=w#H!S2C%y?!-XuV3+Tka6q+0x3oK-)>Iz z*v9V&6>~{1pgb^Qt`04zI@mvFwHXJWJn@UI-FEx)uxBm~R$eaz44L$K7h)88GL=yY z;HSWqw_CSPHq_VO+}?6JY);&3{-DjFwz9dU<~O!1>)*RpQ&WpQSK#nc609=p$tIvn ztX0#~ljAsTwp)XM!*b}nhH4YtUtNHJuhwpV$r~1YJuc8R*ql&laK!CBs(yfYtrgPB zrnc$q`ii>>__@UVhCi3!C3uYH@ zp{W&1h(<=tL@8wr4N5*c=op=}UrDqh-(msl*q0VY;8k5%SO|i$QJSPxs*Tn8!peds z&cN7eZuR`QOaq_m@}955 zf85?vL1qG$3~1!jx~;jH&Kk_&iQddByEVN{Lp%)m9)cNhl&b{duojn=4nIy3<|9JJ zOze{`Ct)zuiR(Xi189>f{f^|uNFdUAr!054UnVo?0*U9SUS0qiy_9Z-e4{_A@8=>i zflZISsF@m#8iPqahh*SSw6wHOi&c3LtWL-~1hxp#LncVKjK)b~{(AG|^6kOls^*I6 zJfV6|qkHmyAAekpUNE(E-|k%R4bPZ?Aj&cEiL;wJjZI8V!F2%SX}{!eAd_iC`FR68 z1%HH{(`s+Yy~#O4yQ9~FZPv(oaW|{jBUt{asp=8Fi7c^@KClRSaCjIR*9FKV3yWxK zTdlOUwKu<*WYNkpL4BZ(%2G2iA;a;K(9qJ7MIG<%?mA{9C~aw|tH*J$i}Kp8x5mj# z_x(r48DLVVN=EETBM?wD5doc4q<;nczbM>^se)C;6r%_kJ7SCq2LWRZ~w{OX4^c+QA$*5MNvs3y5L&QD~q~$ildxqoYo|qV#n(+R&tZb6y^G0 zTnK1SP~L|5&NDt_=`8SDb~R3)Y#Evx$}St*&iQXgsV17n!_c=V`KH5*R7ZaDVo@kC zp-=JXwmDI#JNUCveg1=yxT07++93dLMH`=7rd3Rqu@A1cAOWN!fRS!#QAX*_El|`1 z$Xt%xx9)F_h#nmtvgny>YvYRcM*0`R)%O6@lBlz9`-X@bUH#FBz&10)!f(RMp;i;##|T%P=Nnn9i`SZ*n%*zK zjS@fhXlu6^&X_yjN+*jRmvGs+OI_<3uxc-=erkw@20x8U*qN2QO4veq!Fn85?FGl0Z40;=MBdYP#<8(^N z!WI`obNt}AAKY9A&L;gIXyM4HsAllj!I;;g!aVKQpE-=idp7I$>OwCi{;^tQnZAEk z{1fic&e!=U#e=fQxzM_MG(w6|h~(-n=c{^r-z~P@9wH_`-b8orz=Mw5#XeB4F)@oM z@K_^~qC?nfTkO^(l6p~E>B`~u0fgaz6I1)Q^D-wwQ)XJ4v;mi=rE)wbaQALC=nzQN zzZ_$nF4Z8X;04j``=sjYS^Ap>OBjFn;JF+kQP$v0cvw4*Ws|OuJyQi$gnfw;#{aZ& z`*o#S{SmW(5Cp>W*|2$-fS!8H{ClFqp0kr`Sj{^8tK#9#TEO$~%-<=y{i7OH<>e;b zR{#^Lq%QuU0+bQrTv-5iETmUNLPr;AYoZXaGFu=y$~x%Wr_ltZ#T|7*^LqvU@>MsXB8hB!26pe3^8QoN1KS3^**mR%fD1>=MS;UCBRu zql1zfE5-X2e-e54CfRdrH(uALiM+0ON2Nt?1|Nx^7cW0r#ho1tNFe6&DdpRMa)TK= zcpniHx!<6QL|)wAqJOR;0B0(q)@&T>#!-Y!0B2%9Ok7Kpm0QPEa1{VIu&Y_g;krq9 zxtN%0Dl2~;ynJmDuDbecm73{NB=?*tw}81XsQMZ;=y?2jwrP5OP0Ho`{=PFtgh+^U z@Lv*|_|yq?APWXEdOByi+~L_;wHtrWN#*UPyRfe^RSmW!a+dVJE$%3M!3`g`S0v_D za^H`9GbC8=sF|u&K-WBw?~lU$IwsxjJEu@tUCl^OkD!V7`R)fm)On6W(`T^&Y4T9S zlaUe`z&GHaSr7mPR_C0MxahPBa8D_m~>u+MP7ZiF4g;4_0 zK?7FH_7JIVcd54Hvd@e}Bwl~yu?6q%eS;b2$r_w9Eg^bz>h9CD$9p7!{uvPHx$Wvy zQx3=_Gun!H%sHN_Ooy)ph>vb6c0ca7Fl=K#L%W?-Jlk&hzla(VZfLyaIn66K{fsTV z)>MYSXw_P0x)CbFe15JZh+JJ=1xBC0Mi2d}Amijr>ADR@k;>rY%_!TQKAg;uE?6e^ z$+sxW@9gBu)Jg&}HrIF<1#3w4UaZHeVpL_YYwl{2d@A&To~~4=_OJ`@pq9RcuBD@m z65HgHhiD=fwr%16HxT^O>VSN2ajp(urwvFxoYd(Gd)r>i2Z`V14&$6(mimTu9e}B3P@dC!)RDt=< zoh8O2PEDB2+GKcM4Pf04eBM`%2?5pUEG>YzIP}W`yBOfV)zvXGWb%PLs1pcS2^y+% ztuZqd=E=05z>!?&)W3+~0(JIE;pckR@`{QTYE-oeG>Y>X$U+?*14r7)DiDNgK|HXf?gKj zR1uEIkD1*ur0^c=j))z81G5a-v$<5CNJ9&% zB(r%cA@Dl+tVydkz*TTNw95`YV;0FT5OJ$)x$IWxJU51ipm(*S(nx&KevL#++5w-y z>sxKI8Bq6!32Ho-hSwyM7gm^0#fj!KLgMA}x}!G3J5?<=Vmv2pAQO7<1{~br7nEvt z2Sf%@^?&3NpV=N^_OQyne$4aZZkG8$j(gB)6*lEWvi~NT&Pm((`!<1K90#H9Xay> zFYAvPGJ!<|!8T=)Hx;XCQ3N3m2w)5N9+*2+mDQM0uZb@a<-6xN)ItWz^O)#gDZq{+ zUzGCe^_(p-T;>8_)LNoOT7Y+Jbz|wy==G1&S|fKn(TFnF=j$Cf)t?!|&4%8}-Y<9I z?d>7yOn;ism!0n{(L1F`8=!_ML{mh5j6@WnoIK*J|_MHx#<(=%b&MkiC9D+T1>rPU8n9A zeXAgfH~Bd9klcOjIn{b~P3B*_;C9}hp%MinM5I#S%&B=DI9Rgux1JLeHVYFbPx z>FmsmQX^I5SN5c)r~jG^z*bfgp(>EhOk-*6K?!PkC4D8^^urL}(+Bv-LL8?kL%<~@ z4E#4&^Z2m6CyT531so7}0@om8BY+nRxmljJq2%Dm51;|{enH37J`|x}BH-JafA7)# zF0g^``_Xdl4A(}~FW{|rDf}{*3f!x~jYmK32^QR!q`y;GW= zDJK#>)2ImpIEh$UK)v(5a%f-czr$9xO98rI?OX8OPoz`_humCUgLO6tY<#8E=)_da zgfWG&Hu-rw4bRSPZ1F7HP@V$A!=*MJUt1KHmM$II9Gl&9i#ptIZG49u7gd+WePsX? z!_dcTbMas68%StY^P>cjAqNQ-tNJuWjHx|5?BKPb%I0}}S(a=Fn6B~fZHu4JHs4&m zFezQotJ&NToYYGL04R*3?UPHwdTf+h9Ux<&lL*Pw?^hC0Kb)wj1*!Kqw`Fm8x!Iq; zY5Fv`(@XAINuG+~*@HPFK707_8nnIAdqYH#hMxgqoV_LjOQv0wEvDKi}OS zT|EDKWBTWr{0@g0YK(;6KZjuxEKP=`Gk>OiEDsZxo;GV=b!Lg7qGWGzCG_0Awp$Zi za-j|_{@z~1kVT^4v^jB>|4w`$h>=3OT=`41+z4GKA7%m!8UyH9{`M7Kdo0*G%HK^< zbMcb5Vw1SDP)V#4$Jw?MNG(QuH+;XZJj^90?qL_B^Dk(|OyZ+4O-bk?@#;^ha1RsCVSj^0N(u_1-SDVf+Wo?zAY@+0Sn&ru( zrw7heg0C*v*ECQySA9%VJ_6kFW2SWOKh{UiklJVyB>=bC)W!gWOcM3d3c*IMpZiqY z+$RestgC4BjjgwRNQz6zlZ5KTPkaVG-*X`%BQHDW-iMd|#u(-b5X`S~h8)9VFtwXZ zNTQz&6GS@$6DGe;&nCk!b_o39g7*La`+GttHf~OwM)^pN6$J^iRlAGZvE0V(H*>xl~vY)M0z zMQ(?0?#*HqPBPRH0JA{+cXz&;$6no|iy1CtdL)?kCYu+l!P?CEahDNSeSXJKC{H8Z zLM&jBG`E?uyo;{?as;<6Z*05+U|Z@QUA77cD#1F1aNb{?lNPvA4!ue3XyIM0$+9ip zyG|Dg$u4FH@QF2bF0^Ww8@`!drj#t(vb-&e-(2$LXS_@gAL_4R+Hj{E*|;uGbLS&x zp4vY?*gv0cHSwAZQ)Mo_%Tu}6Pg9M%5mp;M{7H6SuKe+RlqKK^ZCV24*Jr23co+W> znT}=Vq*Jx`S8n!qX(Bonm2rm1Te71@>jwPbB5L8Lr_&8ijup9P@FHA=QcmsldQDlG z@=?tp4?*GttXf4y#iHlxRXNO{NgVJxZX82xR6aRFDi zG1iPVI?f>H8lzu}%wM`pd)fAX%)UqMC}yX-pRX`KBwOAxOD>3q?)5%L5^ioTwRD$+ zGiN62)i~)3Wp!Rz(h1k9(CwNKS_1kVm~<-$X|(1>0q4d=frp?K;pMr%q5Yi8UGtx( zpng#ZPb+B^qD(Dn%1aWT5OHu6Tf4kI(r)%=7tVc28!!!2B@h`%PINJb(Wq$D!>dPCzPip<$!)%aE_ZO%In% zQ+DJxcDDz&M`YWzHwu;L)4=~i5}Mt4%@t6lFOZ-eX3R^*m|}^txxH1(Chl%HFZAx zmr`<|f^ChH;O9P}KcC6TGNZ;Wca8Pgjk730?n9TxE`n z(2qIxVd7Dj@Ul;3Iv-wl0?nE~I?s)9&L+8nq}RH$rnoh;yTH$ZmL^LBE#UD4fLRF!A71f%O5?ueG$yq31Ht8YYpL`~m zQ(?jvqt+;g_4tZFGPxOMCj8GL(jtX&l%vPOdYTy&*wj3$&6XTX}veu!;a;c!) z#-3Ex(i+jz4I-5XD}=iy{TtXfTU1^y^R8;bWhpKWY2UdmS+cRYxQJ=(>qNgyYUYnT znh2@$T^Gh~T42%r>Zb}~(pAAnZDA#{T;nJWa%tfNmq4PtDb(zqU`A6Ju9&riZ2fuV z{G1sFVN4W-AfMw7nK8#`t_ewlIg0G9z>l}K@7>=%WG&%9E_U}P{f-aH-N@h%Rtl;= z7tgL%shP=|7766FG6N4|jSxW+@`H&+XQ?=iU0z|O*Z{D2#SxXJsYIUkIl~0Iok3P~ z^~21}>@HbXR~O)4GEYePi2fCbRy|{rlj3P}N(9l=h-tp{E1P_SkyA?s$M2^We4D9c z28wzsc(QU6!CRgAhqxl!_r;A5MJV2bv7dh_iH+Kk(n3Aw0P$H4OIEa`rNXziYb~-6 z2Ti%&k!k_>`f!`*-ihp1(#I_dPUzh}-_xft>`0;33aFZqCrc9kPKLjYrRTHQ2<)Lx z<2#b*#qBJ()IgesXa+}wX@vy32go^z9=c#6SixZgu_d_DsV62UYpAIOouZ``{ZnyV zJ&lcM*~R~q(Ib`@R_h#Supm|Ggh(pvDB^#Uz%GpFnwz zYje|#9l6c4RgYo1F(d1(`C8OQJc{4m4T)iy>e2GTTy1@+0AMMHiT=k7A_G2LY{9ij zeHrlmVw)`CazHXI`42In0LrwBSWrd$u_khAn-#mt=b`GiB4G)c7f|Y{0_0r zJ+$Ce_{H@SWZoEa_7lS;rTnMHAtnHFK@yRfgv+T*V*&?LSXAj;7SP!bkimeuchzC3 zN>}m$_Y#2u_1c4PhsC5)zeD3aplp>aKg*NmI%uDrYd>ro>J*;rcyc^T3pVUj%Dmu^LpDKiend2^a)u?qMHJ7&g~mz)JWfB@Go&@s6TJ9cW>!T397T_YV)@TC~Q; z$8ifInwy)`)A3Huc1g&fI+c>^Ny^AfSPm7><{+!4@{2jR)2ag^J>XMsBCIaa5V2#}Tp+Rp#{FPRV-ch#eiEr)CB~rJ<~w z)rXOy$k1z**Y`(Lt`84sXU*AKM`56yXu;pB*L~Scm>47oCamDzY)yP!-1fF-2af`C z*0eHWF;F{1goJ$CpK-QB@d=Fpb8>}b8-FZ0^) z7_3y+T9f@Cw;aU|tg04<2+DaXijoBv@OdI0GRkc?R`{|)X%OwwMERhK3+%cTGL1?`(LL34S7HG-8A%mbh43K_7zu2)B^8UNQfmbSdS{A&Vjs#(y@jnf!Mie9zWr>g|yL|^3;8Ka+Sq=gn!{{Gr#@3EfmGLv<%!IzHWYe%P zq!-=LozT&DGC7SRf%6#bW5h0R_LOqU?;kjKD4YB#Ns)d(^DwLm+&O7qhk16KevDnU zyeTJ0%4Y<0a#Ny7Zf<_LcfZ`GA_0-j&u+<5WU~#eRB4YUj*G@#7}c-H0|h~sB%Wfh z*mK__7?eQl)duYWzo6tH?ufF}U z%`t&j?IQxhuR}!=>`$1`s)=1Y6K&BuXrt!te8vsx_8ZbY1&XuDe!&L_h3Vze%Og1i z(g&SUo`cwPCUv>)7(v_&Ldwctk^|fTfXlYFa;eDyN>(}=8f}1a^K5<%_(%G-G1zs*0N_jgkQ&*FC1izs ze`Zbn!Fb}9`Gwa<7s<8AbGTxvO^bZixj|Fsxo=Ck1rnICsHlmg9M$vVjcUI8am&`M z*YHdZOuVELjx5*W=Y?6*rvW0#hm{#sbhOP+E~IonJ(wY8XJ%(vX9@3ixI4}#9Hk@2 zn?-MMye>nGFJ2EPb1npa>M_(VLh6kBahjq-yRzmdGfWmR{t6Mp9B?DRL=;N*cS^S{ zydK$B0ghB08%ZkR2OtpJxv{Yajx;}C#JVACCx1j1>D6jWhK@1F8Gc6?$je$2lk*NU z5x@h=VMRDlR^ak3Fuy*k0c5XXQgU+rCAmx?NuH}2sU-NyL8zBl zjV8lt68vSA#zi}*g2S03&6bk;wEPp_S(Y{4v%Rznq=tD5*+(>zR``(%{IlarhvPrd zjn=-Rk`|9bLcfznO~JocwG|W;*@?+~DItfp_v}3AZFu3_(ES%ctj@(~y7U_>%Dz zw3W4Wd381AcOE?wIbmV2HeW8)FdO=lf{9Qu==0}eeLLKZ;?|(2P$Dkfch!N_52zHu zyYO%U4~8!(!^hL%D3{2BQ#-y02q*&0L!-b43Bg2jU}22nx6R`AzAMs(+)Wm#;4lE;gnrox%U85wvuXw@>~)Y|y1t zDduK3Ej$^fUR?x=^xGS#goJj>NJaPc$ZV^CauA?7ik^1T*aUIs1giDg;#YP=ND7nM z-OhDZ2O$S*L;CgP5;^zn2gDt|nwy7|<7ljg+tP&e? z1c=sgfc`Ki-S`Iwt{uPESU#|COe;(QGd>q?9aaVUmW6PpQ1lqcq6m@v7!y9|{x=Zn zT4EGsqW3|Q=BMZ9>OJW~RumD1bqJjjmz#uvL{>Jq2#uKu{n1T@@)2DPxqC_H5y;$P z27pjm11CW-W+IE%vt^UPIJfxXDtv{mM2FF7t(Px8r+=hJNXe6JMM*lAXg%KVRbnrmA9wZx!%4iXQsTe^*J?pRYKow|*_p1kKCGmQI1Ua}+ zY~@^EUqA2Ri==Zr9A+GQWFgtTOc%7ZNVVRgxX>qE8X(5CZ~h(L_LQfDNfg=kvjn;+ zb&M_HHR|vEQA`NB_&U^gr~X_!Rq!RnC9{!fr%r~P%PaIS0~)=MM!4We7y#i0(1aZy zq!iT>62_#ATy?q;*1~?FL77G2W`kA_bf^+cDNNKC1-hi;Tz+UI zXBKZvrcY>LG>oLpPcOawMYW5IJfRW@Fd$$=9rP*2aX8&CLX*epM2%FGXkKG-(4hUc zOc9XBq@|@HG>HV}=8FfBuU1x8el7jk=JV!NN5CnjOgEx9GA*u52Y^ZaD+?2S?7uMQ z{9eMHherjoVxPOvQgft@s*5+L@!9#SBHF4JGI4^9kwKu$+y%Hs@L02Chy`GRpEb<$ z(PR~|&TxMYK$h`>N-B`kRZ81pU5&W<>*t?4jnj;&{ z2oB~UidOqnCM!)D&iSj+LdE( z^P!1eW!&F5wmeNhv1Ell=LJ9|dxhU(>3|3sT=6KJ4Rp#y)knWxUtjNY&u~C`cI}Ve zGQx;lB->Uir9=TK(^y8Jr!z1Mb5ZNK(ZEoMl5E8VVrU57{I;VdPlM3GUYG%0HGmk3 zomnt2;*;N>r=2WbqVG@kje*RF=DE{TW*b8c*)9s-r>1aD4VzbgW+UbTn&!8c`%Dfi z8ynpQb3`k1O?7qV%HInMYJduam{_q|E+aF5ZRwxPBHK^vnIwpF2#{Q@+q)m%15T|F zAbJwML$#e`dm%IlRE5&5No(L-f-UW5g?<;tSZ_%8hjVgCl4hQ3G z4*{`B3LeTF3==&)Jp)5gRWNGw`9N%lH$asb)gjEmI9OYgeXxA(0~FijlO8nX{%}E^ zSU3BlP_PVp?ceq!$^&Sg8Js0l07Y+g8&IdtV2w;pQV3dHiU0$VO4CbAOW)spi14GQ z(#!l{nVeB$H;eanHh=isi+Rv_xO2*E*fS5gKNZ1!{jGM1K`_b=228F+cqjW}kh!}X z%nD=DA0LQq_#SL+VdVjL&#Q;8Dp!B923Dya10cUYS*o~PiF;v!`S%A64)XwU>IE15 zmlC{0wVI6V$(KZPWp(wTZZ0V?skQ8N=WpMbOW?}jL>Aw3O|(XeVc>QF?aa77CMKrx z($pRsa0ApoD+BQdUPE{q9+l#!aExa8Jp4T4+$cYD%jS>waqKTofY#7DSYuL+h8!I1 zRMalEVf>()LK4M*sYSFMeOUS5e;xxRu_qJ)Qcfpy5^RqVthTnc{c5<-*$5F-2+viZ z!G2$4@ymoVL&2}qHF*QqZ{O;AZ9>(+)Z{aHF97+i~glcLq8Hs5CZFC5$S)*poYSs7=OncUto6z>!_FDu>M0XA&1*OZ8GO6wpDvBlW zK?Dsv8k0zJHEPX%^n0>>GCGVvD9LpAP?9DiC`s>FzVs|rDdSJj;qWL@sXkT-+?D~X z;ed*4dIu#BVj((M`npT6MlG&zrGPF~g{rXE(*ya;^vBwBz~+xX!=7&}CteY682(#> z{am@$G$3orsm0g+f~uAjdQsI{Qie97sNVM>^NHaeR-Jb9WCz-eEbgfu0z$$lW~2oK zV6~u|Wf9zA$uq@ue@P|#0sQEFrO15r#m^rI9~nY-=lSg@) zJ$$N_dGDQ1gbkBpA8zoz2RPbVLr)X)df$};r+gc~bYSq;LNtRM0!&QW!0}^HKhx1H z5pH@K4T77S7@wUo<8U1bcA()%B`|;n1^@v@_&Ywsc#iuz4xKCHV$n+hXAR7b&2=M> zD!@PY%!_D|wp5Z9`@8k`fRv%D7nf-z<~HPDw|fs2ob28a5>$#_iYWy5uz<(tM&iCJ z9>B4!*~Urgxvvjx;hdp49OF?XQV#k9Oubd&jToHOM;i(xBvvy^4aQ`5nZ0Z-YnTjI z#`yp`moxwI%T5k%4`OV=2*m{#Oi*}DbMrmQUE3$S#at7k)3|Atc`7tY{J_z#=0z10 zMEI2o)4-Hqm)h3%C2FfSl@J1_{;TKZsN1m;B!pf_v1I2>32hym9;Hb0TQVQ+y!%c& z`NQ&bTZx*U+f#1tsiM>@@#DW&n*mufenJz*&Xq1Gl%8My*y^rETA5HAezhT?12|8u z{jX=CI$$6NmAy5wRPvxf0(kn5ofDj|JvWQaHFrz}uh2^WMlVC5l);3-sVZACHJCey z5-yE@owsW|<-NfUw|N~;s1_-YE7(;A8-@clep-MV5GeI`1UgZcM^N&Z+v2;)nHnGK z47u&};(c)s1pWTa)@Jh?K&41_#Yitzk(H(vQBc{U%m;$KHPPWb@WCj7CBq>y1%k1q zWUmJmt1P!m)kP*3aYPVf#h z)AKov2CR_Em>XD`6id~1YY{-Kz>nr|S1W$CK(>Vt+!yQz(JzGEWizIj(ZS-y(hGjb{Zg=Qd3ZP4!*JufFM>u zpD``LB^yN%OZq4qD5H)UnUk5NZ<>TOVC*RP(|FC$e4>3fQDRjE0WWM!F%@&L!T`pi)L zv#XIG{=XCJ#->rfK|5ur6!d{+XqD(1-`#}LRP=icm>%b-Bvn=%Qk`gOaH|qnKz|?r z!$V-MV|2~N$(Tr=IH7F>I9H#v7|Wcb8hzc>+GtE5A)jGXOg`6fHDq2DwhmP7_~CjZ zBYMBIYjZTtVQe&2hAYLIGFXhOy|VDh$@&u_Fj~tJO5Wo4SBHgQLnIrBRmw?(N0!^N zzxCSbt%s>xh-t?l9RKwvW=ja~hIfDTfANO5wvHj`yD_cA@DR1AtIJ^!xq|n8L0TJR zOzKQ#y55djnag`W#s7UiF!zT2{)M%M=J%wT0R@*nJ89CrYdoATA zz6l0c{#03g7T~*cRPfSyTp7ZrCq`>^hJUBPIe+b|v8iRT#(*0{v zq?|$&uQ^dTO$Dgbn@tfLGm}3)O@{A&_!Zpapn&{lW4W=3fYr`v6OFBAVOifzsA=$3H3Y~K zh+@_rpDM1nz5Wo~5RSaEAZF@D(-ZS~gdH6Elzjpo*Zl9@#6(0ovp2cV07OtG$wCEi0}_4s zK62*dXE<%DvvtVL4k=Py9d26Mf1gweSW5?4HLoLNF3(R@X!MK6t+JbGCOeC9$lh2S z93&(*7k}Cev>KW=nK*^$>nRH*bS*Gpq4G|al2V}ZFGi};uGN_D&nIB9us}j= zYPsqNX?0{M!{cs1bGnE-k11hM$XD!q>&+5x1m+ zm9=5e&bT_9R>avlK9hf`?`DL?G+vT2Vut3w#fibcT@f{AVwrQ2D5w2j{wUB~l}3cC z$9P{Pc#CGqU3|;=lFz_;wbl{CjUcEV=1*KduOxy42mDwdOa|WShgo=^`wE zUA?26!2(?Qui7mdh|^# zWp_a5gC5eU6d{E7fqm#t; zdvHlb>=bSD^u!TcQ+&@?n&R>qjBOxBJY4SP^-#R1(3$8{E^;&l)HK%iFrkPY5O1%Fc%I>Zru*Iw$Ha>&iz(`w`jD||7X#} z2GCpz5g$uerSkaOg^0Met8JIj(lCaWwyi-@m6N2b@jz)4+3Wq0QjlMT^8%Fu!_9@h z4-U4^z%(w`jKv=bfm=jJ+7{E=b@%%~fk4#{ZleKNJsv+G)5UeWpjuh1^b~8WQOL+3 ze54afMa~#Y1%FRDP2T-M_oyPiVAd$(a5LV zKF(zwjMpLY@Y(GSry_Q+@LQ;wtANGY95T^YSD8p`rYoj-jT!L&wz}=PNDMr|4smc# zV=xUvK*^vUO-D~@+nPX&SH1!`&a+x;imVwv>%LWY`ytI-74Z*{DI7`M+#IT=HKG41$p*y9RcmX)~IteC6pvpMe zWY>`^9YuK)zFC9?H{;jpbcC{V4wY3S1s_&u;8*jKfNDZ9YuV$5YJ~as#Mo*wf+^2i z97+O{M0&#fnmXxC?Rv!~=m67TN-r#s_ZNZDl0ok=x5*M>u5WI66cL7P+O!ulZ}@{9Pao%*XY z|Bzp)ix(X5HTmO{&(v>EhPX3wd>hpZtb@gn)fp%kAPNd2#1>a%h7}Bq8dmR4=1b(W zL>QcU;h|=+TA~;x`C7B@#Nouz{?SjI??Ac125ec(RabJQA(-m7;hMDd z81w^b{4su}5cY~_8hTK#PzY3(orTsCOg^fcZcXKW@q%`*1~c&blM?-VpnJ6Wvka-CMp3K9uFUX!MA9j zJmSIDA%|^k&)uKIslf&?)yX669M5;DA{FxTe~agoK>yL7C@;yFL;J8vtPU{yL+&X}xG7!uay0g_D6U7o6voa|N&W|PTiQv=Md^DHJPe1Kz%bl;Si=n6P@*Tv|hAzC*EMj)3cG(gF*bI_NwAgpzA~mtJkMeK+eI!|!n+ z*+Vc((?8>WEVtHB!%_3PbSwB~>@Zo~Tcaln$E6_5HSC9w$z8q4UEeJCX?>KZ-4hJt z6S5dVz%L%KJ!HxThdqg4$83hKUOQ37P38L%Run4s-x|h<*u=!#p2!=YyQ!5>qKmgz z%U11Rrv1HaLTFvzr`v`Yz8Ov4-C`UaXtB7tt%(OJs*Z*4+qIdhOxy`JCOrSFI%y-s zq#RQbC`ahMsxomhsxOZfn5VjO`(=vgovqEknk&KoGdo1U?2LCe>~&NvTu4=#52O~A z>Kp%dX-*41ZwV+e0ej;wkD@Gk9+!hlmR@*P!DU=Bs=~&Z#V}B5_9=ZoCT9H317AxQ`gn`lIc_qSGcC1|Ic^aagjJ3Sit3SzUy}| zK;b&T@x=D(JfihkyYKs6{8Z}bth9r;ur)_ka?S0LM|FkgYDsG8b_85uKZQPtswbes zO{q*R&Q_z7VsTpq^`Rwj_TzaGHuRf)1Wu@?`q8{ce#WG=^Nq8_1Rr3iJp$Mvj*C^VU;27_AM~-G`oA^l?u#2Tr3X2EOS+7 zZn|nNJmn&B2-y?Cg7T&E%221EycKYd~C_L?pF+y#*Olw zYx26=j*d!cE|{;aPmfDpk8Cso8^+OKum)`%k{pqZ9~07~OTlS%5*Yw=1QMRexG5{1 z{s^Db2YO?k1X}l(#roziIxQ2|s-BWh0}XO^cG>rLY;|Ay0xJs>v^_t!*=~HR^RWH5 zd7L_2ey`gOP<}qh`(lm5nMKE-T)(ZlU$If$s)Vhq=o-q_c1sLZnH8A*)YSb84qC9K z6;y7wx$pS_Z1*8PWjWclqEXfixu|*2N)f(@{6@n}zb2V2hRKUmSkHYv6p8(U4osD& z+IfZos-;|VplCm&&lEE4xSdRal9aR#!vrTAAdp%$?{0kTE~eaA+t(3vrjZ2Gfdpk8 zV_=+);W;pA7iVLo^6cbmO&gc#)5a>PDo`pYEioBS9%^@1W+e5Yuh!dB+&=ET2&eF$E$Uk2u$E=H#^CYB_CF z|900XOCIG=GvQyvx$Kp_7q$D}l|Y7I-gGw+Cx-d&`9R9*SGjD*(Xdh(kBg((N&I2> zG0O2xUTMWdsQ+APeLubX0p5F<5oeh4(dx&?+(b`a9VnM68v>khnAmNH@~mCEe29-QC^N-O?r9ya#{p|M>)G zpS}02S!-tYjA?#s2hQb;YrcrWJf%q$JP_R470o*>0?R%`f8=(_+>pj7s`QRwa-hn4 zBU>ZGGRl+r?KXT|7~J%B#Gq>ZEXh)g5K09Q+@U|+K5vbHQBeG7OovJHC-1Y;8#AGbk3cZYu>(v0Y1o|CkHz@ac${F@x{8v`}3Ri zG112c#c>Pkh3Ib)F5j~s0!(i9^ZiClu&S!^5lixtUwHykj>h5F zU*&x^aJAG^sK3P_V)tc8azw-b>LUO=aRmMQ0uTpGqKNIw@y^a#q(VBCyG83|%6Z7- zbNtUHmAC2AaW3|RE%?7;PgQc*-+QDz( zaaa0Wf)Cr{S?YG>KV|LgCKgyKj$?re_mlW68#Zx~z?`(}G-96Ir|-tBCxES8Yr= zTdVK^;a`@3y6c2n<*}?dtZ2-?_3$t555>BoV&{_va*auL#h+iplqQ@LltMGD*Wc(; zo`@&O2gp@U@QhlCYsBZP4pK696rBYxI+yZ)Iem4SP1q21O7kbwUHk54x!eJq#Y@eJ zyVC->^rxz{m{VTZf&kxPp|=16z`c_Zyv-T41qDYTa%;OBr!F3Qh(8IfmfJE4u-skD z70Qbdq~L~bEU+m)39;gHaXzkfT$7gCPgZtf9E_UOkij4Tbc&xRJA^<8qNGu2;(u5v z871HuOGr!_qQ!j1mBGfReAi}zGrNZ0;yTYPNSdR!Rv!SpNB@mblN};?yZq@;!7yNv zdxXL`I&;7Su}-eCrw47dt=?Su#7m+63y`!=HwFs98>grrOnSDp%T#XHi1c|aoYhDL zSO%XEuoMg<=i0)lI(d)Thr6H#o`+hHCOPFHA~TDO{qntt2D z0pkV&)aa}QU?YTobiwtY@n75rE;Q@J|8ih~xKT$#Fq-O|s#IUXIEyb)rZU*9#bPgX z3T`mw1u662UdGVsE4<1syA7#~hEKz@lYNyK&OAIPELBQvg$1-HzJ}*}cfIk`x+o3> zm-ZqXYUC{O;U;5SI>j_Ky3=kwl>`>{VG3jBDDfaIsbq8lralx4()mn2e=H?odNV%DW2Gr? zG8zyM@(U(&0X$*h^s+-BH!4Shac*Hy0wV%~pDso*2p`u2^fQA8CT$A*e0?21 z-@RzRslZVB%?d6(ex%XV>wzR2!3$N|1}95BtY`5A$Jwz72MV!rF~_YP>JJ{eZ8pt! z=6b$ffF^7w=0X%tuDZSbqOMd5ZO;+x%cgKvVro~RC`{mW^KX+fwz0u`ZJYRQ-8oi~%o}Nq*TNUgNGZ+?q zF=osiGcAX<7Z{y-l^DfKtbT5?kmHSa=d?;?_wlUK#QVZK-8~YxpWov1bw>|@mizCU z2xR$Q#?r<{C33}G{n*As=Xxh7fi{F_?``La)*+DJ%wgOv+3>DH{;%szy-d1fu zoTIU%Qp)gX{b~j-1?t33&adm*zIw zV2e}@bEM8;Wbo}&ou4nBfzItY%{?|R90wXC=@-Gg>QX<6>@W^iwLt7sipcMv_$mTG zm%3$(pPG!6L^m_~?n?~Bvb(1@*r-Je7oN!~QySria)@`<@MKn?M1aG|RiFY@tRkJh zRtHcQR(;I=8f}HTK)m?uA@Q#KECUMD6^!jXK~1$Sv+}s`<66w2{%_FEB?tB#+b7Be z?iSJd@XEd<(Xj*XMWxYQG`1ib5K3tV4iI-pq1XTL-)~au^^GUeXQ4#eNQ#i`REMmo zhX{3Jt#yAh3|NBZe2=!SOwl{OIZjB6RlkX2n)Zr$(a;1cH_n-kPcnN`!PQ&N?-o=a z>A`09x6ac|qV=&9p}5=hG+Gz0I_SUlOeI4K5EoYWVO|`2Fc3$nW+V=l+9aKUjkG8v z(M3i6Q5n+e?|daqQd2`cUg6!S(zl`B_plRfHU+vRfP8;n_m59zb6 zM(GyU8}RS|G6Wg%v`*9VL3wDk1wZ7UZ*-@I|3)Q$wng~o8rK|2WMkZ^8r7`3CVEUv zO)xZQvc>anrweS!mZVWRS^tDT0q*zX23Osxy{V1OS%ioo8`&NF3$Vi*ks@`oS>tyN z3q42>MSYw-qj4l zgg@{4RwEQ7sSyFCqIsht@7Db>6BHDdcEfwImNCLP>=wkhP80BOVgLPC__6_W(n#;K&c^w1Xt#{}qboF9un%-)g4oH=LZY(Pfm}VhRKOz;&M&lwjXlOQ zK~t)hQIc0G4}553=Zy}N94Bkn$Eg_meGZfNoEO(V1TJJ2+z?Cp8U};8Iye{rl#O82 z?0&^JWG0*=R%sEpE+VdGYy03fA1*@G!@$1Xt>FDxj2Gu)x2R><4TJ(*vRMH$r*iqg zN1-->6yKC2O!t6MEe=L$)|`OfFbdy8?7zbj%NR^)aThD#yPylesb^{#kq) z^pu1lFOio8PpIZLz+5w?w@?OtklbmAWNsx2I9?y4^Rmn5=^;wi2x7bt8sLW5g5b4e z0Q@>y-44uzhDfp%<#i~j-}q!^4WY~TfH&U;tuzn+CR%U2ocqJ< zjR?qAxTXZ23Gx5=X}R~b-FRJ^6mAg5=!4>!8deCt3V%C03$xujdcS4aRG?Dqf>gS$qAun!_SP z0cclK#^Vs)j)fP$6}?N|V3A`J5Aso@Nr^e$nrVv?@klmLD>uLI8$KZZ?-F()hr>or z@mG@Pp>Onh21Y&yrRj-SDnw7=q;G_QyR8r>8J};ncaa!6`GFJr#_zl8-E-~$QiSwU zI{m>#CjU)MZePG4mNW4y`c5RgS0C#U!+H4nN_aHFZx`(ai{Fr`ql)G0iPYmo@Y7Q3 z-L^g;e4LHxtk6yW^EppEydRpGttuio72Hkap>8e+GX+|4phrMSC&`uOKuRH1EV-#W zS=zHfu&4ldNCpqy`$v+m&q%?z(v&S2vtRz(wpt8Kc+B^!B&FwmPEzk7 zMOq=Mfq_br#(Uh3qO|V>mrl{w!@wE!7FrlC${B&&Q&DyqLqEOMU|9r{tKNm84`SsI zok1bnGV^qe8|nPJ0o}lj*IcGpM$7J*9VLn%?=IUB%;H1Ht(&_$K1MeD`QHzgFuOl+ zs15l_qXr7&M0)JRO-X6De~`gH_12Kv`Bk7DSv> zQ=(i0=Zy%%v|>$qa=OmFZ}Cah-#_+Py!F~D?|AWhZ_Jd{YgQ4W(~RFlUI(s@j`rP5 zIe||vFg*U*9+1K{{_eaSRGo_foDBv>sA5#L1;x7jG18?2XS?tteeXg%DhlHY`%`lbU5QP5d^z5mSG`7|G-j`#(yjx@5-|sdZ=^W7C7Z@cEnsuF1{^A;o5iA2kG} zF;2o{-wJD;=O$U^;GjRkzHkzq4P8B_Ir8=I$ksb5ag47s!oVhyz~?+$w5O=d-VGk8 z=!8j2solfZylY{o@q6*7FynDD>&lQ+_woQ$H{{IIgKTM37gN=CU_$^ZXZh8LgX?mkfA&5I=59VBREBmGP{6M_n> zfL}vCo4spkjA89x__{ARpHp(9?a@xp}g@~^~x76@%#p>*i(2P zoS`86UG47a*~x}}C^pZa0lS$$EryPwRI;Z4O_`g?%xck%$EJv56?`um0cIf(qK=iVL1n&LsFSdMi5noPKDUj#bXLJeBH@sKt(X|1FF~o;H%D5kPDzuD?iu?U&T@_ zvIUL)SroIGohyJ3kH~nyMLou1>wfc z=y;9qJ@;zd4(1f+2ev?rm-Y$LFR>8`zUGn}QM=TVapuUO9Pfq21ErIFmvo#}8y*q? z!4WIKnCZa+_!c2+?KYFr+F3Y89$xM{K{OGSakzVKF*9*W;&2P5i(2Omyd~ z4Gvgbv$0m1((fIK&Uf)=Zqo*}6v>%i0W+Yfr$ER!{21LMumvtD-W#`H)ZR@68ykP| zODlnD(73vOTJH~f*Vxuzlh;#qWK@A=f|OGYz?a4LB`%$o1l{-(+`o%n9Xz?WWnS+; zi0-W|L&jY_qJhT|iq70X(L{}sN5)jPpzM)Y_opmqKYKV7r|t|^GE-T1%-mRXf<_{sd&q)8qAcJ_uV&k0h}2I!dlNp7N!TP z{@`5MHk+qup&%M53Wesy&^*!?&*v^ikkn~pGv4PJs9VoSIa@t8`kn9S^zUax*fK5c zZl921MysVRwFLAL-7Ra>AbiMhMUeG1PEeC<{y(%?DTKzo~*@@xzOm4k#3EF0pk78ZXWVKb)ENF8$Rs74`mIg59O6 z4*;HAfs6nntJ||exEAoX0N`j|l*LlJ0kX&LQ*O868|tMFA~k1896?Ddx(?F5R0|Et zpE7|v@ZZN5dI@m*CaA!Y{>Td?<~Gv)w%`pJMd1RqL9@DR)+vy6@#*b%8mv#6?jyb) zTGV#}HGfoe_-niwOnOH?&iC`7O_eIhVbjfBE}R_W{PktUzFWt#2M3s_U+@_DU@G~R ze5EOdkcs*M-sB2sg@bqHbZ_4C!lQ6$aefXVmVsV?XE~C|9`$G^9v^}bjPW_zbish0 zr75d(zWq#*4m<=n?i^K8p|CtXze643u%0@u(o}?+&IA*`-v~c1u(R&b2L|fN)AlW4 zmH55~;~au$wYez!a{Rl~Bx(rnqn$h!>D^XUfgADTNYLvwE1>ClIni~B3OJSJQL5V- z|ARigx_P4^ZtGyV2-1dJHv_i32Hcav9C>c&1zXD6L~2yv`;GT$W~E$#^)AO>^ZugM z2(op+k&y7)PDDAUDtO7j{wu9R*Q26<7HCE%Tj;Fw!x~lGRvlf zPh5|;0E|x$za;X*VBe2QVP7%4>P*q@-Ehm8r57VyL3-hq7oKJ>=4n5Cn3g}q`>!)A(??y zUzCCnI_?#1GK1T+V)-y>v|S}v>y#{JcnMGLmkOfM(ahJwD)f{1|4jJv7`WS=s`Pd|WxONcla{V>FnP0siZzBF}8D(1+B<+MrBFP!ohOSrC}F z{#Y!4U8Vgh3|#SX_GhW5ks9}@KzX{y8cce_?;@QP@2#nMlDg;KUjKWK$l|rv_pX&1 zY^%IHHYOph0e@qoOOm;wzJyK$zGe*)`%Tm%!cIwv7AnsjG~yqC_JXHR;?e{VI~(az zQIy+R>mxX0L(4-A96xTT+%Hy65Z2&gXs5nkdhQSR60sZWoRoUV#FQh9A2QB3EufL+ zZ9!4eZ5}>qjwSogG;G>rcOUPwEk*Z0F?R(#I@8x;sj<^IbGpG(RFC(qoPb`EY-5Yc zNviey7ZMq#l*x{c053K!dIS zLf(lS1laiL=oFr>tnfhegr`^sUYj<|Z`Kl-wZ6F)TY zse$6;J&|o$(b}7oSsdh)RbQhwXD=W|u!Ad`@dWh23MFD}pa4=*BXCAKEG9P?7`A6$ z!X|w^R?e+P3VuXSWh$I5YY4{&j~+9A31{1L6dOy%E)eL>|2jB)Kr~`*&hz1Tac|NP zXnw5;0hG%O7ilv(jbnL246J_7_`mZQMk&2+ZDVBjfs4@(a# zArhwBh*X6=N)22hBFs27Lh6H|b~1`)NkzqaM(Ec=6mPM`1l<7lQ;q?$yva+RLR=YB zVvdKnt}0RLAA%!Yp)IJ3^eq;@`-jnAv%c&&s+f&U)ah1Yb5Wc>7gTQOw`3`%{!D(k zp2)~sC2nXx9uj8D+WV3v42c3TLkDZ2YPaa(Z|ZSs7KgJkrAMNp!L6M(XS>P>l=w!j z0_+sLBxmLT!0thmeBaHMWhrS|RxPBdP8IC(i011(L6v zmmXq9vI$I$cbY*)vDx4LQ0k&%h^Rw<`{5ov5CY*Hkm1#k0f9V%rO5)^<%ssV^R_!5 z90ffk5h-7jX-NFMz6vp%>#93$iI&JWW=q;!w)hPH@BWF^pSA(WlT1PLxiAiC{v1$- z>h8HzlLRl1!FEl}u!*JmGhcS4lL-mI1aUmh4C4dqO=mc-2auWkjpB^2%r!+V*2;w; zz(KG1IB`s-Or5JBb~(7QWN|lIz{%Gqv{+tDsodd=5U$g(BZ=0Ps63)BM#rD`q7fPB z0gY%;Hz^MGF_V%YJO(5D+{ha3`DvsToM=pa+V8$5OYe zApQ;?^00VCbd757?6|nj#0eFnc!!`frcJ(>kpcCTn-?_s1N1Pk1p&O8JmBDy@RE?8 zUe~n;!SwGG(hcJxx(gqt$1<7F-+z(YvUX{_>FI^I;)BOy`FPv0C+v=Deirx{1^E2C z8ln^{N3|-npNBcV{&I}@Eg&tTW2&G{0fY6o%>;!C(zb(kpJY%+cd5r`vL z-_#D~?KH7`d@Qokeltzg@&mCZ+wsPzt`5tgwlmJ2btcccqvKxNolJX z6rTpM=wDba&dQC6B%mj1D+E&~1?mw0J~ueWV*_eSfpSBMKwP+wAwd5j^QTJ?OEGr0 z==A`x{4P)l(24+*6bn2YDwoMov&BwRJ6iUAN}}*<{b90gz~b*17rL!LHY`P znlP+UE~qtijUo`~<79nyQu_Ms*Tfpm+J-#F0xRuF*8W%*mv~Ng2;Ea}po`jI!uQXK zFA-m$DP10OW(i&?ptk6I9w~rT_ziyoTNm#>7Bgz-0rVGL*OQtdn%Y*}bpBQ!C|CExUUO1E-T%22iv!Fd**8^}<3uNhT&IjrevHYhtqWMEZZ4 zU$6lN-1p`-~0}hje2w15l}lJaae}Xsc@0i&MtR@rj}@exwj(ZrkOo`T9(= z$qJlF#~+(@M#O)gUAN)%Q>N25{$Vmz;aw#8{iGG?tCR(+uNQJ(B)57&MahR6Zy-}m zottwKpq3$+BFJ9HkY{>(7%0?VVex#N*2=}GFpL$=e&O@yE@fFytIS!s%*Vq$EI=A^ zE9h>%u`Vw#w95Ndect?bWEPiRRg^9-Od6=+2f!3r*K80^t%)7@uzo0-3@3-aeer39 zx_W=LP5b1ea#Q@@D7RuhZ0VA~ag3;sCFR+M3FY;Ut64LcA8id>y*QnP5 z7q0T8=;ERr%t1-vvioXio6Ckvv+VkJrs=k{1dr4zEoQxbc0+tn52`pomfY@9rb zeG>tz#7ngU%p2f>Rx3$50eN4{lU!e)_vK zGgDQqP1m;9*m+=)5!Z!C2LA%${AqUc+P`F}`#`fi?7lKLEbA)2h2l#E|2`xN<^~H+ zf!u+I6-ChY7PxX{h`rh1OC$P3LFyE5xsK(+wLid}YrcMZyB@G|anJr_cu+G@BZ82| z_jiGO>F&ODf8s#1{M((#ooGZ4P-Czy=TLunekQ8>lNJZay1f7czY2vEp6r2&H8m2s z_Z#X+JwE_GDI8*`s@RFRr3GpGf}idbXlHP-kvhl9cL*gl^E4!qo&`)#@szTO-U+VgNv;eFi?)Fz(P-@BXqVncoRVvwFg94Rtt_Yv`WBB$ITX?lLt z6ujF>?0%za!uG|;&)`|{sOO7&Sw|!p)*uVZpOuhX_Uc@6YL@{nD1=xgKaInXc?v|B zO>v%FcspgSOjW87fzPP}{u})C=kJ(IoeZXC-dakgV9a=U29%3)bN4re=8CWbwx-A` zGB1>;S3dlk$}f_PZFY+mi|@IHOdlyJF@RC0U>Jso)KQHZ7H`;r2|e#3J-_of7dm5$ zuesK|S{;PVDDhekH}DIW@JHq%XQr5yv-Dv3GHl=_pA0;IiQJQxTqv{Odw~7(1aya( z8ks#jAEvx=#n!*;GgM&Hk3K{a#1xyC-W7X|fL;KL5ED0^O+`)|94vvpSU~x$N#P_c zJr(g$5@F)qrFpmk;g0X-X9wTka4A0mpJqA;Miw5 z^$Acq7=~6O1=^f^+51x=gIaEiH&gVTi&jxG>4{)GFkV*NJ?!Msm`i*zv6*>!=a<6D@#Z_@)mZF*RnAD*6~J?t^&NyAEHB=!bJ@-K#4faM&YC=QLk zm1s~*Zk{qeAKMEt4JBempJlx}tu>j(Otm9MPY0nRE1Bh#oEQ{ah3NT>j(s-*h)kh% zxRjsdfKS0^8@%5WGv6mb630)lm3T-dnP9wnWlv8i)%?IT0<~g4bs$}GYku_J_pvm- z>zU{2xEREtZfYw|^tDm?5s zzb+0@M8>s>O(B3mNe7P>l^fK7tCW@OvczNIHxvbaxf-?rw+_Hbr=efRqsmsNuWMq_8A%zIdhEB)%(OaeEyH z%xI~4EL_Ra9kjK1uL0Z>U?magzd}SE92_VVzZ&lFP*&;rx#a&ML?Sg1&XaNfkT>oJ)k{3qNFqcs?*~Si# zxmHX^)N=RmSn;E8UJ$9+&!(C%$pjVcqAebf7D*yzj4b}rz9S2`?B;pzfvPvO`4;Zq z@z`TyE_qw?E?0Dx>d*quX_W8+k0h0$eIUYSpUR2wZL3dZQ4Hv+3T7Mn`t_SKBRbH4 z1zH{$oWiO4SN5|Fc|jVF7`W={*&J{_3?8MLcAB-S)f?y`B{K`Hd2b zf=+(?gla*HNdhCpm+PQ5QT*<;{JYcrwjgpHMyPr}uWF8zDT}xo30fZdslA|?Yzajn z-eOromfIiug1PvSLkBje&hhOG^8w>p)Z_oK!k0Xj13K;?Aan2_<@Jfr^l?zJ+=@D^ zpZmR{-GhmyILY-{u%B08<&_uI$PWrrE=N}q7#!@M8!_YAr|9uT(k86-181CrQU#l_ zlp4v0yoj<7MoeEtp50s215(Wos_RDwkkHf66lw;EZnGAK23!f4;VfGiR2ad z>nb{ZPuaPTxx*PzP%624#bM7H*Js{VifXYw5aU%dTr2o&0kbe0oDiG=1A}szFVs!M z4-u=Wx-ofTiwsgg=d#VM={%ZDsLuSXvcMc0uJCO^T9L8ZMJGCU&4-X<;T^yZN<^va z6+Qo9;9ibQ9|&ZgfYZD;&+EHNEb7ZcJy(&rzpEPaCl(d{YXY@mT0?gB@3+-(o`~Zh z!}zrD#^bl|2o;ztwx&eT{-_&kF3f!LFz)-n&QS{cL&o&<7cQSO75K4(4Z5y=9vf;p zNB^)nD%blyXH6a!4z>`+>wDx<82AE_f7Qw?ds|TF zvH;%{lf)P=Ffkgs)>C(2p+sX=z4=By<1!4s90s_;G@Jx^#I`rWzl0X{YaF14_)h#Z zG9>+m=x*Z6UWbwk2c=ziiHR(J-t=JK+N00<_u&8ia07Xb9%2|<0zZw0#KXbwM#(A> z4?Q862@dEQz9XEH(w8d4a(LT55bU@>1#rxh4Z-hVbQdJP3W;3SzJoytm<&!C8o}!0 z*{Y-)=dFYmv3oBidyk)4vT+suPStYUJsUA<;PmSsN5h{@X`B*|4x%C4wTg8+B`cHc zDMa0VpF`$<`G4mfkH8I`yG-EM2)JrIENb&;`X>U|~ zFjVm|@`(SZ<_K^MepM1X1?@7O-lMLUbsy*@ArEea1S`*fJh4GmppHGdk6+y;g2AG! zKS1*HJ0S~ArrX2sKj_l%pL92C&{(-BZ}p{}Rd#;v?qHZ!jyk|FMtOO zc=0@8Rn7&!KRB2Fh+Nr}(){x+Tc?7u#oflvQzg$>kEOtuhoorbl9tlNysB3eNs@ka z&FQ8t7PMKCJr`g4Y7X!u|Ig^6M5w~R_Fix{5-4GHWJNl%zd?%dTE1@vFpxSsxC?Er zUsokNiMr;8K^3=?t?L^~ZPeCj+u;)Y&TLfGe$$-BWdRfS-k4n+;qxl(oDQ*{TuwX1 zbD@}iZ%|N-z*4UzoSCD;!oZlX>r(B78a#dV#p3z)S(B#rn7ZPThJyp)f0%zLAFhX} zw=OSFULr@)mg~t7arSsW9*>KUL|Rlr&p+)HVE)5|i?zf`^%~Tm4ueqbU0R-AmAJPk zkLX5hL3v`9@xFA;`#FYThThIB7-X|?I)99ac>BIdpYYw{l57P)NFm&iPBiR z(`)g>xom$sfaMSLv-}4>@`7ez;F=n{rBA%Z1d#e!-SZNDhhn3sSS%-BKPLIYn@1{0 z(744!@ZgeA;9S3|5#sj3F+i5^MIfyn_j4aU$@t|)lt~UDP-Bb92q=p?oi5kE z>@}I2#&dlZK`c0A=3O}G5^{m+9%jAQ+U;od9=j!Kiq<=hWkN- z0P~dubWoDLOfLxWe?yRO#U2-=K-HGgEE&1q5LVXK#I-3#bjyJ_W-#@2k{fM#VvcUI zP5Y#DTSE&`;VFmKf^S0bpOkGn~WQc}D+8*I@&h4w`zwgI?w_c7q&_YO2v-fX| z-zKTP5r<^wfWa;fR%t0!lOWV3NJ0W4vXS4B5UczAjy^Xt2M4*%1B=bVH-=pvp7o43|4=_BqGJs*Q31yY z_Dkr@k$&rVc#)3wTyUbZ{r-Y@9N?6WeqM?XsbSuP2JAF5-DqB8xoP+fYyKN3cRXmvOO_v9R!#&+^;y7A8(m z%$ZHWH;tQs6p|OxnK++w?)E<~iBI9v5%2iOkmy<)2FCBrSn`uBX+1k!DC^l7g4a$H za#ESA2^P;vM8HoNXF!K2rPT+=V_T~a$)r`ob(zqownV#!v@}$ULl|zCA<4@NuMA+T z;Y5zeOh2ADRtkdpklf_BTnlAtW?Ah1ksn3>ahu=b7t6+2Zmv*eNkVd{{JV7lk_ER3s~fDQXt?8MRDX|$edS~ z^p1P%dk#Vv%N_1C5lSTxgipmMI&(9rQpQO~b^qPPPjh8n^^n;U5u{dd9=R$51mZ2%PC*o*F48g#SeD^|MCb_i?-v< zZmy)4TSBUsiry}S$LH1sEi=Z+JZVW!fLfKiN&2M1KG>-_rOI`E8%d5ltKO(Pq2Rmi z6|mc;wsLHf=gW@pRfvf}ER$R;+=fh`BTZaR-d>FxNUH+H> zeeqYS<{hTTlR_HB(?c%rpUd_@Q5kE8SKVsoKZgqZ6QY|v+nWKqDjggbQPgb|n^NRWE$dk)U0oQVvM~(kMR@42{)~e( z!C(Xu-24XHHE39W*pV1_As6iP%2sLbF{g418>;p+B5K&sU9bwY z+-xhuPxkK00eA{tXe@P!Y(6zt62;~j{;Bs!4k@)Y7iY%ofwX8ztSan39V$}*?9lP? zak2p+&#JE`QU{vJDQiiOub1QXyI`^=*>qnoIYwgpa0RIeP!Gs^Di(Xi)xmoC2!ugq zIsN;^|9NU~h@h-VKP?12N8Z|Pbz7q~0CN&@{icVh&**KfOHr-|@9!mtd~(dG-pU9V zU1Jc@T|V6TCicQDI^-84N-*NY2k(W;n9VZAC5IuS`BX6eN1T4rZi^W##u~26hdm_P zXZVxfvNm+_+qzSvVer%={rud;zspFRULYA3ncMs#sR;=XJepmX{6>>FfMF_q~=Yx=FuzztG(piaLQ{=}jY~QE4Ywx&J zc)eHqM`)ObtYq4y9lP=v`1nyQKiD|U^W#6EhWvMYYQoKN7tTCcUWP!-DV}%E@4b-$ zCw;p`-5dD7N6UQ+w{T7@#*z@T1JC|15XaEA+X)a?UIZ~&BFZ?Z=Pls|+1#3+LUjmT z)SCVuq#Latz{;5VrFkL*l}54g!@~}vm1G<;_?~n%XMU;ZbMzEQrc5wjn{5A@0a#V* zQRN|Oa>ODQV0*nA@{CRs`RQv`He94||06Vm*aYS}$sX)_e&B?1Q}j%sH>s+WbL@VY zNSPkre3J$wt$_x>lxAuIP{P&0zPCJpjqB!xXOG=>AxOP@{VmMPOwFb}vMBj?+%uv51NCh^x<4^5ZOa7~OsruS9V~bLaWav%EH+ z8$h3DbnWii@(l?1f+I@P;(3&Or zR_$wCYLNG9$KRl_+T~?3sf&+=;hGJPPiGLlyd~Frze?@dDGlDfcqjl%agUYTy^^xp zE@#tcX>Up1X0b{^7~U;G@U1{V=vjPJ5CVv88Z_#ucNbpuUd35;$&H4&?oFKMyN^uP zAl;{xWSfzto^TnbdOI<~SuxK(xdQl#j-Hw&}9UhDeXeEmo+_~>}M*>x}6iPVUM#i zKkZE$Qu&vVe|gQdAX5_VxgLn87;D$MZPWS%@>8*w*(sUVtuan(&e#PRyw?}RmtxW2 z;yX|z`C%-dYHYVQ)x5FcHpxu3`A*UPsAfoMXADZjqiTJcy!N+IhVnQ&v9@ZtqeTXI zKso_Rkr{N0@(~gl6a35LjV}gaFdJ-o*2>!Uv9*^4Nl_buc6mBkcZEiVH zoZD9IKG?TnuM@p%hkc9p4&fE=+RqQgafZKC+ZtJe>YGB6(gqBL!@1Sb7W2S|6fBQ= zJ*~D~H{?y^J$Gb3VP)yJ-8|YRi0mr~Fs;37a6v<#@H@+eE^bq=YizDB3mTk@wgoe$ zX}B&N7EkXn5F&Ivg=ceS9@h5kr_l(^DK2cz3x?mT#`Lo z;#mt0yCJL*&Qx+BxB(Jm7+4_IHIF&)xxP$@PGc}q#JkmVy-HeoQ zUrCS)TjjQ=`ktW^sUEGIBe7-aQg$jaJJ{WXvYJ!x)nN!+W0 zvPv|#yj>kf>orUCeTj6awJ7A>8;m)5C0k%j;e%ql|AhndF#b-M;NUr)_$g~iJw#6G zo|$H@p*BtP-$bC$pU+iE@?BeDO;BNZK^4>L)!evneI z*24Cll9V*6@N4i7ux%fM%MFsXQ*lR*E|4jKGGiHj7L=)PY6|f8Z{NiJk0eF|xumbR ztbZ#v)KPFASnZJhI&2oq*R8r7jec64)q2K?rfSPwn&zKt_d4nCFuP*@q$W`K;L)ag z*fxxk1?Iix`xZ}Tlmz{@U{hvATn?x>@sAf@$x4jgZBZdr-^~?#O9W7cpdxqNreBX8+G(=vF6@> z;}eYN&kL{ALn~-%ca~g_r!)15oY_6OklSsUnB_%fgDyRA9%KL+ey{TXl$ym{pbYfZBFT!o@7`pZn{-T%WPk)~Abb zGn-y%tC3*7sefBCP7a(ZED+!zhh$rs0SiiQHaXI)ci>&nmS6GqQ6R1jkIUriy(sD+ zfAd(r=*f2s;Z_#bKoiHw!){jP|=9=Cv2Xa0RuQ&hd^ zcm~sHYA8d8bQ;b)-n2clU%9&7RaH-p*YZ3kV3{{qK+$(0ST& zSF0(Pq_m)${Y@IMWeY#{XAa7ywuyFfkud$ekbfBqL3RgNBaIN7_CXNH)nl(4jH|JT zTa3h#TV_DNU?)Fz77%)=SN>+x>+@}&7_pr;SyQO-c=>EK>}?)cN5F6zl^P#>(NVwJ zjG{T3#+Ns+a?|T#TDla{=yLa2!d;Gr&hqc-Cw8MO)?UrSi%1yGzrH z7i)PM@6sDE?$3Sw&#kkN(zNA{vU?7e1+l(?Cn*^LYK7Ugo$E+{FlUA40a-0b(VT

;E4-V?9DjblGFX^pMN8)+z7itfdY)iS5dkyCnOzx4A zcCK;$w{z8G8$F`UEB$+(zrq*8o=WF;kvbEqI~kZdO6NmlAQJ2) z`kz0!yz1rJO$P?}#OO|n8zbg^y#|4q;J)DixhpgbY)|Y78<60A)hFX72>q%&Bt$`@ z0bBz(_xDC#Pmj)MC-xDaLcSTl%l=r0f7tLR9`&vc{?%2=n>&M)xt?(AovP^QD)iUjuGM%7>V?Fk>R2Et&2c*T`2YV zH3FaW?y_Hh!Oq88{A+cI*(V%mdskn-0EuY*Mm=LA8gCf zv;luNTOns&-M&kL@&9;w3x}w`=X;o1VnK2#>1J8FOG@eP?(PnyOOS35kWT3m1f&Eh zDUn9$R1lC3eXj4%_xJnaa2H9;0?H-`dT>Qvb&Lm%8|m1%n=NQKRwfsE!vWPvRZ-@$sMdtfZx!wWu~lV1g`@4k<+{(jtePwz;! zHvX-ze=+*x6MA~DpAYswdt7B-hD=L_ykok&J|#MLFU)^1Ffp+T^GQ<`iN&TbOlFnwZ=D!v`c+GEA!@t-@j=A33fJ9>lQyp|;_tzyB1PXGWIB z7=xOvDB6g+zSd*2@M;Pu(mRbkU5x_0*7z!2BpOy!IQR2>IIC^pTkmMM*9GsheQKrl zVES&du8SS2sCyDZ)!Bttk5sCsfsd>llz!7ICzvZyQSRx^|0laU>J2I<1MrrPFb7Z&;ifww09;fN4u1bQBOs2Eyd; zrk^_`s5Z9w-Nj1cHsI!`aLc@Y3hWc}IAtlLuOrfSiF7q?&tl@4cBJ=RFSgV;uJbfF ziQ}R}YM0-(uxWH!^mi8(-DZJ8e9ZrWNrf$XGv7h%1nJV8 z!DN_M^NR_VYyAvME~dz>B|*a^pERQ_j4VNavrt`1S!}gV>%glBX&5@mp}%FHt}>^G z{e!QjRNyT|edxvEBU=Yq5Ro%tU}VgvW*#?q>t~4$6D)6wG78>b-I=u;TkzYvTKDQ2Z`-w*pQW`4ew0#moO|AUsy9FBdf5FWpLXZD@ILE*vtdG?< zzCR7=>KvkLEoo7lveRM?shuv#XFhVyNR<)q9Q3v%%Hkgx)C~EA$N@>m5L{1Yqi~VD zKuCoG3U=qlVS=4tR2-%QPk&+sSsf;}XgoYKMF#hA#5m=-^wIA0>nzT>^z1)tA&6n< zyWzWymT$9sSE6?}^IbaUB9U<7Tj~8f^Son+fIXAHX6bf;*|0xugvfU@K+0-IO zPps19?<^2T{epHiqg`faM|-S4k-`o6Z69r>>1mufR~f}ATXGmPExvAzZBvkO!<(*Lo9Y~%V5OML3(Zb9H@CV{juQvSf8eE_ezQ%! z`~H8S4wurC6{kb&0`liMjJ2Ho=+UZ^1pgM67a;m z1%2Vvtd1fgr`L6nUAIjq=u4cKf4Vbok}?`&oyTvX8wpBmP(A>h6T;qV zxwrK*bTR~ro0|3<(fSBJ=nTY#9` zEJ#E~QsS1Uk1Y?NJ$A2w;guB|{(+SL_e`1(|8mO_wCNyYqGtnZlWJ zPw+RlY?|J666L_S+HMiC|Cg)cFft#2^+L-6i-cYXJ}M&KoFJS)!e01{)~|-|LHSxh zxXU;OcsO6tMxRZ>GH?sM{3k4*N=t_vzQY$(^W4$<8rr+M{&VkoVAYdO4m}&nDAUge zl56GKn~G3M;l{O}EQJh}#xGxj`qlqMWG`ug2B}S11+_q*pF4aNco&)9xbbD8l_hE> zB$KGo2POmj2vt&nF=N=TrGsoLZgXXMXLj&p8^oS zgplT)jVm}}`-%tW9?FL=UTsIbVq^VKc=j>VSTn)=NR;GlI8i>Ke_|=N0>$m=Qr6-MFKUPY0~K2c!Uy!_E#$$R=Lt5W%c9Ws`7( z+$ipmu8X}$8Ik5_GcvqY!{Hc#r0QKKzV5>=#VjZ8Sf`Wd(66EdB|xN6d653$8Qv8Z zhC>2Gy3=h|&X`+W7Dwu&ZyvrLnzH5ERXd1EY`ma2d-Nb2QoMC|q53vN{OV_Z&hZl- z%m<|ZE-0)R`OflSio4?{#!C&hS)pj;MDGObY0Vp0~7zwluo9F+4R3PwgVEl1LDHwIRf)P98kO@~Dm>*4x^_M<0x%uyl#bGW3mbpW~7T~E%snYXLx zIv&r3-TQpG{4H=rTsh!j(MF_uBL0K2Lm^=d^9PoNZCke-F!AlZMowo@eqMVnBI z_SetpnY`&Atiw>P@*R%(GAf@#KH$Nm^!`i!u7{RaHafGOG&=NT>DRdk7iSK}|2^7# zMrx{MlfkD%3V9VN=UB}j4)J-$4;+qwzz8`)iZ|8uwBdq73!Jj*AU<%Mj(#X#0v1i= zXMH4iUx{_I+}HZvF+4Mp&JIMx+gD~e6%nT~E)P;t;Y3tV@ecn|dh{8kFYI5y5Qp|eMN zhsqYue=aYy#28K&eSOiCi+!Q1OyCGnB8&B3vm}eZt5PtclPA!YpMfHgobg~kvWV}@ zqYh(XEF%u-@!CYX`DGq1AN_mfdPAFY<_Es4s9yg2Rk-V{yIL^4Pc{@8&Nf|>ZpH=u zYjr_>n@>Jl>Ep0g|DDy#+nLHWTn+LMjW|AwC*k1D`$b*?wj!%2Du&w;Fr-@2>WV;Y zfAo-ObitlDLWF)bGGQVUvC!cHo5fK1Bhb%MLM$4ZZfR2smJxrXR6$Vw!>^?zbsLK&yDEJk3G~k?1sx|WXTzV~Fo<~8)Q@zZ3sPhf7S}@7O-9?27 z8(L+R6nQ7UdGMX_bZY5vwFnVQLb;42>y+MqIJk_UyrSZZB;b{jEG!tgvI!;ZiRbbL zWC}~UM{~ottm&;N(Ru+s2R~*co{`lx8dZoQdT(`-q5##g5gzM^2?>aW=us&nxIG%A ztVs?<8An_9Gf%p8UYBI59%>wZFXUYX!hKM4Bc;X^c)Yx~*r4#EW(>O}kL$ zO9yuiJ28ruPEk|{rNn}-;i3B1VL%Bh_j;y< zk!vZJbY1^W3iN*R*)_g_!FavJCo(ohbZ^;X&j6#vyaGpoeiWjBEJ!CWZ;;UuLt5vs z_Ew4)pO%Lw<(!UTnHEut-L3NmjR7eqY=m;pE$o9I z{L`Uj|09Tow#%)!@OO^Su@cXAEs*^~o|t&wbc1hhKZ06|7z1CM$5xtq7!v6Kr;fs9 z*BNK$_UQ1S7Ni3?oTA>CsuJZvNkw@K3MXstMUbM`&%fvxJ~%~wF7 zOCU&g`s>?*=qbVMLGGfX=<;3{&FI8h;Bb08H|OW(XlCp?RZ8uQvpTh5ZjZU9oWb+o zC0u%cdJFGq-qbjEa^zXBi^|^ytreHX>)#J_(vNR=(i9(IDpqchz5j6?-0w{uh(U{Q zu+L5Px9zZ8`&88*45(F`h#9r`aloAtT=PlOD5C@8V@3DfFM-u~0h>+n`p-ODxQ@Ce z5vD(h*V3&wf9ANc@%9A9-70f9%`2RVa9~fw63FDXy)9S*4ciTmM7e+@(Uo z?_kyTto8M_PfMRvWIyR`+L;bL3rma*epIYub3u{mqsROsHoQZtnL}3LpU{AdYDrT| z>&xa)eBCbo6jeY3CNN6yb;wR%^d6Q9eUMjqJ2F}~d6Rzs7I*mD;{-Uaku-B17#;lc zxw$)YZlA^I3N5;wQNP_54=|)l;3aWAczS;;r}qiWON3;&PM%QQvF^HWzGES9j5bzo z@i!TcOCXw5Mrg3>ia5xA3=zO&XSFN#vano0_YnvwwrVG1G$O!Xuj_*gbCuEh+}NEb zovV;hPs`qDt56f~Cb;tX2BhQCYsW!1x0)-8X}Ee?!*Cu>PENvHa+Nk;wYKtqQI7b7 z%ED!9H}8L*NFkI)lPG6x5=lr%*tb7j(3gzMm>6pxHAh)x%4SwvOegXEd*amQo|zxt zb3^ht7n*8+Z*VzJnyor7WIwDKhBT+}3{|WR^0;i_nWfSOSlZqs@#D}1qgye?syBT1 z(`&VFn#~@J#_5-30!a^s6Y(k@Lo<{%@)q@}#$)mYllxd*{Ft;EN_t0#KcfOb$`H}W z-#}7{nQV;;M>fT>j%joB&3D;Gep4^{?Nn04+ht)y5?>4nnr5*D(<`Q#dUB_ta#dh} zn(Q`<-ds3Re}8|Uk&%&;lhfDN_nObX-k?c_yRwnk(#>VH!}HJmji#n1Nj#H?2zm1z zDsb8UEQQu02N{(&A)RI}5h~7cUKBpCKFq}fWAODj(<)L#s&HfZ;&u_COT6aVzYG0j zl@+Uwb)^~gR6)Zb8W>sJ!p*d1pepD_#mi%~E*wQn7RAVR;j!F0ULuPMQ7yDsJgqW4 z;~anDMmpUGO}7hP>Tsy?d*-})aT|laE6KMqTHg-8`9q+8{E!S8ZOV6)f88ST zU_kuj$ViwUKKmw<(tGAZ>#gf~P9~lAEWakFoXL>U+R3LJa%SYvFST8k-NxKE$&xf7 zofy(bLnUIp53EdeWXmh{y2%W`VQxm@*b#(Z^w2ev10lOQy}z9k3^9?&=R-TrLyg>w zDUF4#r<}2w`9dgGE|aijpb2=A(E#$jp2$L`nwnmD@2+p(-1)c1LMFCa%7abyQosA+ z@O(NM4m27hdO+a`UK-+Nbu*X*e!F${)}t^hWc$;hDO(EaN` zN%*(|b;^#*7nb^cjVbuDEFBKHl!9Z5i<&iA5@jbRHWMn)B(b1t zWb}ANA0!xH>ME;RE*D)3`=>@S*Y$}w%DP(G&Sa0f;P_HT>v1PNIZ9;daDW^b^e^bV zd(w~_FRS~$3!n=(j)~g>O-=;_Ej1co0OT^#q@W^06Y>l@MF!m->eZi6no?EriutnF zYDFo1D^PT(e@gYI?MY8RG8H!(qh+?X%hb{7X>(vP&BdG|&0|G1dBe}s(KZn{H-;Ax?3L`OTs3?FNXaCL~lMTzS*kB?BmcZ{|?kvgYqvv!P*0!eyo6~SGp`Vc#d zHie*t`33fukO$gN##Tzm$;!reZRO)=6^UtUVDIkgKK)g4{`qIrbYIX4>8F$LnTL|s zKvq?!Iu{$mjun%IT*WQK4`kJeC{K_BKDxSRPG1>mj3(`?X|mNY!}9zXG&yK()1HR8&93l%d}ZDRJrGPM|NOEt(uYMJG;P(Ce(yuLKngA?bd;@ zCK<-Msxh`AF}>I_Vu_C|&%uJMV&a5qDaZ`85|ADN3(IJZ_5K~FfQSWwzYDXZEQ|@X zm0RdOp6hSuFR{XYuVgpYx!nq2zj$1}an;2msH37Y*@qmg6LK=8_DGjjcF2Flm{R0L zcd9B{%;#V?>8-BsD`NcoXq_oKN{Wh22JCDxFrS^>U0iB$VLCeGG&dCRKcJOGaTMOM zwWd%-#2_nc)%*TwgNaG^Wg?U`Js6j9QZ})2rq%56fJ5?oMN?sF7)u2wPw(WaZq_SRLps#&*nQOK*ky;ZBAdpwLcy3Q1MY^WcYX#>`CEKCS5F=Ef-wd-m41b?DnSDx%!h zl3gv$rB3(7x)%wl?EI!V@^PwyRnqs)3r#4gdOEhmUri=~zn_en^5a5Ic3CXEqQV0I zCM=qM9^V3-`2d-;afO+N_yXJUBqx^3Tt1AU0k zy3}baJM_pdH}!3k1Z z11D%XNR6Of$UM2BTshl|aUHF=%5`OaJF2ma*f#I-%SWkz@J<1U>vH z{Tr>n zl6cn~heq;9ex<|rA(-Ra)7%3NlB*PrtCZWcD6=Nd&j^yWdQnqJg|`xcP%cExu5I!lAR4+ACaHSvVDv5sUY($5QBgYx*_kT2Lt0d1OHez34K^ z8~N>P8Xl21>1=#_e9X+u92|+)q?|%PV$o(}V2BJ*1L-w3l#<;EpTF9oE$JPlSV;4` zcUd`tld3%ryPKT@N^&1_z>WJk`TO8XGPr>*Z5Aph+9$jgx;dB^^SAt|6!mKB=H$G~ z-%-dh$3)sR^e_ChUGiC+OLI9f*`4PX4(~3T@N@!?Vsy&adPQE3#P*+cbiZi3JY4PX za`ta1h@4sY0zpfIMNaa@IvWM^*4&zy?a+kk{PFDERZqO@*(zBGK z?Y)^lCm-^7iSs_TbCMw2vyyfE`13`0wgjlc6p|5k(6re1wL2Qppf-Ci{5ljlYbt#? zxYlbvuamm~{n)dlr4$_^6$i!2OixcwNudq7Z}1{uAtNQtPD_&^6Z4qSr3VHSy6VQp zlmLZC)Zzwj_r3zG-`@l>a~Vjp1Bp|TilLUqOm!CL?OeB3OlEqY?O<34%z^fxYWwV- zTWS)@kD4#vucp#6IcK*}QLHK8H%NT+2{((t*m1%{*Yv)G7WQ93KBQB=+le9h`-k3Q zHz?R8|9TO_$~XD)Nszo6cF;v(am{?2NmuQXb25e8m6!8wUAZx}J6izySzBQy-Vdp- znZ{SNUl;AwcTM-{=Wdjc;M)n;QYL~w7FGBA%3fa8w~oUVsyWbYE`_-aMIcE(^o|@( zSCZr^%QP8cKt!(2$jwzEJIURHC0cKllmJ{jkX#Kyn%ZSbvjKaWSg`bwR%!`L-O2vq zxTIskQ9!CStpN>s^BG^l6X%LBSf1ZO*wK9$x#By)ZX_dVyIRoSw11!2^E9w@Pul~( zuCHvYty<+0IyKVQx5pggdQ*I}S^gbW{s#&Q`H{zImN?G_^?dFiNuA&W>}(F>kM^cG zy{b{`2XZt#xr<1wmB169{tvmBdsBt+p=z+YX~HsE9j*U~Uyd?-6^Ti&#-ul3WEJ(I z|Kj1o+&#uvpsEzx#LFQcNvcC>U6x0Exnj)N+m|4U%*cKm^B0 zB4#5%3k&PWC@fT8tpPiky<9+nENoF2hDJ~dB;s;g+o2(*!Pcu-#W~VHwTm-3KQNgb zWrr?J){yU>{OVd`Rw?C42;(7)aCB9Gg>ZrY~#ZJZYFbXMpWDv@(IBLDf~%HHWh$BH6r!baVuC}O_slx$1@c- zrlBrd z!=}sfl%7(~>t|*tJ(DH}^2-(mB;Ch94xZAu`_%NPjuY9nlo!#iZN#YB&1P_AGM}Da z4_%%gmeGVj1Q)i>`F+D*uj3|LH-*qI^{^#r;%fA>MxA< zwzu)UDGT1Gi=To;&HLy{nYbZQ$W4v_L&4#2uk^3y=RSuU5Wb&G5MC0j*=q6J*5&aL%N$O_ zjPHcJ$lDb^ygPw?4|pnyy5h&MBiX?A?L6L&*Hh`cL^teyleposxs-+@QJYMCsD|R{ zVWU z=F~dySNk}eySSL9&36$|*miTU@QG&5%!J$h#U|0V&yRgppd^SUBfU~A5pkF<>OdbF z9L!M}Fn#R(IAewu49H|;W=5&=sHH_h8@%_SE#LwyEh|sk=g0gb;pl)iN1~%$y-=EBe$T8oR{lo7XO$0;w=b=-}$zvYOt{;7x{Bei?{d{NzN0~A43_lE-lf*7RZ zKoh*h3e^k7*tM!Am&8vz@7_(AO%k-0ytBYh*uyJWjoH2$DVokiP>4X72N9-evFIx! zm}{xC5t8QQ;3~eH0Xt~Je`iFUBR{B9L`57qYG{#s?id5vnIu$q{IYJkEAIET%@(X9 z)_y#kvMBE2g_V}@k9c(Z9?>iRx4zew$y5SS+b}<|G;TG`m>)gY)fhwY3Q57&n=k;d zQ7Z92!(;nJxYR89A7j;oe0=$6(3zfr!5SQ)L6Sias7w@78sO_-BYRoXICRsyo8?#MWimXFvPJf_)`r`~5E4`~P9sZ! zS#HOy$$h2*z15``9lJ^r=0^QFS~@hdYfn}Ov-K=^E9*6w7b+AiHc0lV&M(DhSA{@V z?WQWCn%$=6D8MiF5eUN^3!JDHbm*=p(YQt>c>4hncRuQ-Nj7&*pnF$@25spJ6rQJv zUzXDS31j8=@2^9Xpl|tOu)Ux$b<(#fX(pFFeEsS`ot}@$_orx2hHFfM*e0mnf0HzO z_d1{NXMabTp}G(*8_r7*a;Ck}yrDh_S_z5&zKKzFbu|_i7B3Z0o#?DTy`m!MQdUtx zGeWLH+4dS68Hs)M%COT1e#`a=9czW^fDV0v^OcI6bxYqT@n{q+7m@~}i8O(9*Vw*f zJ?;UNTTaZpdH=7p`4cbpo+6ayE9g7a7I#Q5{-UcWu3JEHi-~h?R}rwo82 zCSl&VUZ~hk+Q*i4$Of^RLx!<*woI_tPM^pcwM62&lpKu_Joq!OsoEBej$*T^iJyrB zaEFGw+rKyxLKW&%JAEGu{;J66|0Z~*)_?U7w$)h^UHARw8tLYr=zp2NHwq)Brltn9 z>1kJ+9oXP{==bjDAlR!bE2k%GaK|m0g5Ytq(w@y_{=Lpv2p9^yym)=^09Tfm$V2-| zpO~D?QlJqL`K$<*(h9|M-`V;mynR81;wGEK_~bc5lB!^*sVzb*C$>IT+>TB!$gg;Z(54>vw6Ha0dW zXix;_{Wiv$PVQje?pjSyy?L+PxcNG;=i-qaQM^=d}-w!ABq zoVw=eX2f$(&!?jYCntLUlqrUcBKXXivb81V`>})wf(Nnpp zqqu*enj5gG^D_!BXN5_+}?9gW2X>) z8UtHhnG*Jr^bwI^uxh~Ef<+m{6o7xO^Ct(e;Ol-jjOU)vE_?al+K;}yHbYu)w*6{; zpg_D%z~^Vgt|SAs4nIFXC#SbBXd$M9ngm%8%YqRoJLXCZTOAa`rsVHfv>eFqUu87UFUk~;il1AYODBPpE zz0i9ZwR25*N*(jjXVOpb5%SWQD~;gJQD$db*U^_WA>VVbSJ^V{ z92_vu$&r4q=kaRx^tq!r!`!jqS8cjQv*34~LFZ;i|Q$uDyTuZ7e$>T74 zeBC|_*zHMF&{)@W^uk$HtIU4!_#-&Cgre`?_A7dyA@Yy)@f)xx(RR(;Yw`5O7TLbS zRef`h(d16i`z?WTo47cjWa^t6qgC?{c|()PPNXBzceb~M^|ch!M?vk?3na7a>wrMYR7yJPQ zrKAVSmTZAp&N_?M6i^yi8$57Jj8>MNiQD`Y+PC=Ip=cI*l|`}^V?|s+oWtHv`=vwQ zfP<3Txy-)nnD8lD@eo;gB9v}h%**MdQu)a*XRK&WlNeQ2@48W3Gq2(JUvc379=$#P zqXvaf`+MHl@n^u>ysGj0;FxW0y2aZ(AgkM)g*|MFKuVo{oZ!v-ExoVtyaVu2ViZoB zSz$q79hjtX9F0wCXJaE=O~dcG2qM+N!GT?i;W7u8X=lbFuMaf{;ICv?^--Ksc}0Uk zjq)slDkF9e(x+hi^_{CTUh=0ktstVbY3v9cm#I3D5G3%%+BP>@xJLgF4wb-&lP$2L z0sq5A>XU8<$ciTUOC0N#y`fnsBvP7t^czB)0Tq=neFkjFl-3AOj}A2Wu|B1Lt4>{3 zMun|KsKWYOwT{(f-jN2G;C5cymX&)Mo;o$ThZM?_M5 z{P^goVTVU?YaY;8*x1>lIKea&#>5e$vaL^vTe|TX9}kpIJ}T=fMhY|l+v2y?$G<$y zAkuOAb#~jhu{+A(Rn|1qp9~~`K=v({78t2oO`&WkT3l0Z4bfgZz#iJppMfF{oK zhLpeqvoR&gkgV__u;tbQpX)QhCC7+jKN>}GkUCCar)=#MWeGvsGT!0)PuN?f5x+Hrqr=i@mi9V>n!9HTH%FIVVQp2U%>u;s z7^jCUwlbFB572+fdk^R9C{F9_4$o7u*qd8gUj0sU%KN{HeLR?q#fWcsWgx|&C0NO| z`EoB>ob~mDT}M-92B?sYec8X1BSG^7rcvHTa%m~m?-ysj=H3>V?;XL!CbAUaA;0~h z_6WzhjeD_`g;!<7+xcOm=_2Sqy2m0c2qBRpduHLqh77lNMlbNln2@AcaoD+E<+B66 z?0VY2!dTbX7A}2QMws-0-_Nser}r51`*m5R9*yXn_K7BzvvH3YVUSK@Z(-?V%5dTF}@yn7#9ibGm=pukm zB8L#~yey?eEG9gU21i@IOP@?ma`2nOAsUHQPPF|UHHUskO>YBJOe&5SEKNgkOFICi zywvtsg3Zo+)_ioLYf<*NOP;K3o#Iq_VS}#;*hK1AKPqNJL-HeB6)EH0bSptei~wK2 znoS_ls|}d1?{%;K4N#sbo!M`AvhVd87GgkW-d-^h!8~%Qqf`!3)J>h`mHhyrqPlwa z+gz|>i#IA96a%m_){V+m1=3&T<&$0)@jFb@vYu?=Lm&c`q-dvw4-T`^NPKlwh+1~j zHp*0q#u;c{^1Xv>-#O!_R5C6j&A_I{nWl($tnxY)%Xo3b65H58NDN$rH6OYER)iv1Q*bPmGS{J^ouhvH_3 z!6x3FY1ROSJT-YDPpQ14(p$zQMO$k2mwC)y3;r&HePfm}R*!nL%SE5kB7LgA^&&L8OO020@?9NyyO`=t4hcx(uq&b93uNsb({7c6^Xk%0L$9(;Sk!VVcoy4>^ zRC^zTqEd=W)yO!;9Yino3zjtPY2}bs*OkX|{wRQ8jTxL--<<8#_rVojt1u62E2^l# zdaHq!P56o6905)DAoWM$bk82}c+RA8dlra+!qSU9B__}Vz7T;@^9zf=36uf|-g z3(P>#I(=h4-@J4Lorb@O#$waa+o&1iw^0!xZ8zpVJW~L)$8J zCQ2Xq5Md%iGpo*gOG{$FI>e4P4V802-X16iU{c>*>0LE&qZZzBSCxqyd@g1~f@>7W zyp}iW^a>3;xWRHYDrj`&L6=Dc6j>e2ptTXT_%w}I!_YJiCsPi&*9`*ixGCEp&hLeC z<7#8mp;%&q%2_@zFi=*;xMEI;^|a5{`#TX!Ptc85YBfU8Z8aw~6`2Z00}_i(pVFrA z{JprxS9;s7!e}ZpE31-AUM#WFeTej-<52CM=2&)C{mP5I>^7S?)vj}CkaC~cb@zf6O;qr7khDA+WH?jO^>@a;x!*=ExEgpx$GhPgWKd&k$_fo+K zS^5~zqgqfKd-dv7Y9k4}G&cIV?S9!WY&VOG5sQ<=1RVF)=4miDST>W%+`UueYOW-s zosCy$%XSD{!#OL^eB~)e_-PV?|F7l|<6OTD%ED#V(F3hAxK~h~z5#|-@(P_%JPc98 z>DQ1Io_!P))V--neeTRY9dxf^O+ibh)E!BeHVN02m9s!ON?YfV3Tg7a`anZmaC4S z?Hog?D(4IC*p$$g{Jd4KO#Z*GYew73HbnLXT)Fb~}$UJQ(MUSuB1KY!oI~=iA^hjSb z=mt;j!&PA$YpaZbd>WpX#<sQ;DxJV>q%$b%>A!ca;k^^1Dx+-^Tkst&&rpVlR(6om z4UEDu$-5clh^^%xJr5cTaib3Zz4tGfHpE!}y%?={p~mAwtDF0EV&aifIyB2QF3#;+ zCvs&lCSau)6D)uccS1PI*X>o8D|)DTt%w zr4;B{$b3VTDYQG{IkIB2Qy$xd3p~O*EfiU+Y5y34?|1mN(5RF!f%KDHCFk?;_Lbqi zhVQMth2GLot-BV}b`|)6R)4&9Z} zEhZSkDjgQ;A0@0t!I_wb4)^2+9KSVtszBFeNx@{)}kV$V2)-I_-Pg4 zrH+!S>Q0-Ol3feA3ES6N+@lq()&Y=C5Jr|%wqp)RYj5;3wKbZ9W)t6YtzEDDWE{SZ@{}#rDeU&M9~QMU3P1H|I3X9DnIC^TYJuN#Oq_#uOnit! zlB1(WLTK1Jn2I(TDoeUwUJyvRcR!1htbv_r;o|S7Xz(XeGriC(-Lnjjc{2{%*&suA zF-yevpa;wzt-q0DHf8IGON(2FrTzG@Fx-wik)Eafb$&x<^q*}7Pcn!`2^5J#LV7YE zaPkKL);8(q2lchauSFo!bW}yn(VKR7&{=V4;R@5cn1;n4>ie`tvzZ?XSY&{9$glc( zJIVy|`2v;o*{;ihKPH$K>?c@_nj3kotzAoNqWN0~LT}S^G^bP%E*Q`CFbwZ6@O;Z< z0ksYO1dU1{6vkG?m%Js_qkKkhLHFbtJ{J4eKK9j*C5g#Hvm6e(c@HC@NhNr1cL^d+ zo)NW}d^w{@cyTxp`J7Y?yNA`QcId-rE)0{eLA-e!>d6u;J*;qyN?M6e$<%D4Git%x z#cwuWCU6<8~dmfMOQqW}JcP_{-)99#XF=&fqDx*9D>)?W+Q z-N_3L?C}|r*TwLQtt37!P7O(?-sM)(1Pw`=woALZE=VYE^uCJeMNt6a%h*qw2E*u| z{^GiMnS#FTUO9%0twsoTgwA}Eas3Tvh@Tx-Bxv3;`7alZOsRAI(Eu_=VW9>iywV{-#PpAH z%bMR$W@ZwukSA^t~DQwXbbfCvrw9RCo)+;tI+fZlr10Xdf^v@-`*17 zuv6~Z&?Om?RjTfE;6J7%^_k0@>zpUjrgu+I^D-O@<^B@a-c!%ySLvl7y$|N{la;tNIKHOV{$y@01(2pHZN~)Z!fQ+3nbl+sFA)$mTd}5;T5B!qXQ;v zv6aP*_it!p{+Ep_C34L|vVHEns=%~P&VDh#?i%2p1&ZXSDVyzYm{ zL03^9SagoHaFA7T5A7UG5}8m$jJ!@vB6hJ>;;&dYxPn@q(q6xT_V~q~F-bBakwoM~ zO9)PKza@>Bs1a}}4i=>Q7M<2`A5%A9=^A)zKC$EwZNbVyS4NxpycYEEH0c){JD&8= zz0_V8?7_ilu!Fz&m9A+0((j2wwss>iljRnS;&O;n`QcR#-$T>rDG^Pt7%xv0AVn-G z7KYIwWQm`EchZ5x2Vm!tAv72o@-S42c$xH-Oqc&JAo0ZaWG%UTZ?udA%5B2f)RcLX zRdl0o__F94(UOD99B)Sc{0(}JS;*`Y_P#7Viy#LG7?;7SYe$+<_dVptufOj_k5gZ` zoIYgh%3ty%y{&bK4)n4A*t)U$uFBL%Gq|JZF!{;5PaIoPd7kpy`EtWh3E+wbT;fe2 zgqfAP>~_)CQt(x2Sail`6iaR7ny0Ha3HUgP1k4xuDWMXNjri zm70@-i4~Zy39Np35OfgpuUAck(n;UwSzzucgP}c#+B+Nf&2znT*6~q_LgvrkF$$DB z{dMQ?#%$pZ89MKAI^{=wBUPf7L|1mv5e1m zSzrVO$&e{E;f?+Ahk?;5*VRapg?S0$z%p8-l&%))vl`#PULhWeZ9+j7* z=@tTTTCumg*mh?NMei^3Ymid6&CoU|b75R8QnlBt{1=p&4 zJoKC9pPzr5w(nGXuQDmLFjqprctp-cno4ylfs)~nWBc~TlCm^!=nG%1YT=<#Wh#<; zhC9$@4%(6fPcz#oCJ2Sv9Zo9oS*$44@E&MCqmjLi*944ejT?U;A;J$;r&u7hP2mOw z1<=IpTAh=piNe&W@5QA-pF04vK1R|sW~_3EDkf)665V47!?REd_dgGk3!hXw+pdSc ze9eeEZ_RCyUo928V?HMZJ%6ENwFo$&B0{|D@^?bpVmYK4JrdKq0iOs@%lE$H*}FvR zu;{_h1L(&4)?4RSqht;f2I{B<7D*5y6{>LCpIu(*PjhX?_?-EYR=KF#6fofmN27I~ z{nWRMPem)&VW8%{DI!Z%&+zA=M%ZQPcI?MO!y^h&kBt(4xY|s;DaD6M7V!^g@!VbMo_XNWU)4 z0Uh&$nfgpzm_4&tmfm!B?bO)oca;tY{z7I3K>{IGbFXIou4S}Kzs={@09nNF4*~W_ z-xB)PyUV)2Ws0nFy+ObaNqYrVc_yxK^EYWOYc*>u%+uuq-mBL`-)1kVR?R(EDE&pE z`ZX1GM@!eWLj-CF%m!n(06;Y#vixgM{MU8(*zzex&u#lcL_|cGwgOYlG~R$pm^uCsf{rd+pDdP} z4~kYLlSuEJdUiM~SL!*M#9hy;?r*>+dLvL4pR&44xZ!Jj#S((*a}8Ia@qxnc>Iok6c3EjpS; z^sKT9ht>`C6HsaG=C#$}&6_xp`bt*k;qPDR5FPr3tZfFGKk;)<9TC@alO=dhNQPsT zdx!GLPLysMsuFSq9SsMgyYHS`qL}p!gsYKgxeiaPF*@VKrm;spOqs0>$o{Ra%=Fj@ zh^W^leL@*X4>UOSzg_P+>NKde_+6CR@9^G?zs}%Nhd%mjA2?6~W3q+UPYl7)Oqv(W z$^J^+eMC7-^YZw|5e?tpF08NPi&n-a;0T>IK(R{V8*%sHH&|Vd-`Xj$#t#jQe+FEl zYT#A*OQW*d2K8bBrop&%tzw=w*Oldox>JG;(3A`i=i3tE93SAU+-_@5Tmu$XV65oD zyRZ;gjY5yK`0`%g!r_#5AB&ysOY(w=guCr`Wryvm;_opdM_`flG20aOTqHV1GZy0C z5Wef`I`x&y$##;O*=O$f)wGaPd6n8FkLmL7bp!;dvoQsBAzTWkKcC`Ml8HHuY%yFa zkHaO@;^{<&VrY6E<;xgJ@5ihvsi`r$@JN9YCqHKe7 zXhSkE+^Q7?{00xt){^s>!XHY|=d*DY)rfm)MKA2HEz6gipcUP_q3@cpv7;rpg}bK+ zr?HO_ic`#oZD#!Y@C#J|V;^&^&&DQ)K>oj)rLy6g`g0+uXj$K(bLhEW+kUcs;eqSP z`(i0VRi6A33E80pu{00pJ!j=&BbOiOT>>5be_#Af%sCDY*H)+k#+MiDB2ghDbm^l} zetv&OKb8AZE8nX)z2XvdfZ?+!|yhJ6Cj-Cz2fj)x!`ydDKE7TY^ zt3h)k5RXQj>p(dt?LrzRJdlwAGc)941+6d&uNlyg>()WLl7y`^oBx~IKh}7`4wDY` z-m}o&Yk9Dw1xJJoEq(2Sj8vy8%tF(@rrByr&n?|d#v)vC+lEf0Wqq-zrK|>DG}a@R zKR_u03n4DOHdj4P@YX2{K2`g~_f#TA>c3YyUH(ZsBpkhtxc>fQOH7_RHAVaWMb2w& z0Kx{ON;xUy(jbR3z}2jmQTq zdYC9=wg6!7TF|{{TSWYBSmXLYAIDlAjG4i=$l)K8$nA^XTON$6@Fpd~8$f1{>oFPH zH=x5YVBN9_AJr(zcx2oG!Em}cDEjRSWeZ2-2tNS0{_}Kko~{5|N#};iL)ap%IQ&0bUM+CM(EA zlX1HnH+#13eiCs?J&Hy&Kl2Mq%i^FFmIBfU=Tt%j+dOVWp)=5Z*0naEyyS_gsT=;T z=}5EV?n<(VYu?yEyA~WESz2k19!^Eg#=U&~GV0lt2LmC26fSz|+y@!P#;OmxhMggh z5+<%)T3I(e9y{PwKR@}A6(KHT$!0mktZ`ggBjh|cp9TU|L(rkF(RZ0M^zAU%c9NHR zV24g+u-E5DpGfIr7AUNn@ba0IiR8WFRwL?J|K*pw;;`E33_lCCl!s`qOmvVaQ`(jeWP0@B?f-QC?K9gBp7 zbR*r}NOwsi-QC@>@BRJX4}9m|eeOB)%$b?PINcwKb6p`0j5-~eJ{!lll8wq<0Lm7? z=VlnhN41lOWw!pR?oCPjOTD^9gTwo{Vh`#wTyNM4H6d?89x6t=ZPq}PHSBI2 zoR)`{F}6hQ@sN^Ne3`J*($BoWiD9C^A1(&)Ask#iuv`?JvhrIc>OW zvut!0V4sVRi=(ml0Z5W$HM@e!#amqumGy0YX*upxUUt)LwG51&2fxXMjPX|%_T=UY zLfaO&$!M9GUN$O#5R!W$8lEwE4MDzw&|;pSUiGDQsTFnFS!VC{qK;1(q?eg(z+6X2 zRYXbV4va>;hRf{63siO}ugj$?Pp;q92H!~DD)_P_Uvx4PC%%`DT`!n}rR4|z;R4R1 zrM&Z@g)Y$ff}LrfO`u=#RujX0VJXUan*fyXlDa_Q@Q*kA#Mf;)81aaxhr8zAOBgRl z>nc>JE9CU~zv-_vt7_{0wMgyb0jmD_DvgK76-Qt@ccvF~eNAh^H+EDYjCko5%@Isp zYX+2w19v!9$+OQdB+4O+miHQKKwA|?4)gSC-m?PKfs;|!J3Bim@ZsxhQ?%h{qfI;e z0JDY7sJ#=rkL1+V!wtHWgG&bEsQT8PN&U>n%69+(SNmsm!{&5_AM0N{!kvJGF?j|n zv!Y*RvD+0-YK}IMsg3gKQCxbsoi+~JoS|GFEbvYhtv5${A9t7M9|gDrF9Yl*!WIf| z;fFVMdgY#)0IX5s|GJ1aP!s?0&aUIHl~z;m9Jd-w#cx6?7Zt}eJ8nYF1Zc)CuW6CS zec(#e&m29Z8`0f`T8iJoJ@ShUE3Q1AU6!%(lZkFr*uArnbmq*OGw$*}G5>z-hGOR5 zy=;m^w@(P-AMLw@5hxp?+!jgs@fcao2RCK}MV3~(M07^<3OsZ^!IDA!9PH=+WB`#8 z1l*ANe{8RLc_)bTfQ>0gPnC464X_hio)`hdwJJ3|9Ub6=#rQyugoG4c1iy|?Y+m>E z%a^&pH|?N0Reqb z_AIu<$vkUdtW8gZ%t>F_{V2`QJzw?GDp?ng|hlP0iVC*rX?*n^UfAF8g~5d*l3_ z8U62ys@bA(Q5A%(FS57ialdna@7s_(|4K<#q*>eD1k6?>6s9c3ZU-}}9G>s&jIz*W z;e!J$KLC^r&sWdS-yqr*dm3NS;fjM20h$5{47NQ(<*pFYc}QI^{$hIV@;YK}Ve#kR z#>D98_Nnqa7qUq(K?UOXgAX@7&Na=>qXS3TC=o!gW$j=Hh9#t+ywLXcs@lSU>Qpoz z>rOYIyFF;yzG&HUd26*}YHqaXgHfz|nT>N_F|S*XvYM9vW>CQm_^HkuN{a&<8A^6N z7o%QQ^w$O1=|C$0Qvo|=VH`cKRhwnOlPv_N!CxPirTfh~i=lSNM-yMgw({)aU-{5R zSLC!XxSaMWue!QL%zuo?Ai9O-E98`M25$)o9|uR!W9v&IloI`Gf46^hJhymJ^r_J) zMbel#yA?W${Wwz&RvY^(kT6kQ-5?_R5nj~Uxz=v9I~c)h66}Xg3>-i&FR$_POJUkI zCaeu}c(Q4*?#R%>#-MrGbme=bDNB$9`uZlEw$k-6bnYW`wP+c}Tib{oUkem$_!$V} zM~8PJA7{4z_EQJHT+nG!*$KsPH+VSc_4r@U7#xNQLTXCm5{nfkQ8KfVC) zrwB7-!L4T)83kMpzk6H0Qx?xzyC!_r{RA8Zi@$08+d_cbl`VB+@10ST`631QzPkAJ zIxM#h8za^X!{nD`{A(8Opji4E>k;;-22HRit%r$JeYn$b!|>$CJAy+w_2Lf>K*OH>Zd_kBqV-+Qm6ec zKLP_fbKKASju9%9gg+EsQfq(M=*ttV*a`O5@Nt7!W2hX#Q;>3lt@CoJBE{@~B5JnD znp4qP4UdnHLcicf{-gra@{G^Q`oqBps8p1ctT@{&xX44}`{+Es;^Km|lX^pfl4&>j zEgkm*92cL}H+uLP%25+F9M*N8m)}BNc5{JZ&BgAd&z0jKJsch$YgzYZtJS}MEJ8Ig zQ0z!seTRT@`h1oqky*zpFxX z_sLl_uJdysq`;TyIwOsO|6ym}A3xMB>`}v2DzLt85%@;ZS73W1Sc`zImxdpUWJPHH z6lGTeuPGZ%!Kj9gp^G+yemW)-4-c=4R+rNBpYWNS5LO)0eGW-ss!$cc*-YItv$MNQ z{uX|~46uC;qRM#%tXhUl0Bk8)S<&?yHoPzjtok?vK>M_5O}GO#*ctX?cVCUy=X19K z_D_KQx7ILLrq|&et;b{iv4SK$%e!t8T$5a|K0(PxrO(nuQ`!HkZ1jvc0G6C`uD+MWQ-Ywb>V!K4s^EvoS1%?d@+0 z!T9$3Ys0;yw+mYS_fJ13%4whv{l|cBFbK1`@ze_Yt!;)#UUvE|{1W8}EnJ1e8IE1N z`R@UGu*FY!g-!F?304F_;?{3NQgEuI4QbvmVNvS&MMbjnei9NA_V$%Nal9#i%|B%t zF<+R$D*2aKk_p>3W+x}tZi-AboEm7Hzl>_D_r~7;G9|o>JV#^2?JF{Ijofvh{~Y45 zkU6hZ*JuI_sySRH4@ze+4D2?=qbSG93~%V8Y55;G`o3j{qU&{@HCwb_S36u*tJ{ z2&NR48hTAI^y-0GPFMG3!lqZvuK@FXPpC>59IfMDgZa~$34aoMyvfe_BMTd~x8#M- z3X6&xn9iE*78VxoOC56nueGv@O1EX4>W11BO{PL}Vq$~yuFRBXSkVV`7ZjW~cX1 zG?4Pf)2^cq^0klZ3&~&9BN<53qc)ejFl(mMt|1pkUOaYw;8=GJm ze-CZS%)olmk|Rxy3K7OBk;JSJ15O{S$!8NVq|z7%GgXPp&~lVeQczs*Vzb=`r1TFo z!TK*YuawYLEqB%(4Q3z5=>J|?v>&~N%ADy4Td_)%4_(?XM?GNI@dnehaI#VtF7MRG zo_W>lUn1jd!PByReZ{(1U^2oWQWQoh|+P&<8iT8i#0l`QT zu}@Hm&wow-;THCF%qju*ZtQ#Ab7)NG<%#5G$mM;<)5AJSYLE-Jc=*>2XtR#tj3m9} z-Laz(gF>MGnD^ZWPBdrml?a1h;C|4VeJS7zs z5x1jI78bvkqD5>A!p^rGYd0SshS#lzsivOB4rRE|hqbS4Ck0rHYufl6RtX-1Gzj$h z1d)x$$DH(D(iR1tMg;~hi}?9r@l6)ZX6NNp?PhkLR-I>LuzVc~bnnseP2CVrODZ^c zO&D|xJ5f(tY&8aJD0^q$ajue|j(zyEou`27t-x84_=-m$GY;YBD!J7#C@T`2NK}a( z@4sdLw7c3WFBK~A)ElKl5A4!BVcg@dx^Por5q_d>c;j1}@uj}|+OoTwh9#n!&?{6TfxbtuYAh|oUcNO-Y2NhR-Ctkd505STXuklk|CmAc3)dtt5s)C z>WyoC-2zr)sfgIMfQK!0G@+!V1YF5rTd@jt;0qaTjJ6jR?oMLVc_2jEbR?;Jk4dJ+o3K?BKEdj}(}O>`g^Nb5u%p?|$vc8ktK_`X-M=_WA5 zI2(vBsC+1TjQcck;QsYX_y~0Oo~x-I3z7EX>*kNw3cfeehohe7Tv4RcY#H49->91z zu!q&d`-LsMdR(RV0?V6R+3L}8mP_2Aj#v1iZ{yzfoWSj8NFbd``asXrqf2D<(bzpL z01;gXi;NyHRRR;=`%M5vN#rSwvxCk%%q%Q`J$PaK6$i5=!OA81bqzH9;uQ!x>CZ_^XL$57Y9wWQ*?Qw%A+6;^&$q-wLZx&OWA; z%Rc{lu9^1+rt+vQXPr|R6Ft37y(M~W)Gtcd;608&CyE9V4N(8jfHN1OT`6`pwyUeF zotG(393G{zIjZ;%Z7D(-syZ4TCkr1UA?|@^y9I6N5&p7w2+E#*!H15k&{q|g4a17d zJ-x%RS`u7RGZ_7kAy$CBN7UlW+C=H=ur<*KV> zryJGxbP=^9GaJQj{wj>W$na@g3hhSNr|h)4j=M;cZ&%q+Wf+w-V{2$p!KS0s3J;6N z;taM-1eDS9Vfy%17XvD4hE^2bf{3WO*aOnXG9?ZEoO+WrNXzn0i_SFVGbV-qQe4$ZI*tj4dIH{@~2jdjoqr=06#F}o*I57;52 zV;dw)gL78jO_JNHQLSj$eN{8k+Y7r*ghiGFfS=H8NLPO-5+T!PcRBQYbwz&x>%YpK zYj)*a9ndkTSk0-|OFUNk#%xVQsgwus(?KAGUgr<-5&<)RJM3bzEd+1%^*o8kX}RHi zrN(F#5;@>i2m1RbKL7Zzk2x^2nx*R+)Qr7Mzg*a z988otwUwCoi(suinvqAME+5Odpwbfj{xSVb??*RDLKkeFpoC{GST4vDjT#2&rydp3 zJ_}NKHN=@v* zSgsRmvmJ|2U!oUazmXr}ho@>|^`-YMK-m(7kUBYC9%DDjhw%&~s&HUGSJQ-L7~jRc z-yT5mGG9|BD?-GgCFKuOZu2)2vv~u!T-WAB+fXCd52XPHUhmYTXiPHzO0>ENh7HPX znY9%~5TFteG6Oa+SYmsJjijR;xa#_+nhrMD_Zj&^8aMmP?uvx%<%-F>yl1X|Xf@MR zOMQJ(dVwBYFXOz(ejiaVbgo>gV#!tu5r7BQ;FJ%{7ZQutQQsju=olnRX1W4Io>WXu ziz5cqFZ|}FS^CYFRVvaa=a$PbXM8J-)ss8j>#0S=&L?u+f5>PBfmZcdKnvRQ)6_2m zmfy;*1IWWmVKv(^naOTCeV-v>{dKJH@Eg5Gr5xb0*knYBOE3Ns6Aw&6b&|f~4bHv4{`wNaLP#FThVo+(z)W#W44f(=m*1 z4ns5cba@^#zvwX>t8D+kv7O{!rPYy*=Ir>2HW zq7`33_M+bmDiJQ=7sc&E`#SwMmx0;(dZ)TdL3b=LP?sXjIOTtc976${X{G|g8P=z8 zrpfpJi7u?L@bO0m^k7$CuCh-&af}i>dl859c4F1hB2t_SvBYdQR|~3+ItE4dnIqq> z>cZx+;RMsL9W~-Sex_kmbbW5oQ1z?L+ng12O$k6JbM&a{>We}6g<9R^`Bh75kYOj7 z@n8dj@gV+?k=&b=4reG*UM2ii1@)YU*@Ip^KM|fTih}bo_IU_8);3GlX;zDKP}hr} zy1D&jHGj=!nW?Hbc^;QdcCRY3nxM#(8k0Ik{Pn-dxV_4zPa2o=-Y7Xv3RYgMG5N3d z(o<6xm6ywv|7)~e3}Ucwtco2n%wIuClmSjB^kM1{Xu&D>Moh)W|KjyzWFlS!35VJ( z#igWJf~Bdz6(pady(nEje7-ass&8Rj^W-`T{*p5xuf)G_;F$C6`GcaKli97c4FoT5 zywC~@Xff)o@|CW=AG$;miqU?$86sBMrip|H%$DF~bTI>MR*y2ne`Dj*~ZU?FipIF2&dxUykJUg5?V9HOU_=4?pL;x$ZOka)OaTF0DVfXB!eIteB;Xd22WcNR4MKMh>M9e# z6s}Q507h~Ll>(j@B)xG;Tg+08vSyEtt>ywuHmyh z-;6Ci^!RiAjDY1WJSvMTzNirSf#eSl%|&i6Ye{j$=Z6C`MS0a4+f82#We*p(!Y*$0 zr;TpfM!)3F;~77tBQk}Io+L4heN4eO{Wy02?~(uJ$$Q$`+m{<`-UH1?WYi&0iw-wm zy$n#*h=nt~W7TC~sS*Fhh5WAWf(7k{5pxP@G<7QzlbxLWJvT@Sys7s0z*5|VD(nfK znb|Df$*f^h^@dttAH$BRM`s6z3)>r0aueaZ_+XwtCw=ASZ0D_o!Yo$W(RfA$?>Ea% zYtAmhw5otj5Lv zuxEa;IVO4*rOBS*h+_XD@|C1*qTi4B#~^qRJAW<`V+hg5u=K}Fa^oN+vLHCK(xC$g%_;Xjh=<2D=~GW;Po=--Y$tIa&a_YSVeQRCOG~Sb-6=@OHha*_%wimq z{p7bT=9@{C@9!V0x&!pMA#6guZ$h%tM!uUhJTr$&dP92K`lV-A&onOR5iQGI7-|5X2unH-p8iM-d_S4SP(u-645?nDmP9`%@)6Nh#-^?3(WjH0d-ZV(}m zaYI=oR9b9bvjJa}636O1-u#|{6f##@y&_bFGis9Lze9{OV;t&Nsg~1o{{a=Lca>CF z;hTcOIDk_!yaoVOQCk}yOGUr$QZK`-j7-R0M6@i zu%1D)TGE%4x2nC1^`zaKU@{m{(Z*^L$nOG+meAteOrg8$W#lm8Iz6o?K%@-a2qu~!FCx*IsLV4~o zdel$0jlJZ?wfiS|my4p(&6aVvA?$!kC1Z>>7PyE5Qk0C$%!>Kr!w9W_W^mAfIJxkK zTKDjSqP#q%ot&H;2YwXWiJh|YCsEFC@Hva%Z=fNo(uy)(zZX+c(f6kmZtPQ3#OvUn zdETI??ckv9Z(`o+zR<%tkB*zu95uKn@4>-mt7RHhVS&{rlX2IouFu|@7bE4gIX^&D zW5clV(-R_ME59AFHDaImaLnaOU+)E{CA_|?4VhY9uc0b65>BIx zF`VqqOZ;nuZ_rlg+S?UDTCoEI(*#K7ykFLEsO^cIc$&l55`I}2nb0bH+Rl_Bj&cG~z?&QmgHeQKh%fM{GMR5?AYQaB=0X!aUaOOoPRLa#|AW%ZV`%EbR{`a1RL zheV0TPi;KHBMjm)MAb)+)9A(rSAwpIc32l zZ0K3TL&bYB1*3E2?n0VFVuZ1YBVyzjLd$JTLZ15I-2AgzR~$X-2K>b@Jeep=5u!PP zX&hFca8&~6Oep}TZ9;-rxn6|5RlSk`Oq_=dk)tMTi+X?m{y{{Fj2OVfDpA}qYRZi3 zen0anYY9z%jAH&c=eK63<0TnNPfq63V3$xzQWe59vhhuB#1oARgdN9*G;fTA*MsD( z=i~nU^i8EvklZ}6*-cyi@MeCPh<3Y)BYWb{ex&zOgMjU`%S9B^3jJ2bkn555hzwQ-E2$uxv7OOxub|{!9Uh;i}%zLH&o8@eD zK>hesHDO0M>AnK$ZF)XkInikXVW0IguvkR~3?b^zetsx$y`vAH`&^m|gyc$dJyp87 z#4MCw+_bRr`mdf!6SFWez2%t^E;aIzRkDKym=1ygf%W>L#arCp{LFABER=Xlvi29J z3DnYQF=^O zhs8HXE^e%7>)#)^benDYm2v)?04^1S7=5pe%m?c@vtzpf68kkrLuHO9X0 zY`$80DLub?Us}x$a%dsDUOR5E{;ToV8cyHfMrdzxfF<@Edcw6ytLRdq3GHMR#kg1g zhVU*U=m$G!x|Ffqc|FH*0a!cAEvMjA!)M-aQMxv4=ZY!^$<1fdFgM=|{YW77Ge90O zbkTO)E-t?d77wwQ-Fb9`8b@^LOt=lmH5qzBC>DYLm$1kOI4EOD8oUp@+df0e17R0r%#|9A4jV^v;Wdwi<@XKOE6qA_q?o2_t`mu+=92_vG)7cL*VMOeD&!} ztJ-K-7xTQt6y^J$l9dBJ&%7TBWK*b#s_DI6r!vNpl(VQHxQK;3!=J~`(weQXM{X05D1BVh$?;V-5>g0973n| zP9V+mrieIeyv~kG{97?b0HlZwX-&5af`V?Gxs+5xcGV(f@He}QN{Yw5(WUB!IBm1- zwa=vW-KsC&SOFREDVoj5R%uYX=}k(SxkZ9(bZlRlvagEuvhN}hnR0ETQZitfWu9!+ zzk9CeHGU;!VuFwGZI;PLgssd7vg9PE7n<(N7}6a2`*(MWOEIyXnpeyprZhHrl91Qt zUwJxeT|Gx|_eSY>idaciw*NkMriaYYy0 zAB{;D%s;HicF5FLJ2*{l)*<*)O8UQ|DB*oE&K*4rH|5MpLtuy4W2juJZ1L#%h}5c0 zF(`ZiT4~mTlXJrBdCeQ%x2dAbL_h(UVEm9JP*H83OwD!5G}lN-paEdB75V)#7o?*d zyDU-jWV^V;{wj|v-cqCnb$+D7FQjV=y{)%vk)D^AAQMzc2!xJ&qV1&p-y>zZ@~i^P z?T+K|l7+hwEgrTGDA3kf6FVeO-EbN%*zjb9-unKGg;}dt?xSbXGA5zsWWzaD**|>+(Ia+ZnS;gF>Ha)n+Jc^xn3hY(pw<|an8g5|z7I^2*QI>6P0OV?BkX#`Ju^)0K?1#Ufbdq0w~P zL$+gS>o*ogsx6$wdPqCr3G9#Jzlk%w$?DW5Z(_j~>o9E5CV|GwAHsxMoG1eK`n7v~-SaP6Y5`|7iwhGE8AUxgJjz#An zgD<8m(=;U#G*t6qLN!#&HRu_4i|Q(R4qN3vTf0-`&gDQR%!%V3Nkg<^{opquh)(>) zV@cZ(57ygrEiG1etqtT|;4sF__qmn<1y!a z;GNad&??PP-=W+rOIk-Ih+Usni9Fre`g$y>G+qM-*Cu`Iop9wRT0*K?sJK=vd0C$& zNA7@<&8LE806iH3vTxDAxIGeY!Ka@;kvA}Nk=p3^!~j02D+Xx?+d0J&V>`VSHl7t9wSh(sQvCo=(XPyI@8p_yQA46`;T@z&|?{e#qyY$?LuKu`1j2?O;ldyDv41{^HE_zwg+#eHIg! zsJF%YD2s$MB4GX875ILuFi@yyXl!i9g0Q+{_X`uWMqMBY2a_gNWJ7K90~;Mc4EO;$KNZS9O z8KZ7j+7^>Bp#Tu59`G}Kt{1x2_jS_pWqs?74nOKLdw}}b+ms+9Tf*YK6IePHoO!0I zS1S&}*HHsKyKhv7njDID_s)r6+LBK02UQYMlOvzs4eLAQ;HqzWNd?iTlN@%Hn5X49 z?&S+~2m1dOCg9z8NXNf-FAs~1%)TX&*uu=^Rbg?AAm|rpWFgLC9r>|S^3nS`AUPsG$CIKf1jKDZF15tB&!T zVuonLhH2NHJ0#`XCwf42&T(Ny^!_G9Us zj|4zkbtrHHolg>WEj)2~=~nFg^Z{0gZ_}RC4As27bP|9yxI#pzxHkqud`zlVhXpRs zObgE5G-VA#u|JxgEQnPmRm5wKPm{X@AmM7AI3R(ZLY&qzqJ@ScWVZwh_Pco8gdHOm zoxe_rER?znHj6bJ*bn zgYNV?8`ZaDR$#~aamPp5qtX_O8&e%%JCHvVco99HL<- z(CS*5v|g}Q+1#h&9-#S~DhFD@6vK+K&itxHs7vnpF7;PZA`e|&=%5qu#2j>5*5{Z< zjH+pAxh<*E7#{&U{mjthJntfod_)%sh-a$dv)oI(VUUc*L`cg`dJ2$xBU{$^AZ#>U z8nWXQi+!iEee9OcOP1ozsD^8TiM&; zMYwx*{;*g-{#>)3ks)t?uSG;8=yPZSjRpKZf$Sj4qK8An2`iUQ^O*@|_4U;+X9jJc z=N-)L!Ide2LxJV-O(Ub4nhL;U#+3sp=r%;tzYT7m`#pcmWxGJKN_%1ZnssVy2qkBw zczdt|Oe$jDRd1@W z?^QZ#jHBm3ROg+yPxOAmk!cC)db5LO41fNwlD0j+Xe^JFHH*_Wd_Hl|=uK)03s4DV zKgp->9lGI(-Y+8f?m%ZuCUTyJ;|CVwRDPF`01zimB_OO!w?2rH2NYHbXuM4)Yz~Pn z>=~a!(!S+k0=WSqBD!=WvK8{pgCX(^`}PgmQSNuMS__#>#3o1JpWcAqti~Ipj~0^k zWzr9PmsE{*4^|2QQIXK~wWojtZM*$qDbIaWB-^$`EELu{1mR_kpb`RqyJB(a*F zc5P|(d)>@<5@C8-C*Ifhm0B^~1nDVY2a|*c3E13Vu{)ADoe4X!a_-du4;(ze-_ggo zVf_&}nH6JWa()WBKx|;2tH59RgF1{$xbtfM3%Ot6p9?Fy`Vir}o0HiJZ1%5KQay#y zzW?j`q27#F-4(*4H58?FF@Rkggrm!fpgh#v9GkGd3i-nQE;{6ncV>lZlaM%CW>#77 zvas-pG8=48tJu8_n>5>B@xpJ#C!IzMQz8i|^m+}IM%GNo813B0c^ zLyVV&>_PFLKd$G3i;YDx1=hNmf^|r)F#1e(5`*E|gmzX<| z?;)qEW-nio==0?hhClnyBO8O}A13`kEfL_f<+@H5cC`TKuS&-6F>&$8WjSJ7j+b(F`qmWj{(x1EWqsn}@JR5c&WSIl$GEAwXUMy?J3{sTu$8|bclZ-uoJ zL9~a5Bnc7%Jbo`b4M)}zGfIFEMlQu0^wzrhk}B)6uj7CTms6+YH5fdErpaMpP6}>` zW$X;oU07#cdR3;5sJ*K(-ceuUK-O#qCSGZtP5vxww3{To7g=03pCr%Y9*a_VtZtA{ zp~Dxeu|27Oc%X^H==@SXO`z19lXX~RZ8xOz#YGpob7OjumspLm}t~J%RiuEsH&!nZRgmkux z*SWv{QBSpf_Q$)M92yrS@SWP`9M7$etOTIR(>b-J6y9y+0LusfE=bycb97`xq{wmR z3wteFTzq`EPFE9fGXtKX#bR*+U4cHF;+LF!E!JTyM=#T^`AC)=Eeb-&F+L}ZtEPW0+ayf*Qtw6P{CvxikVV8j#(tT)Y%|i zbIXfT;39!STu)NRF?r4t*-3PBc~E`P{KxiLNL)Gg;)}bvd11cbb4!&sX!s#0n+})> z756U}^vFBVZCAwc{0`0r7Tattis!G&+8(8Vf%LaNm#Sjg1?9#oAPiUe#uE)#T@{=P z`CJW|eGw7M$U(k!xa}4ZpAu{8MeFGf@fGY`UU%q`yN`ryR_uPgw?JOBvxrqe-F|;< z;_=q16Pis1%_FtTjj0a7Ofj?o*E>zH+7HuK7pkV6@72$VW%WVpQJ(@L@=4Hl;qD{q z>+1o$z{Mtg5><73Ja1uc-qQpEUOYpE`shSr7voC;#or*>k~Fni<)&Cnzyru~4<5;* z6EM)ZJ&YL(&12sd)`ewYDS``aX0CH&YcphC&-$Q*RAi`}3&vCaz!UGbXz`jBF4Ju!j!c-Y#>CaBp6T!n=Hvx*Hm!a-BqmquA2-y)jTYBY8_|i z8k*+LuY(eDn7PT}Yo7ENam5`{V%Q2>FtmV;;BF2NFQtOo3tHzrv28fNJEA{k|6NB{m!^!mha z>hmkec!fW0Eeepq*;4_kzpG0XXFF`U+*xZk;8IP*Of8c`MWaO_T7wL)#Q9xAYD+(` zCK7?x-+NeIyW3LQI{@I!SB7CRW+p^##z)VjnYH|N{4N@smQJ**z)oIp-Ymk?;Vzla zKUe?B?alpHhnH?T34gY&rdRn+-8XRUDmUC5QqR=6dJ~F(a5!!VjbV>| zHgw5Tz18q``71)5}@6G{8eOd)*5cpyDmxNo8r+0J2?`=`TJqGGOi4QO6aj0UThh zH-OMGpC><#P2{>4zA}_Cq;PVw0z})5!E-8v>oo@>t!J|6u39qT$BHlmT`nwrfJ_V{H}Ahms4AT(w9rv#-yW>X zy==rgr1iS_o9``HoUQkMP+kc2U4fmao|hx|x|29aAR9mZ3zTH=iSvIakf5^vHjnv!Dal4e*LLZLT6GSon>Gxu)}D{Wl2tkQh#ufRMN zRXsQ20NZL|L+;7dC=&jOmH0IbcC8sU?m8PDksMRown*N*|H=binW7=YBn>t0x2m|B z=}WA+QXvNuQ^!WTqnZ${tcWnMcH(7oxleP) zt~|K~u|PBz3+_f43V_v;hD~JvN2P}?5U&!p8@ZbVVh6%yu>W?yndD~WElReQ{9}x$ z;LynwG;rQDro9#b(8Ad88P>mu+UZpG3bQY>dzId>NOD2NU`Vlr8*JkRi*w)~Rb8mA zC^o(V)cdjDEU6ZMN$k^2mq^JSlGLf1$6onvP)p9j$-gcUfGEUk zw9MM+sY>QFJ}gZq7PD0)?S*`BN!DLoU>Hd_lKALrF^;Yf((^V!{Wd>beJh!K=&Xg2a)@5a71~>5M8>^c`fExgmz<_n6Qd@S}VkSW`5EclH^O6pe?LV9;`U)ByrbD8VpqUny z3!xReThM96!~RIprJ=R11+f?ztztVTj{^2cu@Lnc^ZW$tv830Oe`~r?R|~!y9^Jaj zM3fg;95W}(8nk`$-}~86+IlwYukI3M6ZjwTOS;h0z9GJ|9O=76js8tMcmFSH2DT(W z(G48~hu2HSVv4+q&CW+aaMZB;g_Y#IJxPGWiP>zuFXBO{^&586NiPhrwh(w^*?rgL z4gzws$(#T0f2NZOMKpQgQ%hKk`DUMbNJ{=c*M#Erl9`?!DYNHs)GBTt5zYfx6gCCM zJ9=5cTbLbBP{Wox`6rgLL>0c!%zu}piZ;CmABpVV!g(s2YTO1e*-V!tAB&*vSJP!c z_Mzp!-nSASe3|LlhZ50$rDbk~DoLdyPwe7JBQ{a`xE7-enj0wA?ox-Qn{?)ZmlJBF z52TEOp6Gl|niu5k_J{fDdEmg~-+z}@u|!dET>A-?YyO=s?{-2QEj{;rt5$`i0BosX^P+7 z07EmpuyT`)DL$|_hKD_svb7e-aA_1IH52#^MyrqlV6M2A!7w8dl|WIR0vqNb+8|jX zNw~STcA9?GApgvy2`x4CpdX(`xhCnd%oK?(gNvQaslMC`6if_g$bQF zCEzz|{-(!z3Hau8xon$1k4gkyo=ZEMd^`09DZ9vg#+8P;S>v~w2T+7u29j>bSsC^K zAi1!{cmlC-@B08`KTNKwX@5Ul@!uzuOI8M~ z^T?MZQC{@=-*5jhq?ZRkluvQ8_~+?!=u6}|yMmmXLa!l7krow+SZl-^}naBp`7bkdZ z4*d&8{C9{yFdwpPI?nI6u9!1su8Xqe{AHSwx$?U{7fkepfP6^~B~WWP44+bC&_;ii zs+Km|)n8a9of8UU$*gs z6?9hdOP7_8@Cs95bYKgeGSHl>fX!%iBPt~l zh{8F{$FD+uFLw(Cz+Ig)zokW*7jM*K#OW9K~s@@)S{<4_<_q}F{vkNp3GTuY5| zS8sg1_jgBwLMoihWc-*Z+dC%@@)}yRh@IU6Q^%?`yDzbyr8Uzk@x*}P=|{_T&d|HV3jgR)h-1$Q-JfkPTCkdR_C8@8=gH8 zd|l609vk{+jF&z(+66l2U*U-AiUQc?Ixl^-KMAO_zglmyG^0_`o=6pe;na`{pwzwE z#PlSS#(kB3_SU`ZgO8F2sYNmEl+m?(_yWD>Bu*pN)~| zHR{$!h_N&&VLqZ%u-_G3bk@0O{_}a}OCypX^W^G0hA!pKl_Mwy*AXj+?MeuL=gLuQ z&(9#6gvK>n(O%30S1<>ELg*TNmM}40;!%yX3ALiv^qyQGCKldQtr-WOi&+O%k&Dat z$Ox>0FtsW3hPcG-_jcFA|NP`3>W2XGfSq5Uz=TvXFf8qoT$IM<>7FTXzK{_bhu69% zbmgG2z2>~1I>`WhjfF~%C5|dBOYK3kB#TWwKs5Aq^+hMI^lP8b5%oJ}RHU(R1?;4V z+PKS9k#hS|lg!u(k0W3@@XQG8R0iHVT$o^$8e)}krPpAzJ{S^$_DpUD*ixEMz-GC9&u z{NaU;eTJOrN>#t{>;6On;E772RX(Y!$2j*lmTiDIMulhA_>~(<^~PTYne0^cc~wO* zu*sVAf{5x731R2OY01aTn-mZ4#tGP6|0<(h;^7x2Y>$fIBn7|?_rb%vToz(KJK2;i zKnBXMrnN5~O8wHmg_*!>yEOLEU$N~DQrE34UaipzY z7_@ANH0=5QT)o{`RCJ&SwBjaMl$TIIY@Dor&qvg48wI`4SeMLt>QO2B^Z(8dL zWWd)qblSX2Fr}PPy@~mf@!u7a@tGyS1OD$?yZ6qRKV74IRr(I>h);94-f8tLKW;r= zLV9{S5b#~H&rN*~en$Fu><|1VREMsuj5>`{eN;Q@`J$M^q~TP>{|PkC`odLiZ*QY* zZ2@6=3hpHda(xhG~G-5@Pp(%s$N-Q9WM+dS{}{oxnr%ZCMsBm zqrf$v@N{Xt-pzbwFeVm12rfhpOFc)oF7ssoSr9FQX0v{LVnOEt#OeO^Vmhu^Sl<5$ z-LJUL;41L?^CrU&cP9a`z|S4FwQ~8pQDgbPNXk@CK3sjrqDf%S(8NHXrOj(GCnv5j z9{yE%uNc6WVb@N)O|P-uAGk0-_eIeETn}@{venL<1C;10``Z(?+;AS0gKI0?KW&8f z!l-ygQ9laqhCnf09!xVBcdw*zQiv#ra1})@`S{);^!w)U{LTVpH_0wP=G&j#K{Q=7 z{D=vM(|lNS>!W$Eei3K@VjFmz#_eef(ly2ltF@?rKM*{wru6#sT|mmJTtr-)-ze+J zJ7Ln=5O8Ck-@(Dl2v%ce1Vtaoo+{?@gM%{!aeo|dm~Isr&1l)&Ig(9dgp5o9x=Ub=VPnZo^LxnTchE6W$#VelpUS#+*tSp zcAaIt`25T~3O4-=DqCT^bmmInCGkZv{BxQ zR?W%ysJBC%VbCKl<_k>|3{OF)gTwSDIq6}# z3BN+JDNhKL(Eh50dv8-$FOr`dvB#F_G}b+dTXt?bS*tFmQ9;T1(0|KJBOP9Mg?UYw5ND-R%d z6Byr2<$<>(W`1j>K z14vdocKiYmB2j5RInaL3<;#*I2T+^RlYz%2&CSi7oqVo;-(`US-~SwLHAW7Es)WI$ zBHZlGg9@su2lHt;HsvUYDk_wN!{y*+DXMxXM7&aMWU%@W825!yBkl5E7fl1gFL*Mn z4z$yc8Rr0M&~ZlH@ldAA|LO)y43|c;q|K?}0#U}s-;d7CBD5F!{WzkQWC>s1B(Qf18EGAjQ$hwKhBu;(PYmsNwv*O6oyt3dR6nCuWZ5H`zMmMw`C z5sF+IjY-=fB5WH{3U0WAwUp9bhT}r5le4o4^97|MA?NoU+5{dnA8V@U`p0UKEDS28 zpB>!5L#^d=MC7*I)WL5j4VuESJt0rZ_&JI-WSalm3l>j}7Y;nQs;XAKMTqy5dM`!p zt;F_81zrbJnMXt8;o@^biw$+{Ixh`+R_lb>9HkFm!{_65 zkVyr^TTf*9e-#SD%Bm2BFB+Gg=DyvRHq zwahq#NXa<}6Nx|MwN8xZA9DgFwKCh%S^i9Ac7BA#6CpxTjAHY*5&@uhr={i7ndXbV zHDrJWnY)X9CS*7*=&#C>kVxi%Ccx+es8Q&X(E7mA0eKZ5N?ym<&_N`8>g*c)<`Nc1 z2SezHs+q(uAeA*?eBPZ#S4$|1jewrI@>` zJJtJMW%yji`^bbf&IRmv?;f9VwjgpO52AZTU?AHg_waCYtrb z1Y}@kywCXfi~CzkxEO29?^5+no(b??DkS>_UJctg=mIOOV(d~%|6e`EI3^6q+MI&2#>U1L78V{J9)KeJlvGM= z?EAF0x#1)t#=BzD(pdBdpHpCfTED=oS2u=QR<=E*T4^>j6`nSLq!&FhC2EKE#An;& zy%`Sto$wxz_b~7CzMK(HHi56s(=}qLfJU+7^jQGkSuAlmiLvL|Z;vm=VboTTVeMUD$?pq2-(3OP!;sQ03c|Po+ zXa5Wd-LYP9*2o;CPvde;kY^>pcD-Z8!{WK#_whPU6%UGvS})VE2n{lRH^y6sLZA;B zqHTk>M4*hcMh$jLwn@3)(F`v&c$(NHfvxJYCvS#vi818GAvRRCZ&@m$K*V2Dm zo>$ii`d`2n_QRG9`nVO)!xqDL=05G|LvKcXcfU2SB$HGE-kLN|uFQj0c0F^6ZlkQW zk7Yv5kp0%#@;4w|xM!CKjCP3{_ldthZO@9s6liL0t`4|2Kq+*}bC%>F`JTj#8^cVW;XwLm%qdAwPwHBSvP2b690c6T2+E+^r< zVJMjt@G%LLG(Bd3ktNIX^5j9zaDKZLG66!5j%PBi_kV6oM@H(t?o=Y=T`nXu24}F$D{UJYMgs%D%gXtE5<#vPg8GNSL&7%F8;pnRKFrr=S0And?B#Hl zNYbG+^m@wTE@h7y>w&>i<#Np(CZ(|h(6A<5llh!0y+3WMV4*^-DGojebObo>NKQvo z21!7t!_3r_d`&RG+A!9RT?1&isQD+v#Z{Qx?oZ^X#BxA|RRozXRDEy6%*x6Fbb0fe z^r5MJF1Gr**oIW2l+Z}DM56^5Sy{3AS^Eblsaq6mHi%On3HcZ-NXb;R+**$R{2D-MgH}Nn_g7}Lx(8n~ zE$R@@l5KwmT&hUdd7&N`!sM+!@5r*ayara-o_AxSOGA7L#4lJ-mEY3A?eRUI;* z5xS1KJXW~!Y zwM$D&n>jBpuawm1A(?2Pv)Dx}j{t;yOcmKM$Mb%|K3(&`jBxM!er>uxs-gfI4nWRx zSrYz$?N`)Q1;Oaaj>n-@R461UyVV1d3PLd>61A(AkfA1ig?q%%x7|i{K1gBahTs0< z8=d#zYJhjS&sY!4=cvx%`xAivmoIK7SaBLEeHEE1G-TANH!P0DroZYSFFXsRi-r&w z1^rq*!WH4%;q}sjDT&ze!~ds9NBOXDTPqhCXOzv}xV4i1U@fYtTYb*H*h)@MmS(x* zz8)Z-JVg2hCm|(L~bMbarE&>*hMPi9vSI z1Nc;NeJ%}$wN<)GqQB})=3Z|aEmJxeceCs3?~xO0EnT}5y?5qA_{gmkmFo5rZdq;3 za)gmIIrC8S;r-B6V^dHcZ+M&DdyiBRNVMEIAHRp&-BVj2K&|f2Lz=Gui*H(ZVvC_ zSQVQB z+xO`8G;tRcR~P%;*O|5MMR=@3y%gvOf&k0|;L>=>*Qb+Yfw(M;o8P8(K{AN-mW`IF%d zHwUC7V9d}hlg9)Y%p?@#&<|5O0Ab{lk>v~d_ITG@KSb-iM41n(k!9g|fOOwmm;rIp zViw_Q2WxK*M6Kie5&hrNk0(Nrjhgi({-wW9$Vs33#?=~zd6h+? zkpwqlCJu+eJb@S=?<#Qy9;|5Q$??eYT}O8~Wqgr29yMp}vYie9n-ncWNlT*;=`2oTzb@_X@AsPg5`&--^aed5eedT{ zAKhLIO_C!D$0gOhgAN=4oYcFRf^(mI0C5&kN?BZ!)#3B9LOAry1#bSA-le6vyFwIV z3>C!*7KxXnHegQFa;a%tH)~|UdC@=9_tu$~!u+hmZVjN~jqf`XA!lNSmSu7dp?$Qs zQnr%XMOcSw4-T;uF%|6R@!EwTk*)9Pb zb;Wsw*<8`l;o*F8p^s?_OY6=Nh)!RnD?aw7U^I4(_|@6nx27@6aExblqIGpK;@^mk zZB=`&h~b33%Kg(_3!1!U;nN=aStxOKoqyL*$F-9M25u7NA`)p0M?m&(xLK=3SQ5U; z-H#`2&)iB*`SUAeX&e@3SBtTRT4!e1v>*ftFW@_$xdmfjWPURb3k_YXXx3``EVPS8 z?8^ z%}IODucEe6>Rwy&#ZuQ!o)i-iKjMKE`QQ`k?x9?fo4n ztJi(Yh>}5*&RZaT4B7{T{8Y+zntyn-*Yk+r39qEG+kTxTJxoFovHtsa=#{(v`3dy2 z;Apse{n12^OhBk-^_hVxo;oLom{_gdcOcept_X|X97khC-n9!G!AFF$dLc|`p4*5r z4`3dF(-Z-*Ij@w7=j^#7{Lz~<5)v3x7@G@xStWY+?W_drNm|(eKDM{dI@{*96F!I$i7D>|JqEokA91fRL`LbnTDQ_CW(#{ z9MhTMY3kAF^_bCHy6Qo8ZM}NIbj;M`{uR&iXUhZNPN1y|@h-m>w7E*U-zHqRoqOxp zf;h4EJ%js#&+CdzJ6R!%4x%)0*-WP|vIhrx7DtPzYA5EY}!j|(-@_=7WUKlpA}tH1n;h=-GtSKVoO}4u`#hsyE{#Q9%=#v2+rj= z3k7-mb9Is2X6&eP+EE;6-Ddb^nblL8|4GuI28hf3u(JUaTAbuKvERmeMd?*aWDSb~ zmPc3~BaFJA@eQdKvM_8Df(Z{UYISSdtjM1}_gmw4UW zgP%_XN3PTjB_+Erb5CwF-8W~eJ4iE8PtRq&V(QFW#)d0*opCO+*sg&8Q4T=u+&|v8 z+rp7dm|`OMux;>>kTHIr(F7(aXqE?h15;9=e_*DRPq-0Te31Kn;6PjQ!?@cve=eBpLjQzPI!X|zy%Civc@b^<#u8IW*?FG)XX6$++3S- zCHfr-6?_nIIY~CZgCQ00dDP^}8%yo%(Y*X=ln6*gnxpNz2mE}zIno-(H%`Ocu62LD zYW|3XBNG61sgUIowltY2pE+{t{|aRyB{e+MLq6(V-7MTbI>N)k%aMcato}fvFUbMG z0s@;l#!TeIi)SVcN<>6Oc@3eFqB#cf0-(0_|3~Tznb!t%S6rl^3ZR^Gb@hG;3kqXm zq?eYI=~K$1-JC8L2wD_W#fzIEqcdQ)DEZ)P-tLmw z`{%ER75olpaIe1QYOcXk`a)5$##fPx{u>E<$y%T_2VM>?JQa7`_2)yNbB$;6K07IK zZ3R0q*6j^ekjzi!W18S&+cHpuL61`LOd$?^`qei?_JP~??hcUK_+Pdm$^^9W@3Sh> z|FzF!|Ks_tw;kKa=qx|lt?;ZSRSKN@F^Fmc7;mtJ<`@yhHq)&*?XD zcj40*w}$m*$*=}+lssDUH!D&A6*Z@ahKQ|#d1W)+$gS~{l_KlCsOsZKhlNjaxYb%0 ze|jd?{DbeL9%m)@Lf+!jgk`YgU~eFFY;SmH{ukTjqLHke4=#YV2f%fRYF$}7@-(}v z4!#GrrKzboAsa2@k51yRk{=>1Aps^Q_X5r5qI{?JNy`VSXoP(}Bq@YZuI~`d44fa- zYz$C7yjKMxt7NuW&vD}qaqYdWyF=i6ZA3Fc)fq>;;?@-tisB8ONAYe%AA&{>K(&r< zbn{D87WfI3%6av~38uQHd2@)nyxeAPKeF^Fz%lZ5$;8hGM~)C;SFtB<`SP&qQwH#0 zb<}matneuht8~m(X3s9)$$9Bh{m0>G*A{G{G#TuWi~_y_x^y&Az`A)6Zs1=^y&)tZFy{5*hu zhxb=_Aa?&*1&t{(C{zjbGq6I+TI+DfY6b$>oE(D?MqGNS*dt6=2r;VL{rm&hxe7;F z72Gb&yHpupmHalK0DAueN#}*2P9SAk#X5?aZ1wJw2Q7``5N;j->=4VBFeTBkx3a## zmrDHSX%?${ARO5Xo$vu3!KYr}gD(*mS9-l5Pzetg3aSA{ z1VGEag&ZhbaL}Uf!F0RLsdKGsDi1R(h?0hIF)Kw1PlX`Q?z%CQTNGYh!;W`s)1b$# z#qx)_T2Q;+zs__*7@mB@ugo1Lm3Y~iBC0p64oWuV2nEzCl*PZ0+@Hl{CvfUg5fYl| z44>0o1-`NqSfJP9vp^Q#*ueKkpjA*DihG)S-|bgvHOPWz)7^8=a*K!i6DOz6ayrEw z3M({lrb=MXJl}a3RDW;;5LKc83etPNugq`XUM)%h4aNphyMsGi5YQ8QXsiKh_~Weh zLz&(=aDRIZ$rXvhcIo%@F@2I@sQ{rdy18Sjzl*neD-&M=T3}P2oRHmPm=A-K0l|+S zpQuE5xv*vYhm~>SR-WqroGmA|+BM;5&!ROJ*gdIBkyrHo4X>|jmGi7M!F$&I4_1JU19)H*|6Gym27vb4qKT}B2;G3GqTqhx@jWY!g0UKq3Cqi1h?l|f z8@=7#((eeCId`b3h(lL8d#VAd8YvpWUkTdd$(27jZFv$A@Cs0>O7zg^bnX9jjd`*fj{g%h=S-m29erOS=AobjOa+ZT?`_gz zbhOz;L!0X5M90ApU*7-EZN2|4!pne)4r85fV`Bq!TlJsN_;`Sj?&rT4;$Tu!`GP4R zg#Vf5)#D!%syu9X8{4e0Drst{(;%bJdV13M-e?{QF>g_tc{jt$wNJ04nTW&)ldnSX zWEHY{lk}D8lp;IHhFeq?=jvFv6HMt&xXu#tZ3d@n z^^$c+vdL4LC^=oxF~Uiqa8&xxvA*@m z(->vjq6Kxajt--qN1Y>5GK07^fMTY>`cNE}B-M=>F(3%Z;xUyZqt45-HwvM~8on_a zN{YNV#XiBu*>(Lz);1~%{^*aU?N`snFQ-7%Dd%sGh-_H5db6~;3ycjTMz6mmkWOh@ z7SaC%0ML#!P0PdCN0$SA__lKB}WlK<2IW6`mwPOq@1ey?%atynP_TAOb<>K+}39;?oUc zI`c|_IOqe%!pC9gt+aXQt+<$}R!KnTCygH=ZGr7m(f-+{WdrsQPMvKbpi(42gx*bk zJBnVfM2nxkcq1KP@%29&eZsniC38AnZW+13AA44BYb;P~k$dK#t*x!D9#$TSJbXf! zjQExe07G;C69hzp1I~P$ngKW5IKcnS!#sNn9^?(x)YPPbHFy6;HS$~ytwDl-PWEh) zS+(c*JQ6I?9H|+Adi#vrQSYhmX*sK{!Qy{AQ;@_K5(nQ39`FwbmPzvvC#Ip{NR~mtAEToFdY3n~zgQcjX1Z0LgFkrgg zzbIyk&O6E=1-)FFB&Q(qIkw6l(V$Z61y?eeqk1BoxMroD<59T#Qw60$ zomzH%~E$84we75mEbL=U#?Fbe%9px{5rb z_v%&#JLz+>*>w-U@Hko*IvKnqT{xcVNR$6fhFyCf&2n;7&2xeB_l%{f&2T6 z@E3Z!H?5Q9V>X9sNw1)E_Qw}X!l)}nb+@vT<}`U+#IV(YY{R|TVvu=l!VLM>g%g%L zgfc(AFD?h?c zW-)49)y`VHvHCTL3o4jxZq(-Qo|eiUoOnK(Gd0R0O@2O}qvng{3%O}esWRl_Lx>_v zp8bvB^YfljJgb8Q*n{J5;J((yE&QG}t?5pdjT1$AbL9l21SViQTrxyXg6+jwo|G_q zxO|3*7Ct0HBI;TcAsT@IEIyO~bQyj-1sx0uVc1jyDM9=03bHbEjP&T&Qn77xJ5ab} z5S%ifH*?m08ag&-{!1Cj;OY{D&~yUM2ST zhR?!~Bbk8lK!P5Se9q>p$k!48&^I@)b>+V$Gj`N*I+zMr(jgXS*w^DE<$u|3S=xRo zBYGG%cW-x!KJy{`C88;^+Fi`;E;+D$J-YtpOvQ<@h(k#AiIl0F88r^W8 z2{ENUNd>X%)KG$z%na<4xN?(z*iYkg`83*rjAd^~@`k%ZBWuGVeEiV=>=Kg0LjwaD zprQ>j-I4;oy%)zG)_gMpG1d1o2pz}J{6(G*`IF~ds46lHhz5T%O^3POb@f>@-#5@9 z(pUQPKN1o&Tj8{=dr{K32WU8Vg}1KO&Wzy&aKHZge$)v9>c$xy7i#|=kE-H0?h2F8a4OQ%I2Y<^Cr$oAD`~{vZ!ez*q-w_!A zRE{M^lQJ|2#zaIGCqPE3R7lWTy4|S(Ij9bq9!s463bQ(kkR?Lq5|OAI7#MXVsznKv zw35anLJT32R@kr#zH-#Ln}~F$-NQTYfD0IL-B$gl7;Y1S9gnujSrb>_CNzb3%_E`S&7co!awCpI}&lP*h3=1qKEvL=cD4{FDMTk6D8Ew*Y9?rw{K_h-^T}_3o8Zs$;^s8*+qb7Mq491MJquFr?2((M28tT`cC+n_b7W zkc4lJmh@)7QM30E&@|6GEOFO-k{eD-aS+bDA69!;>gpW> zR5M`3fS%S|%QOqoBlZ*Ws0S1I9jC(dPEE61V3cm>{w#&Y=dU!U&j#GL4~ZP-;a!1t zAT~mJVhbn=Ez+2}I!6&Jx_Vi!pK*f&1FAsRr)vd31;Ks7h3SF?j{edOC%kuiTVFZd z9cXt(2~6n$aIMf*DH#JyprBRud^q#?=)#SuXJWmR5MIOcIx_rWp6>1CT9!)zS7u?3 z3j_I=h!o9zG%SS(%p6O+;;S~G0gb?QZhSsM-J;w~Eu0u4dzatJv=cM<8WZH?qq7H; zH(KviFBbC6k@^4)Itlmsx%RSGe43EQ{Uckp2_SY`Y=6;ky~WoB?R&R!c69JYqoM+L z9-3afV9I=<%HJ6za{2*Sys0K;e!V~EJp8Vzw0mon^eDpRZy?yv08_WP)cEx2^#GGc zcIz_B%$NM*=fnoVFPSZ_?`*bPkvSq4(%na5mQ<`CqLfJJT+Y7_w4W2HB7b2FArVTT zNviyoSa$eT`?x7h-hM!vQc-zN{i}9aOp};gyh&WKjk3dc--czy?=(a21rqQVE1_6>2!Cc_42s%T29-%%6zri6Z$%`mw7*pmf2!8*RoR1<9xZT;kbgzj6@Ucg@K6$ z6J41QmhH>{BZmPG+W=-?_0~PdNFYt=_*N$|gE~kT#+TKuF4jzcK6%pWd_Nef{BrJC z?)Fd|y?YbE=2_$zqwORfIu*%dw_6zrisWIFyDm$u4MIA(q-(Y7=tiVE&ZSf*2yS-U zsnvq?k-e_H-rGyNTc5T*WxU>;d93r_%^sg+W|h~)g*a&mAx_-OFN!=vDS zx!CrQ&U1X{6N*Lq@@z!l!fBoN(v?i>_Hcul3V>n?2wabIkaaFF@RUlu=} zA{?6`+ren+7f^703S5szVcu`TtN!g?nh`}jsv-q z#N6*=rNQ<_e^jlUmOr zlBGS|jH7!*7T^M7uyS^2Ib(X*URL_JY$9&(7N55~A>)<_t^3i)4|g`9o{-A33@!+o z(G*(g9M78D9#*T(9+t=1z?u7*E0@;oP}{X_Bsbg5;z*(A-Hh^S{Z^;@U0eAc7}QK%0RNpmV`)o1GJ&w$jTOY}k zU!BUo3Dl{WPB5C&8>F#6>_h5QXsWDOY*BF<{QXw^y6+iqPje~%1yXxH8$~{kyjE`d zGXkQP9@}Rx;Y+KYW32en(&V0xSi$Af`7b@M4|yIqA$M(0^=a@=YdokwJj^aPkh$+$ zg$)f28>NTP$fN|qZ5>za$*`!}@xk!WQAO>)RMPN`xTHH~7@feF@^*R*@V(L1GJ=@O zFI$v^N?u(1q$ozc6QIo!_QANdl`wqLDs_eDBs+b}xo$-k) z;pd&JyO+VW*VF1TZpMph2&8D=Edp{P3Bo zJR{YW1S7PqZcnujjI3StjfM&tb?U&bLEX^NTLIR`(%QOG&U#%HO_J%oNv>{)1z0gO z+6FU`hPmW!-R)%kmvU>P`w3N3QLO(rlTg+WFy`x#o+S;IZUItK~v%4G>Do3s{+n#2?d63R%{NxRQK94i4X{@NAyEdSrqRKa^YWi6O{cg^f zDP~~1qr*F$bt43abFl{!=*u}S-PfYm5ce^fYP00stICz z0~@{LSaPJ>w!&fCp$BVI-75Vy?N>?tu-o^ZDMe1CSPd7SgkunECvh}9ucTjYmMzU+ zR$<2W-b~fwnupWIdujIg3^q5&Yv33wE%!rulS_i^^Cc}r{TYACaoM`BFqwn483MU$ zK6=l!rdrD4^5lA;jSB9sH1G*x-aZAwpCPk6y+mswRLsbAN_>S>Px zHoJO-2XNeMC6W0#tOtb@SS;3H#fxPgY_lT1Z=J86FUK2Nkj$5pT<&4d)CY;(V9=V! zscJZ~r_=qT^>1nEpmNVUqt=U)gEhz`>mt_8{c*vbJg9lg`)(D(a}L5f#_h&tU%M7; z4H&XtmM#7)$zED2ss&?oVJ5N=#F%7SO-XueCMl5COZ%ji}nrKuh3gc*<+HB4{T_*!Z#L8i=VEFDVl zCTSb!2yNf2737|uF;mQO456}?{UFKm1dXzU?M3~?Dq9ib%Zl;?ju={Q}uADBH0y^MKU(8GF>;PK*=xTu4ao3 zA1?-Lt~_6sS4xq3fH9jqj~mF%XRA%8ZGZy!+*n%hD(m|Dzn{_f#)K*UK=H9L7&$w= zEppqYLAR3ap1Dw=NUgN099rA02c7!YuV3KTcdUhi(ps%<553`dzLvJET280EQ?7Hj z4qBzJ?P81BM!TE$9HS#{rZ3Z5p1@EkW-9&tIF#a#J_9%D<6?@>+m4@UAy>hkNOxE0 zC-LYxyQFcxSgVjyqZ}>Q!$C{WjYv(vucfu@rPpy;y}F(`-*vqwbre`lTSE=U1v4PP zB$=cX7Z>wu2~{!z@yI=(NAUdoygnZv(AB{v5dH**{&)d(2%(oFTR+aF{-I``l=$)0zu!X{B!#2OF36U{UY~DjuFRjh8iro z*3#3ee;v+Q(^=WmS<6$#{rfsCw+bz@Vby*b<>(ffHK(TX|OQ>6_uL2d>e3US``WX^`74R&7YU!yFESDWj4N?oHZ-GZmcJy z;p6xnxSl0FboWVfUEWt#?>&+cmS8Cv?~*K!8Az}w67^lBjSm^=!&s}1^!q2ByB?5OEpYr$n}4R$%)?z$UuyWGp)LM{sH!dqd7%R>>O zF0mrT+fb0}x=`p5`4)F#$^Bf{+eULx{v1BWX}3203}?z8N~)&mbg|iiSjXjVb?Gm( zeY{ZZ*mgAvciMKAap&=Szk|!;nJt!M9hQrOWAHDb&A*gGWe|}|% z?z(GxUG3_5)eCbD$%Ksax1D!$fIP;KEqIIy^|!_{UC$4U3^g0L(SCRs?jAQhow?6( zojoihCljsE0Ak|~huZ^y$=sR!WtqoJ%9*V|Ne#%Rd%A-$W33t$-Le8gk#N&HeFzB^ z-!*4xJtiplOGoBw()%x;Y%@iTjAioh93mSe%iTw(kl6s5R!6KBDg)|&7l_Nb<$x%<80{kfTinO+h_#SL|&8_+P0^-*l%O(1iCBO>q;^Y-KM>NM-EHZE@%u}*_{&R>K}j~x`* zt%nw>hmXDBR1c~xG>D^(F|^1f$R@PuodqPRptVypyxwhN%F!fZVPdksXzti8@Nj1< zOX#E+n&n4oI(`{NyPsI7W;_}D=Xsq2YIA$IoGG5ubibL&kQW4kFG-&Bzt4`3BW(>2 zowlr=*N~$%kHZ=eq&~j6{;|*Xat%m`q&$zKr$CVI%B8i1`@j|-D>_V} zJEQk71B>!OaD8wc7;G|Q1sf?FFKaU=UwJwLSyDZ&O&p(Eg92^e-fnElI=m57!q08+pw@(!`1 z1B-vmyyt(1d%}-c!L#bksJ(5f&em6hJ4b6Tqa#?jeHM`!5B-50qyb@WSf1ZJFA{p> zzdb5`sg?WGSH{VF18Lh57}UEryUp|*+XbaPvbJ3XO5xAWCBjRpH`6-Y@4Fr{7SPzA zCdz}t)9M**HgEe2T|XCCf)-(8mtovS{1u0(O*5q?=?h7=A4euE`ra;^x6HnUT>DoP zt#PV+Aevh-al)Z824i(HjaGXWEY0mtL!8ZTs4$Gz5k-=x*B#p-btdb{>ootcr@@-+LT8;HCLX*T7f zXTGWJAAno!7fY+RVsqa(SNMHCnS~z#;_t9)ijjU+i@@@b4 zu-@rno-~);L~sGoXIIG1AIUd^GwWGDB^9%Y<+%~-xa#nj(UgDMaMb-|7%3dF_T>jg zB7L@)CQTujrccjxmlIuw+vB3wg#%K! zi&H@zf1@8N5?M$p4Gvyz+*;)5Y+nhTFLbYZij~VXnmizfGsQMb_>C+@p7>8gWM4hU zl*`gz7acb}FT>5+ApSg688K0>YtBy(hn$>819t8Aj6d*m} zIRoEvSlZ5Ii#Ef{P%IT+FEnmIQkh(gT(-OS6QNQ<`IfHdt4-5wtDKNOTcG>wJ*=7?d-n!uFrv|Y^Ym#~jgWR-G|K_9|%d^rqkRpBM*hVz*t`+RSS@uUz6HL&3k zhm0wFJ^#q};O69h8Ah>bo`=f9z5cDF!a}{ih(fpS;GDdliVS=&?VEqvMZU4KW#^O| z6@Tkh2^_>MI4Ak?5r>Jv7`Rn1s=}u%z%0oj1BW3PzBp@4`G5P=@{Mh6pbX|NsB$f; zRSBb@L|QG6lN#1RdW&ZJ@GrCqrhgHFFclH9{??)%jxj|-{f+?HG^kgk8oNZLNKMN6 zY$%x9lq$v6;i?gK{lVwvD}qjOWNYZJ)%r9yH@B0~mth?%G_fnvgD%#hnF$!Zo9apl z3KZ-j-+(R4A#@~dpPc$A)`@GvnYn6r_Fy5cvHwpL?NWTTB&rer@Y3Xbxv0IP{gW`f z!z;v+TB<<#&79ek-ak9hrNI3o3bxVMXayx13N~hDOP4{BT0_&C-+wEcuw)N@KI-l5 z9f#!&>B(+>Uv0PHuAulc(^Ll~w1*@mPc+hOnIhjfx>RT+Siraz0m|#HU;F0=%WVoD z-kY1>nNry=v^fG)@~$ef1gpYD(6#-a%4Nu9tdrX(QVKc7Z+nb)kMnHsLeRt@^QgJL9I?0 zGht$3!EICMw?_@=11VWuUEPdYKOP<)rZDcYW@gO0j5G|+Up|Qw#n9&+@LdpH1i^Ay z|5XVzD5&*%mlm44oeW8)PhC--G4w)rj2|9`Ol#Qf2)zB8ObNW3*=(-;zS&HF<`1B` z^fXLyN=w6NP?rh_Jw|XsL;DFOZQH;o2#4clYzJ?YEC&VE{6`B-5{Gg-0?8v+#{iqq zQn7sQsYSXad{C?ZRn@Iq{_?>sOGcZg-4~c0LBQMryufolz2r$1Fe#qRJrq1>KNa`tH9;katjC zSay4#! z1qif>-`2kAuN#6HZXgDmhz@LmlKglNcNZ2F9Tq0BZ9w46KnvmzmuT!0 zFGUw}{qeyc8(@VG=*wAVqpY(PQF@8SJY_EpH)=c!S)7spDzj!_+b_zXhUzWCX5&gOHMY;p7!gOpV5VhLqYv)nk^#s zEiEq()FNLt=OdM>a znaZ*vG5vc3dqpkjZC<)4;J0&>B_`bWDjK%uWiFi5bN*aR=85aCy@P`H1wx{%^x7n0 zI_;nHlazhq`=~4y=)<~I!1to51UBz}mgtB#HM!$56qheYaWf7aK1_z+EHJE#KgVnr zHEht#9~*c#dbn25{J^?;N27uASF%JelVqRe>tzOzuYk!&gw6V#ZY@k0hi;#8$^b`E-P&w~$}=T~93K0(L* zKU`;rI6XGz%k6m`A7Fi3*|HKk*g{z{QNKDxOl*v(aP#x?g;oT(YnLg0Y(hc#h4;Yn zCJC>%p7MpsDl6w1V#W#xL*$e!qKi;v}eC{?+t7U23TImdv+8f&vN(JGjTc z3-}vU{G*~GzOV>kvjCm`@rd{pI@MfCs6Z1edAse>olzo3_@jZ(&cKELZHq!@8X~YE z`wl+9Y=Au;zf&VkPFajE2zN}(KbVEMd)TyYef2BBz9^2b_Z|v#ub}OKA zs_F?vh@<~16^G$KsaONni!EETd`Qy8-rhc!J?Q4fzQO2jSRTG1aj0$g%J~SSXKpUZ z9iX`vBx^)h8-O470}2YB5$9u^*ms18vf zN+}o^2>vH0Cn{jWi}W46?yU=(2F^pvthxm3D{R0NAo-PqaZ$!2q~pF*;Vpu$5R}}* zt4Y!|GZVMigM?5t4n#(Q;-m_wTQ#|dfyTjK{&(TW0gu1aJ^23KscPfeKnHhn zw|944bYy%HPe27>%rhoyeiPNj0Sao|<0y_}Yg|^0G&ai;)++#{(PCZSTaB-ax9wvwmR_Ok0Z?CWaQ32C{!2&t5%v^qO0#HyYX`YP@4HR2c z4p?3mxs+ZTOaRMNm;Nc8A|Rx1>vBO!NeSHAy70TKtjuBVSJiEwHbcnb%1S(h^G}-M zZD|UD&C9d%k6-#|KbYJcp`fz9Z-u*Y^IRJ+v}RX8|6~Q6MOW9fY~n*yl2R?MSxh#6 zgZijp^(>jMNI!MzKT=vZlc$Uq5>pY_@BRn{pA4uBy;*8>z)}PCoZqle{tB?;q80!k-C=s&R;~w~i>J-6 z1NZ-m`s%Q%zUS*hr*uoFbV!FF-FXS=ZUs^4xQZa1(jgsJI;Bgbq@){Zq>&WRck}uF zp6C7lo^#KxnKf(H%+@DjdS+oUy6KV09ieE=>2Zdt!os!jFX}r4A$@yC4=DnZ(GD2% znz^#C5f{axgC;6hQqD8zyd-*Oi)=}%cK*_g%tIf=pJ48>WodrSMDrts2$aDFMcIGGB~UrUH&tH=2;kQkbeDLw=03 zZ9n7XNc_BmVvMiupaE^=Ldxp17Z*$#_SM#Qb_y4di!DSbF?hMT#ZC>v<*fq)pJWUR zWTQh8fJj=bRV~!zO#1FiOw8PqkgNZRnjRw5B|W}bwej?9aG-zwQZaN9b2EvlJU!Q1 zneyan6AvNs*^ZCa3pZ!bpW43%AQ7cFaU6&ui6eiABkXh$i6nAn`H)X$fBx{a@I8+(u>YzWot+i z8C#YHWp_cY>AkPK1_HTj)pbe+<3>uNt;bsFGm_)56igs(QWI-nfR*jldH0L z^B3+inDGdi9B{iE*gmz+IcC}^&2iOPQTT%0PRZ=`-I|Czhauf5GX>m{XZ_;?w7F?$ z@VKfg+rUSxRNmJy1Mlc%M8ON7xiTt8EYD#p&_608!-h`;Z=P7jR&d%;5WQ7q>RCSn z#qD3vg*;{G1Q%O|BCh;cC=%x#pB4sYuFXC&>gd{9-q)WVhPA(0-+p??PFT6zzKQx! z)sO7Qm>v&p?6!xPSeuuZmmTamh2m(6K1WhW2$~On&kN`+o1tct-9pf(;b9G5#xJ~7 z(SzlPm4mXoZ-bbqm=6J6$%^%ZIdf?Hw{J#eSs7|zYhDUs_353qr-4Cj;51933grR_ z%P4dDtgEvt#Y9Do%*~UJWOKDCOv{j^ z#&n@eS{~n=`3unUcSY~(h{&S4ku2RMzrXnrP%~OCNTsKhJ8LGh3Kq}^aG*;|OMwig zvyPJ2BDleCx8{5+To^*Zr{9N*OTIcnFq_ELsIeOsgqZ>JK7qD zwI0R!7{mnLAdY4va#CYX(=5j5aCLBCo4u5##Bh8+@eyW}D^>Bvf9pAbRJ8$}lWbz6 zfc^7mqRy9scEX#`4fUAgj-MV<;A#6Ez!STCQ{kn*UpCK`lVC8>rSs>xJUBV)>{D$)Xb?B-Uv-J$Ae zSUD3sZ>oombQgGngxtXq5kPbdES8gNs%CLtIv0h1L*o;+%5kN)WT3nI>ea$v zT#j+M0NM|`5Lqh_4DJjW5ujr7fi=?=*ouo+>M);hrn03EI`M6*h%Z)VCPJ;2^Fb7J z|Cy_RagYkhMXY0X7H9stnvi17Y3L3Jk?jJ5Ych?ILqR14bWqCIWnjr&Ts}Ma+>VUI zEdG0UX|nf5*Y@HAX|{%b-N*&#?uB%}CsToB_hO$78q296eSPsVZ80{K2eUgD2{{T( zl4jml=0;p(!83OmcB*~ynxt*@(gJBwE~K0S`wO$P6u0S9Q&YftRN+II;cRN$ z!qRoUtRK)ZIRK2=W61}-fwob$SIhN_8r9kLN#%T+3i8Z^GicJwXBQW3XEErNiIiO1 z2LS$?QA{ay4M~zC?pHOU-vG|ijZfp1pI?iFPe*Gjb!vvQ)r{M}SJUX7XO;G_p|?7fGc0S-z1G4jA6!FjHtYojduYW}Yij8+3HSieX#Bb% zkgigwyL8!M`SI(X5W@1JPdkvk)RAA~ah4{2;BZ$LQq~4^wa2=A^eKI~$hh2p$Ms!q zzrmML)ljpt^785nVFKp+7ikxUUi-JNAL*<3gNg|&c@6zu?fKgGtVUH#pL}*u6#p!v zU=r0+Cos)n7d`y)9X!3H-{gSw7969UTEQ6Cl>vjR_+EBN=L^Ob9L#%o8JDpJ zq-cFB7X*9Plh|Eakxrzu%%U%4dh z?83tO7YGTY;wczYh7Q0eCaDL_#=N47&XY@W5Y|=3<*aPMU}Y2sjC|HUNmE4|ml0XN z5QbtCapqTt-t;XE4>l9YJ%8~cy$Gl}hi`9NL7*eb1786FSg2laUYdH*xk#wh)gD=i zh)S0#&gZz_Z&X4OhBmp#WQY1kWV^jnv3$K3JnMy=H z2GJOt1%Z(p3J-dyU-xNY`Zp^8f=7F+kc{8ho^pe=k58IwNQSMO z7cck9Zv!hImKI|{R27GC8`^a7axjs&8GE8hwT%wIw53F zhocv&g>S(wLwU%l_G0LyaGYpW4{VKb<@dWS+8Vrh_Gv$I>)4Qd%6H{}x<-7}1t?0b zMDggAH_~10WV^J7hKBx{jW2p}@nF_8Huk+D?<@xY-qp7s%a7H$kKfi~_K3t=8LiU- zT?-YE;xV?IuyYo_1sXC#5Add3T7qLHT~dg!-mTlI@?growzS$xJd1X*D3DQ6RiB!g zdh8hu90O$r>7Te@*DvJ;*+U!;F&2}bRFt2M(mLe8U}M4GA+ZJ5W@Tl)?5kiPDM*Ou z-^u!|F;P&33@@G?MNTX~W{Ujn1-yaSBX|c0#*sDME|fTuPFE9yj^ZAf@#=#xLS#r= zNkhNiD3g5-dRGjhQzEPkH`#{n45i_dV8$awEDpXWU|Qfd7k#N0h~<5J-Xo*EEFsb@ zID}c?To1nNT|JxW6K6RSS8+dW)xsaQxBi8?xrFF^tl+WLl~$n!YY+h-W!&XPHLnf< zJ28rjbfwT{-gq_WD0n|Go&=A_U|@J}CP9vSt^eu3rU#hYU%6<}d~kjMVNugA1Pb#t zF)&Ff*MRAaeqe`5TIE5C?f^;J$rLzC=@T-T{L~V7U9EfQ@H?kJoLRcWh^ygW;mkBW z#ygPKBe4Al^X7PhZysH;jD=3`@$u}Vn>O$>oG6B77{U6*%c^#qidmG~-j-21N43}f zf&Lf@=#WRuz}7)fnliJZ>U*Rr$89anX!T`f-=Jmq_cfmeWEP;|+}dvji(VKL=D8C$rPysc-rD3y@onRS z)@OTpRFS=tV-5Q0<7WA9AvV_ce}WY+*E~Uhp~;+18M^=%;H)9-Vp?Grvjr6i2Ii(> z3CheH1fN~LII~Pt^2qW0-adX4MI&=d?AFc4>0dy0LJ@GvOXyqTWI4X z&iuwO@zGH5u+Sz`T2X1l@$*nJ;eo&5XB@+hcSu%h>ittPEUe6r@?`s70%#zUh@25@ zE`~%#Mz$Z+pOi#;P$r_N%aH_*Q&xc1HMYr-J5nbepzAu(r>F>xKkv}op-au@JH-BT zo?jYjo4fG;tGq{ypx2xADML6oI-w6d#W$B+DE63DS1;*Q9Qn49G23G!G(8zh-4`AG z;3n6t+UVnB2Jh%(DP_+Z)9VinvvoX)1KK1gUqZnqR`=y5EitC+GmpNq0(T~jf4Gww z2^mu;dDSxR_%ZfOjrvRM?3*=*Ku-SLCBeoFD~d=ZuX)m%bzg8dW?cRT+kzWaLqMrfHf^D93dk)VC7vbOOf5^DcR zbPEbS>pU}%X4Z@JX6@`ZxH_!i4d%>v?1kGy(X5RL^#S|eDy!HCT1^x=4IYdI+I}|N z8F}svhf-kj?-pok>8>LNR)tcAR5JNuyr+DPB)YQ3vOi&Ocy+XOy*KXgT$GNdMO~I= zp;n;=W{bS39bn!AP8r7dxEnN5clZskb=ma6PW1+P@){lzbxp|0z$gfMzw)nC^cT3X zscB% z8+ekel=bB^UEa}e<7%jz(%(EgN~ceeZ-NO#JH*IQ z<Q7O6nlvNJ{fOCehjK_Slk;Fo!QA_DVUEo<>$lZk^GyhFnyO?Nj6DfSU@_h82qd=*U=FnGJxCiCH!SP1G!DvWjk)5u%f=={4o`Isua z*Sg#*xw3YBNoCTOjwi{Mv){lwZQm-g6uZgm71#X`mIb<#O>B5lT-$LWmb51{RTScMNjYH2q6Y0Rg_U{&uLJZ=G^RxJ>v=+5Sg^|JCjSy2 z%&_){2qvix{M-Bvf=~X`!B}X&u`(TBWu{6xc!PoDPh2N zf1hA(ai-%hQ2q!D3j@;b1|=apQ|(mlpt6UN+`J-@mI326qmpX7XpG=tyhwcGnrKXL z(olM9=pDXyAAf=ne1?mM2b6imJdNe3)J`Htq1|_EB+j>OqdRc0YcIh{c|2^-?|+=l zmQm!y=6QZoQwefG8NRgFFIbu}xtb}U4ILs^IvlysVir1ir9MT+Aab^r zIlBF9ALWNX&(Q0+R$CQ;q2+|K6YgBpl5b=Hb;zSRS4`6 ztq<{1Y{C2c`&``I10~AutfpS;p*wi8&g$v%!#yW|-HrSdAZeH@VJzX++_?OuNn-5q zs?zu1_NX1z38)lmY*?6QmzS4UR*p)3XS&8Yu}P!VX)-of-U&OlY=RK+mc^*X@tI!y>&RpvlZHp9JNrY zpM74d9~;`zN#>(Z9B_U9oQ9TGRgzvpX<55M%>4640&kgT22sc8pSOBc(V?b>H0)t< zCiq>o!HuVZYIXg?#($GWzQ9F*x$-CA=)W>=u_z*i>5J07`ePmD^f)hB`AKJw1SpBX z$HPNE`*^ZmG4@0b><4DtIH}#p$SBWik@`P@{Ott^t+mF_z23Z;+Uf}=3$GY35Y1b8 z0s4Y_loyGit==>CL2>+`g1aF&X_k9_$mIP~_(Of=GsjnwG*`GY05@MWGHtxdp89$O za(aaCV!NU6$LGGUwDo_IuPbv5)Wa%BfvW>-iSXWJb9}kG?bT$h$i<&O&D0X7B=8jQ z{kJ5d17j;EJYFARxR}ys@2=$;f1U^z3YY^%QF!I+UkUF|o>n1IQ7C#w{LU%bO^T(= zA#_2{+V*nSkvR68-IW4WNWsRyI6>K?O&3jr56#*yY;=+mB$k%xUjBX%f zejdoJwYMLx`Uxo1(j8nAF4I8+mG+OnB)ALWe*V^fR3dfB!8hKkT(1E9O1t@imc*Nf z1?18zJBOoEc$zLV$3;}qU`F7`$Dd#25{9bGRH>h*c@XPz5C^7y7dewvM zAex=hUFG*%%6028zHQ5QA63?waYtt~+}5T*7fL?~Mii;|uMFEKoZlq?9Xe%^u)8ESi#0SmGC@xT|uu>QNL zxw$98t_Zz`bb25rJtJf9OSppoC8g+iCh{@hEa9_Uo#ReP<_#5C;aA-yky@XV)4=_x7bf=NKf2OgLwY4( zm#z4eT-AHf3IM-XCg5Z+)Ofx`wTqJiZOz(XAzxk1dEk{(&LDgeUSa+;`hl;f(2S1Z z;h)zmYS*&{fqU>x_PWXlF61?u3%U&OdPG#W{R_i(dXM47m6epraQUH&Ac8VB=fowN&6yz={3l$w-Vzeo-G z!#5_nvBky=R5><=h^nHBmuKYh>aZO& zvhe|Rv{QOJjMPOFTZR*e~33gV;UWzTMFxRZiiRhhZ7%sf5;ZA-`E&{_;-1Krtp*`U-QQy zrN;-K?`-^`%PDGW*g;8o{a7}IM#hX4In%H`jhBqCK>>7I_R!{}DSig|0EjQz+XHuh zuq2)DTnbzp){xq;NLU;i0I>>S{8`iCmG@IA+?`wKI!i6?mjiQ zFMW+ZXF*&r=Q=pL8IJqW+wW-agA6WAxdG7Pb92uyR`}wTHvk1o zaCl@(DdkZ6EJF*2Ny!I$+S{en;4>Jp?}DoG`bn?e#;q1>qTFa2;7r9niw!Ql<$Rh? z-e2ej+PalV%bLwTCrcO8KP?hh@}R>Ykc8<&Z&^^tDcd)GUw855E7#aWeU>uXfA)>B zXKZtG^Y`{BFAtAu=aD8e6H@W5C}r8gsGhR6YIa^$RyX$1Xijy)LV|_#tWN}HB>d{% zvPip#A@^gK`t-ZX+GeE%H(nMmN--O;O9&NTpH$|!^vT8@>nAlhcRV+~?MH9Pibk2G zzkl1EC10d(trpwvzVV5w?o z5I!rz9N3gS(p}wLe~2*2_T1Hzt~OFn(h&_j)iXhY?zF)M{Pc?$L}{Zz=S!!kHV>Yj zpOOeDe(Y5I7A6pvBogm#Co@zB;%G!IpT-qqk1Jeygm`x2?GV5YLcUY zGaIcm>BV8FZ3+rX2w69gQ#7np9TWQ)M8Hc8iHnO1WQ#*o5O%>K-QZl%Lq7YTF&9}q z+Y{9A3-u2%aiBS``SLHYj=*B0MEG$g4gUJ|Yk$8CRRLkvq?n?I6+KCn7jsr^czWI1 z%Iz{9%d}oqTf5$6-hika9!ml3v~~P2{*Xt)-)Cker{yP@z)i{a9XN$WM8MS^m_#6h z_mh#KB&xaD1;aLuS*|cnso2v#2-h2(b6jmVtXBkNWXBz03aTFR;@Rs{vC6LOAAZ>1 z{CNQ)z9+?fCeps3zX=hAqbo&ZZ!6iD@wM58%@8|z_Nm7;BNs2Pi+`|@!2nL9*a5pS z;Rj>;UjeR7`xBUy5I7G%S#&C*dYYLM;~Y5aibaYioFawT1&ERe3tEkM83YW7tVyxa zisnol9I8`+aXON`t@~oyeR%kyga;2;%%kyx$&co7ycXZF%+a5-KAR6BtRaPv;aK!C zJ0Jl{`Bk}UQs>3ItFT=d*?b!PJc`6#eHYPg=@tpmIq0hO)w(+T-?Rr_N$3SpYJ4$; ziX?4Ha7kmim$-ql>2nsRgwgGu|Saj^i6 z6b|Kp@SnGS(b#MK1gsr_=XQi*zHd^aK<89NMCHuhrpL2yeHRNIv0wRcDdS_^7!u;* zas+8(_p*d(uagIy_+C@#II;;7PzHr?Gp<;Cn_San>@`lL8_~9R+FC z1svzFl9GBR1N^DlrrO%rMePq2G;q2JahDezDe0pRgFNc>4*N-Ye?ndK^uM|rE%<_cUYDu$?29q*~1u5 zOF{x(3O=7cB`=W!yHN4>Vm~oEXHp^L)#$foW(>=!EuPjjZrcj~M*{{m{}xQbaIX&{bR zEoK$~S_!;`SFi(EZz{ssF0P!WOLu3l-BAz`&>GQe-DVEjFByK;=M35OpuzOvByLmC z0#x=*AIbFf-cJ9_SRg)AeJlAKHqtu^2$OuW6IojdUJisQLqe#viaNRPX>?+5MEh|y83&)RxM0e_L+?VN$UI0qn~UQ zzR3^pMl|L+rOT@xPK=1UzIf5>)7t!S=OSuU#hcyN$7IW@>nS+BBagtzxKB93wI@a} zqx=vdUzI^t-Az(8bN7iv2x*1J0>8#9#|QCN6oL-V$1_l5D+oqB_)G{JlKPRZs7kTH zStaZp+j=LZqKzQ$iIQ)zSl`-W9euM@oOLljH}~?V_rTl>mJfF6_9aE|2a1U9;&&ne z>{QXoLw0R3LkDLQCDl^t_gh`7WNC%B@)j{!eG--p2`w(st_2k(Hx^q&PLetQ+xuqW>!~Q{R@CKyc2o~c?0)(lpxS5TuZ!eTD&gFR1TZil%uyFj*Vswt01op0Eb3dV;JDia-j{%3F99%KyL z(|k9m+QEn1?w32t*0#tHJyWxIi8mqTQ;FdqLr1=+jiw_Q#n1hdgx~(a!5zEc_T(t^ zflvx=-&fk1J+oG;&W+F zkK6?^Ts!_GIch)rgK3yt^X3h9uS^KX$i+4Vm=)=s=v3aE<{32Tq#4OkqXfdXa>U4ikh06e|6(y zqlC|e@|@2<2cTKAFi}8MpRiRfaoGNY<~bEc1q1Xg0*fA!?enUYHa??m5XsO$aIkt* zoo(&UN}JakKX=TQ4Im8TF9R0G+q4w+!<_Y*2^ZP=2(o1va9^0<${U?h7|0-1y;>`c z0Lq+vx#$NXA|kuLw*?ODOXBl=*5~_%)_xTLs44loF>EBALCm(@fFtS5BcJNW?tR3W z`O_nuX$i~H|NebT-kK5`t0AM6cO;R07KalrLY;rh;AfQs{@94he(@!5X#^Iw)ooe2 zb7K-Pmr}$3z(;_Qbe7z~F;L z1jt$v4Z4pP2^iC~ZARXBiKla^ZfVqHx{hX4E*6*NOmK`R zG`XW+=WO=l9gw?FgkGGAFcgctih%W^Hci|7(AyW;&9P&Jj_!>B37{D~n;GJjy~}%p zJ}tJXDQV5m-_16_B*q|V|H$64;v$c`4vPH9;G(I1#>)Z9Pjbl|HddQC>X?}LrQIN_brQk>a(gKkT z{ng;6N43%9@?r*3wtTTK=?IB|`uhuxCO<#F;Kuqd;_RQN=5xurA4u`QYrVwx5~=V1 z`JPHWM#3uJ-ri>UHtntY?DN!qRF9n$7ob^On?|}0c_?f$}g+&|6t=j5NMnyaWS(3rEG2ONNbA2!Ip>EK{vK0 z$EDMZ5Xfbnag|kl5ifnug35fcYnPsivi7u#lQU864+!4IBxtxFBVFNug?KVXTMYCY z|HJp6#UleXF!bH3fQBzadVZ)B8%)mpZ$is$(;qx#aVSeP7Iw9Bxim&bS(EIqr_WO2 z3br>;ANm&OgQfYDZch#!1HJU}tG@>$gy-AxjN^Z!l>KycSE9XGu5nO>S}#M2EQd;f5yNA2=cdBtC*R-{9TczUopjvPNWpP3`c925r zd0L(!26NjhZS^hk5>eF;o>N@)}AiMPLxPt*2YSaKS4FEoJY z^l(zln_oNG*f3>j#;z+}SwE9Fz&Ho3Oz)Dl-(tiXew|0L!ZItlqn&s=F&lx12tW2) z~m&8}?&%BjVx4LtovB>p-OCX^4HQ|D#gIG_c&Q-*GCZorWR)NYr^wekas@MnuBobpKuZ94TV+A(?eF^y_4U07x^*Uh+4}mQ6Utf_H$?lW$U|cK;L{LJH!_H7kQV z3XyOMq2%U*`QCtFHA^0|=C3JekYo(_&!2fz?g$0BvKjjQg9DYYwL7K!Q-<^A2yi=# zK>l(75m#E#Zof&ADvK;H`OZ0J4x;=14Wf+y2Tla#!CjD3&QpK#7=S?mNMPB*C$>h$gjzL)R)NFBz`zK$V1HXEe{OEhqM28k+o7NZ z7Gl2kBv(VTb#v41V3;@@H8#vFU!+f!hYH56VHqVMG^i1$RA|q90P!H8Q_d>7b$-C}|@G3nc1~zBV1c9#ECwFXCmG=!MB$EnU1AIig z0LD>I_JESW59BYiq=N!qz8rU{&hy;i>%Ar&?4clOJ?@kBX19aR=*Lp<3aa%c*t@? zrcnD)33?_l7&Kxyu`qr4M`f5uZADmB;Rx(PV{XMKvAQUKYud#AwikgqHPV-!Tz+-6zpV? z{PoKkK>lWBWi?r@TS~I0sxB``m8AS;vK%l~C==-Q>rv-hmLAT|&c`@_TEFj9atTVW z3Uy0OdAuytKv;O2T7(2yfG8Ns{Ep*&z_bfU$FNL{(00t!IV|EX>bMJ>AvjtBYriU) zn~%@4!1%!5OB*zk^0DB8OY7>{$J=U1RN(6bTR`yzSH|$5k!gOFY(vdyD`Cu-%V{5K zoJzdZO8SkZnWZi%QBUK)KkYo6MiL3Cg~n*Sr*KhwHyyfPYQ-*YOk)U;8A0gxs z!QsNfLY+q45K>#t#iw+7L0H#}^fdLx%eXU2s{anCt4~#X_%;wF2<|IJsMCla2^Huq zki%gdh1I#ZeOS4{oHi6Wolc=Z5H-^fXrAI3!nWR75)fwU^0S|bFHz5g$5J`Fvl zFV4alzND1yNcyD2BqL(R*RyRD#SYs=np z9?6%CSjM02eJOUwN7#MxFb$L|fG@ne3%J(UeS{0$*B?OLKxO1~Ib(YitzSE5%XSrM zj_96w)^WJAlu?R3A*l2m=ZACJGmfNwK(Q#@e-XiW20BpFCI%d#oQgj^~38 ztuoeEF;^=YwbF>GU-R?n=Q9%m#E@hp@I3F8fkHL|ozZ06;+20_(l>+m`iX@z4%Kt6 zf2uAxa0yX|HtL8NGloz0IV$)V$-shYCqNkw1bf_|EJVd~=ggwcu;PvFjJO)V{IU_h8e_XG0uor^H#QHmVK%Bxwz zc_)q`Ux9T;HhJ7VPgjnp_>VxZFt!(9!G@55ya8H0@3)<72kI=nJi8jwiw8!n5G{GX zf(%&i(^HR*pmXpXs2{2@MA+H$q}T|MK&V6jKXvW_81P1epoSE)X;okUqiP{Y10nGq z_X`wywB=P{LhqvQU;Y5-IY7df4|gvkuDnX6vd5Yu$$G};X{Rozk9#2_rSSD(tu*wX zN)|fS1De}&-+%(;RM!xieUXkJ3&DodRYv+LXCc~HASCGG{jID53afCzyg z5@xXanG#2O0RX2<+0V7Dmu`Yo^-LhJx$9b+X_6Dp*mOsMOz&+MpE6HMA^~t4xLJJ_ zfX`9og7KuBXA6Ibp7ABKg!yha`9J*z;;JcUPR`t{)SYkp_z*nfesrN>iupxOTOLh- z+-_0{-$o)-}{QVF(_ONim`#h8!`)A5cd4M*TP~=a#CxX!fhT!u?OcoFkFM+a` z0Wt8G_rK369d}Gs3e^ma?X?EZzQLcy_JdKG)^6PBwp~ySN?WHULUzDbV1Ow;AM5F9 zeY&?b7~zz@FUMQ;32}@} z1S&Es?`^QVVw-u&Rg)4C2#;`ya<=g6?Mj^=595*6;>k>JM2j|3g_f|CcYb{TyJEHQAsTV`NG z9bhzmM>;{4sP(2ES5>bQ*QlDrgZ>krLZ%NURYb~>l2QGQKeNE<)8U}Ft(B?O(bEYKKdMfo2 z>8fp{|D7U8!@T5QN^06BY!Oxo`VN^E>b|_qQc(wGNcXM;(jd|m7tNJ3VNC>*Rrv-R zP0h+4MJ09^!3bncqXdKRgI4W+oSux)#y=YK-_Pb1cDg<@1f@y+8 z^9??$d|CMWVcIt@k-Hrf&H%{%i74V#>Ys7*aVE0JdXZGeb0bhIH-G;btIm>(zwx6L zd$ve|b3r zQiqs=CYG-g?uT`F?^xiC$Xf=Ii@Bzq`YRt3g)~?xp7_IoZ>pgu33e+io c`wtlx!b2ErenhRhFMxzp6g1^4WG&zQKZt5_#sB~S literal 0 HcmV?d00001 From d4a5376b9b6848613c69fd6891f1d85aee093d26 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Thu, 24 Oct 2024 12:06:07 -0700 Subject: [PATCH 29/38] deal with masks during smoothing --- src/dysh/spectra/core.py | 6 +++++- src/dysh/spectra/spectrum.py | 12 +++++++----- 2 files changed, 12 insertions(+), 6 deletions(-) diff --git a/src/dysh/spectra/core.py b/src/dysh/spectra/core.py index cfb35bec..1f128d84 100644 --- a/src/dysh/spectra/core.py +++ b/src/dysh/spectra/core.py @@ -680,7 +680,11 @@ def smooth(data, method="hanning", width=1, kernel=None, show=False): if show: return kernel # the boundary='extend' matches GBTIDL's /edge_truncate CONVOL() method - new_data = convolve(data, kernel, boundary="extend") + if hasattr(data, "mask"): + mask = data.mask + else: + mask = None + new_data = convolve(data, kernel, boundary="extend", nan_treatment="fill", fill_value=np.nan, mask=mask) return new_data diff --git a/src/dysh/spectra/spectrum.py b/src/dysh/spectra/spectrum.py index 773d0ac8..cb934387 100644 --- a/src/dysh/spectra/spectrum.py +++ b/src/dysh/spectra/spectrum.py @@ -486,7 +486,7 @@ def smooth(self, method="hanning", width=1, decimate=0, kernel=None): # All checks for smoothing should be completed by this point. # Create a new metadata dictionary to modify by smooth. new_meta = deepcopy(self.meta) - + md = np.ma.masked_array(self._data, self.mask) if this_method == "gaussian": if width <= self._resolution: raise ValueError( @@ -494,12 +494,14 @@ def smooth(self, method="hanning", width=1, decimate=0, kernel=None): ) kwidth = np.sqrt(width**2 - self._resolution**2) # Kernel effective width. stddev = kwidth / 2.35482 - s1 = core.smooth(self._data, this_method, stddev) + + s1 = core.smooth(md, this_method, stddev) else: kwidth = width - s1 = core.smooth(self._data, this_method, width) - - new_data = s1 * self.flux.unit + s1 = core.smooth(md, this_method, width) + mask = np.full(s1.shape, False) + mask[np.where(s1 == np.nan)] = True + new_data = Masked(s1 * self.flux.unit, mask) new_meta["FREQRES"] = np.sqrt((kwidth * self.meta["CDELT1"]) ** 2 + self.meta["FREQRES"] ** 2) s = Spectrum.make_spectrum(new_data, meta=new_meta) From 63ecbb93fa645d4d7e9008cad35d5c26a8488332 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Thu, 24 Oct 2024 12:11:07 -0700 Subject: [PATCH 30/38] deal with masks during smoothing --- src/dysh/spectra/spectrum.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/src/dysh/spectra/spectrum.py b/src/dysh/spectra/spectrum.py index cb934387..30c398d8 100644 --- a/src/dysh/spectra/spectrum.py +++ b/src/dysh/spectra/spectrum.py @@ -500,6 +500,9 @@ def smooth(self, method="hanning", width=1, decimate=0, kernel=None): kwidth = width s1 = core.smooth(md, this_method, width) mask = np.full(s1.shape, False) + # in core.smooth, we fill masked values with np.nan. + # astropy.convolve does not return a new mask, so we recreate + # a decimated mask where values are nan mask[np.where(s1 == np.nan)] = True new_data = Masked(s1 * self.flux.unit, mask) new_meta["FREQRES"] = np.sqrt((kwidth * self.meta["CDELT1"]) ** 2 + self.meta["FREQRES"] ** 2) From 242b41b023c70bc2210564ce59586fbfb49a02bd Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Thu, 24 Oct 2024 12:45:11 -0700 Subject: [PATCH 31/38] revert change that broke pytes --- src/dysh/spectra/spectrum.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/src/dysh/spectra/spectrum.py b/src/dysh/spectra/spectrum.py index 30c398d8..45dee98e 100644 --- a/src/dysh/spectra/spectrum.py +++ b/src/dysh/spectra/spectrum.py @@ -499,12 +499,13 @@ def smooth(self, method="hanning", width=1, decimate=0, kernel=None): else: kwidth = width s1 = core.smooth(md, this_method, width) - mask = np.full(s1.shape, False) + #mask = np.full(s1.shape, False) # in core.smooth, we fill masked values with np.nan. # astropy.convolve does not return a new mask, so we recreate # a decimated mask where values are nan - mask[np.where(s1 == np.nan)] = True - new_data = Masked(s1 * self.flux.unit, mask) + #mask[np.where(s1 == np.nan)] = True + #new_data = Masked(s1 * self.flux.unit, mask) + new_data = s1*self.flux.unit new_meta["FREQRES"] = np.sqrt((kwidth * self.meta["CDELT1"]) ** 2 + self.meta["FREQRES"] ** 2) s = Spectrum.make_spectrum(new_data, meta=new_meta) From d96679f6dbdf381f296dd2af9123d4f26ce15049 Mon Sep 17 00:00:00 2001 From: Marc Pound <22331890+mpound@users.noreply.github.com> Date: Thu, 24 Oct 2024 12:46:27 -0700 Subject: [PATCH 32/38] fix change that broke pytest the general idea is correct but getps with smoothref needs working out. --- src/dysh/spectra/core.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/dysh/spectra/core.py b/src/dysh/spectra/core.py index 1f128d84..bd3dce11 100644 --- a/src/dysh/spectra/core.py +++ b/src/dysh/spectra/core.py @@ -684,7 +684,7 @@ def smooth(data, method="hanning", width=1, kernel=None, show=False): mask = data.mask else: mask = None - new_data = convolve(data, kernel, boundary="extend", nan_treatment="fill", fill_value=np.nan, mask=mask) + new_data = convolve(data, kernel, boundary="extend")#, nan_treatment="fill", fill_value=np.nan, mask=mask) return new_data From 0a2981e12b6cfc9b8494fbbc580dbb42e4636a8b Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Thu, 24 Oct 2024 19:48:28 +0000 Subject: [PATCH 33/38] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- src/dysh/spectra/core.py | 2 +- src/dysh/spectra/spectrum.py | 8 ++++---- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/src/dysh/spectra/core.py b/src/dysh/spectra/core.py index bd3dce11..bd6ed2d5 100644 --- a/src/dysh/spectra/core.py +++ b/src/dysh/spectra/core.py @@ -684,7 +684,7 @@ def smooth(data, method="hanning", width=1, kernel=None, show=False): mask = data.mask else: mask = None - new_data = convolve(data, kernel, boundary="extend")#, nan_treatment="fill", fill_value=np.nan, mask=mask) + new_data = convolve(data, kernel, boundary="extend") # , nan_treatment="fill", fill_value=np.nan, mask=mask) return new_data diff --git a/src/dysh/spectra/spectrum.py b/src/dysh/spectra/spectrum.py index 45dee98e..7b42acae 100644 --- a/src/dysh/spectra/spectrum.py +++ b/src/dysh/spectra/spectrum.py @@ -499,13 +499,13 @@ def smooth(self, method="hanning", width=1, decimate=0, kernel=None): else: kwidth = width s1 = core.smooth(md, this_method, width) - #mask = np.full(s1.shape, False) + # mask = np.full(s1.shape, False) # in core.smooth, we fill masked values with np.nan. # astropy.convolve does not return a new mask, so we recreate # a decimated mask where values are nan - #mask[np.where(s1 == np.nan)] = True - #new_data = Masked(s1 * self.flux.unit, mask) - new_data = s1*self.flux.unit + # mask[np.where(s1 == np.nan)] = True + # new_data = Masked(s1 * self.flux.unit, mask) + new_data = s1 * self.flux.unit new_meta["FREQRES"] = np.sqrt((kwidth * self.meta["CDELT1"]) ** 2 + self.meta["FREQRES"] ** 2) s = Spectrum.make_spectrum(new_data, meta=new_meta) From 203be545ddfcf7e1bf454e5d9140b2e2eac3776e Mon Sep 17 00:00:00 2001 From: astrofle Date: Fri, 25 Oct 2024 11:01:53 -0400 Subject: [PATCH 34/38] Fix: use lowest supported Python version for pre-commit --- .pre-commit-config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 4fadf5b8..dde8d987 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,7 +1,7 @@ --- # See https://pre-commit.com for more information default_language_version: - python: python3.11 + python: python3.10 # See https://pre-commit.com/hooks.html for more hooks repos: From a3a6b426b52099f69d2336c90c1cbab78d4c0546 Mon Sep 17 00:00:00 2001 From: astrofle Date: Fri, 25 Oct 2024 11:04:09 -0400 Subject: [PATCH 35/38] Fix: update notebook after changes to align_to --- notebooks/examples/align_spectra.ipynb | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/notebooks/examples/align_spectra.ipynb b/notebooks/examples/align_spectra.ipynb index 29daee33..2ae61aec 100644 --- a/notebooks/examples/align_spectra.ipynb +++ b/notebooks/examples/align_spectra.ipynb @@ -219,7 +219,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB43klEQVR4nO3dd1wT5x8H8E8SIIAyFRmKgnvvhXuDWqutVeve1lZbK9Y66qjaFmtrq1Vra636s2qttlats+6tVXHgwgXiws1SCSG53x+BkJAEEkgIIZ/365WX5O65u2/Oy+V7z/PccyJBEAQQERER2SGxtQMgIiIishYmQkRERGS3mAgRERGR3WIiRERERHaLiRARERHZLSZCREREZLeYCBEREZHdcrB2AIWdUqnEgwcP4ObmBpFIZO1wiIiIyAiCICA5ORkBAQEQiw3X+zARysWDBw8QGBho7TCIiIgoD+7evYsyZcoYnM9EKBdubm4AVDvS3d3dytEQERGRMZKSkhAYGKj+HTeEiVAuMpvD3N3dmQgRERHZmNy6tbCzNBEREdktJkJERERkt5gIERERkd1iIkRERER2i4kQERER2S0mQkRERGS3mAgRERGR3WIiRERERHaLiRARERHZLSZCREREZLeYCBEREZHdYiJEREREdouJEBHZtNdpCmuHQEQ2jIkQEdmsyLgXqDZjF2b9c9naoRCRjWIiREQ265td0QCAlcdirRsIEdksJkJERERkt5gIEZHNEiBYOwQisnFMhIiIiMhuMREiIiIiu8VEiIhslsCWMSLKp0KTCB0+fBjdunVDQEAARCIRNm/erJ4nl8sxadIk1KpVC8WKFUNAQAAGDRqEBw8e5LjOzz//HCKRSOtVtWpVC38SIioozIOIKL8KTSL08uVL1KlTB0uWLNGZ9+rVK0RGRmL69OmIjIzEpk2bEB0djTfffDPX9daoUQMPHz5Uv44ePWqJ8ImIiMgGOVg7gEydO3dG586d9c7z8PDAnj17tKYtXrwYjRs3RlxcHMqWLWtwvQ4ODvDz8zNrrERUSLBKiIjyqdDUCJkqMTERIpEInp6eOZa7ceMGAgICUL58efTv3x9xcXE5lpfJZEhKStJ6ERERUdFkk4lQamoqJk2ahL59+8Ld3d1guSZNmmDVqlXYtWsXli5dipiYGLRs2RLJyckGl4mIiICHh4f6FRgYaImPQERElH/PbwOX/uKdA/lQaJrGjCWXy9G7d28IgoClS5fmWFazqa127dpo0qQJypUrhw0bNmD48OF6l5kyZQrCw8PV75OSkpgMERVS6UqltUMgsq4f6qn+FQSg1jvWjcVG2VQilJkE3blzB/v378+xNkgfT09PVK5cGTdv3jRYRiqVQiqV5jdUIioAkXEJ1g6BqHC4e4qJUB7ZTNNYZhJ048YN7N27FyVKlDB5HSkpKbh16xb8/f0tECERERHZmkKTCKWkpOD8+fM4f/48ACAmJgbnz59HXFwc5HI53nnnHZw5cwZr166FQqFAfHw84uPjkZaWpl5H+/btsXjxYvX7Tz75BIcOHUJsbCyOHz+Ot956CxKJBH379i3oj0dERGQ57COUZ4WmaezMmTNo27at+n1mP53Bgwfj888/x9atWwEAdevW1VruwIEDaNOmDQDg1q1bePr0qXrevXv30LdvXzx79gw+Pj5o0aIFTp48CR8fH8t+GCIiIrIJhSYRatOmDYQcMtqc5mWKjY3Ver9+/fr8hkVENuLivQTULuNp7TCIrONFjLUjsFmFpmmMiCg/Vh6LtXYIRAVLqcj6+/E168Vh45gIEVGRcOFegrVDICpYyQ+z/pa/sl4cNo6JEBEVCbefvLR2CETW8/q5tSOwWUyEiIiIbJLI2gEUCUyEiIiIyG4xESIiIiK7xUSIiIiI7BYTISIiIrJbTISIiIhskYidpc2BiRARERHZLSZCREREZLeYCBEREZHdYiJEREREdouJEBERkS0SBGtHUCQwESIiIrJF9/6zdgRFAhMhIiIiW7TpPWtHUCQwESIiIrJFEidrR1AkMBEiIiKyRRxQ0SyYCBEREdkiWZK1IygSmAgRERGR3WIiRERERHaLiRARERHZLSZCRERERYEs2doR2CQmQkREREXB3VPWjsAmMREiIiIqChRya0dgk5gIERERFQXn1lg7ApvERIiIbJLAB04SaXudYO0IbBITISKySfryoPsJrws+ECKyaUyEiMgm6asPuh7Pu2aIyDRMhIjIJsnSFTrTDl1/YoVIiMiWMREiIpv024k7OtPYb4iITMVEiIhsUsTOazrTmAaRfeM3IC+YCBFRkaFkjRDZM/kra0dgk5gIEVGRoWQeRPbswTlrR2CTmAgRUZHBPkJEZComQkRUZCiV1o6AiGxNoUmEDh8+jG7duiEgIAAikQibN2/Wmi8IAmbMmAF/f3+4uLigQ4cOuHHjRq7rXbJkCYKCguDs7IwmTZrgv//+s9AnICJrE9hZlIhMVGgSoZcvX6JOnTpYsmSJ3vnz5s3DDz/8gJ9++gmnTp1CsWLFEBoaitTUVIPr/OOPPxAeHo6ZM2ciMjISderUQWhoKB4/fmypj0FEVsQ+QmQ32AxsNoUmEercuTO++OILvPXWWzrzBEHAggULMG3aNHTv3h21a9fG6tWr8eDBA52aI03fffcdRo4ciaFDh6J69er46aef4OrqihUrVhhcRiaTISkpSetFRLaBd42R3eCxbjaFJhHKSUxMDOLj49GhQwf1NA8PDzRp0gQnTpzQu0xaWhrOnj2rtYxYLEaHDh0MLgMAERER8PDwUL8CAwPN90GIyKL420BEprKJRCg+Ph4A4OvrqzXd19dXPS+7p0+fQqFQmLQMAEyZMgWJiYnq1927d/MZPREVFN41RvaDx7q5OFg7gMJGKpVCKpVaOwwiygP2ESK7waTfbGyiRsjPzw8A8OjRI63pjx49Us/LrmTJkpBIJCYtQ0S2jX2EyH7wWDcXm0iEgoOD4efnh3379qmnJSUl4dSpUwgJCdG7jJOTExo0aKC1jFKpxL59+wwuQ0S2jT8NRGSqQtM0lpKSgps3b6rfx8TE4Pz58/D29kbZsmXx8ccf44svvkClSpUQHByM6dOnIyAgAD169FAv0759e7z11lsYO3YsACA8PByDBw9Gw4YN0bhxYyxYsAAvX77E0KFDC/rjEVEBcJMWmlMakWWx9tNsCs1Z48yZM2jbtq36fXh4OABg8ODBWLVqFT799FO8fPkSo0aNQkJCAlq0aIFdu3bB2dlZvcytW7fw9OlT9fs+ffrgyZMnmDFjBuLj41G3bl3s2rVLpwM1ERUNaQoOLU32gomQuYgE3maRo6SkJHh4eCAxMRHu7u7WDoeIMgRN3q53euzcrgUcCZEVyFOBL/Vc1H+eWPCxFFLG/n7bRB8hIiIiIktgIkRERGRr7p6ydgRFBhMhIiIiW/PokrUjKDKYCBEREZHdYiJEREREdouJEBERka15ccfaERQZTISIiIhszfPb1o6gyGAiREREZGsEDh5qLkyEiIiIbM3Lx9aOoMhgIkRERGRr4qOsHUGRwUSIiIiI7BYTISIiIrJbTISIiIjIbjERIiIiIrvFRIiIiIjsFhMhIiIisltMhIiIiMhuMREiIiIiu8VEiIiIiOyWQ14WiouLw507d/Dq1Sv4+PigRo0akEql5o6NiIiIyKKMToRiY2OxdOlSrF+/Hvfu3YMgCOp5Tk5OaNmyJUaNGoWePXtCLGZFExERERV+RmUsH330EerUqYOYmBh88cUXuHLlChITE5GWlob4+Hjs2LEDLVq0wIwZM1C7dm2cPn3a0nETERER5ZtRNULFihXD7du3UaJECZ15pUqVQrt27dCuXTvMnDkTu3btwt27d9GoUSOzB0tEBABKpZB7ISIiIxiVCEVERBi1socPHyIsLCxfARER5Wb35Xhrh0BkPUqF4XmJ9wGP0gUXSxFgdGee8PDwHOc/fPgQbdq0yW88RES5en9tpLVDILIe+SvD8xLuFFwcRYTRidDKlSvx5Zdf6p2XmQT5+PiYLTAiIiIyQpUu1o7Aphl919jWrVsRFhYGb29vvP/+++rp8fHxaNu2Lby9vbFr1y6LBElEREQGOHtaOwKbZnQi1LJlS2zYsAE9e/aEl5cX3n33XXUS5OHhgX///RfFixe3ZKxERESUnYhD1uSHSQMqdu3aFStWrMDQoUORmpqKefPmoXjx4vj333/h5uZmqRiJiIjIEJHI2hHYNJNHlu7Xrx8SEhIwfPhw1K9fH3v37oWHh4clYiMiIqLshGzDRzARyhejE6F69epBpLGzHR0dkZCQgLZt22qVi4zk3RxEREQFhk1j+WJ0ItSjRw+t9927dzd3LERERGQqrUSItUOmMjoRmjlzpiXjICIiorxgjVC+cO8RERHZNNYC5YdRiVBYWBhOnjyZa7nk5GR8/fXXWLJkSb4DIyIiIiOwRihfjNp7vXr1Qs+ePVG9enVMmjQJGzduxLFjx3D27Fns3bsXP/zwA3r37g1/f39ERkaiW7duZg80KCgIIpFI5zVmzBi95VetWqVT1tnZ2exxERERWRXvGssXo/oIDR8+HAMGDMDGjRvxxx9/YNmyZUhMTAQAiEQiVK9eHaGhoTh9+jSqVatmkUBPnz4NhSLrQXOXLl1Cx44d0atXL4PLuLu7Izo6Wv1exIOFqMhpXdkHh64/sXYYRAUnLUX7vVaNULZb6ylXRneWlkqlGDBgAAYMGAAASExMxOvXr1GiRAk4OjpaLMBM2Z9jNnfuXFSoUAGtW7c2uIxIJIKfn5+lQyMiK6oT6MlEiOzL+bXa79k0li953nseHh7w8/MrkCQou7S0NKxZswbDhg3LsZYnJSUF5cqVQ2BgILp3747Lly/num6ZTIakpCStFxEVXqznJbuT04CK2edRrmwyjdy8eTMSEhIwZMgQg2WqVKmCFStWYMuWLVizZg2USiWaNWuGe/fu5bjuiIgIeHh4qF+BgYFmjp6IzIkt3mR3lArt92wayxebTIR+/fVXdO7cGQEBAQbLhISEYNCgQahbty5at26NTZs2wcfHBz///HOO654yZQoSExPVr7t375o7fCIyIxHrhMjePLqUbQJrhPLD5GeNWdudO3ewd+9ebNq0yaTlHB0dUa9ePdy8eTPHclKpFFKpND8hElEBEjMPIntzfbf2ewfNO6KZCJnK5mqEVq5ciVKlSqFr164mLadQKBAVFQV/f38LRUZE1sCmMbI7Srn2+waDs/4WlAUbSxGQp0QoISEBy5cvx5QpU/D8+XMAqoet3r9/36zBZadUKrFy5UoMHjwYDg7alVmDBg3ClClT1O9nz56Nf//9F7dv30ZkZCQGDBiAO3fuYMSIERaNkYgKlp+Hi7VDILIup2JZfz84b7UwbJXJidDFixdRuXJlfP311/j222+RkJAAANi0aZNWImIJe/fuRVxcHIYNG6YzLy4uDg8fPlS/f/HiBUaOHIlq1aqhS5cuSEpKwvHjx1G9enWLxkhEBat7XcN9BYnsg0a1aOT/rBeGjTK5j1B4eDiGDBmCefPmwc3NTT29S5cu6Nevn1mDy65Tp04QDHQEO3jwoNb777//Ht9//71F4yEi63OU2FwLP5F58fb5fDH5DHL69Gm89957OtNLly6N+Ph4swRFREREBriWzDZBIxF6EVOgoRQFJidCUqlU7yCD169f1xn9mYiIiMysdAPt97xjIF9MToTefPNNzJ49G3K5qte6SCRCXFwcJk2ahJ49e5o9QCKi3EzoWBkA4MB76cke6CQ+PO7zw+REaP78+UhJSUGpUqXw+vVrtG7dGhUrVoSbmxu+/PJLS8RIRJSjCqWKAwDql/WyciREBSDpgfZ71gjli8mdpT08PLBnzx4cO3YMFy5cQEpKCurXr48OHTpYIj4iolxl/gwIHEyO7EH8xWwTmAjlh0mJkFwuh4uLC86fP4/mzZujefPmloqLiMhomRfEcgUTIbJDrBHKF5OaxhwdHVG2bFkoFIrcCxMRFZB7L14DAM7fTbBuIERWwUQoP0zuI/TZZ59h6tSp6hGliYis7d8rj6wdApH1sEYoX0zuI7R48WLcvHkTAQEBKFeuHIoVK6Y1PzIy0mzBEREZgz8DZN/4DcgPkxOhHj16WCAMIqK84wUx2TV+AfLF5ERo5syZloiDiCjPRLwiJnvl5g/WCOUPH9JDRDaPF8Rkt976mV+AfDK5RkgsFkOUw07nHWVEVND4O0B2S1qcX4B8MjkR+vvvv7Xey+VynDt3Dv/73/8wa9YsswVGRGQsNo0RUV6ZnAh1795dZ9o777yDGjVq4I8//sDw4cPNEhgRkbFuPUmxdghEVsKLgPwyWx+hpk2bYt++feZaHRGR0RJeya0dApF1FPe1dgQ2zyyJ0OvXr/HDDz+gdOnS5lgdEZFJXsuz+iYKAh+zQXbEg7+7+WVy05iXl5dWZ2lBEJCcnAxXV1esWbPGrMEREWV3/VFyjvOVAiBhawERGcnkROj777/XSoTEYjF8fHzQpEkTeHl5mTU4IqLsbj3OuT+QQilAImYmRETGMTkRateuHQIDA/XeQh8XF4eyZcuaJTAiorw4c+c5mlUoae0wiMhGmNxHKDg4GE+ePNGZ/uzZMwQHB5slKCIiU5TxclH/fT/jSfRERMYwOREy1BExJSUFzs7O+Q6IiCgn+saOa1jOS2M+m8WIyHhGN42Fh4cDUJ1kZsyYAVdXV/U8hUKBU6dOoW7dumYPkIgoN2ImP0SUR0YnQufOnQOgqhGKioqCk5OTep6TkxPq1KmDTz75xPwREhHlom3VUth07r61wyAiG2R0InTgwAEAwNChQ7Fw4UK4u7tbLCgiIsN0a39KFHPSU46IKHcm3zW2cuVKS8RBRJRn7BdERHllciIEAGfOnMGGDRsQFxeHtLQ0rXmbNm0yS2BERMZiHkREeWXyXWPr169Hs2bNcPXqVfz999+Qy+W4fPky9u/fDw8PD0vESESk9jRFpjNNnG20eyIiY5mcCH311Vf4/vvv8c8//8DJyQkLFy7EtWvX0Lt3bw6mSEQW9+2/0TrTNAeSvvow50dwEBFpMjkRunXrFrp27QpAdbfYy5cvIRKJMH78eCxbtszsARIRaXopS9eZptlHaMWxmIIMh4hsnMmJkJeXF5KTVVdcpUuXxqVLlwAACQkJePXqlXmjIyLKRqHUbfris8WIKK9M7izdqlUr7NmzB7Vq1UKvXr0wbtw47N+/H3v27EH79u0tESMRkZqePEjPDfVERMYxORFavHgxUlNTAQCfffYZHB0dcfz4cfTs2RPTpk0ze4BERIYMaRYEgHeNEVHemZQIpaenY9u2bQgNDQUAiMViTJ482SKBERHlpoqfGwA+YoOI8s6kPkIODg4YPXq0ukaIiKgwYB5ERHllcmfpxo0b4/z58xYIJWeff/45RCKR1qtq1ao5LrNx40ZUrVoVzs7OqFWrFnbs2FFA0RJRQcjsI83O0kSUVyb3Efrggw8QHh6Ou3fvokGDBihWrJjW/Nq1a5stuOxq1KiBvXv3qt87OBgO//jx4+jbty8iIiLwxhtvYN26dejRowciIyNRs2ZNi8VIRAVHlNFNWsTu0kQqnhzPz1QmJ0LvvvsuAOCjjz5STxOJRBAEASKRCAqFwnzRZePg4AA/Pz+jyi5cuBBhYWGYOHEiAGDOnDnYs2cPFi9ejJ9++sliMRJRAcrIf1ghRHYvoB7w4BzQeJS1I7E5JidCMTHWG6zsxo0bCAgIgLOzM0JCQhAREWFwNOsTJ04gPDxca1poaCg2b96c4zZkMhlksqwh/JOSkvIdNxFZRmb+w4eukt3zrqBKhEQSa0dic0xOhMqVK2eJOHLVpEkTrFq1ClWqVMHDhw8xa9YstGzZEpcuXYKbm5tO+fj4ePj6+mpN8/X1RXx8fI7biYiIwKxZs8waOxFZRmYCxDyI7J76S8Bn7ZnK5M7SAPDbb7+hefPmCAgIwJ07dwAACxYswJYtW8wanKbOnTujV69eqF27NkJDQ7Fjxw4kJCRgw4YNZt3OlClTkJiYqH7dvXvXrOsnIvML9HK1dghE1vUiVvXv3VNWDcMWmZwILV26FOHh4ejSpQsSEhLUfYI8PT2xYMECc8dnkKenJypXroybN2/qne/n54dHjx5pTXv06FGufYykUinc3d21XkRUOGVeAzs55OmajqjouHda9e8Vy1VIFFUmnz0WLVqEX375BZ999hkkkqy2yIYNGyIqKsqsweUkJSUFt27dgr+/v975ISEh2Ldvn9a0PXv2ICQkpCDCIyIiMr80PtPT3ExOhGJiYlCvXj2d6VKpFC9fvjRLUPp88sknOHToEGJjY3H8+HG89dZbkEgk6Nu3LwBg0KBBmDJlirr8uHHjsGvXLsyfPx/Xrl3D559/jjNnzmDs2LEWi5GIChb7BpHdObbQ2hEUOSYnQsHBwXoHVNy1axeqVatmjpj0unfvHvr27YsqVaqgd+/eKFGiBE6ePAkfHx8AQFxcHB4+fKgu36xZM6xbtw7Lli1DnTp18Oeff2Lz5s0cQ4iIiGxXWoq1IyhyTL5rLDw8HGPGjEFqaioEQcB///2H33//HREREVi+fLklYgQArF+/Psf5Bw8e1JnWq1cv9OrVy0IRERERFTCJo7UjKHJMToRGjBgBFxcXTJs2Da9evUK/fv0QEBCAhQsXqgdbJCIqCK5OJp/CiGybiDcGmFueziL9+/dH//798erVK6SkpKBUqVLmjouIKFdNgr2tHQJRAWPHOHPL8+XU48ePER0dDUA1qFlmXx0iooLCztJkd3jQm53JdWzJyckYOHAgAgIC0Lp1a7Ru3RoBAQEYMGAAEhMTLREjEZFefNgq2R8e8+ZmciI0YsQInDp1Ctu3b0dCQgISEhKwbds2nDlzBu+9954lYiQi0svdhX2EiCh/TD6LbNu2Dbt370aLFi3U00JDQ/HLL78gLCzMrMEREeWED1slu8Nj3uxMrhEqUaIEPDw8dKZ7eHjAy8vLLEERERGRHrxrzOxM3qPTpk1DeHi41lPc4+PjMXHiREyfPt2swRER2Yqbj5MRseMqnr9Ms3YoVJQxETI7k5vGli5dips3b6Js2bIoW7YsANWozlKpFE+ePMHPP/+sLhsZGWm+SImICrHQBUegUAq48+wVfhrYwNrhUJHFpjFzMzkR6tGjhwXCICKybQqlAACIus+7Z8mC2EfI7ExOhGbOnGmJOIiIigQHCX+oyMrSXgJOxawdhc3I172nKSkpUCqVWtPc3d3zFRARkS1zEDMRIgsyqkaIx6ApTO51FRMTg65du6JYsWLqO8W8vLzg6enJu8aIyO6J2XRBlpT2MutviZP+MmJJwcRSRJhcIzRgwAAIgoAVK1bA19eX43gQUYFZeSzG2iHkiqdEsqgj87P+FpT6y4iYCJnC5ETowoULOHv2LKpUqWKJeIiIDJr1zxVrh5ArPvaDCozBRIjHoClMbhpr1KgR7t69a4lYiIiIyFieZQ3MYCJkCpNrhJYvX47Ro0fj/v37qFmzJhwdHbXm165d22zBERERkQHOuk95AAAo0wGxgf5DlpIuAzYOBSq0BRqPLNht55PJidCTJ09w69YtDB06VD1NJBJBEASIRCIoFAqzBkhEZEvYKkFWl3Qf8A4u2G2eXwtEb1e9inoiNGzYMNSrVw+///47O0sTERFZS9MP9E+3xl1jL+4U/DbNxORE6M6dO9i6dSsqVqxoiXiIiIjIGNW66Z9ujeeRHVtQ8Ns0E5P3Vrt27XDhwgVLxEJERETGMjR69KW/CjYOG2dyjVC3bt0wfvx4REVFoVatWjqdpd98802zBUdElBdKpQCxlUZ4ZncBsro9M4Dm46wdhc0wOREaPXo0AGD27Nk689hZmogKg/sJrxHo7WqVbTMNIrItJjeNKZVKgy8mQURUGHy146rVtp2mMDDIHREVSvnqUZWammquOIiIzOZBwmurbfvm4xSrbZuKuJt7rR1BkWRyIqRQKDBnzhyULl0axYsXx+3btwEA06dPx6+//mr2AImITCVYOwAiSzi6wNoRFEkmJ0JffvklVq1ahXnz5sHJKWvkypo1a2L58uVmDY6IiIgyyF9ZO4IiyeREaPXq1Vi2bBn69+8PiSRr0KY6derg2rVrZg2OiCgvBFYJUVHEp8pbhMmJ0P379/UOpqhUKiGXy80SFBEREWUjNvlGbzKCyYlQ9erVceTIEZ3pf/75J+rVq2eWoIiI8kNgLyEqiqzx6Aw7YHJ6OWPGDAwePBj379+HUqnEpk2bEB0djdWrV2Pbtm2WiJGICJcfJBpdlk1jVCTdPWXtCLLEnQSubAXafWZ4hGsbYXKNUPfu3fHPP/9g7969KFasGGbMmIGrV6/in3/+QceOHS0RIxERuv5w1NohEFmXIs3aEWRZEQqcXAIcmmftSPItTw2OLVu2xJ49e8wdCxGR0Ta8F2LtEIgKj8phwPVdBb/dpzcKfptmZnKNUPny5fHs2TOd6QkJCShfvrxZgiIiyk3J4k4G57FpjOxOywnWjsBmmZwIxcbG6n2Uhkwmw/37980SFBFRbnLKdZQFlAkJzLiosAhsbJ3tPr9tne2akdFNY1u3blX/vXv3bnh4eKjfKxQK7Nu3D0FBQWYNTlNERAQ2bdqEa9euwcXFBc2aNcPXX3+NKlWqGFxm1apVGDp0qNY0qVTKR4MQFQHWzkH2XnmEiX9ewIJ366F1ZR/rBkNFn7UPeEOeWO+5fuZidCLUo0cPAKonzA8ePFhrnqOjI4KCgjB//nyzBqfp0KFDGDNmDBo1aoT09HRMnToVnTp1wpUrV1CsmOEe6+7u7oiOjla/F4n4bGiioiCn2pjrj5Itvv0Rq88AAAav+A+xc7tafHtkxxTpwLI21o6iyDI6EVIqVU9UDg4OxunTp1GyZEmLBaXPrl3ancBWrVqFUqVK4ezZs2jVqpXB5UQiEfz8/CwdHhEVsJyuj4tLOfAcFSEPIoFHUdaOosgyuY9QTExMgSdB+iQmqsYU8fb2zrFcSkoKypUrh8DAQHTv3h2XL1/OsbxMJkNSUpLWi4gKn5z6AXkVM9yR2hLYV4jIdpmcCBUGSqUSH3/8MZo3b46aNWsaLFelShWsWLECW7ZswZo1a6BUKtGsWTPcu3fP4DIRERHw8PBQvwIDAy3xEYgon0Qw3Mx951nBPpySeRAVOhmtOJQ7m0yExowZg0uXLmH9+vU5lgsJCcGgQYNQt25dtG7dGps2bYKPjw9+/vlng8tMmTIFiYmJ6tfdu3fNHT4RmYE4Wx7Ut7H1LlqYB5Fl5aFv69Pr5g+jiLK5hvSxY8di27ZtOHz4MMqUKWPSso6OjqhXrx5u3rxpsIxUKoVUKs1vmERkYdmTj+CS1hvmn01jRLbLZmqEBEHA2LFj8ffff2P//v0IDg42eR0KhQJRUVHw9/e3QIREVJCy5x5ergXbL0gT0yAqdAryDmkbvxDIV41Qamoq0tK0n33i7u6er4AMGTNmDNatW4ctW7bAzc0N8fHxAAAPDw+4uLgAAAYNGoTSpUsjIiICADB79mw0bdoUFStWREJCAr755hvcuXMHI0aMsEiMRFRwsj9h3kFivaExCmoAR7JThX3YFxs//k1OhF69eoVPP/0UGzZs0PuoDX2jTpvD0qVLAQBt2rTRmr5y5UoMGTIEABAXFwexOKuS68WLFxg5ciTi4+Ph5eWFBg0a4Pjx46hevbpFYiSigpP93GvNc7Hmtp0cbKainYoyZXrBbUuw7Y7ZJidCEydOxIEDB7B06VIMHDgQS5Yswf379/Hzzz9j7ty5logRgHFt8AcPHtR6//333+P777+3UEREZE3WTIS2nDf8OKGy3q4FFwiRIbFHAd8aBbMte0uE/vnnH6xevRpt2rTB0KFD0bJlS1SsWBHlypXD2rVr0b9/f0vESUR27EmyTGda9qaxgqwQGrf+vPa2NTZ+83FKAUZCdkGRlnsZa7LxRMjkOtznz5+rnzLv7u6O58+fAwBatGiBw4cPmzc6IiIAqXLdJnd3Z0et99a8cyt7UkZkVko9XU5KGn7OZsGz7ePf5ESofPnyiImJAQBUrVoVGzZsAKCqKfL09DRrcGRZj5NT0e+Xk9gR9dDaoZAVpaUrEVfAAxCaQ2C2Jihrnopn/3PFilunIk9fZ+lKHXNeZuenlolFH32Jmg0xOREaOnQoLly4AACYPHkylixZAmdnZ4wfPx4TJ040e4BkmpinL9Hi6/347eSdXMvO2XYVx289wwdrIwsgMiqsev10HK2+OYBjN59aOxSDDl1/kmuZJsE5P27HvAQUw2v1u/WnOfAqFbBCdadWYYrFdCYnQuPHj8dHH30EAOjQoQOuXbuGdevW4dy5cxg3bpzZAyTTzNhyCfdevMb0zZdyLfviZSFvdzYn+Wsg6YG1o8g/WTJwbQcgTzXbKi/cUz23b+OZwvtjPs2I47lcCe0BFaMyPpcl/Oz4PS47D0dFkeHH9RQFR288xYe/n8NzI84VHFTSgvbO0p1WmPrlyF/nXqYQy/d9nuXKlcPbb7+N2rVrmyMeyidZeiH6chSEy5uBH+oBDy/kXG5hXeC7asCzWxYP6UHCaxy5kXsNRp78MQBY3xf49zPLrL8QUijz9gP7z0XLJb6hkjMAgAGSvRbbRkGTpSuwM+ohEl5lJT0Dfj2Ffy48wBfbcm76m7PtCpp8tc+ohIny4N5/utMKUyL0ItbaEeRLnhKhffv2YerUqRgxYgSGDRum9SLbYY0Ontfik3D0hkYTzKvnwJ3jBqt5U2Tp6Ln0OJYfua1/hRsHA89vAxsG57zhFNUAnLjxbx6iNk2zufsx8Nf/jGrOyVXaS5yPic+qvbt9UPVv5Or8rzsbkbkGbUuIA65syfmhj7IUIOawUX0L1p3KvZnXWkQ5fIdk6Qqci3sBZR4TuYL23b/X8f7aSPT95ZTOvHsJ+q/4T95+hv7LT+LXozF4nCzDqmMxlg7TbF68TEPPpcfx+39xuRe+th14UsDP7rqyBXh40fD84FYFF0suFKvfsnYI+WJyIjRr1ix06tQJ+/btw9OnT/HixQutF1lZIT/nhi04ggG/nsLtJxm3GP9QD1jZWXWi0fA6TYHlR25j5pbLOHvnBb7YfjXnFaebr6nIXP6L0R1w1CTy18BXASi/qh5azTuQe/nji4DlHVXNZ3lgtrFrF9QCNgwCLv1puMyat4H/dQOOLcxxVXefv8L0LZfzFMb5uwl5Wi6/3hIfAX7vhwlrjuOtH49j8YGb2H05Hk2+2ov/Yp5bJSZjbL2gqkG7+jBJZ172Zq8UmWqwvneXncSxmxrHeWEfAVnDov03cfbOC0zZFJVzwdijwPp+wJJGBRMYANw5ofoO/dwSUMj1lylWMtfVPErKOC8+vQHE5968bJAiHcLxRfhx3V/47USszmyJ3LaHjDA5Efrpp5+watUqnDp1Cps3b8bff/+t9SLr0qnleXwN2Pqh6ipdDynS0Ex8CUjXrtJOSpUjJVUOxB5T1dqYWczTl6o/UhNU/275ADj8rbpm6Ls90fhi+1X8FZnHPhhKJZD20qRFVp+IxZuLj+ZYvW9KM42+Sq7nL9Pwz4UHem8H15Hx9Gh30Ssky7KNEqtv5f9OU1Whn/rZ6Bj1evkM2PEp8OB8/tYTe9TwvLsZtQ7nfstxFfuuPsrz5gsi6dD3s/+901IgejuCb6wCAPx6NAbv/XYWj5JkGPCrbm2LITcfpyAkYh82HDqn8/3Ucepn1fdc33ERcxjYPAZ4nWD0tl9mO940D/u1p+6g5szdWK3nB1Hf9mXpCvT+6QS+3R2tUcz6V2yan3Hgr6cw/99o/QUfnMv6M+E1Zm65lHX+spQYjaFo/vem/jJG7MOEV3JVucUNgZ+a6z8G0mXAL+2BnZMMryhyFUT/TsMH14fl+cKkMDM5EUpLS0OzZs0sEQuZgc5345e2qmaU9f2BlMdA9C6tJotvHH/GOqevgJ2f4ubjZEzacBY3Hyej9uf/YsLsL4BVXSAsaqAq/Oo5kGh4RN18SU0E9s8B4k4CyPlHLF2hxJUHSVpNDq9k6fjrrEbStPpN4KsAnXhzeibUjC2XcfFeIhbtv6F3/vMbJ7B5dk/M+/OIMZ9Ib+Xcu8tO4MPfz2n9KGhSKAVsvfAA9w00RRglh9qxm4+TdX7kMolEItUP6jflgf9+Bpa1znsMAF5r9ldLegDcL3p3J+bUNOYlUl0lizWypTQT+vBN2xwFceJd9D7QBljSOOfCOz9Vfc9Xv6nbFPe/bsD5NcDez1Xf/Zeqpul0hRJR9xLVyb3mV+PbbEmBZuLy2d+qmoUZRv4gbr/4EP/FPsfiAzcBAOtOxaHhF3tx6b4JndkT7wGHv1HHnt35uwlYvP8G5Ao9+1eemmsT7JEbT7Fo/039MzU++4j/ncH/TtzBO0uPI/bpSwz89RRO3MqoETu3BvhzWFbSevc/4M/hebtJQ7NmLe646cvrWQ0AIEX3wuL1pX+A+2eAUz8ZXlH2Jjoz3qxRGJicCI0YMQLr1q2zRCxkBjqnZXnG+DCPLgHfVgJ+7wOcU/UvEQTgTckJ1fyzK3Hox7H48nIHfPTD7wCyOoSKXmckJfOCge+ra9cQJT8CHl7E9UfJSHxloAoX0LmiFRuoQn/++J7+z6Fh8qYodPnhCH7QSFiSZXJM2KjRYTo2I1nJ1jwzZ9sV3Nu3DIgxnMwYqq3xXhuGntiHOhc+zyG6LPpyrnJPDmKaw2/YeVF/Tde6U3fw0e/nVE1h/+RyF+a+OcCJJXrWEYd5u67pTD8d+xwdvjuMjt8d0ru6Jykyo8ce2XPlEd5YdAQ3H2c1w0XdS8TTlKwRoDdFPsi6E+27aqqk/N9pwC0jmvky/HEmbzWC3kjCb45fAZf+ytPy5pCZJL3I6Xuh6cwKYN9sAMD9hNe49eQl2kkyaiNeGNn3JuYwqs/che0X9YwNlnAHWNcb+KYCcPc0Zmy9jG6LjyJix1XcfpKC+KSsH7foeO3m1Xsv8p6YZ7+BY+rfUXj2Mg1vLDqKQSv+M64P1f+6Afu/UCUaevRYcgzf/nsdX+/MdtynvQQiygA/tdBZRt8pSLjwh55jJiu+KxnNhs9epmHMukgcufEUfX9RXbxhyxjVsufXqN7/2lF1/tn8ge52BAE3HiWblBjrCKibe5lsCeAfp+NQa+ZuHNcYKuOzv84bsbGsfeCCVODMrzkXN9ScV0iZnAilpqbiu+++Q+vWrfHhhx8iPDxc60X5c/bOC0TsvIrXaQrg3hng1v6MGauArR/l3AEVOVQ5a95hEL1Lb5Hh2AwHkRLjRH8AMHy1K3+kOtkolQIwvzLwc0t8sGAdGn65R/+2t38CfOGj3dnQQFeCqX/n3o79Z0bNz2JDV3A5qC2+jTJHJgL/ewO4tAk4qvssOr3NXxpVyjXFen6UlErVuu7kfPX2i9N3GOGwE2FK3VHYn79Mw5+RqhosP+VjrSp53e3JgSPfArunAgBm/ZN1df70pQw/HtS9O25nlKrD+INE/Vdzh/V17n79QrWfst0eO371YbSK/w1frdkBKJW4eC8B3RYfRcMvsu6iUkKEr3Zk69t1fBHwWw/Dnyubqw+TIIISrcUX4IWsvivvt6mQ43KfOqxHS8klgz+cJnlwXpVw6qlVyKlGSB9vJOH237P11xJsGw8cmY9R81ag+dz9eh8rkipXYOrfUTgY/RhyhRK/HL6NKw+SspVR4qt1u/Xc0iwCbmZ8R0//gnWnVM3ly4/GoN18/clxpsfZYvHBC4iQeU4READVD+uLV3JsOX8fqXIFBEHA7svxuPfC8GCdh68/wbm7Cap9++IOcHOvzhWEIAiqGyIAIEY7zuw1QMuPZvtu3j2l+q48zrrrbdrmKERkPy4BuCMFor9HqY4ZzRoPA+fUR0kGakVeZ+srmxm7hoid19Dx+8Oo9fluyNL1XXgZ0dfK0QWAqpbRUC2v+OJ6rdrnX47cRrIsHf2Wn0JsRvOeXJH1+S7cTcCuS/F6HuSXtZ+nOqxTn3cM2jgk9/gfX1MNBVIImPyssYsXL6Ju3boAgEuXtH+0zHbXiR3ruVT1QyqViBF+vL1qYvi1rNqByqFA1a4Gl9c8fC/dT0TNXEvpkkD1xdQ8yZ+/m4C6GX9P2RSFO8WAemW9kPl1aCC+gccKL3y+9TJCKpRAaA2/rBWe/gUAoDwyH8CbcEAuT0U+vw4bnn6Mt0UzcUUIMlisr2i3+u/MI+9BwmsEeLpolNI+Jt+SHMt68+dQ1b+lGwIB9SCCEqVFT/HXGQUaBnmjdzUXYFVXoG5/oHZv9WKlRc+ATaOA5h8DvtVVEy9vUjU9AABUNaYVXhwGYp8CQbpXoz6CRgfTO8eh/Gc83r/fCxeEagAAiciEK8Wkh1h5LBYznQ0X2XzuPi4/MNwUUUMUizpiPUMLrO2t6nfUYCjQbYF68nSHNejjcBBI+gP4fiZO1/4dquMqa38LEMFfeJx7/5YMSqUAkUj3PNJHchBzHZcjXvBCU5mqBqyYkyTHdWU2S2V68TINKbJ0FJc6YPfleIQGO8Dr2JdA/YFA2aa6K7h3RnXXzosY4Oo/qmm7pyJx0lPM3XkVERnFjD3jvSk+jn4O+9BUfBW4AOD+NmCsnluiASS+eA7AV3fG0QVQHlqI3jJPLDv9Bm53GYYvd1yBGAJua/zfVxXFYZd0MhQ/zINkgv7b3qNyaZY6fstwR/824vNY5TQPuxSNMFo+Hqsc56GNRFUbW+3kCvx20hn9m5RFi4ol8b4Rg7VuPX8fwX+0g/crVcKQ1nM1eh1wx7vet9D3nd4YteE6ftGz3M1HSdi/aDRKVawHION7CAFyhRIOYlHGcaT9P7T/2iOsOalKAHvWL6M1rxiykr1JG86gVa0K6FrbH4bOl09Tso5rQRCytqSTOGm/j336EssOqz6rLF2JnkuPY9uHLdXzk1Ll2HH6Lt7Vu1Vdzb9WJc2XZoWiuG9NVe1/hl1HTmBxehl8knF8aO6N07HPUa6E9ujs3ZccgyPSEVV6LpwDauJOmwUo7emilSi0EudwJ1uma9sAAGtO3kGgtytaV/ZRJbpbxgDNPlT9jv3YRFV22G7938ECZHIidOCA8dXalDcfSjah3+msTpXpiQ+y/qNy6vB45ziqpF3GOZQGALyx6Chi9f04CgKQLtO5ysuU+SOi+aXpueQwbmWsK+bpSyQ/vYgVsf6YmjFtrGQzvnb8BZ+eGonU05dxrk5bzIxvhqUDGmREo7o66SVxxzeOy3As+nsklh0ID30BbH4fzgB2SKciKDWrGfafCw+wVKOmY47jKp1Fuy85hgOftEHxzAnGJOf/ewMAsMixKd6QqKq5q/y5Ci3qHkTAk2vAnun46UUDjNZc5uIfQPROYEpG088z7dqpWOd+wHUA14HbrRaivJ83UF270+ONR8k4efsZBu7uDDGAP6Rz1J83+6m0riiH2q/vqiIz+QKAaiLtjvFHbzzFx3+chwPSIYEICkgQ9/Ql/j1+Cu/63oUvxNguNXCFlzl+ycUNQLcFuHQ/ESdvP0MHscYVdfJDNIr9CSek/2JNegf15EEOezBI2AN8McZw7EoFoFQgTSGgy8JDCPJxx/LBGXfnpKhqqDqLVTH4ibKutH3dc8j6sum59DjO3lEtO83lL4wQ/kKi4AqIXgHn1+CPrlHo06gsEl/JIXUUwzn1KbC8vd51fb3rGkpHfqs+c/Z32IfP0ofrLSuFHNMdfsNtwR9fOq7QnvnUQMdcABKRQn0AlBRp1PbsnQlXAHXFz/Gj0w8Iv98TixwXoZlYu69OqPi0aj3J97HuVBz6Zc7Q+C7UerYLG51uY3jaRCShGHzxHBMdNyBW6Ys9ygZ4KHgbrGV4T6L6kQuTnAbkUCdBADBE8i/+UYZg7SnAUZLV4OCIdMjhgO/3aN+C7oh09D7bD97irCESLhzejLDHcvR9/g8wdwL2pK4DNP67bzxKRqWH2+C48zuMcrgOxG7Hx1iLVY7z4CxKQ91ZEjQIKoHVwxrj1ZNYaP7UD1t1Ru9nArS/c8orW7D3sgRda881qlPyrkvx6GzMiqGbhF66n4SdUQ/x69EYDG0ejH8uPECFF68B7Ufp6UiVK/DsZZq65vD3U3EITiqDDtCsoDAcu0gkwtYLD6CRwuFrh2WqC5xnAJ5dQevTPdCqsg8+Sn6Ohhllyokf5xxYhis3bsNz+/v4RdEWrb+aDGwdq+qyEHsE+FxjH8RH2V4iRJY3wfFPQKOJ9djNp8ip2+qJW88Q5CbAf2VnzAWwA8vwh9Mc/KMw0Kn9xm7gi1JITl2sdYLJlFkjJEZWrcR0h6y7ewY7/JvVtyhDoFj1ozXPMePa7dJxXExdh5lbLmO5RrlvHJcBAJpHjkfQcV/9iZoBE38/iVRI0VwchUZi/T8kT5JlqDlzt8Z6RZD/tyK3cwoAqJMgAGgivooDl+6if8Y35NejMRidPVZZ1o+UUhDU7cwiaNfmlD+cUZvnX1c9TQQBHb9XNY8N1FqvkDFXu9U6VHI6x9ibi7NuAe4oiURTxRUAXYH0NFx7mAgxlLjpPAgAEJy6BqcWD8YIqJpJThnzfyASIfGVHG8sUt0J1sFJe3bt++sBETDRcYMRK9OQcAf4sSmcnl7HXgCdnn0NoJGqP8jhb9BPMhytJbpXoG9nu5oHACjSMcdhBY4ptetBM5MgABghqPp/eIiymmvm/nUMYTX8UWf2v3CTOiBqZAmD4T549BhfOWwx6qP1c9ifcwFBUDUV+tcGorL6sr0tOYrjGZ9hnMMmw4sD6KZxzOrTcnu7rA4QN7UHf2wkvo6LziMRIe+LKY6qfoGQAJ9gI14JUkTG6SaDd59rN3M5ZqvdneS4HpOwHqPSxiMpVXUJlFlDtTy9M77f9w6kkEAG1QHUXHwJNTSSIAC4+jAZ7ztkNbP/6fS51vxNS6dhElahnMa0P5zmoIlY1WR/Ge+i2fUfkCpvANddH6vL6Gtq9EAK3pCcxDZFU62EIPM81eebBphXKUW9ra8dlmFG+hB1/JlmbL2clQjtnwM01GySzUpGBEHQe22WWXN2JuNY/SDnCk8AQN3Z/yJVnnWu+XLHVUQ4yLR+1R2ynYv+cpqJRrKlkMEJ+689wo6oeHTV6M3fx+GgVnlnyHD4+hN0c0hBQxOzBem+z/CG5GTGeXWy6m5UfQrBHYQmJ0IvX77E3LlzsW/fPjx+/BjKbH1Wbt82MPAd5VmD/z7OeqOQqUbxjN4FxB1Hr0eDcPq+DKXwAv9l/KBddB4FAKgm/iPH9S5z+k7vdEnGl0fz+zrEIWsgwuxJkCGuSMXpWNNuYdb3lfjMYQ3CxKcRKH6Cn9K7YbTDP3qXbS6OwlqnCBxU1FFPW3f6Lvq9yOFuCAMcoN1un1u9UtS9RGRu9ZDTeP2FHp5X//kyVX9nwpWO8zBaPh5KQXuLuW1/rVOE1vv1Tl8g/oAH/A5NRB+4ooVT1o+7B16iFwz05zIgNV2BbnN+QxvxAxxU1jO5b0yOnmbVEvwrnYSeS2vjr0ffAAC+ctTulOmPZ3iIEpBEbQDcA4DgjHFWFHIgaiMGOuzFQJg22vMcx5WoM9sdAJAsS0fi6zT9NZUAVsW/rTNtssPv8Bc9wzj5GLjB+E7FH332GX5w0u3s7g5V3w0n6D9GMgnxuTdRZF6g5ESdBGlwFem/1b/lvANYp3FV8bGD/rGihkp2o2+kqmZvgsNGAMAIh50Y4bATLwUpashWYL7jT+gp0b1poYpY+1EvDcXatUiTsEpnmcwkKNMR6Tg8ulUVARrTGn2pfVwkvErDIsdFaCWJQlfxSYyX63ZqHpG0FBtOV8DEjM/cx+Eg7gil8KOih1a5J8ky7YvKLVm1oK9TUxE+dQbaduqOp0eWo6RTOgDt5QGgGF7DEelIgBuMaXTVTIIMGe3wD7YqQtTv3UWvcUU6FBVka7EjKh5OkOOjHJLtdyUHsEoRlqfhoZ4+uI0KmtdzGit5naaAugPDzolAk1Gmb8CMTE6ERowYgUOHDmHgwIHw9/dnv6ACUPy1RsfKbdo/ss3kDgiWeOOmsjRMVUesP2ktLXoKCRRaNSR5EeG4HONej9Vb6wQApaA7AKe+o2mkQ1aHOkNJkBPk6mRAs6r+1uOUXKuY9Vnh9C1ilXr6aRjw8lFW01VZI3583nfYihaSKEyWj9Sa3lZyAdGSIegum62zTOzJLQgyOiLA75DqIchueIWq4qwr+ZriWBPWouKsfI3DUtWx95eipdHV43nxPO4KINU/74TzhwiVzQX+nqya8HkisLAOkHRf1WdLj57iw/hLaXgU3uoi7RqJoStOYZOB7euTeUx2EJ9FIorlUjqLviQIAJQZVThDJfpvasi04MWHeqeLReZJUsVQqmPRpFlz0kOzz52GEMkVQA60El9AR8lZrXnFRDKMkmzTmwQBuklNXkhEAgLWd9KaVgKJaCc5h22KpngNZxy+9gC/OqtqUptlxJtdR8lZnfh9RbrnLZ1LOI27Ul1kT7DUaSFwMGPw0NfAelF1RAqV4YZXmOqwFgvT38ZJZ9X/Zx/ZdJQQaXeAN9ZdoZTOtB3Zmr0lIgGZNc8jJdtRRWz4zswuklNYpQhDQ5HhplxDcrpYavjFHlzO9wO+zMfkRGjnzp3Yvn07mjdvbol47Jcg5GlU1vGO5r892FuUgtqi/NfsdZccxzj5WIPz20t0O1Jm//Jkb2YyxFOkf4Cz6Y5rjFpenyBx7oP5Ke5F4p9tf6NHimk1LC6iNDQWRWO/9BO987dIZ2i9F0OJoF2DTNqGIWuy1R6ZytAPmLnUE+kfxynT7Ox9w5Iyxoq6q7/z8Xynn/AwzRvtxPrvwisvjkdF0T2IIWCx4w+4JQToLZebYiKZVofbvAqTnEZbxTmUE+VtMMmcmtNMcVj6MVrKFqibaTPH9vITZdXyinP4sYt17mdw3lQ9tVCWdtb5fQBAR/FZdMqW3ADaCV5OMsuVE8UjSXDFC7jrllGk5bi2TdLPUSl1NaKcRwAA+jpk9b39Qzon1xguKYP0Tj+trJLrsgDwj9NnkEKOyuKcx4VrLI5GaTwx6lyYnea5PH1VdzhodOJ+maYweIFsDSYnQl5eXvD29rZELPbrxI+qW6+H7kRheUaGOZo+lIIINUSGxz+JyNbsAajuENLUUax7wrKGbx31N69JlrfVU8ltfqMctudeqIj4zinnpkytGgPNp3LnMPDcOqevclznXmnW+EmVYaFBQ02w0ukbHFJY90HWZURP4YkUrHf6Av8qG6J3xoDlFcRZYxT5i0xr+i4M9CVBALDQUX8NXXZDHP5FFdE9Va1XhsvKclplRIrcE+L/Oc41anv6bFTo7zXqKjIuEa9lQq3wMedcxjMzoJFGk6ZD7EGtefVF2s2dj5JSTboBwtxMrpyaM2cOZsyYgVevDI8NQSbaPQV4+RjY+Sm+ccjn4xHMxNDJwhRikYDtUtOekq7ZrAUUnqd7t5Lk8jwiso6j+vu5FQX6OokXtHPOo1FFfA8fOmy2digWp5nYmFo2e4dvYzQzYXvZGbpMfSjYRiVF9r5/+yJNb3ozJ5NrhObPn49bt27B19cXQUFBcHTU7oARGVn0htG3iNQkVX8fjcchnL3zHL0cchhErwAZ6otT0JiAEBUOLcRRGJVx6zxZl76+QABwT/Ap4Ejypmq2DvGuqXl/pqA5mJwI9ejRwwJh2KHD83Qe//BSlg4YcdskEVFBy2/fMjKfA8q6eqcrTG/kKRTqXf0GCOuUe0ELMTkRmjlzpiXisD/J8TqTWPtBRES5098VO/v4RraiXKL+Gx0KSp7Sx4SEBCxfvhxTpkzB8+eqznKRkZG4f9/6nQxtxSsDo7YSERFRwcnTs8Y6dOgADw8PxMbGYuTIkfD29samTZsQFxeH1atXWyLOIufI1bsIZTMYERGRVZlcIxQeHo4hQ4bgxo0bcHbOut2tS5cuOHxY94napF9FEWvPiIiIACDFiq0kJidCp0+fxnvvvaczvXTp0oiP1+33QvpJjBwokIiIqKh78TLNats2ORGSSqVIStId/vv69evw8bGNW/cKg8IxbCIREZH1SdLy9lgRczA5EXrzzTcxe/ZsyOWqB7OIRCLExcVh0qRJ6Nmzp9kDJCIiIpXP5eZ51E5hU+zqBqtt2+REaP78+UhJSUGpUqXw+vVrtG7dGhUrVoSbmxu+/PJLS8RYJBn7XBsiIqJM6UV0sLkHCa+ttm2T7xrz8PDAnj17cOzYMVy4cAEpKSmoX78+OnToYIn4iqzyYvanIiIiAoC0dIXVtm1yIrR69Wr06dMHzZs313oCfVpaGtavX49Bg4pmtR0RERFZhs/9vQCmWmXbJjeNDR06FImJiTrTk5OTMXToULMERURERPbjYHIZq23b5ERIEASIRLr9W+7duwcPDw+zBEVERET2Qymy3nPSjG4aq1evHkQiEUQiEdq3bw8Hh6xFFQoFYmJiEBYWZpEgiYiIqOgSRNbrBG50IpT51Pnz588jNDQUxYsXV89zcnJCUFAQb58nIiKyoCTB1dohWIgN1AhlPnU+KCgIffr00Xq8RkFasmQJvvnmG8THx6NOnTpYtGgRGjdubLD8xo0bMX36dMTGxqJSpUr4+uuv0aVLlwKMmIiIyDy2K5taOwSLEKzYNGbylgcPHgxnZ2ekpaXh3r17iIuL03pZ0h9//IHw8HDMnDkTkZGRqFOnDkJDQ/H48WO95Y8fP46+ffti+PDhOHfuHHr06IEePXrg0qVLFo2TiIjIEhRFdBwh6Ol7XFBMToRu3LiBli1bwsXFBeXKlUNwcDCCg4MRFBSE4OBgS8So9t1332HkyJEYOnQoqlevjp9++gmurq5YsWKF3vILFy5EWFgYJk6ciGrVqmHOnDmoX78+Fi9ebHAbMpkMSUlJWi8iIiJbcEpZ1doh5MlLufUePGVyIjRkyBCIxWJs27YNZ8+eRWRkJCIjI3Hu3DlERkZaIkYAqnGKzp49qzVwo1gsRocOHXDixAm9y5w4cUJnoMfQ0FCD5QEgIiICHh4e6ldgYKB5PgAREZGFTZUPt3YIeSJNS7Datk0eUPH8+fM4e/YsqlYt2Kzz6dOnUCgU8PX11Zru6+uLa9eu6V0mPj5eb/n4eMOjOk+ZMgXh4eHq90lJSUyGiIjIJtwSSls7hDypIY612rZNToSqV6+Op0+fWiKWQkEqlUIqlVo7DCIiIi37FPWsHYLFWLPvk8lNY19//TU+/fRTHDx4EM+ePSuw/jQlS5aERCLBo0ePtKY/evQIfn5+epfx8/MzqTwREVFhNV7+gbVDsBibSoQ6dOiAkydPon379ihVqhS8vLzg5eUFT09PeHl5WSJGAKqxiho0aIB9+/appymVSuzbtw8hISF6lwkJCdEqDwB79uwxWJ6IiKiwSkIxa4dgMRdR0WrbNrlp7MCBA5aIwyjh4eEYPHgwGjZsiMaNG2PBggV4+fKl+hlngwYNQunSpREREQEAGDduHFq3bo358+eja9euWL9+Pc6cOYNly5ZZ7TMQERGZamH6W0aXPaqogRaSyxaMxvyOC3UwxkrbNjkRat26tcF5lh6fp0+fPnjy5AlmzJiB+Ph41K1bF7t27VJ3iI6Li4NYnFXJ1axZM6xbtw7Tpk3D1KlTUalSJWzevBk1a9a0aJxERETm8mt6ZyxIN/7JDX8pWtlcItSkfAmrbdvkRCi75ORk/P7771i+fDnOnj0LhUJhjrgMGjt2LMaOHat33sGDB3Wm9erVC7169bJoTERERJYSpQyGYEJPlv9scCyhYs6OVtt2nse0Pnz4MAYPHgx/f398++23aNeuHU6ePGnO2IiIiOzeJSHIpPL34WOZQCxIYr2BpU2rEYqPj8eqVavw66+/IikpCb1794ZMJsPmzZtRvXp1S8VIRERkl+bJe+OmUMbaYVic1DHfDVR5ZnSNULdu3VClShVcvHgRCxYswIMHD7Bo0SJLxkYF7P20cdYOgazsiIL954gKk2NK2/hOnlPm864vW3jW2M6dOzF8+HDMmjULXbt2hURSRB/8Zif+VjTXmXZSWa3Atn9GWbnAtmVOU+XD8Y5shkW3kSS44pHgme/1TJSPMqn8DWVpDJRPzfd28+K5UNwq292taGiV7WpqlPqj2ddpqedNTZcPsch6i5r9irroIZttlnU9EEqaZT15EZS6Do1Tlxic/0TwUP+tRP4SmURpQL6Wzw+jE6GjR48iOTkZDRo0QJMmTbB48eIiPcJ0YSUTcq8+XNTyDNrI5utMP6OsjPfLbkOl1NUYL/8Ak+Uj8FpwUs8XFSuJKGVQrut/JegfefuJ4J7rsgDwvbwn3kn73KiyhUFL2feokPobqqWuwDpFe5wRLPMj0y9tKr6Tv4M30r5EE9mPqJaq/2HCxtI8SRkyOu1j9d8vYP5kZKZ8MIJS1+ZYJkoZhGTBVWf6X4qWxm+oVm9TQwMA7FXWz7XMJ/L3cpw/T94HP6V305kep/RBdyN+DJ/AM9cymjaU+xyfykeib9pnBsv0SdOfrO9UNAIApAjOJm0zkzz/99fo2PFmJK4qy5p9vZki81lT0UX2lUnl7wsl8L78Y5wXKiIodV2+tv192cUmHx+Z1qS3BwD8nt7WYJlLOZzvUwRnvNe6PN5t3xgpzvqTFCGfyU+mXYpGeOXobZZ15YXRiVDTpk3xyy+/4OHDh3jvvfewfv16BAQEQKlUYs+ePUhOTrZknJThA3nOzVe3yryNGqXddQ7PGqm/olfaDLzXsVbGyUyE9Yp2OK9xkmhWoQTeSfscYfJ5GJ42AdsUTfVuY6ZjuN7p3WRf5hp/k9TFWKjQvQ1U82SV15M0AAxL+8QstSma7gq+UECCNxpUxNQupiVB55UVcpz/THADABxS1MZxZU38oHgbcYJqOIjXyPt+UNE+Cq4qtZ+Ztzq9I3YpGxm9tmnyoVrvp8qH46CiDq4qy2JZeled8lHKIPxPEaoTBwDcUZaC8MFJjA3eju5pX+jd3o/pbxoXWNfvgJ6/GFVUJjhqjcfyp6KV3nKaSX0lXzfM9ZoFea2+6CL7Siex+1HRHZv11LAuU7yBC0JFfCnvZzCe7P8nxug9+CNsULRFtIFlZYLhu2++TO+PoNR1aCVbYPJ2AWD0MO1axniPukYvmyBoDwY4Lu0DjCy9GV3qV0DntLl5iscY4+TGj05zS+mv9b5f2lRcEYJQJXWVTtnwtNF619FR9g1kcNI7Lydr0ttjsnyE1rRYV8PNYp6uOd9lNS19OGqnLsNX6f0Nlnkj7SutZO2R4IlXghR3lT4QT47FlM7VEN6xMooP/gOCT1WdlgQRsp4Yn5+k6LCydp6XNQeT7xorVqwYhg0bhqNHjyIqKgoTJkzA3LlzUapUKbz5ppEnLjLK101PIUw2FzPkg9XT9ikbGCz/WnBC2YE/QgQRHmdLBl7CJdfbL798qxY+Cq2FXyYMxJJZnyGi2CTdQkEt8c2AFjqTTysrIx65jwPxCPqz/rfTZmFg+nT8mt4Zvyo657oeAAhKXYt7vXZqTTumrIkwmfZJdVF6D4O1WKYY3CwIo1rpJjY7FY2APmvxIlvzzlVlWfRIm6N3XRPSRuP9tHFoLvsBzVJ/wFD5p1rznR0N/18dDd1hVLyvs33m3xSdUCH1N/RN+wydZF9jRvoQaCYpmScyrR+skVkDqI5qGaz+e6J8FHZIwzBEPgmd0+bihFL3Zon7guE7V+LhDVGpavj63ab4cUAjzE3vqzV/jnyA6uGRtd/NmthjKVBTz1gqjfQ/bfuId0/s1Xk2k4Dv03vhtzprsKblPgxvoT9Rvaosp/67b79hmDzuYzj2/Ak1G7SAvsQue7PADWVpbFC0AQD8ouiqU9Oa+YObWXMTlLoOT6E7Mr/c2/Qm5JQcEmiFoOrS8BzG1d5mF1ShClA860HWfjVUtXYvhOL4Nb0ztiia4fa7h7WWiUcJDEqbhGayRWik0cxySFkH8wfqnkuOVp2GoNS1aCObD4VXzhcSmd5Nm2Zw3l2hlFHrqJm6HJ3S5uGCsjwAVfeB4xn9c2RwUp2HO2Ul7ceVNQyuq7JvcZyc0l7vvBilr97p09KHY72iLTYrmqmnaR5VfRuXhZs0q0bunfo5d6BeNrABklDcqCarsWkfIkbpi8Fpk1FdthLvui6Dq4tLVgH/2hCNOYU9Cu3fH81EKD9NYxsUrVGjdO412JaS59vnAaBKlSqYN28e7t27h99//91cMVGG3g0DcU0oC6mLW65lP0obi+G+f8BR6gKIVImPMZYpVFfy93zbwsPFEWPaVkSgtyucHSVw0Hc/o1gCFNd9VltaWe2BNlNFzkhtr32lr6/WIFO7qr6Y9P5IzEkfiDSNK9pl6V3RVfYlWui5gl3Qpx68KzXWqgGSwQkv4I7/lFXU035K74bqspXYVudHfCYfhm4y/TUQxlo/qimapmbdKPCh/EOg2htwqtpRPU0BMT6TD9O7/BT5cPylbIWdyiZIhRQPUBLKbF/FyWFVETu3K9BgCOARCEy+i3+a/YkFdbejRV3DJ+BMG9Nb4VS2JrzzJd6AAhKcUNbAdSEQ+n7QAWCR5gi2kqwr27LeWc1XX83+GrO7Z12tViyrUTsxeBtQ4y08bxOhnpQs6D8ei0kdEFbTD5HFW6FZ6g+YG/ADHox7gF1uPTEprCrw1k9ZhR2kQPMcakQ/OAU0zbr6rx7goZP8PxBUyfrAt7phQPuGmPZGdaCOdhIGALVLZyUKSteshE4QtMtlJjg3NJ74HZS6Fh3TvkEaMo9jEfpna8Zqn/YtyqeuwboPQ9XTvErrNuFIJIZP0S9QXO9+zUxor2gkcwAQVbILHhpxsaKccDPnAsU1EgvPcsCkO2gqW4w56QPxvfunKF+1DjAhGh1l87A2vT0+dYvAYWUdvMqWoK0a2hjuesaOkUhdAYgQK/gjbehevSFEyLP+z14JUpzUk4gDyKhhEaGZdBMw/SkwYh8gztpmvJCVfKbAFQpIMCTtU6D7ElytP0trXW0GfgY0+xD906ZgdNrH8A3Un6StHdEYmz5oDj8PZ+z4SLd5t33afNRI/dVAk7EIH8vHoqdspjppPDe9I/ZPaI2It2vhwsxOiP4iDMcnt8MnoVX0LJ+lY3VVwmUoQXlRIqtZeJsyBG3Tvsc1IecmypRsvytiKNV/G1MjdE9Pf6dmqT8gHQ5oW8W4hNUS8pUIZZJIJOjRowe2bt1qjtXZhWhl7rdDBpcshv+mtsenYdoHfAvZAgxL+0RrWtVOQ/HDIFW1pbF5+fgOldGn33AsrvcP/Eb+qTPfzVlPfwCPMkBJ7RP2c6E4Yqqrqokzfxicm70H55YfAjOeY/dbF1Ev9accq2hXDGmEmhlXBJpXGV+l90en9qH46O0O2gsM2oIe9UrD2UGi9XnfbaT6QU7UqNXITAq79uiHEq1HI1nzyxzUEvAIxL03sqqHL/u+CXiX14kx80ewafkSOBExEJ1lEegom4f0jH4TxRyzbiAYVmY7IgXtq3mFIELV1JX4XaG6Ulw2ULd2b2JoFQxvEYz+TTN+xLotBD6OApzd0a1TR3zcowXg4gkM3YUb4qwamjdlWTVPe4M/wcT00dA8En5K74aSnlk1VnPfrgV/D2d8805tKEurOgxvSG8DAFij6ICDijq43/Rz7Ts5NP52lIghaGQFMc7V8EN6D1VzQXBLoNcq9GvfCD/2V51sG8qWokbqr+ryvu7aP4p/vd8M/UObY/SAvgjwKoZjk9vh/TYVtLcvCIB/HeCdFcDwvUCriapaokylqgJhXwHOquOoRL1uEGssflBRByPk2t8bANrJFgAE1Nc69p0ddW8MmS4fgmeCGz7N6D8kQIyg1LUZzQy638AkFIPMUfOKVwRHBwdU8FH9n0gdxJC8/TNQpjGGp01QlxIb+Da/17o8BIjRTKZ7527m/8rAtMla0yuPXqP+e15Pw00RYjfdmry14jeBgX/rFq4/CHDxxG/vtUabKj74472M5zi6+WH60Lfxd+lPMGNgF3VxL9esxLpuoKf+7bv7Y92IJlg3oglc9NWMjtiPnxVZfbI0zxeZtpYcCcxMwHpFu6yJEkegTENg0Bb1JH396F7AHag3AJUCtS/4KvqoLkinjHkfFVv3w7oRTfTGXy/QE8Uzam6qB2jXvJ2vNBZKiDPOSSJ1P57szgpV8ARe+Kh9JXgVc0L5jONELBZB6iBBgKcLnB0l+GWQdmf/34Y3hlgEDA4pB5FIhK/eqoVGFbISjP+UVbAxvRWivDvh+Rum90E8oqyl9d5DmvNNU7El2+DOiMtA799QI/VXvX0BH0CVHDk5mCUdyRPr3bhv596Tj8cMh9+wJL07/pLOMliulLszUK0rsO1DoExjLGxYF9M2X8KIgd2A375VFQpujQ/aZCUnoowfj0TBFR6iV1rr0/zx6ts4ULX+mtrt4pkW9KmHY7+EoLn8BND2M+DRZaCjblPPzKrb8GnVAGBrNPqnTcV//aRwrp5x8hNLIEhUtTQAEDm9I+rP2aO7MUFQ/+hpnth2jmuJav4ZJ5OEccCxhaq/y7dRrV4sglfnacCuT4Da7+Lj9pWx/vRdvZ9HJBKhkq8bYgV/LEx/G+PeaAI0VSVwZQBgm6rcZf+3UaPhOGC59klK0IhLJBLhqqB9xY0W44FLf2JDemu0qx6AG09e40Fiqnq2EmKkIqu5qlMN3Zq1rrX8EVQy24MV9d1WWi4ECwO+Rec7X+NPRWsE1W4JvH0fiI9CC/+GmBP5AG0q+wA/ZC1S3d8dHaqVQmlPF7Sv5ot3G2dc/dX+B7evRuKv3xMAqGrVhsgn4Uq7UECemLUCR+2TmKuTxulDJMZ36aoOy99plAmr4YcP2lTAjwdvQQbghntTVEo6iaAuE7TWVcbLFWPaGtmpNbN5LNBA/6aPzgPPY4AyDeDuPBdIU00eItfT1Jvp40vAneOqRMs7GJJ1WZ2vNROhzCPgN0Un/KboCO2kJ+dLEKmDGJBnvQ+r6QcXJwkuzQqFg1gEOEqAEXtwdNpOwysBAEHAlM7VcPVhMo5cfwSZ1BtSIQ1ISwEAODlIABnwDB54VLoTfO//q5ouEaNpeW+kyNLxToMywHaNdbYIB7zK6b0AeN1hLno1fQ9Q/1BpfE4H1fHcONgbjYMbay3XqrIPWlVWJVWVfYvj+qMUtKvmAxh48sOotPGoIrqLj1p3h6NDxj5P0zh/TbwFSN0ytpkVvLOjBP9NaK8+8A7UnIs2XYbmcDt21vfYUSJWvy1RzAnPXqYhwEN/02Lm6mqW9lBftOmo0E4VowE3q7wHREUZnJ9dZgJkSMfqvmhTxQcHo58AAFpW8kH0F51VnwtAvyZl0a9JWeDsQqw5Go1pD1VNkSPKB6O3q+G70YTsVZ8ZhrWoAJzJei8R53zMB5VwBcqUAVAGAaUO4fELT1RDXI7LWAMTISuJFfwxLFu/EIOKlQA+iwckUnQXi9GtdgDEYhHw3hHg9HKgzRSt4pmHZv+0qVhQ/DfcbTgZyMOzciuWKo6KU3cCqQmAi27/hUyL+taDLF31aJUkFIdjzS7QvBTX/E55F9PTibDjbK2TVoLG3UvqJAgAOswCqncHfLRv83dsMgKo1A7wCoaXUv8XOGt9qpPU9+nvYFxT7aa6zYpmKCN6isfFqwFI0Vk2+7mhZaWSOHLjKdpVzbji8quJp+Ni4f1AhrbVfNG6sg9+OnQLyDjvSSRi+LpL8ShJpl5HoLcL7j5/jQFNyyLQy1U3CcrB9N4t8PlWL4wKCUJIhYwmj3IhcAYwsKl2knZDWRqlRMCgkCDdFTm5onydFpgnvws3qQPeXxsJAHAQi1XH3tBdgKMzUKoGcOkvIEh1Mm1XtRS61vZHrdIeOBP7Qm+MYrEIn4ZVxY8HbwEAfq8wDzNaeQBeeuIwF1dv1Qu6v4WtKvugex09d8B4BgKefbLe13wHuH0QKJFTcpbzj0CHar7Ye/VR1gQXb+C1aj99+VZNdK+rak4rLtU+DV+Y2QnIvO9AJAImRAPpMmDXZEDqDkhU5VcMboiHiamQelwHBCXwheo4FIvFODmlPSRiEXy2Z9V0ikQi/D6yqfpvNQdnoMNMg5/DpcX72hNKVgbiL+b42bP7fWRTHLr+BJ2DRHoToeYVS+Dfm40gqdktKwkCACdXVWd4ZTpQLOuH+7vedbBxXz/0erkOoq7zVRd0H0cBshS09dVtJtP6vO5ZzZhVy5UGYm8DAP54ryl+PHALY9up/s9zPpNkGH0M+CmjA3HTMaoayezc/IHkh8B7RyB6kFXrsbR/fYh2rAFeq97XKeOBC/eyLjzWj9J/s0puHPU1pzYYgk6VUzHty30AVIeVq5Ph2pzaZTz1Tv+sSzWtREjzC1YjwAOINxzX6uGN0TNiBObiF7SSGJ8MFgQmQlYyoGlZrDmpJzOuHAZc3wU00L5DB45ZzTnizCTDvzbw5g/IrkZGdewloTwqfvYfyisF4ICqg62vuzPKeLlAoRRQorgRHYhFohyToExSBwkuzOwEsUj3KsE124l+98etVD8Qh9Qb0Zr/h6Itmoiv4Y23B+rGUlpPZ3GRCCihaq+XioEz0zrA/e//Abd0i1Ys5Yb1o5qilJvuZ/9YrnqGXbhI/wki+4lxcb/6+PdyPEJrZtXslPTyQoeM3RVUshjm9qytToTExXzQLtgXv/8XhzJeqv/PPeNb43GSDGVL6FYZ58bX3RlLBxjuPA8AGLEfc5b+ik3KFvgglzbT3g1VzYrLBzWEg0SUVVVdLiSr0IC/1H9KxCIs6adq+vr0yQWjYlaKHPKeBHmafou1Zr+FFUMaol1V/R1VddTtrzqmfLX7Y1XI5Qo9U8tKJfHLoAYInqLRsf3dtcCWMUCbqehfqZzBZZ0dJUC1N4GrW4HmHwNuGcdXX+1+mA4SMQK9dY+bYk4OcMus1Sip3TwrMsegdZ3nqRKUegNzL5uhRHEp3q5fBkh6qHf+j/0bYO+VR1rfJTU9neHfrl8GqL8UePWlOunVd3x0qxOAfy48wOg2Gv15vIOBPmtViVVxX+DPoUDzcahYyg3f9alr9GcCAPjVBBqNAM6tBUI+0F/mw0jg5WPAKwiih/fUkzvX8gfu+KkTiy1jW0AQBMQ8fYlyJYrlWttiqlJuWTVdIpEIZbxcMTG0CvZefYRzcQkAgL3hrbDxzD2811p//ydxDjEVl+q5i03j6tHfwwVfDe2MQStLoo/yAL52/EU9nIO1MRGyks+6VEf9sl6o5u8O2e52kMbuV814ZwUQewwo3zrnFeSgRHEpTk5pD9eM9luxWIQvetREiiwdAZ4uOPhJGwC5V2uaysNF/+2cLSuWRI+6AeranSp+bqji55aVCGU7OafBEWPlH+GNeoY7V+ekZHEpoHFV+UWPmmiWWWMCVR+fXElzv6vGw8URvRoacfvzoK3AvtlAt4WY7l0VNUu7o0M11Q+ys6MkT0mQ0co0wK8K1WWayMjeYx2qG5ksaJgUVhUPElLRp5H+/eHjJsWTZBlC9TQH5mrIduDZLSCwce5lc2B0EgQAYjFQrpnO5GEtgvD1rmu5Lr56WGPdpKNUNWDkfuO232sVkBCn+tE2kVisUSPQ6hNAKVclVuZSrATwpnmfKuDh4oieDfLwGInMJMiABX3q4uMOlVA+e01rtTey/h51UO+yJYtr115n79em1nU+EPa1uqZOh5Mr4BQEQH9/M00ikSjX5jBzyDwyx7StiPdbV8D603dRv5wnKpZyw5QuJgysK9I41kQiIGwuhPiLgHdFiE4s1rrLDgDaZHSI/kPRBvfc6uJkQt7uXjQ3JkJW4uIkUV3VAMCb3wG/vws0+xBwKgZU7pTv9ftla+ceoNFU4pDDnSiWIBaLsODd7Lcxa7LA0OqlqgHRqqvxAU0NX31rqurnhmvxyeha2x/wKQ60nQYU90G36wG4/+IVauX19s7yrYHyqippVwD9mxgXj7n5e+Z3XCLDShSXYo2BzqMAsH9Ca9x78Vq7qdNYQS3UzXHWJnUw/ENWxssF916o2jkyk6BfBjXEyNVnsGWM7jhDORJL8pQEqTau2bRUTOfHyCjNPgSOW+IRSkY1OJmNRCwyuhYvu7ZVSmFUq/KoVKo43qgdkHNnXkNJUDYdq/uiZaWSqJfZUbxyGHBmBeCU9+THQHcevd5tFIhNkfcxuFmQeppYLFL1I8oTjXN3iQpA0/ezprQYr7qgyGZCx8qYv+c6xvQKw7FfTgHIufN+QWAiVBh4BwNjTlk7CtM0/QA4+aOqk6UZZdYc5FvLjLuDqhpfq/TPhy2Q+FquqlECgNYTAQCLcml9KuxWDmmEIzeeoo8xtVcW4ubsiGr+OQ8AZwkBni7Ao9zLmUNwyWLqRChTx+q+qmEQCkKPn4A9M4A+q/O/LnEB/DRY8dlSxhCJRJhqSu2IERwlYvw2XOOCoVInVR+8bE2Ypqjq54ZD158YVXZuz9qY06Om/n5EeVHMB3iV8YSJugO05+lJggDgw/aVMKp1ea2LimAf4/tGWgITIcqbTl+qbp31McPjJjT6P/02vDHmbLuCCZ1yHiMjV06uQHvTngnmKBFnJUFFSNuqpdC2qvXG6LCmAD+/AkuEPmxXCUduPEXPXAa6s5i6fYE67xqfYNQbCJz7DWit7246CyUpplRf2AORSLsPXh6M61AJIpEInfX1r9LDbEkQoOpD9+Sq6u+444bv5Mwmp5pVa2AiRHkjFquan/Kjwyzg1n5Vx9QMVf3csXZE3u6WIMpO1HE2kHBXNTClhTUO9sbFzztpjf5b4EypZem2UNUElo/aiPwp3DVCtsLVyQGTO1vm+Yd6VX0DuJYx1ojm8ZZ4T395G8BEiKynxceqF5GlFC8FDN2eezkz0TdScqEllgA+BmpeC3mzFVmRZgfpIpLMWm8oRyIiKqQs9QPHpjGbp3WnmHmSImunU0yEiIio4LHWyfZp/h96mN43LnMIl8p+uT9P05LYNEZERNoslaRoDVbKRKhIqaj/uWk5ifq8E2RypdWblJkIERFRNhZKUtz9VY8vcZACzoVjMD0ykdaDmPPXNObq5ABXPU9dKmhMhIiI8skllxGDbU7JSpZb9zu/Wm7dVAAMPGjYhps6mQgREZG2mu+obocuy6EsKBvv8ll/a+U+TISIiKioEIuBluYdNZ6KCK2H2xaNGiHeNUZElE82/BtAZBq/mll/F5EDn4kQERERGUfrsUoG+gvZGCZCREREZByHrGdDws0/628brh1iIkREZILMB/NOKcjnOxEVFmIxMOU+MPku4FAI7n03AyZCREQm2DmuJX4aUB/DWwSrp9nutTBRHkiL6xkHyna/BbxrjIjIBD5uUoTV9M+9IFGRx7vGiIiIyF7ZcPKjiYkQEVE+iYrIDwKRPWIiRERERHnApjEiIiIi2HJnaZtIhGJjYzF8+HAEBwfDxcUFFSpUwMyZM5GWlpbjcm3atIFIJNJ6jR49uoCiJiIiKsJsuBZIk03cNXbt2jUolUr8/PPPqFixIi5duoSRI0fi5cuX+Pbbb3NcduTIkZg9e7b6vaurq6XDJSI7UzR+DohMVTSaxmwiEQoLC0NYWJj6ffny5REdHY2lS5fmmgi5urrCz8/P0iESERHZMdtNhGyiaUyfxMREeHt751pu7dq1KFmyJGrWrIkpU6bg1atXOZaXyWRISkrSehER5USwdgBE1mDDtUCabKJGKLubN29i0aJFudYG9evXD+XKlUNAQAAuXryISZMmITo6Gps2bTK4TEREBGbNmmXukImIiIqYotE0ZtUaocmTJ+t0Zs7+unbtmtYy9+/fR1hYGHr16oWRI0fmuP5Ro0YhNDQUtWrVQv/+/bF69Wr8/fffuHXrlsFlpkyZgsTERPXr7t27ZvmsRFR02e5PAJG52O63wKo1QhMmTMCQIUNyLFO+fHn13w8ePEDbtm3RrFkzLFu2zOTtNWnSBICqRqlChQp6y0ilUkilUpPXTUT2K1mWbu0QiAqeqGjUCFk1EfLx8YGPj49RZe/fv4+2bduiQYMGWLlyJcRi0yuzzp8/DwDw9+dzgoiIiPLHdpMfTTbRWfr+/fto06YNypYti2+//RZPnjxBfHw84uPjtcpUrVoV//33HwDg1q1bmDNnDs6ePYvY2Fhs3boVgwYNQqtWrVC7dm1rfRQiIqIiyHaTIpvoLL1nzx7cvHkTN2/eRJkyZbTmCYLqfg25XI7o6Gj1XWFOTk7Yu3cvFixYgJcvXyIwMBA9e/bEtGnTCjx+IiKiIodNYwVnyJAhufYlCgoKUidFABAYGIhDhw5ZODIiIsBNahOnUiIzs93kR5NNNI0RERVmEknR+EEgyjvb/Q4wESIiIiLTFZGmMSZCRERElAciA3/bFiZCRET5JPAZG0Q2i4kQERERmY5NY0RERGS3RGwaIyIiIrtlu8mPJiZCREREZDqlxjP2FDLrxZFPTISIiPJJYG9pskfy11l/v3puvTjyiYkQEVE+JaXy6fNkhxykWX97l7deHPnERIiIiIjyRyyxdgR5xkSIiIiI8sl2O04zESIiIiLTafaN4zhCREREZFfun9V4w0SIiIiI7In8VdbfIttNJ2w3ciIiIioc2DRGRERE9ouJEBEREdkTdpYmIiIiAhMhIiIiIlvERIiIiIjsFhMhIiIiMp0NP1ZDExMhIiIiMp1fbWtHYBZMhIiIiMh0NtxBWhMTISIiIsoDJkJERERENo2JEBEREdktJkJERERkuqLRMsZEiIiIiOwXEyEiIiKyW0yEiIiIKA+KRtsYEyEiIiKyW0yEiIiIyG4xESIiIiLTiR2sHYFZMBEiIiIi0zk4WzsCs7CZRCgoKAgikUjrNXfu3ByXSU1NxZgxY1CiRAkUL14cPXv2xKNHjwooYiIioiKsXn/AuzzQeJS1I8kXm6rXmj17NkaOHKl+7+bmlmP58ePHY/v27di4cSM8PDwwduxYvP322zh27JilQyUiO1La08XaIRAVPKkb8GGkzT981aYSITc3N/j5+RlVNjExEb/++ivWrVuHdu3aAQBWrlyJatWq4eTJk2jatKklQyUiO6IUBGuHQGQdNp4EATbUNAYAc+fORYkSJVCvXj188803SE9PN1j27NmzkMvl6NChg3pa1apVUbZsWZw4ccLgcjKZDElJSVovIqKcKJRMhIhslc3UCH300UeoX78+vL29cfz4cUyZMgUPHz7Ed999p7d8fHw8nJyc4OnpqTXd19cX8fHxBrcTERGBWbNmmTN0IiriWCNEZLusWiM0efJknQ7Q2V/Xrl0DAISHh6NNmzaoXbs2Ro8ejfnz52PRokWQyWRmjWnKlClITExUv+7evWvW9RNR0eMksanKdSLSYNUaoQkTJmDIkCE5lilfvrze6U2aNEF6ejpiY2NRpUoVnfl+fn5IS0tDQkKCVq3Qo0ePcuxnJJVKIZVKjYqfiOzbTwPqI2LnNSzuW9/aoRBRHlk1EfLx8YGPj0+elj1//jzEYjFKlSqld36DBg3g6OiIffv2oWfPngCA6OhoxMXFISQkJM8xExFlCqvpj7Ca/tYOg4jywSb6CJ04cQKnTp1C27Zt4ebmhhMnTmD8+PEYMGAAvLy8AAD3799H+/btsXr1ajRu3BgeHh4YPnw4wsPD4e3tDXd3d3z44YcICQnhHWNEREQEwEYSIalUivXr1+Pzzz+HTCZDcHAwxo8fj/DwcHUZuVyO6OhovHr1Sj3t+++/h1gsRs+ePSGTyRAaGooff/zRGh+BiIiICiGRIPB2h5wkJSXBw8MDiYmJcHd3t3Y4REREZARjf795qwMRERHZLSZCREREZLeYCBEREZHdYiJEREREdouJEBEREdktJkJERERkt5gIERERkd1iIkRERER2i4kQERER2S0mQkRERGS3mAgRERGR3bKJh65aU+aj2JKSkqwcCRERERkr83c7t0eqMhHKRXJyMgAgMDDQypEQERGRqZKTk+Hh4WFwPp8+nwulUokHDx7Azc0NIpHIbOtNSkpCYGAg7t69y6faZ+A+0cV9oov7RBf3iTbuD132uE8EQUBycjICAgIgFhvuCcQaoVyIxWKUKVPGYut3d3e3m4PSWNwnurhPdHGf6OI+0cb9ocve9klONUGZ2FmaiIiI7BYTISIiIrJbTISsRCqVYubMmZBKpdYOpdDgPtHFfaKL+0QX94k27g9d3CeGsbM0ERER2S3WCBEREZHdYiJEREREdouJEBEREdktJkJERERkt5gIWcmSJUsQFBQEZ2dnNGnSBP/995+1QzKLzz//HCKRSOtVtWpV9fzU1FSMGTMGJUqUQPHixdGzZ088evRIax1xcXHo2rUrXF1dUapUKUycOBHp6elaZQ4ePIj69etDKpWiYsWKWLVqVUF8PKMcPnwY3bp1Q0BAAEQiETZv3qw1XxAEzJgxA/7+/nBxcUGHDh1w48YNrTLPnz9H//794e7uDk9PTwwfPhwpKSlaZS5evIiWLVvC2dkZgYGBmDdvnk4sGzduRNWqVeHs7IxatWphx44dZv+8ucltfwwZMkTnmAkLC9MqU5T2BwBERESgUaNGcHNzQ6lSpdCjRw9ER0drlSnI74q1z0fG7I82bdroHCejR4/WKlNU9gcALF26FLVr11YPgBgSEoKdO3eq59vT8WFxAhW49evXC05OTsKKFSuEy5cvCyNHjhQ8PT2FR48eWTu0fJs5c6ZQo0YN4eHDh+rXkydP1PNHjx4tBAYGCvv27RPOnDkjNG3aVGjWrJl6fnp6ulCzZk2hQ4cOwrlz54QdO3YIJUuWFKZMmaIuc/v2bcHV1VUIDw8Xrly5IixatEiQSCTCrl27CvSzGrJjxw7hs88+EzZt2iQAEP7++2+t+XPnzhU8PDyEzZs3CxcuXBDefPNNITg4WHj9+rW6TFhYmFCnTh3h5MmTwpEjR4SKFSsKffv2Vc9PTEwUfH19hf79+wuXLl0Sfv/9d8HFxUX4+eef1WWOHTsmSCQSYd68ecKVK1eEadOmCY6OjkJUVJTF94Gm3PbH4MGDhbCwMK1j5vnz51plitL+EARBCA0NFVauXClcunRJOH/+vNClSxehbNmyQkpKirpMQX1XCsP5yJj90bp1a2HkyJFax0liYqJ6flHaH4IgCFu3bhW2b98uXL9+XYiOjhamTp0qODo6CpcuXRIEwb6OD0tjImQFjRs3FsaMGaN+r1AohICAACEiIsKKUZnHzJkzhTp16uidl5CQIDg6OgobN25UT7t69aoAQDhx4oQgCKofTbFYLMTHx6vLLF26VHB3dxdkMpkgCILw6aefCjVq1NBad58+fYTQ0FAzf5r8y/7Dr1QqBT8/P+Gbb75RT0tISBCkUqnw+++/C4IgCFeuXBEACKdPn1aX2blzpyASiYT79+8LgiAIP/74o+Dl5aXeJ4IgCJMmTRKqVKmift+7d2+ha9euWvE0adJEeO+998z6GU1hKBHq3r27wWWK8v7I9PjxYwGAcOjQIUEQCva7UhjPR9n3hyCoEqFx48YZXKYo749MXl5ewvLly+3++DA3No0VsLS0NJw9exYdOnRQTxOLxejQoQNOnDhhxcjM58aNGwgICED58uXRv39/xMXFAQDOnj0LuVyu9dmrVq2KsmXLqj/7iRMnUKtWLfj6+qrLhIaGIikpCZcvX1aX0VxHZhlb2H8xMTGIj4/Xit/DwwNNmjTR2geenp5o2LChukyHDh0gFotx6tQpdZlWrVrByclJXSY0NBTR0dF48eKFuoyt7KeDBw+iVKlSqFKlCt5//308e/ZMPc8e9kdiYiIAwNvbG0DBfVcK6/ko+/7ItHbtWpQsWRI1a9bElClT8OrVK/W8orw/FAoF1q9fj5cvXyIkJMTujw9z40NXC9jTp0+hUCi0Dk4A8PX1xbVr16wUlfk0adIEq1atQpUqVfDw4UPMmjULLVu2xKVLlxAfHw8nJyd4enpqLePr64v4+HgAQHx8vN59kzkvpzJJSUl4/fo1XFxcLPTp8i/zM+iLX/PzlSpVSmu+g4MDvL29tcoEBwfrrCNznpeXl8H9lLmOwiIsLAxvv/02goODcevWLUydOhWdO3fGiRMnIJFIivz+UCqV+Pjjj9G8eXPUrFkTAArsu/LixYtCdz7Stz8AoF+/fihXrhwCAgJw8eJFTJo0CdHR0di0aROAork/oqKiEBISgtTUVBQvXhx///03qlevjvPnz9vt8WEJTITIrDp37qz+u3bt2mjSpAnKlSuHDRs2FOoEhazn3XffVf9dq1Yt1K5dGxUqVMDBgwfRvn17K0ZWMMaMGYNLly7h6NGj1g6lUDC0P0aNGqX+u1atWvD390f79u1x69YtVKhQoaDDLBBVqlTB+fPnkZiYiD///BODBw/GoUOHrB1WkcOmsQJWsmRJSCQSnd79jx49gp+fn5WishxPT09UrlwZN2/ehJ+fH9LS0pCQkKBVRvOz+/n56d03mfNyKuPu7l7ok63Mz5DT/7+fnx8eP36sNT89PR3Pnz83y34q7MdZ+fLlUbJkSdy8eRNA0d4fY8eOxbZt23DgwAGUKVNGPb2gviuF7XxkaH/o06RJEwDQOk6K2v5wcnJCxYoV0aBBA0RERKBOnTpYuHCh3R4flsJEqIA5OTmhQYMG2Ldvn3qaUqnEvn37EBISYsXILCMlJQW3bt2Cv78/GjRoAEdHR63PHh0djbi4OPVnDwkJQVRUlNYP3549e+Du7o7q1aury2iuI7OMLey/4OBg+Pn5acWflJSEU6dOae2DhIQEnD17Vl1m//79UCqV6pN/SEgIDh8+DLlcri6zZ88eVKlSBV5eXuoytrif7t27h2fPnsHf3x9A0dwfgiBg7Nix+Pvvv7F//36dZr2C+q4UlvNRbvtDn/PnzwOA1nFSVPaHIUqlEjKZzO6OD4uzdm9te7R+/XpBKpUKq1atEq5cuSKMGjVK8PT01Ordb6smTJggHDx4UIiJiRGOHTsmdOjQQShZsqTw+PFjQRBUt3yWLVtW2L9/v3DmzBkhJCRECAkJUS+fectnp06dhPPnzwu7du0SfHx89N7yOXHiROHq1avCkiVLCtXt88nJycK5c+eEc+fOCQCE7777Tjh37pxw584dQRBUt897enoKW7ZsES5evCh0795d7+3z9erVE06dOiUcPXpUqFSpktbt4gkJCYKvr68wcOBA4dKlS8L69esFV1dXndvFHRwchG+//Va4evWqMHPmTKvcLp7T/khOThY++eQT4cSJE0JMTIywd+9eoX79+kKlSpWE1NTUIrk/BEEQ3n//fcHDw0M4ePCg1u3gr169UpcpqO9KYTgf5bY/bt68KcyePVs4c+aMEBMTI2zZskUoX7680KpVqyK5PwRBECZPniwcOnRIiImJES5evChMnjxZEIlEwr///isIgn0dH5bGRMhKFi1aJJQtW1ZwcnISGjduLJw8edLaIZlFnz59BH9/f8HJyUkoXbq00KdPH+HmzZvq+a9fvxY++OADwcvLS3B1dRXeeust4eHDh1rriI2NFTp37iy4uLgIJUuWFCZMmCDI5XKtMgcOHBDq1q0rODk5CeXLlxdWrlxZEB/PKAcOHBAA6LwGDx4sCILqFvrp06cLvr6+glQqFdq3by9ER0drrePZs2dC3759heLFiwvu7u7C0KFDheTkZK0yFy5cEFq0aCFIpVKhdOnSwty5c3Vi2bBhg1C5cmXByclJqFGjhrB9+3aLfW5Dctofr169Ejp16iT4+PgIjo6OQrly5YSRI0fqnGSL0v4QBEHv/gCgdRwX5HfF2uej3PZHXFyc0KpVK8Hb21uQSqVCxYoVhYkTJ2qNIyQIRWd/CIIgDBs2TChXrpzg5OQk+Pj4CO3bt1cnQYJgX8eHpYkEQRAKrv6JiIiIqPBgHyEiIiKyW0yEiIiIyG4xESIiIiK7xUSIiIiI7BYTISIiIrJbTISIiIjIbjERIiIiIrvFRIiIiIjsFhMhIrJJIpEImzdvtnYYRhkyZAh69Ohh7TCISA8mQkRUKMXHx+PDDz9E+fLlIZVKERgYiG7duuk8JJKIKD8crB0AEVF2sbGxaN68OTw9PfHNN9+gVq1akMvl2L17N8aMGYNr165ZO0QiKiJYI0REhc4HH3wAkUiE//77Dz179kTlypVRo0YNhIeH4+TJk+pyT58+xVtvvQVXV1dUqlQJW7duVc9TKBQYPnw4goOD4eLigipVqmDhwoVa28lssvr222/h7++PEiVKYMyYMZDL5eoyQUFB+OqrrzBs2DC4ubmhbNmyWLZsmdZ67t69i969e8PT0xPe3t7o3r07YmNjLbNziMismAgRUaHy/Plz7Nq1C2PGjEGxYsV05nt6eqr/njVrFnr37o2LFy+iS5cu6N+/P54/fw4AUCqVKFOmDDZu3IgrV65gxowZmDp1KjZs2KC1vgMHDuDWrVs4cOAA/ve//2HVqlVYtWqVVpn58+ejYcOGOHfuHD744AO8//77iI6OBgDI5XKEhobCzc0NR44cwbFjx1C8eHGEhYUhLS3NvDuHiMzPeg++JyLSderUKQGAsGnTphzLARCmTZumfp+SkiIAEHbu3GlwmTFjxgg9e/ZUvx88eLBQrlw5IT09XT2tV69eQp8+fdTvy5UrJwwYMED9XqlUCqVKlRKWLl0qCIIg/Pbbb0KVKlUEpVKpLiOTyQQXFxdh9+7d6u107949l09ORNbAPkJEVKgIgmB02dq1a6v/LlasGNzd3fH48WP1tCVLlmDFihWIi4vD69evkZaWhrp162qto0aNGpBIJOr3/v7+iIqKMrgdkUgEPz8/9XYuXLiAmzdvws3NTWuZ1NRU3Lp1y+jPQkTWwUSIiAqVSpUqQSQSGdUh2tHRUeu9SCSCUqkEAKxfvx6ffPIJ5s+fj5CQELi5ueGbb77BqVOnjF6HMWVSUlLQoEEDrF27Vic+Hx+fXD8DEVkXEyEiKlS8vb0RGhqKJUuW4KOPPtLpJ5SQkKDVT8iQY8eOoVmzZvjggw/U0yxRQ1O/fn388ccfKFWqFNzd3c2+fiKyLHaWJqJCZ8mSJVAoFGjcuDH++usv3LhxA1evXsUPP/yAkJAQo9ZRqVIlnDlzBrt378b169cxffp0nD592uyx9u/fHyVLlkT37t1x5MgRxMTE4ODBg/joo49w7949s2+PiMyLiRARFTrly5dHZGQk2rZtiwkTJqBmzZro2LEj9u3bh6VLlxq1jvfeew9vv/02+vTpgyZNmuDZs2datUPm4urqisOHD6Ns2bJ4++23Ua1aNQwfPhypqamsISKyASLBlJ6JREREREUIa4SIiIjIbjERIiIiIrvFRIiIiIjsFhMhIiIisltMhIiIiMhuMREiIiIiu8VEiIiIiOwWEyEiIiKyW0yEiIiIyG4xESIiIiK7xUSIiIiI7Nb/Ae3pruh7wlgGAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB43klEQVR4nO3dd1wT5x8H8E8SIIAyFRmKgnvvhXuDWqutVeve1lZbK9Y66qjaFmtrq1Vra636s2qttlats+6tVXHgwgXiws1SCSG53x+BkJAEEkgIIZ/365WX5O65u2/Oy+V7z/PccyJBEAQQERER2SGxtQMgIiIishYmQkRERGS3mAgRERGR3WIiRERERHaLiRARERHZLSZCREREZLeYCBEREZHdcrB2AIWdUqnEgwcP4ObmBpFIZO1wiIiIyAiCICA5ORkBAQEQiw3X+zARysWDBw8QGBho7TCIiIgoD+7evYsyZcoYnM9EKBdubm4AVDvS3d3dytEQERGRMZKSkhAYGKj+HTeEiVAuMpvD3N3dmQgRERHZmNy6tbCzNBEREdktJkJERERkt5gIERERkd1iIkRERER2i4kQERER2S0mQkRERGS3mAgRERGR3WIiRERERHaLiRARERHZLSZCREREZLeYCBEREZHdYiJEREREdouJEBHZtNdpCmuHQEQ2jIkQEdmsyLgXqDZjF2b9c9naoRCRjWIiREQ265td0QCAlcdirRsIEdksJkJERERkt5gIEZHNEiBYOwQisnFMhIiIiMhuMREiIiIiu8VEiIhslsCWMSLKp0KTCB0+fBjdunVDQEAARCIRNm/erJ4nl8sxadIk1KpVC8WKFUNAQAAGDRqEBw8e5LjOzz//HCKRSOtVtWpVC38SIioozIOIKL8KTSL08uVL1KlTB0uWLNGZ9+rVK0RGRmL69OmIjIzEpk2bEB0djTfffDPX9daoUQMPHz5Uv44ePWqJ8ImIiMgGOVg7gEydO3dG586d9c7z8PDAnj17tKYtXrwYjRs3RlxcHMqWLWtwvQ4ODvDz8zNrrERUSLBKiIjyqdDUCJkqMTERIpEInp6eOZa7ceMGAgICUL58efTv3x9xcXE5lpfJZEhKStJ6ERERUdFkk4lQamoqJk2ahL59+8Ld3d1guSZNmmDVqlXYtWsXli5dipiYGLRs2RLJyckGl4mIiICHh4f6FRgYaImPQERElH/PbwOX/uKdA/lQaJrGjCWXy9G7d28IgoClS5fmWFazqa127dpo0qQJypUrhw0bNmD48OF6l5kyZQrCw8PV75OSkpgMERVS6UqltUMgsq4f6qn+FQSg1jvWjcVG2VQilJkE3blzB/v378+xNkgfT09PVK5cGTdv3jRYRiqVQiqV5jdUIioAkXEJ1g6BqHC4e4qJUB7ZTNNYZhJ048YN7N27FyVKlDB5HSkpKbh16xb8/f0tECERERHZmkKTCKWkpOD8+fM4f/48ACAmJgbnz59HXFwc5HI53nnnHZw5cwZr166FQqFAfHw84uPjkZaWpl5H+/btsXjxYvX7Tz75BIcOHUJsbCyOHz+Ot956CxKJBH379i3oj0dERGQ57COUZ4WmaezMmTNo27at+n1mP53Bgwfj888/x9atWwEAdevW1VruwIEDaNOmDQDg1q1bePr0qXrevXv30LdvXzx79gw+Pj5o0aIFTp48CR8fH8t+GCIiIrIJhSYRatOmDYQcMtqc5mWKjY3Ver9+/fr8hkVENuLivQTULuNp7TCIrONFjLUjsFmFpmmMiCg/Vh6LtXYIRAVLqcj6+/E168Vh45gIEVGRcOFegrVDICpYyQ+z/pa/sl4cNo6JEBEVCbefvLR2CETW8/q5tSOwWUyEiIiIbJLI2gEUCUyEiIiIyG4xESIiIiK7xUSIiIiI7BYTISIiIrJbTISIiIhskYidpc2BiRARERHZLSZCREREZLeYCBEREZHdYiJEREREdouJEBERkS0SBGtHUCQwESIiIrJF9/6zdgRFAhMhIiIiW7TpPWtHUCQwESIiIrJFEidrR1AkMBEiIiKyRRxQ0SyYCBEREdkiWZK1IygSmAgRERGR3WIiRERERHaLiRARERHZLSZCRERERYEs2doR2CQmQkREREXB3VPWjsAmMREiIiIqChRya0dgk5gIERERFQXn1lg7ApvERIiIbJLAB04SaXudYO0IbBITISKySfryoPsJrws+ECKyaUyEiMgm6asPuh7Pu2aIyDRMhIjIJsnSFTrTDl1/YoVIiMiWMREiIpv024k7OtPYb4iITMVEiIhsUsTOazrTmAaRfeM3IC+YCBFRkaFkjRDZM/kra0dgk5gIEVGRoWQeRPbswTlrR2CTmAgRUZHBPkJEZComQkRUZCiV1o6AiGxNoUmEDh8+jG7duiEgIAAikQibN2/Wmi8IAmbMmAF/f3+4uLigQ4cOuHHjRq7rXbJkCYKCguDs7IwmTZrgv//+s9AnICJrE9hZlIhMVGgSoZcvX6JOnTpYsmSJ3vnz5s3DDz/8gJ9++gmnTp1CsWLFEBoaitTUVIPr/OOPPxAeHo6ZM2ciMjISderUQWhoKB4/fmypj0FEVsQ+QmQ32AxsNoUmEercuTO++OILvPXWWzrzBEHAggULMG3aNHTv3h21a9fG6tWr8eDBA52aI03fffcdRo4ciaFDh6J69er46aef4OrqihUrVhhcRiaTISkpSetFRLaBd42R3eCxbjaFJhHKSUxMDOLj49GhQwf1NA8PDzRp0gQnTpzQu0xaWhrOnj2rtYxYLEaHDh0MLgMAERER8PDwUL8CAwPN90GIyKL420BEprKJRCg+Ph4A4OvrqzXd19dXPS+7p0+fQqFQmLQMAEyZMgWJiYnq1927d/MZPREVFN41RvaDx7q5OFg7gMJGKpVCKpVaOwwiygP2ESK7waTfbGyiRsjPzw8A8OjRI63pjx49Us/LrmTJkpBIJCYtQ0S2jX2EyH7wWDcXm0iEgoOD4efnh3379qmnJSUl4dSpUwgJCdG7jJOTExo0aKC1jFKpxL59+wwuQ0S2jT8NRGSqQtM0lpKSgps3b6rfx8TE4Pz58/D29kbZsmXx8ccf44svvkClSpUQHByM6dOnIyAgAD169FAv0759e7z11lsYO3YsACA8PByDBw9Gw4YN0bhxYyxYsAAvX77E0KFDC/rjEVEBcJMWmlMakWWx9tNsCs1Z48yZM2jbtq36fXh4OABg8ODBWLVqFT799FO8fPkSo0aNQkJCAlq0aIFdu3bB2dlZvcytW7fw9OlT9fs+ffrgyZMnmDFjBuLj41G3bl3s2rVLpwM1ERUNaQoOLU32gomQuYgE3maRo6SkJHh4eCAxMRHu7u7WDoeIMgRN3q53euzcrgUcCZEVyFOBL/Vc1H+eWPCxFFLG/n7bRB8hIiIiIktgIkRERGRr7p6ydgRFBhMhIiIiW/PokrUjKDKYCBEREZHdYiJEREREdouJEBERka15ccfaERQZTISIiIhszfPb1o6gyGAiREREZGsEDh5qLkyEiIiIbM3Lx9aOoMhgIkRERGRr4qOsHUGRwUSIiIiI7BYTISIiIrJbTISIiIjIbjERIiIiIrvFRIiIiIjsFhMhIiIisltMhIiIiMhuMREiIiIiu8VEiIiIiOyWQ14WiouLw507d/Dq1Sv4+PigRo0akEql5o6NiIiIyKKMToRiY2OxdOlSrF+/Hvfu3YMgCOp5Tk5OaNmyJUaNGoWePXtCLGZFExERERV+RmUsH330EerUqYOYmBh88cUXuHLlChITE5GWlob4+Hjs2LEDLVq0wIwZM1C7dm2cPn3a0nETERER5ZtRNULFihXD7du3UaJECZ15pUqVQrt27dCuXTvMnDkTu3btwt27d9GoUSOzB0tEBABKpZB7ISIiIxiVCEVERBi1socPHyIsLCxfARER5Wb35Xhrh0BkPUqF4XmJ9wGP0gUXSxFgdGee8PDwHOc/fPgQbdq0yW88RES5en9tpLVDILIe+SvD8xLuFFwcRYTRidDKlSvx5Zdf6p2XmQT5+PiYLTAiIiIyQpUu1o7Aphl919jWrVsRFhYGb29vvP/+++rp8fHxaNu2Lby9vbFr1y6LBElEREQGOHtaOwKbZnQi1LJlS2zYsAE9e/aEl5cX3n33XXUS5OHhgX///RfFixe3ZKxERESUnYhD1uSHSQMqdu3aFStWrMDQoUORmpqKefPmoXjx4vj333/h5uZmqRiJiIjIEJHI2hHYNJNHlu7Xrx8SEhIwfPhw1K9fH3v37oWHh4clYiMiIqLshGzDRzARyhejE6F69epBpLGzHR0dkZCQgLZt22qVi4zk3RxEREQFhk1j+WJ0ItSjRw+t9927dzd3LERERGQqrUSItUOmMjoRmjlzpiXjICIiorxgjVC+cO8RERHZNNYC5YdRiVBYWBhOnjyZa7nk5GR8/fXXWLJkSb4DIyIiIiOwRihfjNp7vXr1Qs+ePVG9enVMmjQJGzduxLFjx3D27Fns3bsXP/zwA3r37g1/f39ERkaiW7duZg80KCgIIpFI5zVmzBi95VetWqVT1tnZ2exxERERWRXvGssXo/oIDR8+HAMGDMDGjRvxxx9/YNmyZUhMTAQAiEQiVK9eHaGhoTh9+jSqVatmkUBPnz4NhSLrQXOXLl1Cx44d0atXL4PLuLu7Izo6Wv1exIOFqMhpXdkHh64/sXYYRAUnLUX7vVaNULZb6ylXRneWlkqlGDBgAAYMGAAASExMxOvXr1GiRAk4OjpaLMBM2Z9jNnfuXFSoUAGtW7c2uIxIJIKfn5+lQyMiK6oT6MlEiOzL+bXa79k0li953nseHh7w8/MrkCQou7S0NKxZswbDhg3LsZYnJSUF5cqVQ2BgILp3747Lly/num6ZTIakpCStFxEVXqznJbuT04CK2edRrmwyjdy8eTMSEhIwZMgQg2WqVKmCFStWYMuWLVizZg2USiWaNWuGe/fu5bjuiIgIeHh4qF+BgYFmjp6IzIkt3mR3lArt92wayxebTIR+/fVXdO7cGQEBAQbLhISEYNCgQahbty5at26NTZs2wcfHBz///HOO654yZQoSExPVr7t375o7fCIyIxHrhMjePLqUbQJrhPLD5GeNWdudO3ewd+9ebNq0yaTlHB0dUa9ePdy8eTPHclKpFFKpND8hElEBEjMPIntzfbf2ewfNO6KZCJnK5mqEVq5ciVKlSqFr164mLadQKBAVFQV/f38LRUZE1sCmMbI7Srn2+waDs/4WlAUbSxGQp0QoISEBy5cvx5QpU/D8+XMAqoet3r9/36zBZadUKrFy5UoMHjwYDg7alVmDBg3ClClT1O9nz56Nf//9F7dv30ZkZCQGDBiAO3fuYMSIERaNkYgKlp+Hi7VDILIup2JZfz84b7UwbJXJidDFixdRuXJlfP311/j222+RkJAAANi0aZNWImIJe/fuRVxcHIYNG6YzLy4uDg8fPlS/f/HiBUaOHIlq1aqhS5cuSEpKwvHjx1G9enWLxkhEBat7XcN9BYnsg0a1aOT/rBeGjTK5j1B4eDiGDBmCefPmwc3NTT29S5cu6Nevn1mDy65Tp04QDHQEO3jwoNb777//Ht9//71F4yEi63OU2FwLP5F58fb5fDH5DHL69Gm89957OtNLly6N+Ph4swRFREREBriWzDZBIxF6EVOgoRQFJidCUqlU7yCD169f1xn9mYiIiMysdAPt97xjIF9MToTefPNNzJ49G3K5qte6SCRCXFwcJk2ahJ49e5o9QCKi3EzoWBkA4MB76cke6CQ+PO7zw+REaP78+UhJSUGpUqXw+vVrtG7dGhUrVoSbmxu+/PJLS8RIRJSjCqWKAwDql/WyciREBSDpgfZ71gjli8mdpT08PLBnzx4cO3YMFy5cQEpKCurXr48OHTpYIj4iolxl/gwIHEyO7EH8xWwTmAjlh0mJkFwuh4uLC86fP4/mzZujefPmloqLiMhomRfEcgUTIbJDrBHKF5OaxhwdHVG2bFkoFIrcCxMRFZB7L14DAM7fTbBuIERWwUQoP0zuI/TZZ59h6tSp6hGliYis7d8rj6wdApH1sEYoX0zuI7R48WLcvHkTAQEBKFeuHIoVK6Y1PzIy0mzBEREZgz8DZN/4DcgPkxOhHj16WCAMIqK84wUx2TV+AfLF5ERo5syZloiDiCjPRLwiJnvl5g/WCOUPH9JDRDaPF8Rkt976mV+AfDK5RkgsFkOUw07nHWVEVND4O0B2S1qcX4B8MjkR+vvvv7Xey+VynDt3Dv/73/8wa9YsswVGRGQsNo0RUV6ZnAh1795dZ9o777yDGjVq4I8//sDw4cPNEhgRkbFuPUmxdghEVsKLgPwyWx+hpk2bYt++feZaHRGR0RJeya0dApF1FPe1dgQ2zyyJ0OvXr/HDDz+gdOnS5lgdEZFJXsuz+iYKAh+zQXbEg7+7+WVy05iXl5dWZ2lBEJCcnAxXV1esWbPGrMEREWV3/VFyjvOVAiBhawERGcnkROj777/XSoTEYjF8fHzQpEkTeHl5mTU4IqLsbj3OuT+QQilAImYmRETGMTkRateuHQIDA/XeQh8XF4eyZcuaJTAiorw4c+c5mlUoae0wiMhGmNxHKDg4GE+ePNGZ/uzZMwQHB5slKCIiU5TxclH/fT/jSfRERMYwOREy1BExJSUFzs7O+Q6IiCgn+saOa1jOS2M+m8WIyHhGN42Fh4cDUJ1kZsyYAVdXV/U8hUKBU6dOoW7dumYPkIgoN2ImP0SUR0YnQufOnQOgqhGKioqCk5OTep6TkxPq1KmDTz75xPwREhHlom3VUth07r61wyAiG2R0InTgwAEAwNChQ7Fw4UK4u7tbLCgiIsN0a39KFHPSU46IKHcm3zW2cuVKS8RBRJRn7BdERHllciIEAGfOnMGGDRsQFxeHtLQ0rXmbNm0yS2BERMZiHkREeWXyXWPr169Hs2bNcPXqVfz999+Qy+W4fPky9u/fDw8PD0vESESk9jRFpjNNnG20eyIiY5mcCH311Vf4/vvv8c8//8DJyQkLFy7EtWvX0Lt3bw6mSEQW9+2/0TrTNAeSvvow50dwEBFpMjkRunXrFrp27QpAdbfYy5cvIRKJMH78eCxbtszsARIRaXopS9eZptlHaMWxmIIMh4hsnMmJkJeXF5KTVVdcpUuXxqVLlwAACQkJePXqlXmjIyLKRqHUbfris8WIKK9M7izdqlUr7NmzB7Vq1UKvXr0wbtw47N+/H3v27EH79u0tESMRkZqePEjPDfVERMYxORFavHgxUlNTAQCfffYZHB0dcfz4cfTs2RPTpk0ze4BERIYMaRYEgHeNEVHemZQIpaenY9u2bQgNDQUAiMViTJ482SKBERHlpoqfGwA+YoOI8s6kPkIODg4YPXq0ukaIiKgwYB5ERHllcmfpxo0b4/z58xYIJWeff/45RCKR1qtq1ao5LrNx40ZUrVoVzs7OqFWrFnbs2FFA0RJRQcjsI83O0kSUVyb3Efrggw8QHh6Ou3fvokGDBihWrJjW/Nq1a5stuOxq1KiBvXv3qt87OBgO//jx4+jbty8iIiLwxhtvYN26dejRowciIyNRs2ZNi8VIRAVHlNFNWsTu0kQqnhzPz1QmJ0LvvvsuAOCjjz5STxOJRBAEASKRCAqFwnzRZePg4AA/Pz+jyi5cuBBhYWGYOHEiAGDOnDnYs2cPFi9ejJ9++sliMRJRAcrIf1ghRHYvoB7w4BzQeJS1I7E5JidCMTHWG6zsxo0bCAgIgLOzM0JCQhAREWFwNOsTJ04gPDxca1poaCg2b96c4zZkMhlksqwh/JOSkvIdNxFZRmb+w4eukt3zrqBKhEQSa0dic0xOhMqVK2eJOHLVpEkTrFq1ClWqVMHDhw8xa9YstGzZEpcuXYKbm5tO+fj4ePj6+mpN8/X1RXx8fI7biYiIwKxZs8waOxFZRmYCxDyI7J76S8Bn7ZnK5M7SAPDbb7+hefPmCAgIwJ07dwAACxYswJYtW8wanKbOnTujV69eqF27NkJDQ7Fjxw4kJCRgw4YNZt3OlClTkJiYqH7dvXvXrOsnIvML9HK1dghE1vUiVvXv3VNWDcMWmZwILV26FOHh4ejSpQsSEhLUfYI8PT2xYMECc8dnkKenJypXroybN2/qne/n54dHjx5pTXv06FGufYykUinc3d21XkRUOGVeAzs55OmajqjouHda9e8Vy1VIFFUmnz0WLVqEX375BZ999hkkkqy2yIYNGyIqKsqsweUkJSUFt27dgr+/v975ISEh2Ldvn9a0PXv2ICQkpCDCIyIiMr80PtPT3ExOhGJiYlCvXj2d6VKpFC9fvjRLUPp88sknOHToEGJjY3H8+HG89dZbkEgk6Nu3LwBg0KBBmDJlirr8uHHjsGvXLsyfPx/Xrl3D559/jjNnzmDs2LEWi5GIChb7BpHdObbQ2hEUOSYnQsHBwXoHVNy1axeqVatmjpj0unfvHvr27YsqVaqgd+/eKFGiBE6ePAkfHx8AQFxcHB4+fKgu36xZM6xbtw7Lli1DnTp18Oeff2Lz5s0cQ4iIiGxXWoq1IyhyTL5rLDw8HGPGjEFqaioEQcB///2H33//HREREVi+fLklYgQArF+/Psf5Bw8e1JnWq1cv9OrVy0IRERERFTCJo7UjKHJMToRGjBgBFxcXTJs2Da9evUK/fv0QEBCAhQsXqgdbJCIqCK5OJp/CiGybiDcGmFueziL9+/dH//798erVK6SkpKBUqVLmjouIKFdNgr2tHQJRAWPHOHPL8+XU48ePER0dDUA1qFlmXx0iooLCztJkd3jQm53JdWzJyckYOHAgAgIC0Lp1a7Ru3RoBAQEYMGAAEhMTLREjEZFefNgq2R8e8+ZmciI0YsQInDp1Ctu3b0dCQgISEhKwbds2nDlzBu+9954lYiQi0svdhX2EiCh/TD6LbNu2Dbt370aLFi3U00JDQ/HLL78gLCzMrMEREeWED1slu8Nj3uxMrhEqUaIEPDw8dKZ7eHjAy8vLLEERERGRHrxrzOxM3qPTpk1DeHi41lPc4+PjMXHiREyfPt2swRER2Yqbj5MRseMqnr9Ms3YoVJQxETI7k5vGli5dips3b6Js2bIoW7YsANWozlKpFE+ePMHPP/+sLhsZGWm+SImICrHQBUegUAq48+wVfhrYwNrhUJHFpjFzMzkR6tGjhwXCICKybQqlAACIus+7Z8mC2EfI7ExOhGbOnGmJOIiIigQHCX+oyMrSXgJOxawdhc3I172nKSkpUCqVWtPc3d3zFRARkS1zEDMRIgsyqkaIx6ApTO51FRMTg65du6JYsWLqO8W8vLzg6enJu8aIyO6J2XRBlpT2MutviZP+MmJJwcRSRJhcIzRgwAAIgoAVK1bA19eX43gQUYFZeSzG2iHkiqdEsqgj87P+FpT6y4iYCJnC5ETowoULOHv2LKpUqWKJeIiIDJr1zxVrh5ArPvaDCozBRIjHoClMbhpr1KgR7t69a4lYiIiIyFieZQ3MYCJkCpNrhJYvX47Ro0fj/v37qFmzJhwdHbXm165d22zBERERkQHOuk95AAAo0wGxgf5DlpIuAzYOBSq0BRqPLNht55PJidCTJ09w69YtDB06VD1NJBJBEASIRCIoFAqzBkhEZEvYKkFWl3Qf8A4u2G2eXwtEb1e9inoiNGzYMNSrVw+///47O0sTERFZS9MP9E+3xl1jL+4U/DbNxORE6M6dO9i6dSsqVqxoiXiIiIjIGNW66Z9ujeeRHVtQ8Ns0E5P3Vrt27XDhwgVLxEJERETGMjR69KW/CjYOG2dyjVC3bt0wfvx4REVFoVatWjqdpd98802zBUdElBdKpQCxlUZ4ZncBsro9M4Dm46wdhc0wOREaPXo0AGD27Nk689hZmogKg/sJrxHo7WqVbTMNIrItJjeNKZVKgy8mQURUGHy146rVtp2mMDDIHREVSvnqUZWammquOIiIzOZBwmurbfvm4xSrbZuKuJt7rR1BkWRyIqRQKDBnzhyULl0axYsXx+3btwEA06dPx6+//mr2AImITCVYOwAiSzi6wNoRFEkmJ0JffvklVq1ahXnz5sHJKWvkypo1a2L58uVmDY6IiIgyyF9ZO4IiyeREaPXq1Vi2bBn69+8PiSRr0KY6derg2rVrZg2OiCgvBFYJUVHEp8pbhMmJ0P379/UOpqhUKiGXy80SFBEREWUjNvlGbzKCyYlQ9erVceTIEZ3pf/75J+rVq2eWoIiI8kNgLyEqiqzx6Aw7YHJ6OWPGDAwePBj379+HUqnEpk2bEB0djdWrV2Pbtm2WiJGICJcfJBpdlk1jVCTdPWXtCLLEnQSubAXafWZ4hGsbYXKNUPfu3fHPP/9g7969KFasGGbMmIGrV6/in3/+QceOHS0RIxERuv5w1NohEFmXIs3aEWRZEQqcXAIcmmftSPItTw2OLVu2xJ49e8wdCxGR0Ta8F2LtEIgKj8phwPVdBb/dpzcKfptmZnKNUPny5fHs2TOd6QkJCShfvrxZgiIiyk3J4k4G57FpjOxOywnWjsBmmZwIxcbG6n2Uhkwmw/37980SFBFRbnLKdZQFlAkJzLiosAhsbJ3tPr9tne2akdFNY1u3blX/vXv3bnh4eKjfKxQK7Nu3D0FBQWYNTlNERAQ2bdqEa9euwcXFBc2aNcPXX3+NKlWqGFxm1apVGDp0qNY0qVTKR4MQFQHWzkH2XnmEiX9ewIJ366F1ZR/rBkNFn7UPeEOeWO+5fuZidCLUo0cPAKonzA8ePFhrnqOjI4KCgjB//nyzBqfp0KFDGDNmDBo1aoT09HRMnToVnTp1wpUrV1CsmOEe6+7u7oiOjla/F4n4bGiioiCn2pjrj5Itvv0Rq88AAAav+A+xc7tafHtkxxTpwLI21o6iyDI6EVIqVU9UDg4OxunTp1GyZEmLBaXPrl3ancBWrVqFUqVK4ezZs2jVqpXB5UQiEfz8/CwdHhEVsJyuj4tLOfAcFSEPIoFHUdaOosgyuY9QTExMgSdB+iQmqsYU8fb2zrFcSkoKypUrh8DAQHTv3h2XL1/OsbxMJkNSUpLWi4gKn5z6AXkVM9yR2hLYV4jIdpmcCBUGSqUSH3/8MZo3b46aNWsaLFelShWsWLECW7ZswZo1a6BUKtGsWTPcu3fP4DIRERHw8PBQvwIDAy3xEYgon0Qw3Mx951nBPpySeRAVOhmtOJQ7m0yExowZg0uXLmH9+vU5lgsJCcGgQYNQt25dtG7dGps2bYKPjw9+/vlng8tMmTIFiYmJ6tfdu3fNHT4RmYE4Wx7Ut7H1LlqYB5Fl5aFv69Pr5g+jiLK5hvSxY8di27ZtOHz4MMqUKWPSso6OjqhXrx5u3rxpsIxUKoVUKs1vmERkYdmTj+CS1hvmn01jRLbLZmqEBEHA2LFj8ffff2P//v0IDg42eR0KhQJRUVHw9/e3QIREVJCy5x5ergXbL0gT0yAqdAryDmkbvxDIV41Qamoq0tK0n33i7u6er4AMGTNmDNatW4ctW7bAzc0N8fHxAAAPDw+4uLgAAAYNGoTSpUsjIiICADB79mw0bdoUFStWREJCAr755hvcuXMHI0aMsEiMRFRwsj9h3kFivaExCmoAR7JThX3YFxs//k1OhF69eoVPP/0UGzZs0PuoDX2jTpvD0qVLAQBt2rTRmr5y5UoMGTIEABAXFwexOKuS68WLFxg5ciTi4+Ph5eWFBg0a4Pjx46hevbpFYiSigpP93GvNc7Hmtp0cbKainYoyZXrBbUuw7Y7ZJidCEydOxIEDB7B06VIMHDgQS5Yswf379/Hzzz9j7ty5logRgHFt8AcPHtR6//333+P777+3UEREZE3WTIS2nDf8OKGy3q4FFwiRIbFHAd8aBbMte0uE/vnnH6xevRpt2rTB0KFD0bJlS1SsWBHlypXD2rVr0b9/f0vESUR27EmyTGda9qaxgqwQGrf+vPa2NTZ+83FKAUZCdkGRlnsZa7LxRMjkOtznz5+rnzLv7u6O58+fAwBatGiBw4cPmzc6IiIAqXLdJnd3Z0et99a8cyt7UkZkVko9XU5KGn7OZsGz7ePf5ESofPnyiImJAQBUrVoVGzZsAKCqKfL09DRrcGRZj5NT0e+Xk9gR9dDaoZAVpaUrEVfAAxCaQ2C2Jihrnopn/3PFilunIk9fZ+lKHXNeZuenlolFH32Jmg0xOREaOnQoLly4AACYPHkylixZAmdnZ4wfPx4TJ040e4BkmpinL9Hi6/347eSdXMvO2XYVx289wwdrIwsgMiqsev10HK2+OYBjN59aOxSDDl1/kmuZJsE5P27HvAQUw2v1u/WnOfAqFbBCdadWYYrFdCYnQuPHj8dHH30EAOjQoQOuXbuGdevW4dy5cxg3bpzZAyTTzNhyCfdevMb0zZdyLfviZSFvdzYn+Wsg6YG1o8g/WTJwbQcgTzXbKi/cUz23b+OZwvtjPs2I47lcCe0BFaMyPpcl/Oz4PS47D0dFkeHH9RQFR288xYe/n8NzI84VHFTSgvbO0p1WmPrlyF/nXqYQy/d9nuXKlcPbb7+N2rVrmyMeyidZeiH6chSEy5uBH+oBDy/kXG5hXeC7asCzWxYP6UHCaxy5kXsNRp78MQBY3xf49zPLrL8QUijz9gP7z0XLJb6hkjMAgAGSvRbbRkGTpSuwM+ohEl5lJT0Dfj2Ffy48wBfbcm76m7PtCpp8tc+ohIny4N5/utMKUyL0ItbaEeRLnhKhffv2YerUqRgxYgSGDRum9SLbYY0Ontfik3D0hkYTzKvnwJ3jBqt5U2Tp6Ln0OJYfua1/hRsHA89vAxsG57zhFNUAnLjxbx6iNk2zufsx8Nf/jGrOyVXaS5yPic+qvbt9UPVv5Or8rzsbkbkGbUuIA65syfmhj7IUIOawUX0L1p3KvZnXWkQ5fIdk6Qqci3sBZR4TuYL23b/X8f7aSPT95ZTOvHsJ+q/4T95+hv7LT+LXozF4nCzDqmMxlg7TbF68TEPPpcfx+39xuRe+th14UsDP7rqyBXh40fD84FYFF0suFKvfsnYI+WJyIjRr1ix06tQJ+/btw9OnT/HixQutF1lZIT/nhi04ggG/nsLtJxm3GP9QD1jZWXWi0fA6TYHlR25j5pbLOHvnBb7YfjXnFaebr6nIXP6L0R1w1CTy18BXASi/qh5azTuQe/nji4DlHVXNZ3lgtrFrF9QCNgwCLv1puMyat4H/dQOOLcxxVXefv8L0LZfzFMb5uwl5Wi6/3hIfAX7vhwlrjuOtH49j8YGb2H05Hk2+2ov/Yp5bJSZjbL2gqkG7+jBJZ172Zq8UmWqwvneXncSxmxrHeWEfAVnDov03cfbOC0zZFJVzwdijwPp+wJJGBRMYANw5ofoO/dwSUMj1lylWMtfVPErKOC8+vQHE5968bJAiHcLxRfhx3V/47USszmyJ3LaHjDA5Efrpp5+watUqnDp1Cps3b8bff/+t9SLr0qnleXwN2Pqh6ipdDynS0Ex8CUjXrtJOSpUjJVUOxB5T1dqYWczTl6o/UhNU/275ADj8rbpm6Ls90fhi+1X8FZnHPhhKJZD20qRFVp+IxZuLj+ZYvW9KM42+Sq7nL9Pwz4UHem8H15Hx9Gh30Ssky7KNEqtv5f9OU1Whn/rZ6Bj1evkM2PEp8OB8/tYTe9TwvLsZtQ7nfstxFfuuPsrz5gsi6dD3s/+901IgejuCb6wCAPx6NAbv/XYWj5JkGPCrbm2LITcfpyAkYh82HDqn8/3Ucepn1fdc33ERcxjYPAZ4nWD0tl9mO940D/u1p+6g5szdWK3nB1Hf9mXpCvT+6QS+3R2tUcz6V2yan3Hgr6cw/99o/QUfnMv6M+E1Zm65lHX+spQYjaFo/vem/jJG7MOEV3JVucUNgZ+a6z8G0mXAL+2BnZMMryhyFUT/TsMH14fl+cKkMDM5EUpLS0OzZs0sEQuZgc5345e2qmaU9f2BlMdA9C6tJotvHH/GOqevgJ2f4ubjZEzacBY3Hyej9uf/YsLsL4BVXSAsaqAq/Oo5kGh4RN18SU0E9s8B4k4CyPlHLF2hxJUHSVpNDq9k6fjrrEbStPpN4KsAnXhzeibUjC2XcfFeIhbtv6F3/vMbJ7B5dk/M+/OIMZ9Ib+Xcu8tO4MPfz2n9KGhSKAVsvfAA9w00RRglh9qxm4+TdX7kMolEItUP6jflgf9+Bpa1znsMAF5r9ldLegDcL3p3J+bUNOYlUl0lizWypTQT+vBN2xwFceJd9D7QBljSOOfCOz9Vfc9Xv6nbFPe/bsD5NcDez1Xf/Zeqpul0hRJR9xLVyb3mV+PbbEmBZuLy2d+qmoUZRv4gbr/4EP/FPsfiAzcBAOtOxaHhF3tx6b4JndkT7wGHv1HHnt35uwlYvP8G5Ao9+1eemmsT7JEbT7Fo/039MzU++4j/ncH/TtzBO0uPI/bpSwz89RRO3MqoETu3BvhzWFbSevc/4M/hebtJQ7NmLe646cvrWQ0AIEX3wuL1pX+A+2eAUz8ZXlH2Jjoz3qxRGJicCI0YMQLr1q2zRCxkBjqnZXnG+DCPLgHfVgJ+7wOcU/UvEQTgTckJ1fyzK3Hox7H48nIHfPTD7wCyOoSKXmckJfOCge+ra9cQJT8CHl7E9UfJSHxloAoX0LmiFRuoQn/++J7+z6Fh8qYodPnhCH7QSFiSZXJM2KjRYTo2I1nJ1jwzZ9sV3Nu3DIgxnMwYqq3xXhuGntiHOhc+zyG6LPpyrnJPDmKaw2/YeVF/Tde6U3fw0e/nVE1h/+RyF+a+OcCJJXrWEYd5u67pTD8d+xwdvjuMjt8d0ru6Jykyo8ce2XPlEd5YdAQ3H2c1w0XdS8TTlKwRoDdFPsi6E+27aqqk/N9pwC0jmvky/HEmbzWC3kjCb45fAZf+ytPy5pCZJL3I6Xuh6cwKYN9sAMD9hNe49eQl2kkyaiNeGNn3JuYwqs/che0X9YwNlnAHWNcb+KYCcPc0Zmy9jG6LjyJix1XcfpKC+KSsH7foeO3m1Xsv8p6YZ7+BY+rfUXj2Mg1vLDqKQSv+M64P1f+6Afu/UCUaevRYcgzf/nsdX+/MdtynvQQiygA/tdBZRt8pSLjwh55jJiu+KxnNhs9epmHMukgcufEUfX9RXbxhyxjVsufXqN7/2lF1/tn8ge52BAE3HiWblBjrCKibe5lsCeAfp+NQa+ZuHNcYKuOzv84bsbGsfeCCVODMrzkXN9ScV0iZnAilpqbiu+++Q+vWrfHhhx8iPDxc60X5c/bOC0TsvIrXaQrg3hng1v6MGauArR/l3AEVOVQ5a95hEL1Lb5Hh2AwHkRLjRH8AMHy1K3+kOtkolQIwvzLwc0t8sGAdGn65R/+2t38CfOGj3dnQQFeCqX/n3o79Z0bNz2JDV3A5qC2+jTJHJgL/ewO4tAk4qvssOr3NXxpVyjXFen6UlErVuu7kfPX2i9N3GOGwE2FK3VHYn79Mw5+RqhosP+VjrSp53e3JgSPfArunAgBm/ZN1df70pQw/HtS9O25nlKrD+INE/Vdzh/V17n79QrWfst0eO371YbSK/w1frdkBKJW4eC8B3RYfRcMvsu6iUkKEr3Zk69t1fBHwWw/Dnyubqw+TIIISrcUX4IWsvivvt6mQ43KfOqxHS8klgz+cJnlwXpVw6qlVyKlGSB9vJOH237P11xJsGw8cmY9R81ag+dz9eh8rkipXYOrfUTgY/RhyhRK/HL6NKw+SspVR4qt1u/Xc0iwCbmZ8R0//gnWnVM3ly4/GoN18/clxpsfZYvHBC4iQeU4READVD+uLV3JsOX8fqXIFBEHA7svxuPfC8GCdh68/wbm7Cap9++IOcHOvzhWEIAiqGyIAIEY7zuw1QMuPZvtu3j2l+q48zrrrbdrmKERkPy4BuCMFor9HqY4ZzRoPA+fUR0kGakVeZ+srmxm7hoid19Dx+8Oo9fluyNL1XXgZ0dfK0QWAqpbRUC2v+OJ6rdrnX47cRrIsHf2Wn0JsRvOeXJH1+S7cTcCuS/F6HuSXtZ+nOqxTn3cM2jgk9/gfX1MNBVIImPyssYsXL6Ju3boAgEuXtH+0zHbXiR3ruVT1QyqViBF+vL1qYvi1rNqByqFA1a4Gl9c8fC/dT0TNXEvpkkD1xdQ8yZ+/m4C6GX9P2RSFO8WAemW9kPl1aCC+gccKL3y+9TJCKpRAaA2/rBWe/gUAoDwyH8CbcEAuT0U+vw4bnn6Mt0UzcUUIMlisr2i3+u/MI+9BwmsEeLpolNI+Jt+SHMt68+dQ1b+lGwIB9SCCEqVFT/HXGQUaBnmjdzUXYFVXoG5/oHZv9WKlRc+ATaOA5h8DvtVVEy9vUjU9AABUNaYVXhwGYp8CQbpXoz6CRgfTO8eh/Gc83r/fCxeEagAAiciEK8Wkh1h5LBYznQ0X2XzuPi4/MNwUUUMUizpiPUMLrO2t6nfUYCjQbYF68nSHNejjcBBI+gP4fiZO1/4dquMqa38LEMFfeJx7/5YMSqUAkUj3PNJHchBzHZcjXvBCU5mqBqyYkyTHdWU2S2V68TINKbJ0FJc6YPfleIQGO8Dr2JdA/YFA2aa6K7h3RnXXzosY4Oo/qmm7pyJx0lPM3XkVERnFjD3jvSk+jn4O+9BUfBW4AOD+NmCsnluiASS+eA7AV3fG0QVQHlqI3jJPLDv9Bm53GYYvd1yBGAJua/zfVxXFYZd0MhQ/zINkgv7b3qNyaZY6fstwR/824vNY5TQPuxSNMFo+Hqsc56GNRFUbW+3kCvx20hn9m5RFi4ol8b4Rg7VuPX8fwX+0g/crVcKQ1nM1eh1wx7vet9D3nd4YteE6ftGz3M1HSdi/aDRKVawHION7CAFyhRIOYlHGcaT9P7T/2iOsOalKAHvWL6M1rxiykr1JG86gVa0K6FrbH4bOl09Tso5rQRCytqSTOGm/j336EssOqz6rLF2JnkuPY9uHLdXzk1Ll2HH6Lt7Vu1Vdzb9WJc2XZoWiuG9NVe1/hl1HTmBxehl8knF8aO6N07HPUa6E9ujs3ZccgyPSEVV6LpwDauJOmwUo7emilSi0EudwJ1uma9sAAGtO3kGgtytaV/ZRJbpbxgDNPlT9jv3YRFV22G7938ECZHIidOCA8dXalDcfSjah3+msTpXpiQ+y/qNy6vB45ziqpF3GOZQGALyx6Chi9f04CgKQLtO5ysuU+SOi+aXpueQwbmWsK+bpSyQ/vYgVsf6YmjFtrGQzvnb8BZ+eGonU05dxrk5bzIxvhqUDGmREo7o66SVxxzeOy3As+nsklh0ID30BbH4fzgB2SKciKDWrGfafCw+wVKOmY47jKp1Fuy85hgOftEHxzAnGJOf/ewMAsMixKd6QqKq5q/y5Ci3qHkTAk2vAnun46UUDjNZc5uIfQPROYEpG088z7dqpWOd+wHUA14HbrRaivJ83UF270+ONR8k4efsZBu7uDDGAP6Rz1J83+6m0riiH2q/vqiIz+QKAaiLtjvFHbzzFx3+chwPSIYEICkgQ9/Ql/j1+Cu/63oUvxNguNXCFlzl+ycUNQLcFuHQ/ESdvP0MHscYVdfJDNIr9CSek/2JNegf15EEOezBI2AN8McZw7EoFoFQgTSGgy8JDCPJxx/LBGXfnpKhqqDqLVTH4ibKutH3dc8j6sum59DjO3lEtO83lL4wQ/kKi4AqIXgHn1+CPrlHo06gsEl/JIXUUwzn1KbC8vd51fb3rGkpHfqs+c/Z32IfP0ofrLSuFHNMdfsNtwR9fOq7QnvnUQMdcABKRQn0AlBRp1PbsnQlXAHXFz/Gj0w8Iv98TixwXoZlYu69OqPi0aj3J97HuVBz6Zc7Q+C7UerYLG51uY3jaRCShGHzxHBMdNyBW6Ys9ygZ4KHgbrGV4T6L6kQuTnAbkUCdBADBE8i/+UYZg7SnAUZLV4OCIdMjhgO/3aN+C7oh09D7bD97irCESLhzejLDHcvR9/g8wdwL2pK4DNP67bzxKRqWH2+C48zuMcrgOxG7Hx1iLVY7z4CxKQ91ZEjQIKoHVwxrj1ZNYaP7UD1t1Ru9nArS/c8orW7D3sgRda881qlPyrkvx6GzMiqGbhF66n4SdUQ/x69EYDG0ejH8uPECFF68B7Ufp6UiVK/DsZZq65vD3U3EITiqDDtCsoDAcu0gkwtYLD6CRwuFrh2WqC5xnAJ5dQevTPdCqsg8+Sn6Ohhllyokf5xxYhis3bsNz+/v4RdEWrb+aDGwdq+qyEHsE+FxjH8RH2V4iRJY3wfFPQKOJ9djNp8ip2+qJW88Q5CbAf2VnzAWwA8vwh9Mc/KMw0Kn9xm7gi1JITl2sdYLJlFkjJEZWrcR0h6y7ewY7/JvVtyhDoFj1ozXPMePa7dJxXExdh5lbLmO5RrlvHJcBAJpHjkfQcV/9iZoBE38/iVRI0VwchUZi/T8kT5JlqDlzt8Z6RZD/tyK3cwoAqJMgAGgivooDl+6if8Y35NejMRidPVZZ1o+UUhDU7cwiaNfmlD+cUZvnX1c9TQQBHb9XNY8N1FqvkDFXu9U6VHI6x9ibi7NuAe4oiURTxRUAXYH0NFx7mAgxlLjpPAgAEJy6BqcWD8YIqJpJThnzfyASIfGVHG8sUt0J1sFJe3bt++sBETDRcYMRK9OQcAf4sSmcnl7HXgCdnn0NoJGqP8jhb9BPMhytJbpXoG9nu5oHACjSMcdhBY4ptetBM5MgABghqPp/eIiymmvm/nUMYTX8UWf2v3CTOiBqZAmD4T549BhfOWwx6qP1c9ifcwFBUDUV+tcGorL6sr0tOYrjGZ9hnMMmw4sD6KZxzOrTcnu7rA4QN7UHf2wkvo6LziMRIe+LKY6qfoGQAJ9gI14JUkTG6SaDd59rN3M5ZqvdneS4HpOwHqPSxiMpVXUJlFlDtTy9M77f9w6kkEAG1QHUXHwJNTSSIAC4+jAZ7ztkNbP/6fS51vxNS6dhElahnMa0P5zmoIlY1WR/Ge+i2fUfkCpvANddH6vL6Gtq9EAK3pCcxDZFU62EIPM81eebBphXKUW9ra8dlmFG+hB1/JlmbL2clQjtnwM01GySzUpGBEHQe22WWXN2JuNY/SDnCk8AQN3Z/yJVnnWu+XLHVUQ4yLR+1R2ynYv+cpqJRrKlkMEJ+689wo6oeHTV6M3fx+GgVnlnyHD4+hN0c0hBQxOzBem+z/CG5GTGeXWy6m5UfQrBHYQmJ0IvX77E3LlzsW/fPjx+/BjKbH1Wbt82MPAd5VmD/z7OeqOQqUbxjN4FxB1Hr0eDcPq+DKXwAv9l/KBddB4FAKgm/iPH9S5z+k7vdEnGl0fz+zrEIWsgwuxJkCGuSMXpWNNuYdb3lfjMYQ3CxKcRKH6Cn9K7YbTDP3qXbS6OwlqnCBxU1FFPW3f6Lvq9yOFuCAMcoN1un1u9UtS9RGRu9ZDTeP2FHp5X//kyVX9nwpWO8zBaPh5KQXuLuW1/rVOE1vv1Tl8g/oAH/A5NRB+4ooVT1o+7B16iFwz05zIgNV2BbnN+QxvxAxxU1jO5b0yOnmbVEvwrnYSeS2vjr0ffAAC+ctTulOmPZ3iIEpBEbQDcA4DgjHFWFHIgaiMGOuzFQJg22vMcx5WoM9sdAJAsS0fi6zT9NZUAVsW/rTNtssPv8Bc9wzj5GLjB+E7FH332GX5w0u3s7g5V3w0n6D9GMgnxuTdRZF6g5ESdBGlwFem/1b/lvANYp3FV8bGD/rGihkp2o2+kqmZvgsNGAMAIh50Y4bATLwUpashWYL7jT+gp0b1poYpY+1EvDcXatUiTsEpnmcwkKNMR6Tg8ulUVARrTGn2pfVwkvErDIsdFaCWJQlfxSYyX63ZqHpG0FBtOV8DEjM/cx+Eg7gil8KOih1a5J8ky7YvKLVm1oK9TUxE+dQbaduqOp0eWo6RTOgDt5QGgGF7DEelIgBuMaXTVTIIMGe3wD7YqQtTv3UWvcUU6FBVka7EjKh5OkOOjHJLtdyUHsEoRlqfhoZ4+uI0KmtdzGit5naaAugPDzolAk1Gmb8CMTE6ERowYgUOHDmHgwIHw9/dnv6ACUPy1RsfKbdo/ss3kDgiWeOOmsjRMVUesP2ktLXoKCRRaNSR5EeG4HONej9Vb6wQApaA7AKe+o2mkQ1aHOkNJkBPk6mRAs6r+1uOUXKuY9Vnh9C1ilXr6aRjw8lFW01VZI3583nfYihaSKEyWj9Sa3lZyAdGSIegum62zTOzJLQgyOiLA75DqIchueIWq4qwr+ZriWBPWouKsfI3DUtWx95eipdHV43nxPO4KINU/74TzhwiVzQX+nqya8HkisLAOkHRf1WdLj57iw/hLaXgU3uoi7RqJoStOYZOB7euTeUx2EJ9FIorlUjqLviQIAJQZVThDJfpvasi04MWHeqeLReZJUsVQqmPRpFlz0kOzz52GEMkVQA60El9AR8lZrXnFRDKMkmzTmwQBuklNXkhEAgLWd9KaVgKJaCc5h22KpngNZxy+9gC/OqtqUptlxJtdR8lZnfh9RbrnLZ1LOI27Ul1kT7DUaSFwMGPw0NfAelF1RAqV4YZXmOqwFgvT38ZJZ9X/Zx/ZdJQQaXeAN9ZdoZTOtB3Zmr0lIgGZNc8jJdtRRWz4zswuklNYpQhDQ5HhplxDcrpYavjFHlzO9wO+zMfkRGjnzp3Yvn07mjdvbol47Jcg5GlU1vGO5r892FuUgtqi/NfsdZccxzj5WIPz20t0O1Jm//Jkb2YyxFOkf4Cz6Y5rjFpenyBx7oP5Ke5F4p9tf6NHimk1LC6iNDQWRWO/9BO987dIZ2i9F0OJoF2DTNqGIWuy1R6ZytAPmLnUE+kfxynT7Ox9w5Iyxoq6q7/z8Xynn/AwzRvtxPrvwisvjkdF0T2IIWCx4w+4JQToLZebYiKZVofbvAqTnEZbxTmUE+VtMMmcmtNMcVj6MVrKFqibaTPH9vITZdXyinP4sYt17mdw3lQ9tVCWdtb5fQBAR/FZdMqW3ADaCV5OMsuVE8UjSXDFC7jrllGk5bi2TdLPUSl1NaKcRwAA+jpk9b39Qzon1xguKYP0Tj+trJLrsgDwj9NnkEKOyuKcx4VrLI5GaTwx6lyYnea5PH1VdzhodOJ+maYweIFsDSYnQl5eXvD29rZELPbrxI+qW6+H7kRheUaGOZo+lIIINUSGxz+JyNbsAajuENLUUax7wrKGbx31N69JlrfVU8ltfqMctudeqIj4zinnpkytGgPNp3LnMPDcOqevclznXmnW+EmVYaFBQ02w0ukbHFJY90HWZURP4YkUrHf6Av8qG6J3xoDlFcRZYxT5i0xr+i4M9CVBALDQUX8NXXZDHP5FFdE9Va1XhsvKclplRIrcE+L/Oc41anv6bFTo7zXqKjIuEa9lQq3wMedcxjMzoJFGk6ZD7EGtefVF2s2dj5JSTboBwtxMrpyaM2cOZsyYgVevDI8NQSbaPQV4+RjY+Sm+ccjn4xHMxNDJwhRikYDtUtOekq7ZrAUUnqd7t5Lk8jwiso6j+vu5FQX6OokXtHPOo1FFfA8fOmy2digWp5nYmFo2e4dvYzQzYXvZGbpMfSjYRiVF9r5/+yJNb3ozJ5NrhObPn49bt27B19cXQUFBcHTU7oARGVn0htG3iNQkVX8fjcchnL3zHL0cchhErwAZ6otT0JiAEBUOLcRRGJVx6zxZl76+QABwT/Ap4Ejypmq2DvGuqXl/pqA5mJwI9ejRwwJh2KHD83Qe//BSlg4YcdskEVFBy2/fMjKfA8q6eqcrTG/kKRTqXf0GCOuUe0ELMTkRmjlzpiXisD/J8TqTWPtBRES5098VO/v4RraiXKL+Gx0KSp7Sx4SEBCxfvhxTpkzB8+eqznKRkZG4f9/6nQxtxSsDo7YSERFRwcnTs8Y6dOgADw8PxMbGYuTIkfD29samTZsQFxeH1atXWyLOIufI1bsIZTMYERGRVZlcIxQeHo4hQ4bgxo0bcHbOut2tS5cuOHxY94napF9FEWvPiIiIACDFiq0kJidCp0+fxnvvvaczvXTp0oiP1+33QvpJjBwokIiIqKh78TLNats2ORGSSqVIStId/vv69evw8bGNW/cKg8IxbCIREZH1SdLy9lgRczA5EXrzzTcxe/ZsyOWqB7OIRCLExcVh0qRJ6Nmzp9kDJCIiIpXP5eZ51E5hU+zqBqtt2+REaP78+UhJSUGpUqXw+vVrtG7dGhUrVoSbmxu+/PJLS8RYJBn7XBsiIqJM6UV0sLkHCa+ttm2T7xrz8PDAnj17cOzYMVy4cAEpKSmoX78+OnToYIn4iqzyYvanIiIiAoC0dIXVtm1yIrR69Wr06dMHzZs313oCfVpaGtavX49Bg4pmtR0RERFZhs/9vQCmWmXbJjeNDR06FImJiTrTk5OTMXToULMERURERPbjYHIZq23b5ERIEASIRLr9W+7duwcPDw+zBEVERET2Qymy3nPSjG4aq1evHkQiEUQiEdq3bw8Hh6xFFQoFYmJiEBYWZpEgiYiIqOgSRNbrBG50IpT51Pnz588jNDQUxYsXV89zcnJCUFAQb58nIiKyoCTB1dohWIgN1AhlPnU+KCgIffr00Xq8RkFasmQJvvnmG8THx6NOnTpYtGgRGjdubLD8xo0bMX36dMTGxqJSpUr4+uuv0aVLlwKMmIiIyDy2K5taOwSLEKzYNGbylgcPHgxnZ2ekpaXh3r17iIuL03pZ0h9//IHw8HDMnDkTkZGRqFOnDkJDQ/H48WO95Y8fP46+ffti+PDhOHfuHHr06IEePXrg0qVLFo2TiIjIEhRFdBwh6Ol7XFBMToRu3LiBli1bwsXFBeXKlUNwcDCCg4MRFBSE4OBgS8So9t1332HkyJEYOnQoqlevjp9++gmurq5YsWKF3vILFy5EWFgYJk6ciGrVqmHOnDmoX78+Fi9ebHAbMpkMSUlJWi8iIiJbcEpZ1doh5MlLufUePGVyIjRkyBCIxWJs27YNZ8+eRWRkJCIjI3Hu3DlERkZaIkYAqnGKzp49qzVwo1gsRocOHXDixAm9y5w4cUJnoMfQ0FCD5QEgIiICHh4e6ldgYKB5PgAREZGFTZUPt3YIeSJNS7Datk0eUPH8+fM4e/YsqlYt2Kzz6dOnUCgU8PX11Zru6+uLa9eu6V0mPj5eb/n4eMOjOk+ZMgXh4eHq90lJSUyGiIjIJtwSSls7hDypIY612rZNToSqV6+Op0+fWiKWQkEqlUIqlVo7DCIiIi37FPWsHYLFWLPvk8lNY19//TU+/fRTHDx4EM+ePSuw/jQlS5aERCLBo0ePtKY/evQIfn5+epfx8/MzqTwREVFhNV7+gbVDsBibSoQ6dOiAkydPon379ihVqhS8vLzg5eUFT09PeHl5WSJGAKqxiho0aIB9+/appymVSuzbtw8hISF6lwkJCdEqDwB79uwxWJ6IiKiwSkIxa4dgMRdR0WrbNrlp7MCBA5aIwyjh4eEYPHgwGjZsiMaNG2PBggV4+fKl+hlngwYNQunSpREREQEAGDduHFq3bo358+eja9euWL9+Pc6cOYNly5ZZ7TMQERGZamH6W0aXPaqogRaSyxaMxvyOC3UwxkrbNjkRat26tcF5lh6fp0+fPnjy5AlmzJiB+Ph41K1bF7t27VJ3iI6Li4NYnFXJ1axZM6xbtw7Tpk3D1KlTUalSJWzevBk1a9a0aJxERETm8mt6ZyxIN/7JDX8pWtlcItSkfAmrbdvkRCi75ORk/P7771i+fDnOnj0LhUJhjrgMGjt2LMaOHat33sGDB3Wm9erVC7169bJoTERERJYSpQyGYEJPlv9scCyhYs6OVtt2nse0Pnz4MAYPHgx/f398++23aNeuHU6ePGnO2IiIiOzeJSHIpPL34WOZQCxIYr2BpU2rEYqPj8eqVavw66+/IikpCb1794ZMJsPmzZtRvXp1S8VIRERkl+bJe+OmUMbaYVic1DHfDVR5ZnSNULdu3VClShVcvHgRCxYswIMHD7Bo0SJLxkYF7P20cdYOgazsiIL954gKk2NK2/hOnlPm864vW3jW2M6dOzF8+HDMmjULXbt2hURSRB/8Zif+VjTXmXZSWa3Atn9GWbnAtmVOU+XD8Y5shkW3kSS44pHgme/1TJSPMqn8DWVpDJRPzfd28+K5UNwq292taGiV7WpqlPqj2ddpqedNTZcPsch6i5r9irroIZttlnU9EEqaZT15EZS6Do1Tlxic/0TwUP+tRP4SmURpQL6Wzw+jE6GjR48iOTkZDRo0QJMmTbB48eIiPcJ0YSUTcq8+XNTyDNrI5utMP6OsjPfLbkOl1NUYL/8Ak+Uj8FpwUs8XFSuJKGVQrut/JegfefuJ4J7rsgDwvbwn3kn73KiyhUFL2feokPobqqWuwDpFe5wRLPMj0y9tKr6Tv4M30r5EE9mPqJaq/2HCxtI8SRkyOu1j9d8vYP5kZKZ8MIJS1+ZYJkoZhGTBVWf6X4qWxm+oVm9TQwMA7FXWz7XMJ/L3cpw/T94HP6V305kep/RBdyN+DJ/AM9cymjaU+xyfykeib9pnBsv0SdOfrO9UNAIApAjOJm0zkzz/99fo2PFmJK4qy5p9vZki81lT0UX2lUnl7wsl8L78Y5wXKiIodV2+tv192cUmHx+Z1qS3BwD8nt7WYJlLOZzvUwRnvNe6PN5t3xgpzvqTFCGfyU+mXYpGeOXobZZ15YXRiVDTpk3xyy+/4OHDh3jvvfewfv16BAQEQKlUYs+ePUhOTrZknJThA3nOzVe3yryNGqXddQ7PGqm/olfaDLzXsVbGyUyE9Yp2OK9xkmhWoQTeSfscYfJ5GJ42AdsUTfVuY6ZjuN7p3WRf5hp/k9TFWKjQvQ1U82SV15M0AAxL+8QstSma7gq+UECCNxpUxNQupiVB55UVcpz/THADABxS1MZxZU38oHgbcYJqOIjXyPt+UNE+Cq4qtZ+Ztzq9I3YpGxm9tmnyoVrvp8qH46CiDq4qy2JZeled8lHKIPxPEaoTBwDcUZaC8MFJjA3eju5pX+jd3o/pbxoXWNfvgJ6/GFVUJjhqjcfyp6KV3nKaSX0lXzfM9ZoFea2+6CL7Siex+1HRHZv11LAuU7yBC0JFfCnvZzCe7P8nxug9+CNsULRFtIFlZYLhu2++TO+PoNR1aCVbYPJ2AWD0MO1axniPukYvmyBoDwY4Lu0DjCy9GV3qV0DntLl5iscY4+TGj05zS+mv9b5f2lRcEYJQJXWVTtnwtNF619FR9g1kcNI7Lydr0ttjsnyE1rRYV8PNYp6uOd9lNS19OGqnLsNX6f0Nlnkj7SutZO2R4IlXghR3lT4QT47FlM7VEN6xMooP/gOCT1WdlgQRsp4Yn5+k6LCydp6XNQeT7xorVqwYhg0bhqNHjyIqKgoTJkzA3LlzUapUKbz5ppEnLjLK101PIUw2FzPkg9XT9ikbGCz/WnBC2YE/QgQRHmdLBl7CJdfbL798qxY+Cq2FXyYMxJJZnyGi2CTdQkEt8c2AFjqTTysrIx65jwPxCPqz/rfTZmFg+nT8mt4Zvyo657oeAAhKXYt7vXZqTTumrIkwmfZJdVF6D4O1WKYY3CwIo1rpJjY7FY2APmvxIlvzzlVlWfRIm6N3XRPSRuP9tHFoLvsBzVJ/wFD5p1rznR0N/18dDd1hVLyvs33m3xSdUCH1N/RN+wydZF9jRvoQaCYpmScyrR+skVkDqI5qGaz+e6J8FHZIwzBEPgmd0+bihFL3Zon7guE7V+LhDVGpavj63ab4cUAjzE3vqzV/jnyA6uGRtd/NmthjKVBTz1gqjfQ/bfuId0/s1Xk2k4Dv03vhtzprsKblPgxvoT9Rvaosp/67b79hmDzuYzj2/Ak1G7SAvsQue7PADWVpbFC0AQD8ouiqU9Oa+YObWXMTlLoOT6E7Mr/c2/Qm5JQcEmiFoOrS8BzG1d5mF1ShClA860HWfjVUtXYvhOL4Nb0ztiia4fa7h7WWiUcJDEqbhGayRWik0cxySFkH8wfqnkuOVp2GoNS1aCObD4VXzhcSmd5Nm2Zw3l2hlFHrqJm6HJ3S5uGCsjwAVfeB4xn9c2RwUp2HO2Ul7ceVNQyuq7JvcZyc0l7vvBilr97p09KHY72iLTYrmqmnaR5VfRuXhZs0q0bunfo5d6BeNrABklDcqCarsWkfIkbpi8Fpk1FdthLvui6Dq4tLVgH/2hCNOYU9Cu3fH81EKD9NYxsUrVGjdO412JaS59vnAaBKlSqYN28e7t27h99//91cMVGG3g0DcU0oC6mLW65lP0obi+G+f8BR6gKIVImPMZYpVFfy93zbwsPFEWPaVkSgtyucHSVw0Hc/o1gCFNd9VltaWe2BNlNFzkhtr32lr6/WIFO7qr6Y9P5IzEkfiDSNK9pl6V3RVfYlWui5gl3Qpx68KzXWqgGSwQkv4I7/lFXU035K74bqspXYVudHfCYfhm4y/TUQxlo/qimapmbdKPCh/EOg2htwqtpRPU0BMT6TD9O7/BT5cPylbIWdyiZIhRQPUBLKbF/FyWFVETu3K9BgCOARCEy+i3+a/YkFdbejRV3DJ+BMG9Nb4VS2JrzzJd6AAhKcUNbAdSEQ+n7QAWCR5gi2kqwr27LeWc1XX83+GrO7Z12tViyrUTsxeBtQ4y08bxOhnpQs6D8ei0kdEFbTD5HFW6FZ6g+YG/ADHox7gF1uPTEprCrw1k9ZhR2kQPMcakQ/OAU0zbr6rx7goZP8PxBUyfrAt7phQPuGmPZGdaCOdhIGALVLZyUKSteshE4QtMtlJjg3NJ74HZS6Fh3TvkEaMo9jEfpna8Zqn/YtyqeuwboPQ9XTvErrNuFIJIZP0S9QXO9+zUxor2gkcwAQVbILHhpxsaKccDPnAsU1EgvPcsCkO2gqW4w56QPxvfunKF+1DjAhGh1l87A2vT0+dYvAYWUdvMqWoK0a2hjuesaOkUhdAYgQK/gjbehevSFEyLP+z14JUpzUk4gDyKhhEaGZdBMw/SkwYh8gztpmvJCVfKbAFQpIMCTtU6D7ElytP0trXW0GfgY0+xD906ZgdNrH8A3Un6StHdEYmz5oDj8PZ+z4SLd5t33afNRI/dVAk7EIH8vHoqdspjppPDe9I/ZPaI2It2vhwsxOiP4iDMcnt8MnoVX0LJ+lY3VVwmUoQXlRIqtZeJsyBG3Tvsc1IecmypRsvytiKNV/G1MjdE9Pf6dmqT8gHQ5oW8W4hNUS8pUIZZJIJOjRowe2bt1qjtXZhWhl7rdDBpcshv+mtsenYdoHfAvZAgxL+0RrWtVOQ/HDIFW1pbF5+fgOldGn33AsrvcP/Eb+qTPfzVlPfwCPMkBJ7RP2c6E4Yqqrqokzfxicm70H55YfAjOeY/dbF1Ev9accq2hXDGmEmhlXBJpXGV+l90en9qH46O0O2gsM2oIe9UrD2UGi9XnfbaT6QU7UqNXITAq79uiHEq1HI1nzyxzUEvAIxL03sqqHL/u+CXiX14kx80ewafkSOBExEJ1lEegom4f0jH4TxRyzbiAYVmY7IgXtq3mFIELV1JX4XaG6Ulw2ULd2b2JoFQxvEYz+TTN+xLotBD6OApzd0a1TR3zcowXg4gkM3YUb4qwamjdlWTVPe4M/wcT00dA8En5K74aSnlk1VnPfrgV/D2d8805tKEurOgxvSG8DAFij6ICDijq43/Rz7Ts5NP52lIghaGQFMc7V8EN6D1VzQXBLoNcq9GvfCD/2V51sG8qWokbqr+ryvu7aP4p/vd8M/UObY/SAvgjwKoZjk9vh/TYVtLcvCIB/HeCdFcDwvUCriapaokylqgJhXwHOquOoRL1uEGssflBRByPk2t8bANrJFgAE1Nc69p0ddW8MmS4fgmeCGz7N6D8kQIyg1LUZzQy638AkFIPMUfOKVwRHBwdU8FH9n0gdxJC8/TNQpjGGp01QlxIb+Da/17o8BIjRTKZ7527m/8rAtMla0yuPXqP+e15Pw00RYjfdmry14jeBgX/rFq4/CHDxxG/vtUabKj74472M5zi6+WH60Lfxd+lPMGNgF3VxL9esxLpuoKf+7bv7Y92IJlg3oglc9NWMjtiPnxVZfbI0zxeZtpYcCcxMwHpFu6yJEkegTENg0Bb1JH396F7AHag3AJUCtS/4KvqoLkinjHkfFVv3w7oRTfTGXy/QE8Uzam6qB2jXvJ2vNBZKiDPOSSJ1P57szgpV8ARe+Kh9JXgVc0L5jONELBZB6iBBgKcLnB0l+GWQdmf/34Y3hlgEDA4pB5FIhK/eqoVGFbISjP+UVbAxvRWivDvh+Rum90E8oqyl9d5DmvNNU7El2+DOiMtA799QI/VXvX0BH0CVHDk5mCUdyRPr3bhv596Tj8cMh9+wJL07/pLOMliulLszUK0rsO1DoExjLGxYF9M2X8KIgd2A375VFQpujQ/aZCUnoowfj0TBFR6iV1rr0/zx6ts4ULX+mtrt4pkW9KmHY7+EoLn8BND2M+DRZaCjblPPzKrb8GnVAGBrNPqnTcV//aRwrp5x8hNLIEhUtTQAEDm9I+rP2aO7MUFQ/+hpnth2jmuJav4ZJ5OEccCxhaq/y7dRrV4sglfnacCuT4Da7+Lj9pWx/vRdvZ9HJBKhkq8bYgV/LEx/G+PeaAI0VSVwZQBgm6rcZf+3UaPhOGC59klK0IhLJBLhqqB9xY0W44FLf2JDemu0qx6AG09e40Fiqnq2EmKkIqu5qlMN3Zq1rrX8EVQy24MV9d1WWi4ECwO+Rec7X+NPRWsE1W4JvH0fiI9CC/+GmBP5AG0q+wA/ZC1S3d8dHaqVQmlPF7Sv5ot3G2dc/dX+B7evRuKv3xMAqGrVhsgn4Uq7UECemLUCR+2TmKuTxulDJMZ36aoOy99plAmr4YcP2lTAjwdvQQbghntTVEo6iaAuE7TWVcbLFWPaGtmpNbN5LNBA/6aPzgPPY4AyDeDuPBdIU00eItfT1Jvp40vAneOqRMs7GJJ1WZ2vNROhzCPgN0Un/KboCO2kJ+dLEKmDGJBnvQ+r6QcXJwkuzQqFg1gEOEqAEXtwdNpOwysBAEHAlM7VcPVhMo5cfwSZ1BtSIQ1ISwEAODlIABnwDB54VLoTfO//q5ouEaNpeW+kyNLxToMywHaNdbYIB7zK6b0AeN1hLno1fQ9Q/1BpfE4H1fHcONgbjYMbay3XqrIPWlVWJVWVfYvj+qMUtKvmAxh48sOotPGoIrqLj1p3h6NDxj5P0zh/TbwFSN0ytpkVvLOjBP9NaK8+8A7UnIs2XYbmcDt21vfYUSJWvy1RzAnPXqYhwEN/02Lm6mqW9lBftOmo0E4VowE3q7wHREUZnJ9dZgJkSMfqvmhTxQcHo58AAFpW8kH0F51VnwtAvyZl0a9JWeDsQqw5Go1pD1VNkSPKB6O3q+G70YTsVZ8ZhrWoAJzJei8R53zMB5VwBcqUAVAGAaUO4fELT1RDXI7LWAMTISuJFfwxLFu/EIOKlQA+iwckUnQXi9GtdgDEYhHw3hHg9HKgzRSt4pmHZv+0qVhQ/DfcbTgZyMOzciuWKo6KU3cCqQmAi27/hUyL+taDLF31aJUkFIdjzS7QvBTX/E55F9PTibDjbK2TVoLG3UvqJAgAOswCqncHfLRv83dsMgKo1A7wCoaXUv8XOGt9qpPU9+nvYFxT7aa6zYpmKCN6isfFqwFI0Vk2+7mhZaWSOHLjKdpVzbji8quJp+Ni4f1AhrbVfNG6sg9+OnQLyDjvSSRi+LpL8ShJpl5HoLcL7j5/jQFNyyLQy1U3CcrB9N4t8PlWL4wKCUJIhYwmj3IhcAYwsKl2knZDWRqlRMCgkCDdFTm5onydFpgnvws3qQPeXxsJAHAQi1XH3tBdgKMzUKoGcOkvIEh1Mm1XtRS61vZHrdIeOBP7Qm+MYrEIn4ZVxY8HbwEAfq8wDzNaeQBeeuIwF1dv1Qu6v4WtKvugex09d8B4BgKefbLe13wHuH0QKJFTcpbzj0CHar7Ye/VR1gQXb+C1aj99+VZNdK+rak4rLtU+DV+Y2QnIvO9AJAImRAPpMmDXZEDqDkhU5VcMboiHiamQelwHBCXwheo4FIvFODmlPSRiEXy2Z9V0ikQi/D6yqfpvNQdnoMNMg5/DpcX72hNKVgbiL+b42bP7fWRTHLr+BJ2DRHoToeYVS+Dfm40gqdktKwkCACdXVWd4ZTpQLOuH+7vedbBxXz/0erkOoq7zVRd0H0cBshS09dVtJtP6vO5ZzZhVy5UGYm8DAP54ryl+PHALY9up/s9zPpNkGH0M+CmjA3HTMaoayezc/IHkh8B7RyB6kFXrsbR/fYh2rAFeq97XKeOBC/eyLjzWj9J/s0puHPU1pzYYgk6VUzHty30AVIeVq5Ph2pzaZTz1Tv+sSzWtREjzC1YjwAOINxzX6uGN0TNiBObiF7SSGJ8MFgQmQlYyoGlZrDmpJzOuHAZc3wU00L5DB45ZzTnizCTDvzbw5g/IrkZGdewloTwqfvYfyisF4ICqg62vuzPKeLlAoRRQorgRHYhFohyToExSBwkuzOwEsUj3KsE124l+98etVD8Qh9Qb0Zr/h6Itmoiv4Y23B+rGUlpPZ3GRCCihaq+XioEz0zrA/e//Abd0i1Ys5Yb1o5qilJvuZ/9YrnqGXbhI/wki+4lxcb/6+PdyPEJrZtXslPTyQoeM3RVUshjm9qytToTExXzQLtgXv/8XhzJeqv/PPeNb43GSDGVL6FYZ58bX3RlLBxjuPA8AGLEfc5b+ik3KFvgglzbT3g1VzYrLBzWEg0SUVVVdLiSr0IC/1H9KxCIs6adq+vr0yQWjYlaKHPKeBHmafou1Zr+FFUMaol1V/R1VddTtrzqmfLX7Y1XI5Qo9U8tKJfHLoAYInqLRsf3dtcCWMUCbqehfqZzBZZ0dJUC1N4GrW4HmHwNuGcdXX+1+mA4SMQK9dY+bYk4OcMus1Sip3TwrMsegdZ3nqRKUegNzL5uhRHEp3q5fBkh6qHf+j/0bYO+VR1rfJTU9neHfrl8GqL8UePWlOunVd3x0qxOAfy48wOg2Gv15vIOBPmtViVVxX+DPoUDzcahYyg3f9alr9GcCAPjVBBqNAM6tBUI+0F/mw0jg5WPAKwiih/fUkzvX8gfu+KkTiy1jW0AQBMQ8fYlyJYrlWttiqlJuWTVdIpEIZbxcMTG0CvZefYRzcQkAgL3hrbDxzD2811p//ydxDjEVl+q5i03j6tHfwwVfDe2MQStLoo/yAL52/EU9nIO1MRGyks+6VEf9sl6o5u8O2e52kMbuV814ZwUQewwo3zrnFeSgRHEpTk5pD9eM9luxWIQvetREiiwdAZ4uOPhJGwC5V2uaysNF/+2cLSuWRI+6AeranSp+bqji55aVCGU7OafBEWPlH+GNeoY7V+ekZHEpoHFV+UWPmmiWWWMCVR+fXElzv6vGw8URvRoacfvzoK3AvtlAt4WY7l0VNUu7o0M11Q+ys6MkT0mQ0co0wK8K1WWayMjeYx2qG5ksaJgUVhUPElLRp5H+/eHjJsWTZBlC9TQH5mrIduDZLSCwce5lc2B0EgQAYjFQrpnO5GEtgvD1rmu5Lr56WGPdpKNUNWDkfuO232sVkBCn+tE2kVisUSPQ6hNAKVclVuZSrATwpnmfKuDh4oieDfLwGInMJMiABX3q4uMOlVA+e01rtTey/h51UO+yJYtr115n79em1nU+EPa1uqZOh5Mr4BQEQH9/M00ikSjX5jBzyDwyx7StiPdbV8D603dRv5wnKpZyw5QuJgysK9I41kQiIGwuhPiLgHdFiE4s1rrLDgDaZHSI/kPRBvfc6uJkQt7uXjQ3JkJW4uIkUV3VAMCb3wG/vws0+xBwKgZU7pTv9ftla+ceoNFU4pDDnSiWIBaLsODd7Lcxa7LA0OqlqgHRqqvxAU0NX31rqurnhmvxyeha2x/wKQ60nQYU90G36wG4/+IVauX19s7yrYHyqippVwD9mxgXj7n5e+Z3XCLDShSXYo2BzqMAsH9Ca9x78Vq7qdNYQS3UzXHWJnUw/ENWxssF916o2jkyk6BfBjXEyNVnsGWM7jhDORJL8pQEqTau2bRUTOfHyCjNPgSOW+IRSkY1OJmNRCwyuhYvu7ZVSmFUq/KoVKo43qgdkHNnXkNJUDYdq/uiZaWSqJfZUbxyGHBmBeCU9+THQHcevd5tFIhNkfcxuFmQeppYLFL1I8oTjXN3iQpA0/ezprQYr7qgyGZCx8qYv+c6xvQKw7FfTgHIufN+QWAiVBh4BwNjTlk7CtM0/QA4+aOqk6UZZdYc5FvLjLuDqhpfq/TPhy2Q+FquqlECgNYTAQCLcml9KuxWDmmEIzeeoo8xtVcW4ubsiGr+OQ8AZwkBni7Ao9zLmUNwyWLqRChTx+q+qmEQCkKPn4A9M4A+q/O/LnEB/DRY8dlSxhCJRJhqSu2IERwlYvw2XOOCoVInVR+8bE2Ypqjq54ZD158YVXZuz9qY06Om/n5EeVHMB3iV8YSJugO05+lJggDgw/aVMKp1ea2LimAf4/tGWgITIcqbTl+qbp31McPjJjT6P/02vDHmbLuCCZ1yHiMjV06uQHvTngnmKBFnJUFFSNuqpdC2qvXG6LCmAD+/AkuEPmxXCUduPEXPXAa6s5i6fYE67xqfYNQbCJz7DWit7246CyUpplRf2AORSLsPXh6M61AJIpEInfX1r9LDbEkQoOpD9+Sq6u+444bv5Mwmp5pVa2AiRHkjFquan/Kjwyzg1n5Vx9QMVf3csXZE3u6WIMpO1HE2kHBXNTClhTUO9sbFzztpjf5b4EypZem2UNUElo/aiPwp3DVCtsLVyQGTO1vm+Yd6VX0DuJYx1ojm8ZZ4T395G8BEiKynxceqF5GlFC8FDN2eezkz0TdScqEllgA+BmpeC3mzFVmRZgfpIpLMWm8oRyIiKqQs9QPHpjGbp3WnmHmSImunU0yEiIio4LHWyfZp/h96mN43LnMIl8p+uT9P05LYNEZERNoslaRoDVbKRKhIqaj/uWk5ifq8E2RypdWblJkIERFRNhZKUtz9VY8vcZACzoVjMD0ykdaDmPPXNObq5ABXPU9dKmhMhIiI8skllxGDbU7JSpZb9zu/Wm7dVAAMPGjYhps6mQgREZG2mu+obocuy6EsKBvv8ll/a+U+TISIiKioEIuBluYdNZ6KCK2H2xaNGiHeNUZElE82/BtAZBq/mll/F5EDn4kQERERGUfrsUoG+gvZGCZCREREZByHrGdDws0/628brh1iIkREZILMB/NOKcjnOxEVFmIxMOU+MPku4FAI7n03AyZCREQm2DmuJX4aUB/DWwSrp9nutTBRHkiL6xkHyna/BbxrjIjIBD5uUoTV9M+9IFGRx7vGiIiIyF7ZcPKjiYkQEVE+iYrIDwKRPWIiRERERHnApjEiIiIi2HJnaZtIhGJjYzF8+HAEBwfDxcUFFSpUwMyZM5GWlpbjcm3atIFIJNJ6jR49uoCiJiIiKsJsuBZIk03cNXbt2jUolUr8/PPPqFixIi5duoSRI0fi5cuX+Pbbb3NcduTIkZg9e7b6vaurq6XDJSI7UzR+DohMVTSaxmwiEQoLC0NYWJj6ffny5REdHY2lS5fmmgi5urrCz8/P0iESERHZMdtNhGyiaUyfxMREeHt751pu7dq1KFmyJGrWrIkpU6bg1atXOZaXyWRISkrSehER5USwdgBE1mDDtUCabKJGKLubN29i0aJFudYG9evXD+XKlUNAQAAuXryISZMmITo6Gps2bTK4TEREBGbNmmXukImIiIqYotE0ZtUaocmTJ+t0Zs7+unbtmtYy9+/fR1hYGHr16oWRI0fmuP5Ro0YhNDQUtWrVQv/+/bF69Wr8/fffuHXrlsFlpkyZgsTERPXr7t27ZvmsRFR02e5PAJG52O63wKo1QhMmTMCQIUNyLFO+fHn13w8ePEDbtm3RrFkzLFu2zOTtNWnSBICqRqlChQp6y0ilUkilUpPXTUT2K1mWbu0QiAqeqGjUCFk1EfLx8YGPj49RZe/fv4+2bduiQYMGWLlyJcRi0yuzzp8/DwDw9+dzgoiIiPLHdpMfTTbRWfr+/fto06YNypYti2+//RZPnjxBfHw84uPjtcpUrVoV//33HwDg1q1bmDNnDs6ePYvY2Fhs3boVgwYNQqtWrVC7dm1rfRQiIqIiyHaTIpvoLL1nzx7cvHkTN2/eRJkyZbTmCYLqfg25XI7o6Gj1XWFOTk7Yu3cvFixYgJcvXyIwMBA9e/bEtGnTCjx+IiKiIodNYwVnyJAhufYlCgoKUidFABAYGIhDhw5ZODIiIsBNahOnUiIzs93kR5NNNI0RERVmEknR+EEgyjvb/Q4wESIiIiLTFZGmMSZCRERElAciA3/bFiZCRET5JPAZG0Q2i4kQERERmY5NY0RERGS3RGwaIyIiIrtlu8mPJiZCREREZDqlxjP2FDLrxZFPTISIiPJJYG9pskfy11l/v3puvTjyiYkQEVE+JaXy6fNkhxykWX97l7deHPnERIiIiIjyRyyxdgR5xkSIiIiI8sl2O04zESIiIiLTafaN4zhCREREZFfun9V4w0SIiIiI7In8VdbfIttNJ2w3ciIiIioc2DRGRERE9ouJEBEREdkTdpYmIiIiAhMhIiIiIlvERIiIiIjsFhMhIiIiMp0NP1ZDExMhIiIiMp1fbWtHYBZMhIiIiMh0NtxBWhMTISIiIsoDJkJERERENo2JEBEREdktJkJERERkuqLRMsZEiIiIiOwXEyEiIiKyW0yEiIiIKA+KRtsYEyEiIiKyW0yEiIiIyG4xESIiIiLTiR2sHYFZMBEiIiIi0zk4WzsCs7CZRCgoKAgikUjrNXfu3ByXSU1NxZgxY1CiRAkUL14cPXv2xKNHjwooYiIioiKsXn/AuzzQeJS1I8kXm6rXmj17NkaOHKl+7+bmlmP58ePHY/v27di4cSM8PDwwduxYvP322zh27JilQyUiO1La08XaIRAVPKkb8GGkzT981aYSITc3N/j5+RlVNjExEb/++ivWrVuHdu3aAQBWrlyJatWq4eTJk2jatKklQyUiO6IUBGuHQGQdNp4EATbUNAYAc+fORYkSJVCvXj188803SE9PN1j27NmzkMvl6NChg3pa1apVUbZsWZw4ccLgcjKZDElJSVovIqKcKJRMhIhslc3UCH300UeoX78+vL29cfz4cUyZMgUPHz7Ed999p7d8fHw8nJyc4OnpqTXd19cX8fHxBrcTERGBWbNmmTN0IiriWCNEZLusWiM0efJknQ7Q2V/Xrl0DAISHh6NNmzaoXbs2Ro8ejfnz52PRokWQyWRmjWnKlClITExUv+7evWvW9RNR0eMksanKdSLSYNUaoQkTJmDIkCE5lilfvrze6U2aNEF6ejpiY2NRpUoVnfl+fn5IS0tDQkKCVq3Qo0ePcuxnJJVKIZVKjYqfiOzbTwPqI2LnNSzuW9/aoRBRHlk1EfLx8YGPj0+elj1//jzEYjFKlSqld36DBg3g6OiIffv2oWfPngCA6OhoxMXFISQkJM8xExFlCqvpj7Ca/tYOg4jywSb6CJ04cQKnTp1C27Zt4ebmhhMnTmD8+PEYMGAAvLy8AAD3799H+/btsXr1ajRu3BgeHh4YPnw4wsPD4e3tDXd3d3z44YcICQnhHWNEREQEwEYSIalUivXr1+Pzzz+HTCZDcHAwxo8fj/DwcHUZuVyO6OhovHr1Sj3t+++/h1gsRs+ePSGTyRAaGooff/zRGh+BiIiICiGRIPB2h5wkJSXBw8MDiYmJcHd3t3Y4REREZARjf795qwMRERHZLSZCREREZLeYCBEREZHdYiJEREREdouJEBEREdktJkJERERkt5gIERERkd1iIkRERER2i4kQERER2S0mQkRERGS3mAgRERGR3bKJh65aU+aj2JKSkqwcCRERERkr83c7t0eqMhHKRXJyMgAgMDDQypEQERGRqZKTk+Hh4WFwPp8+nwulUokHDx7Azc0NIpHIbOtNSkpCYGAg7t69y6faZ+A+0cV9oov7RBf3iTbuD132uE8EQUBycjICAgIgFhvuCcQaoVyIxWKUKVPGYut3d3e3m4PSWNwnurhPdHGf6OI+0cb9ocve9klONUGZ2FmaiIiI7BYTISIiIrJbTISsRCqVYubMmZBKpdYOpdDgPtHFfaKL+0QX94k27g9d3CeGsbM0ERER2S3WCBEREZHdYiJEREREdouJEBEREdktJkJERERkt5gIWcmSJUsQFBQEZ2dnNGnSBP/995+1QzKLzz//HCKRSOtVtWpV9fzU1FSMGTMGJUqUQPHixdGzZ088evRIax1xcXHo2rUrXF1dUapUKUycOBHp6elaZQ4ePIj69etDKpWiYsWKWLVqVUF8PKMcPnwY3bp1Q0BAAEQiETZv3qw1XxAEzJgxA/7+/nBxcUGHDh1w48YNrTLPnz9H//794e7uDk9PTwwfPhwpKSlaZS5evIiWLVvC2dkZgYGBmDdvnk4sGzduRNWqVeHs7IxatWphx44dZv+8ucltfwwZMkTnmAkLC9MqU5T2BwBERESgUaNGcHNzQ6lSpdCjRw9ER0drlSnI74q1z0fG7I82bdroHCejR4/WKlNU9gcALF26FLVr11YPgBgSEoKdO3eq59vT8WFxAhW49evXC05OTsKKFSuEy5cvCyNHjhQ8PT2FR48eWTu0fJs5c6ZQo0YN4eHDh+rXkydP1PNHjx4tBAYGCvv27RPOnDkjNG3aVGjWrJl6fnp6ulCzZk2hQ4cOwrlz54QdO3YIJUuWFKZMmaIuc/v2bcHV1VUIDw8Xrly5IixatEiQSCTCrl27CvSzGrJjxw7hs88+EzZt2iQAEP7++2+t+XPnzhU8PDyEzZs3CxcuXBDefPNNITg4WHj9+rW6TFhYmFCnTh3h5MmTwpEjR4SKFSsKffv2Vc9PTEwUfH19hf79+wuXLl0Sfv/9d8HFxUX4+eef1WWOHTsmSCQSYd68ecKVK1eEadOmCY6OjkJUVJTF94Gm3PbH4MGDhbCwMK1j5vnz51plitL+EARBCA0NFVauXClcunRJOH/+vNClSxehbNmyQkpKirpMQX1XCsP5yJj90bp1a2HkyJFax0liYqJ6flHaH4IgCFu3bhW2b98uXL9+XYiOjhamTp0qODo6CpcuXRIEwb6OD0tjImQFjRs3FsaMGaN+r1AohICAACEiIsKKUZnHzJkzhTp16uidl5CQIDg6OgobN25UT7t69aoAQDhx4oQgCKofTbFYLMTHx6vLLF26VHB3dxdkMpkgCILw6aefCjVq1NBad58+fYTQ0FAzf5r8y/7Dr1QqBT8/P+Gbb75RT0tISBCkUqnw+++/C4IgCFeuXBEACKdPn1aX2blzpyASiYT79+8LgiAIP/74o+Dl5aXeJ4IgCJMmTRKqVKmift+7d2+ha9euWvE0adJEeO+998z6GU1hKBHq3r27wWWK8v7I9PjxYwGAcOjQIUEQCva7UhjPR9n3hyCoEqFx48YZXKYo749MXl5ewvLly+3++DA3No0VsLS0NJw9exYdOnRQTxOLxejQoQNOnDhhxcjM58aNGwgICED58uXRv39/xMXFAQDOnj0LuVyu9dmrVq2KsmXLqj/7iRMnUKtWLfj6+qrLhIaGIikpCZcvX1aX0VxHZhlb2H8xMTGIj4/Xit/DwwNNmjTR2geenp5o2LChukyHDh0gFotx6tQpdZlWrVrByclJXSY0NBTR0dF48eKFuoyt7KeDBw+iVKlSqFKlCt5//308e/ZMPc8e9kdiYiIAwNvbG0DBfVcK6/ko+/7ItHbtWpQsWRI1a9bElClT8OrVK/W8orw/FAoF1q9fj5cvXyIkJMTujw9z40NXC9jTp0+hUCi0Dk4A8PX1xbVr16wUlfk0adIEq1atQpUqVfDw4UPMmjULLVu2xKVLlxAfHw8nJyd4enpqLePr64v4+HgAQHx8vN59kzkvpzJJSUl4/fo1XFxcLPTp8i/zM+iLX/PzlSpVSmu+g4MDvL29tcoEBwfrrCNznpeXl8H9lLmOwiIsLAxvv/02goODcevWLUydOhWdO3fGiRMnIJFIivz+UCqV+Pjjj9G8eXPUrFkTAArsu/LixYtCdz7Stz8AoF+/fihXrhwCAgJw8eJFTJo0CdHR0di0aROAork/oqKiEBISgtTUVBQvXhx///03qlevjvPnz9vt8WEJTITIrDp37qz+u3bt2mjSpAnKlSuHDRs2FOoEhazn3XffVf9dq1Yt1K5dGxUqVMDBgwfRvn17K0ZWMMaMGYNLly7h6NGj1g6lUDC0P0aNGqX+u1atWvD390f79u1x69YtVKhQoaDDLBBVqlTB+fPnkZiYiD///BODBw/GoUOHrB1WkcOmsQJWsmRJSCQSnd79jx49gp+fn5WishxPT09UrlwZN2/ehJ+fH9LS0pCQkKBVRvOz+/n56d03mfNyKuPu7l7ok63Mz5DT/7+fnx8eP36sNT89PR3Pnz83y34q7MdZ+fLlUbJkSdy8eRNA0d4fY8eOxbZt23DgwAGUKVNGPb2gviuF7XxkaH/o06RJEwDQOk6K2v5wcnJCxYoV0aBBA0RERKBOnTpYuHCh3R4flsJEqIA5OTmhQYMG2Ldvn3qaUqnEvn37EBISYsXILCMlJQW3bt2Cv78/GjRoAEdHR63PHh0djbi4OPVnDwkJQVRUlNYP3549e+Du7o7q1aury2iuI7OMLey/4OBg+Pn5acWflJSEU6dOae2DhIQEnD17Vl1m//79UCqV6pN/SEgIDh8+DLlcri6zZ88eVKlSBV5eXuoytrif7t27h2fPnsHf3x9A0dwfgiBg7Nix+Pvvv7F//36dZr2C+q4UlvNRbvtDn/PnzwOA1nFSVPaHIUqlEjKZzO6OD4uzdm9te7R+/XpBKpUKq1atEq5cuSKMGjVK8PT01Ordb6smTJggHDx4UIiJiRGOHTsmdOjQQShZsqTw+PFjQRBUt3yWLVtW2L9/v3DmzBkhJCRECAkJUS+fectnp06dhPPnzwu7du0SfHx89N7yOXHiROHq1avCkiVLCtXt88nJycK5c+eEc+fOCQCE7777Tjh37pxw584dQRBUt897enoKW7ZsES5evCh0795d7+3z9erVE06dOiUcPXpUqFSpktbt4gkJCYKvr68wcOBA4dKlS8L69esFV1dXndvFHRwchG+//Va4evWqMHPmTKvcLp7T/khOThY++eQT4cSJE0JMTIywd+9eoX79+kKlSpWE1NTUIrk/BEEQ3n//fcHDw0M4ePCg1u3gr169UpcpqO9KYTgf5bY/bt68KcyePVs4c+aMEBMTI2zZskUoX7680KpVqyK5PwRBECZPniwcOnRIiImJES5evChMnjxZEIlEwr///isIgn0dH5bGRMhKFi1aJJQtW1ZwcnISGjduLJw8edLaIZlFnz59BH9/f8HJyUkoXbq00KdPH+HmzZvq+a9fvxY++OADwcvLS3B1dRXeeust4eHDh1rriI2NFTp37iy4uLgIJUuWFCZMmCDI5XKtMgcOHBDq1q0rODk5CeXLlxdWrlxZEB/PKAcOHBAA6LwGDx4sCILqFvrp06cLvr6+glQqFdq3by9ER0drrePZs2dC3759heLFiwvu7u7C0KFDheTkZK0yFy5cEFq0aCFIpVKhdOnSwty5c3Vi2bBhg1C5cmXByclJqFGjhrB9+3aLfW5Dctofr169Ejp16iT4+PgIjo6OQrly5YSRI0fqnGSL0v4QBEHv/gCgdRwX5HfF2uej3PZHXFyc0KpVK8Hb21uQSqVCxYoVhYkTJ2qNIyQIRWd/CIIgDBs2TChXrpzg5OQk+Pj4CO3bt1cnQYJgX8eHpYkEQRAKrv6JiIiIqPBgHyEiIiKyW0yEiIiIyG4xESIiIiK7xUSIiIiI7BYTISIiIrJbTISIiIjIbjERIiIiIrvFRIiIiIjsFhMhIrJJIpEImzdvtnYYRhkyZAh69Ohh7TCISA8mQkRUKMXHx+PDDz9E+fLlIZVKERgYiG7duuk8JJKIKD8crB0AEVF2sbGxaN68OTw9PfHNN9+gVq1akMvl2L17N8aMGYNr165ZO0QiKiJYI0REhc4HH3wAkUiE//77Dz179kTlypVRo0YNhIeH4+TJk+pyT58+xVtvvQVXV1dUqlQJW7duVc9TKBQYPnw4goOD4eLigipVqmDhwoVa28lssvr222/h7++PEiVKYMyYMZDL5eoyQUFB+OqrrzBs2DC4ubmhbNmyWLZsmdZ67t69i969e8PT0xPe3t7o3r07YmNjLbNziMismAgRUaHy/Plz7Nq1C2PGjEGxYsV05nt6eqr/njVrFnr37o2LFy+iS5cu6N+/P54/fw4AUCqVKFOmDDZu3IgrV65gxowZmDp1KjZs2KC1vgMHDuDWrVs4cOAA/ve//2HVqlVYtWqVVpn58+ejYcOGOHfuHD744AO8//77iI6OBgDI5XKEhobCzc0NR44cwbFjx1C8eHGEhYUhLS3NvDuHiMzPeg++JyLSderUKQGAsGnTphzLARCmTZumfp+SkiIAEHbu3GlwmTFjxgg9e/ZUvx88eLBQrlw5IT09XT2tV69eQp8+fdTvy5UrJwwYMED9XqlUCqVKlRKWLl0qCIIg/Pbbb0KVKlUEpVKpLiOTyQQXFxdh9+7d6u107949l09ORNbAPkJEVKgIgmB02dq1a6v/LlasGNzd3fH48WP1tCVLlmDFihWIi4vD69evkZaWhrp162qto0aNGpBIJOr3/v7+iIqKMrgdkUgEPz8/9XYuXLiAmzdvws3NTWuZ1NRU3Lp1y+jPQkTWwUSIiAqVSpUqQSQSGdUh2tHRUeu9SCSCUqkEAKxfvx6ffPIJ5s+fj5CQELi5ueGbb77BqVOnjF6HMWVSUlLQoEEDrF27Vic+Hx+fXD8DEVkXEyEiKlS8vb0RGhqKJUuW4KOPPtLpJ5SQkKDVT8iQY8eOoVmzZvjggw/U0yxRQ1O/fn388ccfKFWqFNzd3c2+fiKyLHaWJqJCZ8mSJVAoFGjcuDH++usv3LhxA1evXsUPP/yAkJAQo9ZRqVIlnDlzBrt378b169cxffp0nD592uyx9u/fHyVLlkT37t1x5MgRxMTE4ODBg/joo49w7949s2+PiMyLiRARFTrly5dHZGQk2rZtiwkTJqBmzZro2LEj9u3bh6VLlxq1jvfeew9vv/02+vTpgyZNmuDZs2datUPm4urqisOHD6Ns2bJ4++23Ua1aNQwfPhypqamsISKyASLBlJ6JREREREUIa4SIiIjIbjERIiIiIrvFRIiIiIjsFhMhIiIisltMhIiIiMhuMREiIiIiu8VEiIiIiOwWEyEiIiKyW0yEiIiIyG4xESIiIiK7xUSIiIiI7Nb/Ae3pruh7wlgGAAAAAElFTkSuQmCC", "text/plain": [ "

" ] @@ -272,7 +272,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAGxCAYAAAB1Hiz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWvklEQVR4nO3dd3gUVRcG8HfTNiGVFAghIZCEHnonSEA6qNgVC6CIoEEpKhgVQVGiqIifKAgqVqRIU1GKSACR3kOHEAiBBEjvbef7I2TJZku2z87u+3uePLCzs7Mnk92ZM/eee0cmCIIAIiIiIglzEjsAIiIiIlMxoSEiIiLJY0JDREREkseEhoiIiCSPCQ0RERFJHhMaIiIikjwmNERERCR5TGiIiIhI8lzEDsAaFAoFrl27Bm9vb8hkMrHDISIiIj0IgoD8/HyEhITAyUl3G4xDJDTXrl1DWFiY2GEQERGREVJTUxEaGqpzHYdIaLy9vQFU7RAfHx+Lv19eXh7CwsKs9n6kivtfXNz/4uL+Fx//BuZTvS+rz+O6OERCU93N5OPjY9UPl7Xfj1Rx/4uL+19c3P/i49/AfPQpF2FRMBEREUkeExoiIiKSPCY0FiCXyzFr1izI5XKxQ3FI3P/i4v4XF/e/+Pg3EIdMEARB7CAsLS8vD76+vsjNzWV/JhERkUQYcv5mCw0RERFJHhMaIiIikjwmNERERCR5TGiIiIhI8pjQEBERkeQxoSEiIiLJY0JDREREkseEhoiIiCSPCY0Dy8grwaglezF15VEoFHY/vyIREdkxh7jbNmn2/I+HcCw1BwAQExWIh7uEihsQERGRkdhC48CqkxkA2H8pU7xAiIiITMSEhgAAyTcLxQ6BiIjIaExoiIiISPKY0BAREZHkMaFxUCXllSqPZTKRAiEiIjIDJjQOqrC0QuwQiIiIzIYJDREREUkeExoiIiKSPCY0BACQgUU05Hj2JWfi823nkVVYJnYoRGQizhTsoHijA3J0+SXleGzJXgDA0dQcfDO2m8gREZEp2EJDAACBKQ45mDPp+cr/bztzQ8RIiMgcmNA4qNodTOxyIkfz5fYLYodARGbEhIaqMJ8hB5OSWSR2CERkRkxoHNSeZNWbUSoU7HIiIiLpYkLjoDYlpas8Png5W6RIiIiITMeExkHJeK8DcnCXbvEO80T2hAmNg2I6Q0RE9oQJjYNiAw0REdkTJjREREQkeUxoiIiISPKY0Dio3OJysUMgIiIyGyY0DupaTrHYIRAREZmNZBOatLQ0PPXUUwgICICHhwfatWuHgwcPih2WZPBWB0REZE8kebft7OxsxMTEoH///vjrr78QFBSE8+fPo379+mKHRkRERCKQZELz4YcfIiwsDMuWLVMua9asmYgRERERkZgk2eX022+/oWvXrnjkkUfQoEEDdOrUCUuXLq3zdXl5eSo/paWlVojWNnEeGiIisjWlpaVq52p9STKhSU5OxqJFi9C8eXNs3rwZL7zwAl5++WV8//33Ol8XFhYGX19f5U9CQoKVIrY9vPUBERHZmoSEBJXzdFhYmN6vlWSXk0KhQNeuXTF37lwAQKdOnZCUlITFixdjzJgxWl+XmpoKHx8f5WO5XG7xWG0V0xkiVbnF5fD1cBU7DCKHFh8fj2nTpikf5+Xl6Z3USLKFplGjRmjTpo3KstatW+PKlSs6X+fj46Py49AJDTMaIhVrDl0VOwQihyeXy9XO1fqSZEITExODs2fPqiw7d+4cwsPDRYpIejQlNFmFZdYPhIiIyAwkmdBMnToVe/fuxdy5c3HhwgUsX74cS5YsQVxcnNihSYameWh4hUqOTBA7ACIyiSQTmm7dumHdunX45ZdfEB0djTlz5mDBggV48sknxQ5NMi7dKlRbJvCQTg5s66l0sUMgIhNIsigYAO655x7cc889YochWQWlFWKHQGRT9iZniR0CEZlAki00ZBkCG2iIiEiimNAQERGR5DGhISU20JCjUCj4aSeyN0xoiMjh/HqYI/qI7A0TGlJiDQ05iu1nbogdAhGZGRMaInI4TN6J7A8TGlLiPDTkKPhZJ7I/TGiIyOGwhYbI/jChISKHw0FORPaHCQ0ROSBmNET2hgkNKbEZnhzF36c5yonI3jChISIiIsljQkNERESSx4SGiIiIJI8JDSkJLKIhIiKJYkJDREREkseEhpTYQENERFLFhIaUcovLxQ6BiIjIKExoSOnrfy+JHQIREZFRmNAQERGR5DGhISIiIsljQkNERESSx4SGiIiIJI8JDREREUkeExoiIiKSPCY0Dig1q0jsEIiIiMyKCY0DKq1QiB0CERGRWTGhcUC8CSUREdkbJjQOqJIJDZFGBaUVYodAREZiQuOAKhVMaIg0ScsuFjsEIjISExoHxAYaIs0E8MtBJFVMaBwQW2iINGOyTyRdTGgcUAUTGiKNmNAQSRcTGgfEUU5EmrHLiUi6mNA4IDbQEGnGXJ9IupjQOCCFjqM262uIiEiKmNA4IF1XobnF5dYLhMjGsIWGSLqY0DggXXUCrK8hR8YaGiLpYkLjgHTlLDyckyNjPk8kXUxoHJDOhIYHdHJguurLiMi2MaFxQOxyItIs+Wah2CEQkZGY0BAR3fbnietih0BERmJC44DKKxVan2P7DDkyfv6JpIsJjQP6ae8Vrc+xx4kcGWtoiKSLCY0DSsnUXifAYavkyJjPEEkXExpSwYmCyZHll3BiSSKpYkLjgPKKK8QOgcgmcaZsIuliQuOAbhWUan2Ow7bJkfHjTyRdTGiIiG5jUTCRdDGhISK6jTVkRNLFhIZU8AKVHBlH+RFJFxMaIqLbUrOKxQ6BiIzEhIaIHEpBKUf5EdkjJjSkgl1OZO/KKrTf+oOIpIsJDanI48RiREQkQUxoSMVz3x8UOwQii+JcS0T2iQkNqUjPKxE7BCIiIoMxoSEih8L2GSL7xISGiIiIJI8JDREREUkeExoiIiKSPLtIaD744APIZDJMmTJF7FCIiIhIBJJPaA4cOICvvvoK7du3FzsUIpIAjtomsk+STmgKCgrw5JNPYunSpahfv77Y4RAREZFIJJ3QxMXFYcSIERg4cKBe6+fl5an8lJaWWjhCIiIi0ldpaanauVpfkk1oVqxYgcOHDyMhIUHv14SFhcHX11f5Y8hriYiIyLISEhJUztNhYWF6v9bFgnFZTGpqKiZPnoytW7fC3d3doNf5+PgoH8vlckuER0Q2TODUekQ2Kz4+HtOmTVM+zsvL0zupkWRCc+jQIdy4cQOdO3dWLqusrMTOnTuxcOFClJaWwtnZWe11Pj4+KgkNETkg5jNENksulxvd2CDJhGbAgAE4ceKEyrJnnnkGrVq1wowZMzQmM0RERGS/JJnQeHt7Izo6WmWZp6cnAgIC1JYTERGR/ZNsUTARERFRNUm20GiSmJgodghEJAEsoSGyT2yhISIiIsljQkNERESSx4SGiBzK1exisUMgIgtgQkNEDuVYao7YIRCRBTChcXDhAfXEDoHIqlycZWKHQEQWwITGwQ1s3VDsEIisSuAwJyK7xITGwfFalRyNwIyGyC4xoXFwMmY05GDqSmeY8BBJExMaBydjRkMOhvkKkX1iQkNEDoX5DJF9YkJDRA6FXUpE9okJjYNjhxM5mqKySp3PM98hkiYmNI6OGQ05mG/+vaTz+f8uZlopEiIyJyY0Dk7GjIYcTF5Juc7n8+t4nohsExMaB8dBTuRo6upSYo8TkTQxoXFwzGeIVLGGhkiamNAQujf1FzsEIiIikzChcXAyGeApdxY7DCLR1K/nqvJYYKcTkSQxoSE1aTnFYodAZDVDo4NVHrPLiUiamNCQmuzCMrFDILIa3v6DyD4woXFwMshQXK57ojEie/Zcn2Yqj9lAQyRNTGgcnEwG5BZXiB0GkWgigrxUHm9OShcpEiIyBRMaUsMWeHJkG09cFzsEIjICExoHx9yFiIjsARMaB8eCSCIisgdMaBwc8xkiIrIHTGiIiIhI8pjQEBERkeQxoSEiIiLJY0Lj4BQKAUKtud5lHPtEREQSw4TGwSk4LSoREdkBJjQOTiEIHLpNRESSx4TGwbGFhoiI7AETGgenEJjREBGR9DGhcXAKDU00xeW8WSUREUkLExoHV9/TTW3Z0p2XRIiEiIjIeExoHNzTvcLVlmUXlYkQCRERkfGY0Dg4uQs/AkREJH08m5EajuImIiKpYULj4GSQYXCbhmKHQUREZBImNA6mpLxS5bFMBgxuq5rQ8NYHREQkNUxoHMyWUxkqj2UAIgK9VJbtSc60YkRERESmY0LjYGrfiBIAnPgpICIiieOpzMHxPk5ERGQPXIx9YXl5OdLT01FUVISgoCD4+/ubMy6yEqYzRERkDwxqocnPz8eiRYsQGxsLHx8fNG3aFK1bt0ZQUBDCw8Mxfvx4HDhwwFKxkhnU7nGSyVgETERE0qd3QjN//nw0bdoUy5Ytw8CBA7F+/XocPXoU586dw549ezBr1ixUVFRg8ODBGDp0KM6fP2/JuMmM3Di5HhERSZzeXU4HDhzAzp070bZtW43Pd+/eHc8++ywWLVqE7777Drt27ULz5s3NFiiZhwDVJhrW0BCpEwSB3w0iidE7ofnll1/0Wq+iogITJ040OiAiIrH9dzETMVGBYodBRAYwqK/h008/1fl8fn4+hgwZYlJAZFkaRm0TOYxDl7P0Wi+3uNzCkRCRuRmU0Lzxxhv44YcfND5XWFiIoUOHIjOTk7LZsvJKhdghEInmyJUcsUMgIgsxKKH58ccfMWHCBPz2228qywsLCzFkyBDcvHkT27dvN2uAZF5f77okdghENqNDmJ/G5WzJJJIeg+ahefjhh5GTk4NRo0Zh48aN6Nevn7JlJiMjAzt27ECjRo0sFSuZwfkbBWKHQCSa2onKC7ER4gRCRGZn8Hjd5557DrNmzcLIkSORmJiIYcOG4dq1a9i+fTtCQkIsESMRkVnUHuUnd3HWuN6b609YIxwiMiOjZgqePn06srKyMGDAADRt2hSJiYkIDQ01d2xERGZVWl6rhkzLyOycIhYFE0mNQQnNgw8+qPLY1dUVgYGBmDx5ssrytWvXmh4ZiaqkvBLurpqvXomkateFW2KHQEQWYlBC4+vrq/J41KhRZg3GUby2+hgOpGThs8c7aS1KFFtpuYIJDVlEYWkF/j6dgW5N/RHi5yFqLJw6j8h+GJTQLFu2zFJxOIyjqTlYfegqAOCxJXtwZs4wkSPS7Ot/k/HK4JZih0F2aOb6JKw9koZALzkOvDnAujPyqt3LjCkNkb3gTXysLCOvRPn/ktr9+TbkcmaR2CGQnVp7JA0AcKugFKUV1v0O1C4KJiL7oXdCc+XKFYM2nJaWZnAwZDt42CdrSM8tqXslC2L7DJH90Duh6datGyZMmIADBw5oXSc3NxdLly5FdHQ01qxZY5YA7Q0n7CK6o7i8UtT3Z48Tkf3Qu4bm1KlTeP/99zFo0CC4u7ujS5cuCAkJgbu7O7Kzs3Hq1CmcPHkSnTt3xrx58zB8+HBLxo2EhASsXbsWZ86cgYeHB3r37o0PP/wQLVvaet2HNDIagZkX2aHySn6uieyV3i00AQEBmD9/Pq5fv46FCxeiefPmuHXrFs6fPw8AePLJJ3Ho0CHs2bPH4skMAOzYsQNxcXHYu3cvtm7divLycgwePBiFhYUWf29TnMvgTL1EYjmamqPyWMZOJyK7YfDEeh4eHnj44Yfx8MMPWyIevW3atEnl8XfffYcGDRrg0KFD6Nu3r0hR1a2oTNwmdn3xOpasgV0+RGQudjPKKTc3FwDg7+8vciS6bTxxTewQiGyG2D2bTKiI7IdRtz6wNQqFAlOmTEFMTAyio6O1rpeXl6fyWC6XQy6XWzo8FalZxVZ9PyLSTuyEiohUlZaWorS0VPm49nlbF7tooYmLi0NSUhJWrFihc72wsDD4+voqfxISEqwUofScTMsVOwRyALbSQtI7MkDsEIgIVQN+ap6nw8LC9H6t5FtoJk2ahD/++AM7d+6s8waZqamp8PHxUT62dusMADjJAIUErgpTOLEeWYHYLSTVCVWQt/WPBUSkLj4+HtOmTVM+zsvL0zupkWxCIwgCXnrpJaxbtw6JiYlo1qxZna/x8fFRSWiISFxFZRWivr/YCRURqTKlFMQsCU1GRgZOnTql/Dl58iROnz6NjIwMc2xeo7i4OCxfvhwbNmyAt7c30tPTAVTdQNPDQ9wb3unC4yfRHbsvZKJLuPiF/C2DvcUOgYhMZFJC06dPH5w/fx5+fn5o2bIlWrVqhdWrV+OPP/5A8+bNzRWjRosWLQIA9OvXT2X5smXLMHbsWIu+t6O4kVeCBj7uYodBdkwhchNJdZfTPe1CMG/TWZXn8krK4ePuKkJURGQMkxKakJAQKBQKJCQkIDY2FgCwevVqdO/e3SzB6SLVmWxl0NxKcyOvBIFecjg5Wa5K0tB99mXiRcy+r62FoiESX2SQFwDNxcnf7LqEqYNaWDkiIjKWSaOcVq1aha+++goLFizA4MGDsW/fPshsZdiCjdKUUvy09zK6z92Gp7/dZ9H3TsvhkHGyLWJfl3i5V13TabqQKKmQxiSYRFTFoITm77//VrvKb9euHdatW4e5c+finXfeQUZGBvbts+yJ2d68tT4JQFU9QUae5e4+XCyRWYrJcdhKO6uPu4bGalsJjoj0YlBCM2TIENy8eVPjc127dsWff/6JLVu24I033sDAgQPNEqC9qav9qrxSYbH35vGZbI3YXccers4AAG8NtTL8vhBJi0E1NPocfGJiYrBt2zZs377d6KDIMsRu3ieqTeyiYGcL1qwRkXVZbKbg/v37W2rTkhbopXt8vS0lHWJfPZP9s+WPWFo2a86IpMTghGbRokXYtm0bsrOzLRGP3RsWHazy+GZ+qZY1zU9gIzrZGFv+RG48cV3sEIjIAAYP2164cCHeeecdyGQyhIWFoXPnzio/wcHBdW/EgdUeTfH+xlMqjy15xWrotq9k8fYHllJSXomNx6+jdSMftAlx3Nmrq7ucissqcTW7CM0bcoI7IjKOwQnNyZMnUVFRgSNHjuDw4cM4fPgwli5ditTUVMhkMgQHByMtLc0SsdqF2knFjVotNLbUirL97E3kFpXDtx4nFzO3T7eew1c7kwEAx2cPdtwJ3ASgUiFg+P924dKtQiQ82A6jujcROyoikiCDEprqOWZCQkIQEhKCESNGKJ/LzMzEoUOHcPToUbMGaO+sOW2PMa0/7/95CvMe7mD+YBxcdTIDAIcuZ6N/ywYiRiMehSDgyJVsXLpVCACIX3uCCQ0RGcVso5wCAgIwePBgDB482OSg7FldCYxYRZLe7i7IL1G/UeCBFNZKkeVczS5GmQWnKiAix2FQUfCmTZvg6+trqVgcUm5xucpjS+Yz+SXlWp97R8stDjjSiSwpu6gMz31/UGVZno7PKRGRNgYlNIMHDzb6tt6kWVJantXea+6fp7U+1yzQ02pxEFXbm5yFolozWF+8USBSNEQkZRabh4Y0k9UxV7ClWkQKSytw7Gqu1ue13YMrJZMjnci6bKlNMD3XcrciISLzYkJjYxQWOpp/tu28zud1TZhaVsEaB3JMvx5KFTsEItITExorE+tm5L/su6LzeV0tR2JPT0+OxVIftxv5hre2mDOWlFuFeGXVMfx27Jr5NkpESgbPQ0OWJk7yIFaiRaTOMt+BFfvFbW0Zu2w/UjKLsObwVcQ2D+L8TkRmxhYaG8PGkDu+2H4Br60+hqzCMuUyQRDw+bbzmPvnaRTXKiYl0kXXKD9rqFmPdrOAtTmOTBAEpNwq5ChSM2MLjZUZ2xAiCAK+3Z2C/JJyTIyNhLurs1njqu/pZtbtmeq/C7fw0eazAICi8kp88URnAMDvx6/jk63nAAByFye8MrilaDGaiyGfifyScjjJZPCUS/Oreya97lF9ljrGZxUantDY4+lGEAStgwDIOmb9dhI/7LmMR7uGKicuFQQBKZlFCPevp3aLHNIPW2hsjLYD6JZTGZjzxyks+Ps8ltaYZdbU7VZr7Odh8DYt6eDlOxP6bTx+5yaBW09lKP+/4oBjFWxezixEj7nb0HPuNsmOvnnsq72ivfeaw1cNfk1mgfVuHmtplQoBY77dj9iPEnE+I1/scBzaD3suAwBWHbzzmfxkyzn0/zgRE386hA1H07DqYCoqLTVKxE4xobGyuj6eu87f0rj8jxon9e/3pJgvIBuVlKZ9iLmts9RBKH7tCRSVVSK/tAJz/jhV9wtsUO2JJDUR6xDup6Gm5fR1S534tV+B703OxI5zN83eHfH7sWvYce4mrmQVYfwPB+t+AVnVwu0XAFRdvE5ecRTTfz2O347xvoiGYEJjZXU1JFrzRDW2d1OrvZehTl233oSD+tLnBPPJlrNoP3szltcxqswYmQV3aomyi8p0rEnGcHVWPxyev2HdloxjqTl4fMlejPl2PxLP3TTrttNyipX/t8b8UsLt+3SdvGY7FyfllQp8vSsZP+29bFP1K9qmxlj4zwUrRyJtTGiszM3Fdnb54LYNxQ7BYGIchEorKvHwov8wYP4OXM3WfSL4/J8LKCyrxBvrTui9/erf6Jt/L6HH3L+x6qBjdaXZCk2frewi6xYSL/j7nPL/7/5uG61wgiAY9b07dDkbD3z5H0b871+cs5EuruX7ruC9jafx1vokZfe1QiGgQsP9xARBwJvrTuChRf8hKS0Xx6/mWOz4U1Jh/ACHK5lF+OP4NZSUV20jt6gcX2y/gN0XNLf22zPbObs6iB4RAWKHoNQ62EfsEExS3dpVWFqBCwZcSVdfOeoqUK2oVOBYag4qKhX49t8UHLycjeSbhXh19TEAVVe7wz7bhae/2YdyM91ccc4fp5CRV4rpvx43y/akquY5Y9XBVLy57gRu5Fm+Zqh1I9v6PlTfgVxMeSXl6PvRdjSL/xMDPkk0aKTY9DV3Pse6brtiTUt33ak//PXQVeQWl6P/J4no8+F2lRYsANh9IRM/77uCQ5ezcc/n/+K+hbvx7e4UK0esW2lFJQZ+ugOTlh/B/NuDJWZuSMJHm8/iya/3mVQDVlGpwPazN+q8iLMlTGis7HKmOAepglL1O2lba6BDeaVCefVgiW0P/nQnBs7fibV6Fn3uv5SFB778D0MX7ELyzQIs3ZmMhD9Po7DGPpr+63GM/GI3pq46hpQaJ5bqe2+9tvoYTl/Pw67zt/Dj7QI/SzF036XlFGu84jTW5pPpmLk+qc4DW1FZBT7efBY/mqnG69KtQkz/9Th+3ncFr9xOJC3p0a5hFn8Pbf67cAvv/XFK7aRqTsZ83z/efBapWVUxXbxZiE+2nMPOczfRbvZmrDmk/n27nluM2b+dxKak6yrLbah3R0kAMH/LWVzOLEJ6XgleX6N6IXFJw7G6rpKAG3klGP/DQcz545RVWpPPpRcou6uW3B4sUnPixpPXjO+6/3b3JTyz7ACGfLrTYsdvc5Pm2E8J++6/FJO3oe17YqnhmDfzSxHmX8+o12YXlmHYZ7tQWlGJ3yb10Xs7+vwaN/JL8d3uFOVJYNqqY3iwc2idr5u26s7JsSq2qgOCQhDw5og2qKhUYO2RqmK8349dw2MaTnQHU+6Mwtp8Mh1llQo80Klx3UEbaPKKI/jrRDo+eKidXuv/vO8y3lyXhE5N/LD2hd46Pw+3CkrhJXfROQVAbnE5Jvx4CABwICULm6b01brugr/PKw+qkQ280DsyUK+Ya6s+EZyqcTDWVixvTh5a9kNuUTn+vXALX2y/gOf7RuB+M/6dKxUCdpy7gWe/s0yRriAIyCuuMHoSv4s3VW8Uuv9SlvIY9srqY/D1cMXANne6rl/8+TCOXMnBd/+loH6t9ywqq8CGo9cQHeKLdqG+RsWjr0u3CvHmuhNoH+qH14e1Ui6v+XWoOWISAFKMuNisfcydvuY4Es9W1T71jgzAgNamdevXdTxPreMiw5SUau6fZwAAhWWV+O/iLdzdyvZLFNhCY2VOeiYcW06m49Ot55B7uw+/rlfN/u0kOs/Zis0n0/WOpa4bZVZ7V8fVxpn0POToKFCdt/ks0vNKkF1Ujhlr1LtSMgtKMfu3k1il5xDs2lG8b2JTdmmNYryluy4hv6Qc/T5OrPWeug8L+y5l4YO/zuC57/U7KW07rXogPZSSjV3n1QtAc4rKsOHoNZRVKjBt1TG9krw31yUBAI5cycHlzCIIgoADKVlqXXL7L2WhV8I29J23XW2CQkEQ8PaGJIz77oDKaLMz6bq79ZbUmE7gn9M3lP9PzSrC59vOG9QtuOVkOuKWH9Z7fXPo1zJI4/IXlx9C3PLDOHU9D1NWHjXLe1X/LRf+c8FiyQwAjP/hEDrN2YKVB8xTpF67WP+5WqOljlzJUf6/Zv1Rfkk5Zv92EvFrT+Dehf/qNdpNX1mFZXhj3Ql8XaM7afwPB/HfxUws3nERR65k63i1DnW0sJy4mos+H27HxB8PKY+P1ckMoH/ryANf7sYba3XX3BWXVeKfMxlqLe1f7bio83W1b1uz4WgaXl19DFfs9KbDbKGxMn1SiGGf7cLp2weOy5mFWPB4J53r5xaXK6+aJvx4CCkfjDAxSlVbT2WgWfyfatv9/dg1vPTLEfjVc8WvE3shqoG32mtr1j5c09Cc/ua6JGy6nYR1bOKHH/akYF9ylrKZuzZN2zCnL7ZfxNVs7e8hU/vPHSdqDTVPvlmAiCAvtfXG1Up8Fm6/gIXb1bdXpke3UVmFAs//eBDZhWVYMrqrynOVgoDtZ+9c/e94rR/CAzwBAI9+tQdAVSvXT3svY3zfCABVV7afbzuvbKHaduYGjFFzYrDHl+xFWk5xnTdIrSYAeP52q5A1uWgY5QRU1VIY4lZBKZ797gDcXZ3x/TPd4eGmueVnX3ImPq1RBGys+VvP4a8T1zHn/mj0rFGjl1VYhr9vJ88z1pzAjKGttG1CK30veupy+EoODtdIdt757SRC/DzwfGwEfNxVW3Jyi8qx+VQ6YqIC9Zofa+b6JGw8UdXF1amJH7qE++PCjTstS5czi9CpSX0Aun8fQajq3q1usayrXuaJpXuRX1qBtJxi/HvhFu5qrpoQa7sHXu1pHY5cyVFJBDV59ddj2Hj8Ou5qHogfx/XQuW5Nu87dwvf/pWBM76boGOqHySuO3n7PbGx7pZ/e25EKttBYmT5X2adrXAWtP6r9RnYZeSWIX3u8zpoFrX25Jh6rXvrlCAAgp6gcA+fvxNw/T2PVgVQcv5qj83UVlQplTJtqtCj9vPcyftp7BedvFKi95kZeCcoqFHV+8etSVqHQWadwM1+9iM7YrvCfTR26Xet9a7aQ3CooxdrDV7Hwn/NIPHsTx67mIl7DVV7Nq//YjxI1vk1hWdVVX1FZBYYu2KlMZrQpKqvA/K3n8PM+7bVD1R8tQRCU+7tCz/l5dHWp2oLatRa1zf7tJI5fzcX+S1lo/fYmfL0rGQ8v+k9lnRd/OozHlhg/yWBFpQL/nMnAiau5+N+28zh/owCP19qeOeuodNl6KgPJN9W/s7qsPZKGhdsvYO5G9RbWKSuPYPqvx3H/F7t1biPx7A18vStZmcwAql3B1Wq2sOo6/l7NLkb0rM2Yv+UsMvJKtBZlV9fU5ddoLVlz6KpaS+f6Gt+jlFuF+GFPCm7klWDIgp06fy9NqicXre56PZeRj43Hr+PYVd1D4r/dfQmJZ2/imWUHcL3GZJwXbxrWvWauxNbS2EJjAQWlFfCqMTX9F9svYPuZG5h1b1uDP0gAcPJarsY79E5ZcRR7knVfPe5NzsR/Zhq+F7f8MML96+FcRgEmxEaoPV+zy2HNC73QJdxfbZ2ktFyMXbYfTfzrYfXE3irPpesYydIzYRua6Fl/k5FXgrl/nkarYB+80C9S5bm6ivrqnE1WpvKPTt/8ewmvDWlp1G0qlu+7gr4ttNegnMsoUKkFAoADl7JUHt/I0zzCQaElsdh57pZKF5w2n207j692VP2tIwK90CtSfeRedd//9rOGt/BoK+7u+O5WvDqkJZ7uGa72XFFZBeZtOovMwjI81jUMfZpX7bvSikoknr1p1hF9Kw6kYkzvpspRUSsPXMGu87fwyuCWaBboiaOpOSrrv6fhpH3WxGHMS3ddwoebzmh8rlIhYMWBK8gu1D1X0awNSZh1b1ud0+z/q8exY/wPB+EkA47NGlznurWtOJCKDx5qr3xcUFqB7be7baovLjTVBl64UYCxyw6obU/TJ3vqymNIuVWEqYNa1BlPhULA//65oLN1ZuaGJLVWkvVHr6GgVDWhSckswne7L2FsTDMM+2wXissr8faGk3XGUFvt7+tPey/jrfVJBm/HETChMbMf96Rg9u+n8GCnxvjokQ64kV+ivCfRvQv/NWqbI/6n+XXakpkNR9PQuUl9lFcq1K7aajK0frjmLQj+rlUHUttDi/Zg52v9VYoKBQDPfHcAtwrKcKugTG22Ul0X4ApB/8nAXl19DLvO38IGXMNfSddx6WYhgn3dMXVQC/y41/ARSRm1Wm1+3HtZrxM/AHz/XwomxEbWvWItb6w7oTFp1KV2C8hrv6qPDLp0qxAFJar98Kev5+GHPSk4XsfVXrXqZKb6Pf6dcbfaOtWfreqhpIZYrWH0DFDVtTpzfRJGdQtT6R5SKAS0eXuz8vHvx64hee5wHEnNwYr9V7RuzxTVN0y9mV+KGWuqWsaOX83Fzun9zTaMXxNBELD7QqbWZAYA1h1JU9ZS1VT7+/79nstoF+qHh7toLqQ/ZcAIGYUAZSJiio9vHyurTVlxBDvO3cTTPcMx7fZ925JvFmDg/B0aX6/tGPLZtvOYGBuptRuoNk2jQqvtOn9L4/7XdEyc/fspjI1phmIjRwnJAPyVpFoXqSuZ0XaxAsC0+a2k0UDDhMbcZt7OwFcfuoqPHumAbCNuiFeXur6Sk1cchZfcReuBylo+3HxGJQkRBNUunX9q1WeYo0NBoRBURsRUn6TzbxTgxZ+NKzLdWWvG1pkGXB1l1GglOXIlG/9d1L8eo2bioI/aB01NtUD9P07EQ7VGgm0+mYHNJ3UnqNpczS6GIAg4XKvwsvr4Vz3M3ZxWH7qKUd2bAKiaVKzvR+oFSD/vu6z8LlrCxZsF2HoqQ6Vb4kpW1Wc9Q0vLmDFSbhWiaaCn8vHWUxl11hfVVSha08GULK3HiRNpOXpvBwBevt0FbSyFQlAbBVrd5f6/fy5g8sAWcHaSKetADNXrg23IMdNEiYsS9d/Hpjh/o8Cg4nhNAy+q1d6313KKEaKlRilP5DvTG4sJjYVZYq6XrDqakoGqK4y6hohbOumu2aKjj9rDKI0R8cafJm9Dl/wS7VdumlRfEZaUV+KBL/+rY23rMOYmjdWW7FQ/kDeLV9/nMpnlajhmrk/CxuPX4ewkww4ttwewZDIDwKiuA2MM+nQHEl/rryyO1adYWlutkr5X6BdvFiDE13o3qx27bD8GtGqA/RrqX2qK1OO7veDvc9iupZDdXMmMoZq+vtFq72VIa2TvD/7BidmD8fux6+jatD5aNLwzqOP9P2xjIkRDMaFxYC5O1q0Jt6c7F+vru/9S8Mfxa5hoRLeTLaqem6Iu+5KzEPXmXxaJoUIh6FXbUZcHO5t/3iBzFy6XVwqI+eAfjGjXCO31mLulUiFoLWZN1lC/t/ZIGqYOaoGGPu4AqopbX1l9DGH+Hlb7zCaevaky3NkUpRUK7E/JqntFAgA8s+wADl6uSiTPvjcULk5O2JuciZW1kl+J9DhxlJOlWeqDYI675WobTmophWXSmG3S3G4VlGksDLVn1QdJWxY/rLXZtzn62/1m3yYAbDxxHQl/1Z1M6tOKUVNZhQKP3R7CD0A5I3NqVrHGOhyyLzW/p3+dSMdb60/gya/3qa1nrS42U7GFxsIsdXsBc3TPEDkyT7n5E3przGhsbimZRahUCCrDjMnx6Jo0ct+lLMz98zSe6N5EpabL1rCFxgzm/HEKd3+ciAMamzql0lhHRI5q1m9JVrlfFknXkp3JarOo2xq20JgoNasI3/x7CQDwyOI9Ks8JgoBx36vPlUBEZEt+2mueWyMQiYktNCbSVTnffe42XLbTe2YQSV09N17PERkqv6TcZmbtro0JjQVpmkbflq2a0EvsEIiIyIZ1nrMVT3+z3yaTGiY0JrJU0a8YujdTv1UBERFRtfLKqmkTzmUYdv8ua2BCQ0RERAaZ8ONBXLGxkgomNERERGSQlMwiPP3tPpzPyLfand3rwoTGRO/WcfdmIiIie3Q5swiDPt2JqDf/wqZaN9EUAxMaExxMycL+S5xmm4iIHNvEnw7hyBVxZwhnQmOCFBvrPyQi0wyLDhY7BCLJEvsGvExoiIhu8/d0EzsEIjISExoTKGxwHD4RGU/BrzSRZDGhMUF+SYXYIRARERGY0JjEFmdKJCJT8DtNJFVMaEhFoBdrCMhx8RqFSLqY0Jig0g473Mf1iRA7BCLRMKEhki4mNCZYvv+K2CGYnZc770BMjktglxORZDGhMcFlzkNDZFfYQkMkXUxoSEUP3nGbHFjj+h5ih0BERmJC46ACtEwg1qKht5UjIbId93YIETsEIjISExoH5c1aGSI1zjKZ2CEQkZGY0BAR3dbEv57YIRCRkZjQOChvd1exQyCyOU5OMrQKZrcrkRQxoXFQXz3dRewQiGxSKAuDiSSJCY2DCvHjQZuIiMxLzFsCMaEhNS/2ixQ7BCIRsTCYyFhizuXEhIbUxEQFih0CkUX5a5m2gIikS9IJzRdffIGmTZvC3d0dPXr0wP79+8UOyS5wtlSyd+/dHy12CER2SczTh2QTmpUrV2LatGmYNWsWDh8+jA4dOmDIkCG4ceOG2KERkY3TNrEkEUmXZBOa+fPnY/z48XjmmWfQpk0bLF68GPXq1cO3334rdmiSx7nFyN7J+CEnsggWBRuorKwMhw4dwsCBA5XLnJycMHDgQOzZs0fr6/Ly8lR+SktLrRGu5LDLieydrnxmTO9w6wVCZGdMPX2Ulpaqnav1JcmE5tatW6isrETDhg1Vljds2BDp6elaXxcWFgZfX1/lT0JCgqVDJSIb5CXXfuuPPlGB+HxUJytGQ0TVEhISVM7TYWFher9WkgmNsVJTU5Gbm6v8iY+PFzskm8TWeLJ3rRv5aH1OJpPxJpVERjK1hT8+Pl7lPJ2amqr3ayV5h8LAwEA4OzsjIyNDZXlGRgaCg4O1vs7Hxwc+PtoPZFSFXU5ERCQGuVwOuVxu1Gsl2ULj5uaGLl26YNu2bcplCoUC27ZtQ69evUSMTBruad9I7BCIiMgOCSIO3JZkCw0ATJs2DWPGjEHXrl3RvXt3LFiwAIWFhXjmmWfEDs3mhdVxR2F2ORERkTHEbOGXbELz2GOP4ebNm3j77beRnp6Ojh07YtOmTWqFwqSugbfu5jwXJ2Y0ZL+e7xshdghEZAGSTWgAYNKkSZg0aZLYYUjOkz10D0vt1tTfSpEQWZ+rMxN2InskyRoaMt5rQ1rCzUX3n93JSYaJsbxBJRERSQcTGtKorqSHiIioNjdn8c4dPGs5GBb8EhGRpTiJWIPJhIb0suYFDoc3xTMxTTH/0Q5ih0EGGNyGAwyIpIQJjYORQb/s+bFud6abTniwHdycnc3y/u0a+5plO1Iz6962eLBzqNhhkAEGt9U+SScR2R4mNKRRYz8P/DYpBl893QWPdg0zS1dVv5ZB+GZsVwR6uZm+MdJLygcjxA6BiMgqmNA4mGHR+l91tg/1w5C2wXA2U5/od890RwNvd7z/QDuzbM+WPNenmdgh6OX1Ya3EDsEidr9+t9ghEIBd0/uLHYLN6t6M02FYGhMaG9bYzwO7pvfHpil3GfxamQx4tKtqF8eUgc3RNNDTXOFZTN8WQfjkEePrTfq1DDJjNKq03YX5rXvaWOw9zcmS9XqN/TywZWpfy72BDpb4tYZFB8PTzTxdrfaqdmurmAWhtqBPVKDW5+Y+EG3W9/ppXA9M6h+Ft+9pgzB/D7NuG6g6h9wnsZu0MqGxYbtfvxth/vXQKlj9hpq9IwPQRsMdg1s09IKHqzNWPq9exGvKDKkNfdyNfm1tdR3y6rk646EuxtebWHImWEvchdlWrtzubtXApNf/82oswgN031bDEp7uGW6Ru8d4yl2waUpf/DSuBzZNuQtvjWiNf16JRe/IAOU621/th60iJXG24LdJfVQeC1ae937na+K0CN3fUfNx4L6OIRjeTr0V/O5WDRDVwFvnNhNf7YfkucMR26LqgkzbXGD9WgZh3xsD0Kd5IF4d0hLP9mmG+zs21jt2TecNTXZN74+eEQF1r2hDmNBIxInZgwFUzXK6akIvLB/fE39Ovktt5MymyX1x8K2BGk+S9dyMnxg6qI7bJdRl48t96l7JDL4Z0xW9IwOx5OkuVhul8vKA5gCM30cLn9Dc6mMJ2orCh7RtiG/HdsPA1tr32QOd1A+ap98dis1T+uL0u0Mhd3HWu+jcnKYNamGxbYf510Of5oFoFeyD5+6KQESQFz4f1QlvjWiNzVP6olmgJ5o31H2i0uTvabH47PGORsfVNby+xuUv9rPuhJghfqotA9bMZ9qH+iLAgvV4PzzbXetz79wXjbj+mvd17SRgzQu98e3YbgCAh+oYGODkJMN3z3TD7tfvxpSBzTWu890z3dUuMOvabnXLsrOTDEtGd9G5brXQ+ta/ODEVExqJ8HZ3xaWE4Tgxe4hKshIZ5KWynpOTDJ5y9cTFW8MyQ80Yqlp/4e6q38dnUv8otA25M7pJVkeFcbCv9tagpaO76nztgNsn5MFtg7FEy7rNG6jus4ga3XCt9bx6qanL7ZNLkFfdCc3CJzqhfajqSK8G3uZr/apLRJDmLkcXp6q/5dwHozG4TUM8E9NUbZ2EB9VrnzzcnNEy2Bset7tmLDHPUccwP63PrXuxN+p7GnZSG9HOtFa2AC85nrsrAi2DDU9kAGDO/dGIauCFkR0b45372qo8p28X16NdwzQunzJQv+Tu40c6IMhbjqd7qt8G5bdJMdg1vT9+mxSDSwnDcXjmIL22qUvt4vSayXHt7yNQNc1BXRcIMlS1omn6XGqy+Kk7J3J9PqdtQzQfC8b2bgrfeq54bYh6PZoMQOcmd5LNmKgA5fEBAGbf1wbvjmyLDXExWt9XJpOhsZ+HxnvqvTakpcbXuNaaCNW/xnfigU6NcW+HEPzzSix2Tu8vyURFX0xorMDU1o1qMpkM7q6qB7yaV0jaTlbmUvsg8NHD+tW5GHKSa+JfD9MGVx2Ue9xO3EZ1b4LEV/thzQu9MLC18d0iw6KDcWbOULV6l/+N6gQnGSB3ccL3z3QzevvaDKjRlXNP+xC1ZnoAGN2r6sTi5uyELVP7op6bM3zcXbD/zQE6t13dPK3Lx7frkcL8PbR2Kwm3O20aeLtjyeiumHWv6on2l/E91T57qydabm6iml17ulpgOjXR3FKhybg+zbB0dFe00XKiMpf/1aqzWvNCb+UVtLurE0bVmBJhTO+mKuu+M1JzncXQWkPIBS2dbLoK+CfERmBcn2b47/W78XCXUOx/YwDm3B+NSwnD0TPCHzIZ8OFD7dA+1A9h/vXQPtQPMplM5eRoim/HdkXzBl6YeU8bzBjaCm4uTnCSAZ8+1lFt3Vn3ttXaQlHbqO5N0CFU83QQo7qH4VLCcFxKGI6h0cH4e1pVC/aF94fjp3E9VNY9+rZ+iVvNpKJLrZYymUyG6Ma+mHN/NJ7uGY7PR3VWed7b3RWjezVFBw1Jeu3jpIuzE967PxrdmtbHqgm9kPTOEMT1j9IYU4ivu3IfvDWitcZ1IoK80Pj2+aL2vnVxkuGJHk2Uj0PrV61XWlGpcVu2StI3p5SKe9uH4Nvdl9SWe7u7IL+kwqRtB3nL8fEjHfDv+ZuYWuvA//KA5lh18CoAYOGTnTW93CDdmt758o5o38jk7dW2dWpfRAZ5KQsLvx3bDUdTc9C9mT9cnZ1MLmhe9JTmptboxr7Y/frdkLs4w9/TDRfnDsfBlCy0DvHBtJVH8ffpGzq363o7Xm2t7R9rKHB+qHMo1hy+quxvjx/WGl3C66NDqB+aBnpi3xsD4Owk09pN2MjXHe8/EI0ezQKw9kgaZq5P0hrfw11C8bARNUm/TuyFiT8dwsTYSPS6XTcyZ2RbfPPvJUwd1ELjTUx15a7tGvviRFquXu/91ojW6NLED+1CffWaA0mf2o2ZFizcDg+oh8uZRQj2ccd9HULw8i9HVJ5/d2Rb9I4MQLem/nCpNTX8qO5N8Mv+Kwj0kmNkxxAs/Oc8LmcV4Z372uKL7RcgCFWv33QyXfmaBlpq2nQlNNOHtFJ5vrqlVCaTYflzPZFZWKb14mvmPW0w549TAIBlY7vh4OUsjO7VFADw0t1R+PyfC2jiX095wtTk7lYNcXerO12ae16/G2WVCjTyVX3Nk7dPrA92CsXHm88iu6hc6zareWhp2Xp9WGuVFuGadSwxUapdQ371VBO32q0e1TS1gFerfidNLV/GeKpnOJ7SY1symQyrJ/bGlawiRDXwQqCXHFNWHgUAja2tUwa2wIK/zysfJ70zBO6uzhjYugH+Pn0Dz99VVYc4qE1DvPP7KbP8LtbAhMbC3hjeCqN7NcX6o2nIKixTfdJM/c3aTlih9evh72l9kVtcgc5N/Ex+ny7h/nhrRGtcvFmI14a0xO4Lt/R6XXStyfS0HXJdnJ1URkl4yl0Qo2PUgDnVPKg6O8nQ43Y/+Jsj2igTmpFaCgF7aCic6xnhj3fui0ZkkKfaCQyouhJ+qmcT5b7xcHPGyBqFfd7urjrj9XB1Vp4cnu4Zjqd7huPTrefw2bY7B6naXVu6aKp96drUHwffUr1qfbpXUzx9+0RmCFdnGeY93B7DPtul1/qecheMjakaCp9TVFbH2upGtG+E9o19kfDXGYNfa4xfxvfEX0npGNJWcw2Sp9xFa6H7rHvboE9UILqE14ersxM2T+2LWwVlaOzngVHdq07urrU+Q/1aBOHdkW0x67eTanUryXOHY/fFW3j6m/3KZd+M6aoz2XFykulsSR7Xpxnubd8IQd5yyGQy9K/R0vfygOboHF4f7Rr7GjTKKUBLF+2g27VvHm7OSHytP85cz8NjS/bC1VmGED8PXM4sqlpRS9NvoJcbHuoSil4RAfD10P49kslk6BJeH4cuZ2vs1vRxd8WjXUOx/ug1lFUo9P69xOLm4oSo291393YIgauzE7zdXdA+1K/O11a3vtZOOkPr18N3z3TD2GUH7ryPsxPKKm1zf7DLyQQRerQYPN83Eu6uzgaPhDDXfCFRDbzRJbx+nXUr+nrurggkPNjOoGZoW5tC3pA90SzQEwuf6IQX+0Wq1TsAVXVF1SeKmq0EMsjQMthbYzIDVCVvnZrUVztRmaJ2ftzE3/p95Zo+ZxFBnlg9sTdaN/LR2FpVF796bvh6dFeM69MMCzR0T2jyxROdDeqOMlWInwfG9WlmVH2Cu6szRrRvpKwdk7s4K1s6XJ2dNH5GZDIZRvdqisNvDcIXT3RG92b+WHa7u9TJSYa7mqt2RZoyIKBaAx93jX9fV2cn9G/ZAIFaEhRtFwI1/fxcD9Rzc0aX8ProWyN2Xw9X9IgIwKWE4Tj33jCt71EzIQ/0kiN+WGv0a1l39/TXo7vi08c6KIt2a5v3cAccnzW4zu0o47CRUevOTjKMaN8IffXokq5Lv5YN8O7IqmNfu8a+2KzjXFY9QEIsTGhM8OVT+nfjBHjJlf2S1QZpuZoDtA/ZkxKZDNgQF6N2ENT2pa9nxJwf2vqLzeme9iGYPrSVWpM0UFV3Y2mRetZG6XtxvGxsN7WaA201GYaqHUKrYG/880o/5RVwlIYCUH0MbNMQM+9po3X6gGAfd+Xf4rHbBbO2cnKxpPqebhjRvhFWTeiF/jpO4Ob6++qj+iTavak/Nk25C58+2rHO18REBeLQW4Pw68ReGlt5ZDKZzouyd0beudj48KH2esda39MND3QK1XmBVvM7rq1Wx96N7tX0dh1jbzQL9NSapGob+WUtTGhMoGl+GE1X8dVqztL7SJdQvUbFSEnNbq3/jeqEna/111j8psmjXUONmuvGmKtwSx3azdUKVpum/vixGvrFx+jZFdS/VQNsmNQHjXSMJjOX2iOBTN1D2k7MLreLqec/2gFv31tVK9MpzA8ht39HS9bPWMuDt0cG6RpabwsWPtEJXz7ZGUtHd0WrYB+9u6E83Jzr/A7V/Dy1qjFcvkVDb/w1+S788VIfvY85+pLJZPjz5bswfWjLOkdZOhl5DIhq4CVKi6ohmgZ6wu12cveChukB+rcMgtxF3IkoWUNjZk/2aIJZv53U+NyUgS2QXVQOD1dnzLq3DT7actbK0VnW/0Z1wpvrktCioZfOGSZrf+cvzh1u0O0V3hrRGu9tPI3Gfh46h/Ram7UmFXtzeGs80b2J2vLaw5ctlWDpUvst366VSNSet8ScwgM8ER5wpzXLxdkJG1++CxdvFqiNRrG0xn4eSMspBgCE+Jkncfzw4fZ4rFsYOhpTD2fF+WF83F0xvJ35Bw0AVV28x6/mQBCA+OGq3fLGTLlQ28iOIdhw9JraRUSbEB+9RscNNeDWMjWte7G31b+vvh6uyC0u11nIrU09V9tMHWwzKglZPr4Hnli6DwCwJ/5urTUTQFVhYM0aAjEmIbOk0Pr18L2Oyai0MfReUeP6NEPHMD9ENfBSea2x3RmWYMlj03gdMyEHectxM7/Ucm9uoNqFn9Wj8nZfuIX7OoTgme8OaHmledT3dENXT+vPxPzDuO748K8z6NM8UG0Uj7FcnZ00FqDrw7rz91qOr4crfr897YElEoBPH+2IuP5RGufGqUtofQ+1qQ10CfB0Q2ZhGQK95HUOArCEDXEx+CspHfcYMWK1SUA9DG8XjD9P3Bl5ZwufMSY0JuodGYh/XomFj4er1oI1baTex19zFM0gAwp/e0cGwtPNGYVllYg3ovhZJpOha40hw79P6oOtpzPwWDf1ycamDGyOBX+fx4Od9Z8a3FgTYiMwdeUxAFAOabU2H3cXZUJTr46Da7vGvrieWwIAiAoyTzIok8nw2eMd8dvRa3hJS4Fg9ai85JsFBm+/ZrO8MScda4kM8tI6sSOZxpItGU5OMrQwYObnmkO4De0yWvtib2w8cR33mDjRo7GaBnpq7DrS15dPdkGfD//B1exiM0ZlGiY0ZhBh5MlA4vkMwgM88dnjHXH8aq5BU667uzpj05S+uHCjAHc1N31YdrtQX7TTUqw3ZWALPNG9idkmN9RlZIfGKC1XwNlJpnX4rjHu6RCC2bfngtBVowUAnz3eCfd/sRuuzk54ZYjuWWPfuz8aqdnF8HRzxgv9NE/YZYyRHRurDEHXRteJSdszofXr4b37o7E3OVPrrKlE1jJnZFsMnL8DAPD+A/rNWFwtPMATL5rxeycGtxo9ErZwPmNCIyKpt9AA+p+8agvzr4cwKxXB1Z6ErOZIhce0TCFvDCcnGR7XUNtiqkAvOTZNuQuXM4tUZh3W5M4kgU4aR2XV1MDHHX9NNvxO7mLTd7IxusPK94x0GOEBnvjv9arZvK1x0US6MaGxIL96uvtF7a2GRir86rnh14m9cPxqLh7pavxdva2pVbCPxlF1mpjzzuiWxE+/9Vhz2LajYSJjO5jQWMAfL/XBH8ev13mytIcWGqnq2tRfpQ6HrE/X55/fDSIyFBMaC4hu7Ks23T/ZJ2MmA6QqbKG0HnY5kSUMaxeML7ZfBAC9Zma2NCY0IuLhXJp+fq4Hxi7bj4Y+7njACqOniEzFfIYsYVL/5sgqLIfcxUl5U1ExMaEhMlBMVCD2xg+At7urcuZMMhy7lYikzcPNGQkPGja6y5J4NBZRXkmFxuXhAbY9BTZVTRjHZIZsWc1bAOhzI10iqWMLjYgKSzUnNAEG3MmaSKrYQmNZXz7ZGQu2nkPXpvWtNkUCkZiY0BCRzWHBsOka+3ngoxq3WiGyd2wzt0HmvlsskS0S4+aZRGS/2EJjQ/pEBUKAgFcGc0p3sn/lFQqxQyAiO8KExob89FwPsUMgspq0HO03tWPjDREZil1OIuJBm4iIyDyY0BAREZHkMaEREacjJ0emrYHSx90Fcs7xQ0QGYg0NEYmidj4/oW8EWjT0Ro8If46AIiKDMaEREY/Z5Mhqf/w95S54qIvuO9QTEWnDdl0iEoWPh6vYIRCRHWFCQ0SiCK3vofKYNWVEZAomNCLi9O5ERETmwYSGiIiIJI8JDREREUkeExoisgmC2kBuIiL9MaEREYdtkyO7VVAqdghEZEeY0IjI39NN7BCIbEb3Zv5ih0BEEsaEhohsQlj9emKHQEQSxoSGiETCPlciMh8mNEQkCtaQEZE5MaEREcd0kCPz460PiMiMmNAQkSj86rEonojMhwkNEYmCPU5EZE5MaIhIFKyhISJzYkJDRKKQMaMhIjNiQiMigVXBREREZsGERkSuzrxCJSIiMgcmNCJydmJCQ0REZA5MaIjIJrCkhohMwYRGRDIOXCUiIjILJjQi4hUpERGReTChEdGRK9lih0BERGQXJJfQpKSkYNy4cWjWrBk8PDwQGRmJWbNmoaysTOzQDJaRVyp2CERERHbBRewADHXmzBkoFAp89dVXiIqKQlJSEsaPH4/CwkJ8/PHHYodnkAqFQuwQiGwG52UiIlNILqEZOnQohg4dqnwcERGBs2fPYtGiRZJLaCoVPIITVSsurxQ7BCKSMMklNJrk5ubC39+/zvXy8vJUHsvlcsjlckuFVSfmM0R3lFWwxZLI0ZWWlqK09E45Ru3zti6Sq6Gp7cKFC/j8888xYcKEOtcNCwuDr6+v8ichIcEKEWqnYBs7kVJZJRMaIkeXkJCgcp4OCwvT+7U2k9C8/vrrkMlkOn/OnDmj8pq0tDQMHToUjzzyCMaPH1/ne6SmpiI3N1f5Ex8fb6lfh4gMFOQlXmspEdmG+Ph4lfN0amqq3q+1mS6nV155BWPHjtW5TkREhPL/165dQ//+/dG7d28sWbJEr/fw8fGBj4+PKWESkYWE+HmIHQIRicyUUhCbSWiCgoIQFBSk17ppaWno378/unTpgmXLlsHJyWYamoiIiEgENpPQ6CstLQ39+vVDeHg4Pv74Y9y8eVP5XHBwsIiRGY4lNER3cOJsIjKF5BKarVu34sKFC7hw4QJCQ0NVnhMkliEIkFa8REREtkpyfTVjx46FIAgaf4iIiMgxSS6hsSe82zbRHbxZKxGZggmNiNjlREREZB5MaIjIJsjYRENEJmBCQ0RERJLHhEZErGMmIiIyDyY0REREJHlMaIiIiEjymNCIyNmJRZBERETmwIRGRC/f3VzsEIiIiOwCExoRNfJ1FzsEIiIiu8CERkzscSIHF9c/EgBwV/NAkSMhIqmT3M0pich+vDq4Je7r0BiRQZ5ih0JEEseEhohEI5PJ0DLYW+wwiMgOsMtJRCG+Hsr/B3q5iRgJERGRtDGhEVHTQE9MG9QCPSP88fNzPcUOh4iISLJkgmD/E/Dn5eXB19cXubm58PHxETscIiIi0oMh52+20BAREZHkMaEhIiIiyWNCQ0RERJLHhIaIiIgkjwkNERERSR4TGiIiIpI8JjREREQkeUxoiIiISPKY0BAREZHkMaGxgNLSUsyePRulpaVih+KQuP/Fxf0vLu5/8fFvIA7e+sAO3o9Ucf+Li/tfXNz/4uPfwHx46wMiIiJyKExoiIiISPJcxA7AGqp71fLy8qzyftXvY633I1Xc/+Li/hcX97/4+Dcwn+p9qE91jEPU0Fy9ehVhYWFih0FERERGSE1NRWhoqM51HCKhUSgUuHbtGry9vSGTycQOh4iIiPQgCALy8/MREhICJyfdVTIOkdAQERGRfWNRMBEREUkeExoiIiKSPCY0REREJHlMaGrYuXMn7r33XoSEhEAmk2H9+vV6v3b37t1wcXFBx44dDd6mIAh4++230ahRI3h4eGDgwIE4f/68ab+MRIn1Nxg7dixkMpnKz9ChQ037ZSTIEvs/ISEB3bp1g7e3Nxo0aID7778fZ8+eVVmnpKQEcXFxCAgIgJeXFx566CFkZGSY4TeSFrH2f79+/dQ+/xMnTjTDbyQtltj/ixYtQvv27eHj4wMfHx/06tULf/31l8o6/PybBxOaGgoLC9GhQwd88cUXBr0uJycHo0ePxoABA4za5rx58/C///0Pixcvxr59++Dp6YkhQ4agpKTE4N9B6sT6GwDA0KFDcf36deXPL7/8YlAM9sAS+3/Hjh2Ii4vD3r17sXXrVpSXl2Pw4MEoLCxUrjN16lT8/vvvWL16NXbs2IFr167hwQcfNPn3kRqx9j8AjB8/XuXzP2/ePJN+FymyxP4PDQ3FBx98gEOHDuHgwYO4++67MXLkSJw8eVK5Dj//ZiKQRgCEdevW6bXuY489Jrz11lvCrFmzhA4dOhi0TYVCIQQHBwsfffSRcllOTo4gl8uFX375xYjI7Ye1/gaCIAhjxowRRo4caVSc9soS+18QBOHGjRsCAGHHjh2CIFR93l1dXYXVq1cr1zl9+rQAQNizZ4+x4Uuetfa/IAhCbGysMHnyZOODtUOW2v+CIAj169cXvv76a0EQ+Pk3J7bQmGjZsmVITk7GrFmzjHr9pUuXkJ6ejoEDByqX+fr6okePHtizZ4+5wrRrpv4NqiUmJqJBgwZo2bIlXnjhBWRmZpopQvtm6P7Pzc0FAPj7+wMADh06hPLycpXvQKtWrdCkSRN+B/Rg6v6v9vPPPyMwMBDR0dGIj49HUVGR2WO1R4bs/8rKSqxYsQKFhYXo1asXAH7+zckhbn1gKefPn8frr7+OXbt2wcXFuF2Znp4OAGjYsKHK8oYNGyqfI+3M8TcAqrqbHnzwQTRr1gwXL17EG2+8gWHDhmHPnj1wdnY2Y8T2xdD9r1AoMGXKFMTExCA6OhpA1XfAzc0Nfn5+KuvyO1A3c+x/AHjiiScQHh6OkJAQHD9+HDNmzMDZs2exdu1aS4Yvefru/xMnTqBXr14oKSmBl5cX1q1bhzZt2gDg59+cmNAYqbKyEk888QTeeecdtGjRQuxwHJI5/waPP/648v/t2rVD+/btERkZicTERI394mTc/o+Li0NSUhL+/fdfC0dn/8y5/59//nnl/9u1a4dGjRphwIABuHjxIiIjI80at70wZP+3bNkSR48eRW5uLn799VeMGTMGO3bsUCY1ZCZi93nZKtTRf5qdnS0AEJydnZU/MplMuWzbtm16bfPixYsCAOHIkSMqy/v27Su8/PLLZvhNpMtafwNtAgMDhcWLFxsZvfSZe//HxcUJoaGhQnJyssrybdu2CQCE7OxsleVNmjQR5s+fb65fR3Kstf81KSgoEAAImzZtMvXXkCxLHH+qDRgwQHj++ecFQeDn35zYQmMkHx8fnDhxQmXZl19+iX/++Qe//vormjVrptd2mjVrhuDgYGzbtk053C8vLw/79u3DCy+8YO6w7Yq5/gaaXL16FZmZmWjUqJGpYdotffe/IAh46aWXsG7dOiQmJqr9Xbp06QJXV1ds27YNDz30EADg7NmzuHLlirLOgNSZa/9rcvToUQDg518HU44/CoUCpaWlAPj5NycmNDUUFBTgwoULyseXLl3C0aNH4e/vjyZNmiA+Ph5paWn44Ycf4OTkpNIHDQANGjSAu7u7yvK6timTyTBlyhS89957aN68OZo1a4aZM2ciJCQE999/v8V/Z1sjxt+goKAA77zzDh566CEEBwfj4sWLmD59OqKiojBkyBDL/9I2xBL7Py4uDsuXL8eGDRvg7e2trAvw9fWFh4cHfH19MW7cOEybNg3+/v7w8fHBSy+9hF69eqFnz57W+cVthBj7/+LFi1i+fDmGDx+OgIAAHD9+HFOnTkXfvn3Rvn176/ziNsIS+z8+Ph7Dhg1DkyZNkJ+fj+XLlyMxMRGbN28GAH7+zUnsJiJbsn37dgGA2s+YMWMEQaga2hsbG6v19ZqG7NW1TUGoGro9c+ZMoWHDhoJcLhcGDBggnD171vy/oASI8TcoKioSBg8eLAQFBQmurq5CeHi4MH78eCE9Pd0yv6QNs8T+17Q9AMKyZcuU6xQXFwsvvviiUL9+faFevXrCAw88IFy/ft38v6CNE2P/X7lyRejbt6/g7+8vyOVyISoqSnjttdeE3Nxcy/ySNswS+//ZZ58VwsPDBTc3NyEoKEgYMGCAsGXLFpV1+Pk3D95tm4iIiCSP89AQERGR5DGhISIiIsljQkNERESSx4SGiIiIJI8JDREREUkeExoiIiKSPCY0REREJHlMaIiIiEjymNAQERGR5DGhISJJ6devH6ZMmSJ2GAbJzMxEgwYNkJKSIloMjz/+OD755BPR3p/I0pjQENkgmUym82f27Nlih2hWhiQpa9euxZw5cywbkJm9//77GDlyJJo2baqyPD09HZMnT0ZUVBTc3d3RsGFDxMTEYNGiRSgqKgIAjB07VuONahMTEyGTyZCTk6NXDG+99Rbef/995ObmmvjbENkm3m2byAZdv35d+f+VK1fi7bffxtmzZ5XLvLy8xAhLVGVlZXBzc4O/v7/YoRikqKgI33zzjfLuytWSk5MRExMDPz8/zJ07F+3atYNcLseJEyewZMkSNG7cGPfdd5/Z4oiOjkZkZCR++uknxMXFmW27RLaCLTRENig4OFj54+vrC5lMprLMy8sLpaWlePnll9GgQQO4u7ujT58+OHDggHIb/fr1w6RJkzBp0iT4+voiMDAQM2fORM370da1DQBQKBSYN28eoqKiIJfL0aRJE7z//vvK5xISEtCsWTN4eHigQ4cO+PXXX1Ve369fP7z88suYPn06/P39ERwcrNLCNHbsWOzYsQOfffaZsgUqJSVFGf+UKVMQGBiIIUOGKLdXszVHV3yaDB8+HGPGjFE+3r59OwIDA1FZWan/H8gAf/75J+RyOXr27Kmy/MUXX4SLiwsOHjyIRx99FK1bt0ZERARGjhyJjRs34t577zXofVJSUjS25vXr10+5zr333osVK1aY49cisjlMaIgkavr06VizZg2+//57HD58GFFRURgyZAiysrKU63z//fdwcXHB/v378dlnn2H+/Pn4+uuvDdpGfHw8PvjgA8ycOROnTp3C8uXL0bBhQwBAQkICfvjhByxevBgnT57E1KlT8dRTT2HHjh0qsX7//ffw9PTEvn37MG/ePLz77rvYunUrAOCzzz5Dr169MH78eFy/fh3Xr19HWFiY8nVubm7YvXs3Fi9erHE/6IpPk8aNGyMtLU35ODY2FsXFxdi7d6++u94gu3btQpcuXVSWZWZmYsuWLYiLi4Onp6fG18lkMoPeJywsTLn/rl+/jiNHjiAgIAB9+/ZVrtO9e3fs378fpaWlhv8iRLZOICKbtmzZMsHX11dlWUFBgeDq6ir8/PPPymVlZWVCSEiIMG/ePEEQBCE2NlZo3bq1oFAolOvMmDFDaN26td7byMvLE+RyubB06VK1uEpKSoR69eoJ//33n8rycePGCaNGjVI+jo2NFfr06aOyTrdu3YQZM2aorDN58mSVdWJjY4VOnTqpvW/NdXXFp82sWbOEli1bqiwLCAgQ1q5dq/c2arp48aKwYcMGrc+PHDlSePbZZ1WW7d27VwCg9p4BAQGCp6en4OnpKUyfPl0QBEEYM2aM4OzsrFxe/ePu7i4AELKzs9Xes7i4WOjRo4dwzz33CJWVlcrlx44dEwAIKSkpRv2uRLaMNTREEnTx4kWUl5cjJiZGuczV1RXdu3fH6dOnlct69uypcqXfq1cvfPLJJ6isrNRrG6dPn0ZpaSkGDBigFsOFCxdQVFSEQYMGqSwvKytDp06dVJa1b99e5XGjRo1w48aNOn/P2i0btemKT5vaLTRHjx5FTk4OevXqpfc2avrrr7+Qn5+vtd6luLgY7u7uem1r//79UCgUePLJJ1VaUfr3749FixaprLtv3z489dRTGrfz7LPPIj8/H1u3boWT052GeA8PDwBQFhwT2RMmNESkVfUJUJOCggIAwMaNG9G4cWOV5+RyucpjV1dXlccymQwKhaLO99fWHaNPfNo0btwYBQUFyMvLg5eXF6ZOnYonn3wSwcHBAIDjx48jLi4OeXl5iIiIwIoVK/D4449DLpfj4sWLyMrKwsqVK9G1a1fs2LEDM2fOREBAAFauXIl///1XLebAwEBkZ2erLIuKioJMJlMp9AaAiIgIjb+Xp6cnoqKiVJZdvXpV4+/33nvvYfPmzdi/fz+8vb1VnqvuSgwKCtJnVxFJCmtoiCQoMjJSWVtSrby8HAcOHECbNm2Uy/bt26fyur1796J58+ZwdnbWaxvNmzeHh4cHtm3bphZDmzZtIJfLceXKFURFRan8VNfA6MvNzc2oolxd8WlTnXxdvXoVM2bMQHp6Oj7//HMAQElJCR5//HF8/fXXOHbsGEJCQvDzzz/j+PHj6Ny5Mw4cOIB3331XOZ9LbGws2rdvj61bt+LIkSMaE7BOnTrh1KlTKssCAgIwaNAgLFy4EIWFhQb/3tqsWbMG7777LlatWoXIyEi155OSkhAaGorAwECzvSeRrWALDZEEeXp64oUXXsBrr70Gf39/NGnSBPPmzUNRURHGjRunXO/KlSuYNm0aJkyYgMOHD+Pzzz9Xnoz12Ya7uztmzJiB6dOnw83NDTExMbh58yZOnjyJcePG4dVXX8XUqVOhUCjQp08f5ObmYvfu3fDx8VEZSVSXpk2bYt++fUhJSYGXl5feQ7Prik+T6oTmlVdewblz57Bz5074+PgAANavX49hw4ahZcuWAIBWrVohNTUVJSUleOWVVwAArVu3xo8//qiyj2vPL1PTkCFDEB8fj+zsbNSvX1+5/Msvv0RMTAy6du2K2bNno3379nBycsKBAwdw5syZOrvbaktKSsLo0aMxY8YMtG3bFunp6QCgMtR9165dGDx4sEHbJZIKJjREEvXBBx9AoVDg6aefRn5+Prp27YrNmzernDRHjx6N4uJidO/eHc7Ozpg8eTKef/55g7Yxc+ZMuLi44O2338a1a9fQqFEjTJw4EQAwZ84cBAUFISEhAcnJyfDz80Pnzp3xxhtvGPS7vPrqqxgzZgzatGmD4uJiXLp0Se/X6opPk8DAQMjlcly+fBk7duxQ6S47ffq0SgvXyZMn0bhxY7Rt2xbOzs4AgMOHD6Ndu3YAqlp5QkJCdMbXrl07dO7cGatWrcKECROUyyMjI3HkyBHMnTsX8fHxuHr1KuRyOdq0aYNXX30VL774ot77AAAOHjyIoqIivPfee3jvvfeUy2NjY5GYmIiSkhKsX78emzZtMmi7RFIhE4Qak1IQkd3o168fOnbsiAULFogdimQsXrwYFy9exEcffYSjR49i9OjRiIuLw/z585GUlIS8vDzcfffdWLt2LSIjI7F7924sWLAAq1ev1rndjRs34rXXXkNSUpJKka41LVq0COvWrcOWLVtEeX8iS2MNDRHRbU8//TROnTqF6OhoTJo0CStXrsTx48cxfPhwdOnSBf369cMHH3ygrE+Jjo5GcnIy2rVrp1YnU9OIESPw/PPPq4yusjZXV1dlrRCRPWILDZGdYguNedx1111Yvny5wYXORGRdTGiIiHSIiIhAcnKy2GEQUR2Y0BAREZHksYaGiIiIJI8JDREREUkeExoiIiKSPCY0REREJHlMaIiIiEjymNAQERGR5DGhISIiIsljQkNERESSx4SGiIiIJI8JDREREUkeExoiIiKSPCY0REREJHn/B7zGK6YtQ7OwAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAGxCAYAAAB1Hiz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWvklEQVR4nO3dd3gUVRcG8HfTNiGVFAghIZCEHnonSEA6qNgVC6CIoEEpKhgVQVGiqIifKAgqVqRIU1GKSACR3kOHEAiBBEjvbef7I2TJZku2z87u+3uePLCzs7Mnk92ZM/eee0cmCIIAIiIiIglzEjsAIiIiIlMxoSEiIiLJY0JDREREkseEhoiIiCSPCQ0RERFJHhMaIiIikjwmNERERCR5TGiIiIhI8lzEDsAaFAoFrl27Bm9vb8hkMrHDISIiIj0IgoD8/HyEhITAyUl3G4xDJDTXrl1DWFiY2GEQERGREVJTUxEaGqpzHYdIaLy9vQFU7RAfHx+Lv19eXh7CwsKs9n6kivtfXNz/4uL+Fx//BuZTvS+rz+O6OERCU93N5OPjY9UPl7Xfj1Rx/4uL+19c3P/i49/AfPQpF2FRMBEREUkeExoiIiKSPCY0FiCXyzFr1izI5XKxQ3FI3P/i4v4XF/e/+Pg3EIdMEARB7CAsLS8vD76+vsjNzWV/JhERkUQYcv5mCw0RERFJHhMaIiIikjwmNERERCR5TGiIiIhI8pjQEBERkeQxoSEiIiLJY0JDREREkseEhoiIiCSPCY0Dy8grwaglezF15VEoFHY/vyIREdkxh7jbNmn2/I+HcCw1BwAQExWIh7uEihsQERGRkdhC48CqkxkA2H8pU7xAiIiITMSEhgAAyTcLxQ6BiIjIaExoiIiISPKY0BAREZHkMaFxUCXllSqPZTKRAiEiIjIDJjQOqrC0QuwQiIiIzIYJDREREUkeExoiIiKSPCY0BACQgUU05Hj2JWfi823nkVVYJnYoRGQizhTsoHijA3J0+SXleGzJXgDA0dQcfDO2m8gREZEp2EJDAACBKQ45mDPp+cr/bztzQ8RIiMgcmNA4qNodTOxyIkfz5fYLYodARGbEhIaqMJ8hB5OSWSR2CERkRkxoHNSeZNWbUSoU7HIiIiLpYkLjoDYlpas8Png5W6RIiIiITMeExkHJeK8DcnCXbvEO80T2hAmNg2I6Q0RE9oQJjYNiAw0REdkTJjREREQkeUxoiIiISPKY0Dio3OJysUMgIiIyGyY0DupaTrHYIRAREZmNZBOatLQ0PPXUUwgICICHhwfatWuHgwcPih2WZPBWB0REZE8kebft7OxsxMTEoH///vjrr78QFBSE8+fPo379+mKHRkRERCKQZELz4YcfIiwsDMuWLVMua9asmYgRERERkZgk2eX022+/oWvXrnjkkUfQoEEDdOrUCUuXLq3zdXl5eSo/paWlVojWNnEeGiIisjWlpaVq52p9STKhSU5OxqJFi9C8eXNs3rwZL7zwAl5++WV8//33Ol8XFhYGX19f5U9CQoKVIrY9vPUBERHZmoSEBJXzdFhYmN6vlWSXk0KhQNeuXTF37lwAQKdOnZCUlITFixdjzJgxWl+XmpoKHx8f5WO5XG7xWG0V0xkiVbnF5fD1cBU7DCKHFh8fj2nTpikf5+Xl6Z3USLKFplGjRmjTpo3KstatW+PKlSs6X+fj46Py49AJDTMaIhVrDl0VOwQihyeXy9XO1fqSZEITExODs2fPqiw7d+4cwsPDRYpIejQlNFmFZdYPhIiIyAwkmdBMnToVe/fuxdy5c3HhwgUsX74cS5YsQVxcnNihSYameWh4hUqOTBA7ACIyiSQTmm7dumHdunX45ZdfEB0djTlz5mDBggV48sknxQ5NMi7dKlRbJvCQTg5s66l0sUMgIhNIsigYAO655x7cc889YochWQWlFWKHQGRT9iZniR0CEZlAki00ZBkCG2iIiEiimNAQERGR5DGhISU20JCjUCj4aSeyN0xoiMjh/HqYI/qI7A0TGlJiDQ05iu1nbogdAhGZGRMaInI4TN6J7A8TGlLiPDTkKPhZJ7I/TGiIyOGwhYbI/jChISKHw0FORPaHCQ0ROSBmNET2hgkNKbEZnhzF36c5yonI3jChISIiIsljQkNERESSx4SGiIiIJI8JDSkJLKIhIiKJYkJDREREkseEhpTYQENERFLFhIaUcovLxQ6BiIjIKExoSOnrfy+JHQIREZFRmNAQERGR5DGhISIiIsljQkNERESSx4SGiIiIJI8JDREREUkeExoiIiKSPCY0Dig1q0jsEIiIiMyKCY0DKq1QiB0CERGRWTGhcUC8CSUREdkbJjQOqJIJDZFGBaUVYodAREZiQuOAKhVMaIg0ScsuFjsEIjISExoHxAYaIs0E8MtBJFVMaBwQW2iINGOyTyRdTGgcUAUTGiKNmNAQSRcTGgfEUU5EmrHLiUi6mNA4IDbQEGnGXJ9IupjQOCCFjqM262uIiEiKmNA4IF1XobnF5dYLhMjGsIWGSLqY0DggXXUCrK8hR8YaGiLpYkLjgHTlLDyckyNjPk8kXUxoHJDOhIYHdHJguurLiMi2MaFxQOxyItIs+Wah2CEQkZGY0BAR3fbnietih0BERmJC44DKKxVan2P7DDkyfv6JpIsJjQP6ae8Vrc+xx4kcGWtoiKSLCY0DSsnUXifAYavkyJjPEEkXExpSwYmCyZHll3BiSSKpYkLjgPKKK8QOgcgmcaZsIuliQuOAbhWUan2Ow7bJkfHjTyRdTGiIiG5jUTCRdDGhISK6jTVkRNLFhIZU8AKVHBlH+RFJFxMaIqLbUrOKxQ6BiIzEhIaIHEpBKUf5EdkjJjSkgl1OZO/KKrTf+oOIpIsJDanI48RiREQkQUxoSMVz3x8UOwQii+JcS0T2iQkNqUjPKxE7BCIiIoMxoSEih8L2GSL7xISGiIiIJI8JDREREUkeExoiIiKSPLtIaD744APIZDJMmTJF7FCIiIhIBJJPaA4cOICvvvoK7du3FzsUIpIAjtomsk+STmgKCgrw5JNPYunSpahfv77Y4RAREZFIJJ3QxMXFYcSIERg4cKBe6+fl5an8lJaWWjhCIiIi0ldpaanauVpfkk1oVqxYgcOHDyMhIUHv14SFhcHX11f5Y8hriYiIyLISEhJUztNhYWF6v9bFgnFZTGpqKiZPnoytW7fC3d3doNf5+PgoH8vlckuER0Q2TODUekQ2Kz4+HtOmTVM+zsvL0zupkWRCc+jQIdy4cQOdO3dWLqusrMTOnTuxcOFClJaWwtnZWe11Pj4+KgkNETkg5jNENksulxvd2CDJhGbAgAE4ceKEyrJnnnkGrVq1wowZMzQmM0RERGS/JJnQeHt7Izo6WmWZp6cnAgIC1JYTERGR/ZNsUTARERFRNUm20GiSmJgodghEJAEsoSGyT2yhISIiIsljQkNERESSx4SGiBzK1exisUMgIgtgQkNEDuVYao7YIRCRBTChcXDhAfXEDoHIqlycZWKHQEQWwITGwQ1s3VDsEIisSuAwJyK7xITGwfFalRyNwIyGyC4xoXFwMmY05GDqSmeY8BBJExMaBydjRkMOhvkKkX1iQkNEDoX5DJF9YkJDRA6FXUpE9okJjYNjhxM5mqKySp3PM98hkiYmNI6OGQ05mG/+vaTz+f8uZlopEiIyJyY0Dk7GjIYcTF5Juc7n8+t4nohsExMaB8dBTuRo6upSYo8TkTQxoXFwzGeIVLGGhkiamNAQujf1FzsEIiIikzChcXAyGeApdxY7DCLR1K/nqvJYYKcTkSQxoSE1aTnFYodAZDVDo4NVHrPLiUiamNCQmuzCMrFDILIa3v6DyD4woXFwMshQXK57ojEie/Zcn2Yqj9lAQyRNTGgcnEwG5BZXiB0GkWgigrxUHm9OShcpEiIyBRMaUsMWeHJkG09cFzsEIjICExoHx9yFiIjsARMaB8eCSCIisgdMaBwc8xkiIrIHTGiIiIhI8pjQEBERkeQxoSEiIiLJY0Lj4BQKAUKtud5lHPtEREQSw4TGwSk4LSoREdkBJjQOTiEIHLpNRESSx4TGwbGFhoiI7AETGgenEJjREBGR9DGhcXAKDU00xeW8WSUREUkLExoHV9/TTW3Z0p2XRIiEiIjIeExoHNzTvcLVlmUXlYkQCRERkfGY0Dg4uQs/AkREJH08m5EajuImIiKpYULj4GSQYXCbhmKHQUREZBImNA6mpLxS5bFMBgxuq5rQ8NYHREQkNUxoHMyWUxkqj2UAIgK9VJbtSc60YkRERESmY0LjYGrfiBIAnPgpICIiieOpzMHxPk5ERGQPXIx9YXl5OdLT01FUVISgoCD4+/ubMy6yEqYzRERkDwxqocnPz8eiRYsQGxsLHx8fNG3aFK1bt0ZQUBDCw8Mxfvx4HDhwwFKxkhnU7nGSyVgETERE0qd3QjN//nw0bdoUy5Ytw8CBA7F+/XocPXoU586dw549ezBr1ixUVFRg8ODBGDp0KM6fP2/JuMmM3Di5HhERSZzeXU4HDhzAzp070bZtW43Pd+/eHc8++ywWLVqE7777Drt27ULz5s3NFiiZhwDVJhrW0BCpEwSB3w0iidE7ofnll1/0Wq+iogITJ040OiAiIrH9dzETMVGBYodBRAYwqK/h008/1fl8fn4+hgwZYlJAZFkaRm0TOYxDl7P0Wi+3uNzCkRCRuRmU0Lzxxhv44YcfND5XWFiIoUOHIjOTk7LZsvJKhdghEInmyJUcsUMgIgsxKKH58ccfMWHCBPz2228qywsLCzFkyBDcvHkT27dvN2uAZF5f77okdghENqNDmJ/G5WzJJJIeg+ahefjhh5GTk4NRo0Zh48aN6Nevn7JlJiMjAzt27ECjRo0sFSuZwfkbBWKHQCSa2onKC7ER4gRCRGZn8Hjd5557DrNmzcLIkSORmJiIYcOG4dq1a9i+fTtCQkIsESMRkVnUHuUnd3HWuN6b609YIxwiMiOjZgqePn06srKyMGDAADRt2hSJiYkIDQ01d2xERGZVWl6rhkzLyOycIhYFE0mNQQnNgw8+qPLY1dUVgYGBmDx5ssrytWvXmh4ZiaqkvBLurpqvXomkateFW2KHQEQWYlBC4+vrq/J41KhRZg3GUby2+hgOpGThs8c7aS1KFFtpuYIJDVlEYWkF/j6dgW5N/RHi5yFqLJw6j8h+GJTQLFu2zFJxOIyjqTlYfegqAOCxJXtwZs4wkSPS7Ot/k/HK4JZih0F2aOb6JKw9koZALzkOvDnAujPyqt3LjCkNkb3gTXysLCOvRPn/ktr9+TbkcmaR2CGQnVp7JA0AcKugFKUV1v0O1C4KJiL7oXdCc+XKFYM2nJaWZnAwZDt42CdrSM8tqXslC2L7DJH90Duh6datGyZMmIADBw5oXSc3NxdLly5FdHQ01qxZY5YA7Q0n7CK6o7i8UtT3Z48Tkf3Qu4bm1KlTeP/99zFo0CC4u7ujS5cuCAkJgbu7O7Kzs3Hq1CmcPHkSnTt3xrx58zB8+HBLxo2EhASsXbsWZ86cgYeHB3r37o0PP/wQLVvaet2HNDIagZkX2aHySn6uieyV3i00AQEBmD9/Pq5fv46FCxeiefPmuHXrFs6fPw8AePLJJ3Ho0CHs2bPH4skMAOzYsQNxcXHYu3cvtm7divLycgwePBiFhYUWf29TnMvgTL1EYjmamqPyWMZOJyK7YfDEeh4eHnj44Yfx8MMPWyIevW3atEnl8XfffYcGDRrg0KFD6Nu3r0hR1a2oTNwmdn3xOpasgV0+RGQudjPKKTc3FwDg7+8vciS6bTxxTewQiGyG2D2bTKiI7IdRtz6wNQqFAlOmTEFMTAyio6O1rpeXl6fyWC6XQy6XWzo8FalZxVZ9PyLSTuyEiohUlZaWorS0VPm49nlbF7tooYmLi0NSUhJWrFihc72wsDD4+voqfxISEqwUofScTMsVOwRyALbSQtI7MkDsEIgIVQN+ap6nw8LC9H6t5FtoJk2ahD/++AM7d+6s8waZqamp8PHxUT62dusMADjJAIUErgpTOLEeWYHYLSTVCVWQt/WPBUSkLj4+HtOmTVM+zsvL0zupkWxCIwgCXnrpJaxbtw6JiYlo1qxZna/x8fFRSWiISFxFZRWivr/YCRURqTKlFMQsCU1GRgZOnTql/Dl58iROnz6NjIwMc2xeo7i4OCxfvhwbNmyAt7c30tPTAVTdQNPDQ9wb3unC4yfRHbsvZKJLuPiF/C2DvcUOgYhMZFJC06dPH5w/fx5+fn5o2bIlWrVqhdWrV+OPP/5A8+bNzRWjRosWLQIA9OvXT2X5smXLMHbsWIu+t6O4kVeCBj7uYodBdkwhchNJdZfTPe1CMG/TWZXn8krK4ePuKkJURGQMkxKakJAQKBQKJCQkIDY2FgCwevVqdO/e3SzB6SLVmWxl0NxKcyOvBIFecjg5Wa5K0tB99mXiRcy+r62FoiESX2SQFwDNxcnf7LqEqYNaWDkiIjKWSaOcVq1aha+++goLFizA4MGDsW/fPshsZdiCjdKUUvy09zK6z92Gp7/dZ9H3TsvhkHGyLWJfl3i5V13TabqQKKmQxiSYRFTFoITm77//VrvKb9euHdatW4e5c+finXfeQUZGBvbts+yJ2d68tT4JQFU9QUae5e4+XCyRWYrJcdhKO6uPu4bGalsJjoj0YlBCM2TIENy8eVPjc127dsWff/6JLVu24I033sDAgQPNEqC9qav9qrxSYbH35vGZbI3YXccers4AAG8NtTL8vhBJi0E1NPocfGJiYrBt2zZs377d6KDIMsRu3ieqTeyiYGcL1qwRkXVZbKbg/v37W2rTkhbopXt8vS0lHWJfPZP9s+WPWFo2a86IpMTghGbRokXYtm0bsrOzLRGP3RsWHazy+GZ+qZY1zU9gIzrZGFv+RG48cV3sEIjIAAYP2164cCHeeecdyGQyhIWFoXPnzio/wcHBdW/EgdUeTfH+xlMqjy15xWrotq9k8fYHllJSXomNx6+jdSMftAlx3Nmrq7ucissqcTW7CM0bcoI7IjKOwQnNyZMnUVFRgSNHjuDw4cM4fPgwli5ditTUVMhkMgQHByMtLc0SsdqF2knFjVotNLbUirL97E3kFpXDtx4nFzO3T7eew1c7kwEAx2cPdtwJ3ASgUiFg+P924dKtQiQ82A6jujcROyoikiCDEprqOWZCQkIQEhKCESNGKJ/LzMzEoUOHcPToUbMGaO+sOW2PMa0/7/95CvMe7mD+YBxcdTIDAIcuZ6N/ywYiRiMehSDgyJVsXLpVCACIX3uCCQ0RGcVso5wCAgIwePBgDB482OSg7FldCYxYRZLe7i7IL1G/UeCBFNZKkeVczS5GmQWnKiAix2FQUfCmTZvg6+trqVgcUm5xucpjS+Yz+SXlWp97R8stDjjSiSwpu6gMz31/UGVZno7PKRGRNgYlNIMHDzb6tt6kWVJantXea+6fp7U+1yzQ02pxEFXbm5yFolozWF+8USBSNEQkZRabh4Y0k9UxV7ClWkQKSytw7Gqu1ue13YMrJZMjnci6bKlNMD3XcrciISLzYkJjYxQWOpp/tu28zud1TZhaVsEaB3JMvx5KFTsEItITExorE+tm5L/su6LzeV0tR2JPT0+OxVIftxv5hre2mDOWlFuFeGXVMfx27Jr5NkpESgbPQ0OWJk7yIFaiRaTOMt+BFfvFbW0Zu2w/UjKLsObwVcQ2D+L8TkRmxhYaG8PGkDu+2H4Br60+hqzCMuUyQRDw+bbzmPvnaRTXKiYl0kXXKD9rqFmPdrOAtTmOTBAEpNwq5ChSM2MLjZUZ2xAiCAK+3Z2C/JJyTIyNhLurs1njqu/pZtbtmeq/C7fw0eazAICi8kp88URnAMDvx6/jk63nAAByFye8MrilaDGaiyGfifyScjjJZPCUS/Oreya97lF9ljrGZxUantDY4+lGEAStgwDIOmb9dhI/7LmMR7uGKicuFQQBKZlFCPevp3aLHNIPW2hsjLYD6JZTGZjzxyks+Ps8ltaYZdbU7VZr7Odh8DYt6eDlOxP6bTx+5yaBW09lKP+/4oBjFWxezixEj7nb0HPuNsmOvnnsq72ivfeaw1cNfk1mgfVuHmtplQoBY77dj9iPEnE+I1/scBzaD3suAwBWHbzzmfxkyzn0/zgRE386hA1H07DqYCoqLTVKxE4xobGyuj6eu87f0rj8jxon9e/3pJgvIBuVlKZ9iLmts9RBKH7tCRSVVSK/tAJz/jhV9wtsUO2JJDUR6xDup6Gm5fR1S534tV+B703OxI5zN83eHfH7sWvYce4mrmQVYfwPB+t+AVnVwu0XAFRdvE5ecRTTfz2O347xvoiGYEJjZXU1JFrzRDW2d1OrvZehTl233oSD+tLnBPPJlrNoP3szltcxqswYmQV3aomyi8p0rEnGcHVWPxyev2HdloxjqTl4fMlejPl2PxLP3TTrttNyipX/t8b8UsLt+3SdvGY7FyfllQp8vSsZP+29bFP1K9qmxlj4zwUrRyJtTGiszM3Fdnb54LYNxQ7BYGIchEorKvHwov8wYP4OXM3WfSL4/J8LKCyrxBvrTui9/erf6Jt/L6HH3L+x6qBjdaXZCk2frewi6xYSL/j7nPL/7/5uG61wgiAY9b07dDkbD3z5H0b871+cs5EuruX7ruC9jafx1vokZfe1QiGgQsP9xARBwJvrTuChRf8hKS0Xx6/mWOz4U1Jh/ACHK5lF+OP4NZSUV20jt6gcX2y/gN0XNLf22zPbObs6iB4RAWKHoNQ62EfsEExS3dpVWFqBCwZcSVdfOeoqUK2oVOBYag4qKhX49t8UHLycjeSbhXh19TEAVVe7wz7bhae/2YdyM91ccc4fp5CRV4rpvx43y/akquY5Y9XBVLy57gRu5Fm+Zqh1I9v6PlTfgVxMeSXl6PvRdjSL/xMDPkk0aKTY9DV3Pse6brtiTUt33ak//PXQVeQWl6P/J4no8+F2lRYsANh9IRM/77uCQ5ezcc/n/+K+hbvx7e4UK0esW2lFJQZ+ugOTlh/B/NuDJWZuSMJHm8/iya/3mVQDVlGpwPazN+q8iLMlTGis7HKmOAepglL1O2lba6BDeaVCefVgiW0P/nQnBs7fibV6Fn3uv5SFB778D0MX7ELyzQIs3ZmMhD9Po7DGPpr+63GM/GI3pq46hpQaJ5bqe2+9tvoYTl/Pw67zt/Dj7QI/SzF036XlFGu84jTW5pPpmLk+qc4DW1FZBT7efBY/mqnG69KtQkz/9Th+3ncFr9xOJC3p0a5hFn8Pbf67cAvv/XFK7aRqTsZ83z/efBapWVUxXbxZiE+2nMPOczfRbvZmrDmk/n27nluM2b+dxKak6yrLbah3R0kAMH/LWVzOLEJ6XgleX6N6IXFJw7G6rpKAG3klGP/DQcz545RVWpPPpRcou6uW3B4sUnPixpPXjO+6/3b3JTyz7ACGfLrTYsdvc5Pm2E8J++6/FJO3oe17YqnhmDfzSxHmX8+o12YXlmHYZ7tQWlGJ3yb10Xs7+vwaN/JL8d3uFOVJYNqqY3iwc2idr5u26s7JsSq2qgOCQhDw5og2qKhUYO2RqmK8349dw2MaTnQHU+6Mwtp8Mh1llQo80Klx3UEbaPKKI/jrRDo+eKidXuv/vO8y3lyXhE5N/LD2hd46Pw+3CkrhJXfROQVAbnE5Jvx4CABwICULm6b01brugr/PKw+qkQ280DsyUK+Ya6s+EZyqcTDWVixvTh5a9kNuUTn+vXALX2y/gOf7RuB+M/6dKxUCdpy7gWe/s0yRriAIyCuuMHoSv4s3VW8Uuv9SlvIY9srqY/D1cMXANne6rl/8+TCOXMnBd/+loH6t9ywqq8CGo9cQHeKLdqG+RsWjr0u3CvHmuhNoH+qH14e1Ui6v+XWoOWISAFKMuNisfcydvuY4Es9W1T71jgzAgNamdevXdTxPreMiw5SUau6fZwAAhWWV+O/iLdzdyvZLFNhCY2VOeiYcW06m49Ot55B7uw+/rlfN/u0kOs/Zis0n0/WOpa4bZVZ7V8fVxpn0POToKFCdt/ks0vNKkF1Ujhlr1LtSMgtKMfu3k1il5xDs2lG8b2JTdmmNYryluy4hv6Qc/T5OrPWeug8L+y5l4YO/zuC57/U7KW07rXogPZSSjV3n1QtAc4rKsOHoNZRVKjBt1TG9krw31yUBAI5cycHlzCIIgoADKVlqXXL7L2WhV8I29J23XW2CQkEQ8PaGJIz77oDKaLMz6bq79ZbUmE7gn9M3lP9PzSrC59vOG9QtuOVkOuKWH9Z7fXPo1zJI4/IXlx9C3PLDOHU9D1NWHjXLe1X/LRf+c8FiyQwAjP/hEDrN2YKVB8xTpF67WP+5WqOljlzJUf6/Zv1Rfkk5Zv92EvFrT+Dehf/qNdpNX1mFZXhj3Ql8XaM7afwPB/HfxUws3nERR65k63i1DnW0sJy4mos+H27HxB8PKY+P1ckMoH/ryANf7sYba3XX3BWXVeKfMxlqLe1f7bio83W1b1uz4WgaXl19DFfs9KbDbKGxMn1SiGGf7cLp2weOy5mFWPB4J53r5xaXK6+aJvx4CCkfjDAxSlVbT2WgWfyfatv9/dg1vPTLEfjVc8WvE3shqoG32mtr1j5c09Cc/ua6JGy6nYR1bOKHH/akYF9ylrKZuzZN2zCnL7ZfxNVs7e8hU/vPHSdqDTVPvlmAiCAvtfXG1Up8Fm6/gIXb1bdXpke3UVmFAs//eBDZhWVYMrqrynOVgoDtZ+9c/e94rR/CAzwBAI9+tQdAVSvXT3svY3zfCABVV7afbzuvbKHaduYGjFFzYrDHl+xFWk5xnTdIrSYAeP52q5A1uWgY5QRU1VIY4lZBKZ797gDcXZ3x/TPd4eGmueVnX3ImPq1RBGys+VvP4a8T1zHn/mj0rFGjl1VYhr9vJ88z1pzAjKGttG1CK30veupy+EoODtdIdt757SRC/DzwfGwEfNxVW3Jyi8qx+VQ6YqIC9Zofa+b6JGw8UdXF1amJH7qE++PCjTstS5czi9CpSX0Aun8fQajq3q1usayrXuaJpXuRX1qBtJxi/HvhFu5qrpoQa7sHXu1pHY5cyVFJBDV59ddj2Hj8Ou5qHogfx/XQuW5Nu87dwvf/pWBM76boGOqHySuO3n7PbGx7pZ/e25EKttBYmT5X2adrXAWtP6r9RnYZeSWIX3u8zpoFrX25Jh6rXvrlCAAgp6gcA+fvxNw/T2PVgVQcv5qj83UVlQplTJtqtCj9vPcyftp7BedvFKi95kZeCcoqFHV+8etSVqHQWadwM1+9iM7YrvCfTR26Xet9a7aQ3CooxdrDV7Hwn/NIPHsTx67mIl7DVV7Nq//YjxI1vk1hWdVVX1FZBYYu2KlMZrQpKqvA/K3n8PM+7bVD1R8tQRCU+7tCz/l5dHWp2oLatRa1zf7tJI5fzcX+S1lo/fYmfL0rGQ8v+k9lnRd/OozHlhg/yWBFpQL/nMnAiau5+N+28zh/owCP19qeOeuodNl6KgPJN9W/s7qsPZKGhdsvYO5G9RbWKSuPYPqvx3H/F7t1biPx7A18vStZmcwAql3B1Wq2sOo6/l7NLkb0rM2Yv+UsMvJKtBZlV9fU5ddoLVlz6KpaS+f6Gt+jlFuF+GFPCm7klWDIgp06fy9NqicXre56PZeRj43Hr+PYVd1D4r/dfQmJZ2/imWUHcL3GZJwXbxrWvWauxNbS2EJjAQWlFfCqMTX9F9svYPuZG5h1b1uDP0gAcPJarsY79E5ZcRR7knVfPe5NzsR/Zhq+F7f8MML96+FcRgEmxEaoPV+zy2HNC73QJdxfbZ2ktFyMXbYfTfzrYfXE3irPpesYydIzYRua6Fl/k5FXgrl/nkarYB+80C9S5bm6ivrqnE1WpvKPTt/8ewmvDWlp1G0qlu+7gr4ttNegnMsoUKkFAoADl7JUHt/I0zzCQaElsdh57pZKF5w2n207j692VP2tIwK90CtSfeRedd//9rOGt/BoK+7u+O5WvDqkJZ7uGa72XFFZBeZtOovMwjI81jUMfZpX7bvSikoknr1p1hF9Kw6kYkzvpspRUSsPXMGu87fwyuCWaBboiaOpOSrrv6fhpH3WxGHMS3ddwoebzmh8rlIhYMWBK8gu1D1X0awNSZh1b1ud0+z/q8exY/wPB+EkA47NGlznurWtOJCKDx5qr3xcUFqB7be7baovLjTVBl64UYCxyw6obU/TJ3vqymNIuVWEqYNa1BlPhULA//65oLN1ZuaGJLVWkvVHr6GgVDWhSckswne7L2FsTDMM+2wXissr8faGk3XGUFvt7+tPey/jrfVJBm/HETChMbMf96Rg9u+n8GCnxvjokQ64kV+ivCfRvQv/NWqbI/6n+XXakpkNR9PQuUl9lFcq1K7aajK0frjmLQj+rlUHUttDi/Zg52v9VYoKBQDPfHcAtwrKcKugTG22Ul0X4ApB/8nAXl19DLvO38IGXMNfSddx6WYhgn3dMXVQC/y41/ARSRm1Wm1+3HtZrxM/AHz/XwomxEbWvWItb6w7oTFp1KV2C8hrv6qPDLp0qxAFJar98Kev5+GHPSk4XsfVXrXqZKb6Pf6dcbfaOtWfreqhpIZYrWH0DFDVtTpzfRJGdQtT6R5SKAS0eXuz8vHvx64hee5wHEnNwYr9V7RuzxTVN0y9mV+KGWuqWsaOX83Fzun9zTaMXxNBELD7QqbWZAYA1h1JU9ZS1VT7+/79nstoF+qHh7toLqQ/ZcAIGYUAZSJiio9vHyurTVlxBDvO3cTTPcMx7fZ925JvFmDg/B0aX6/tGPLZtvOYGBuptRuoNk2jQqvtOn9L4/7XdEyc/fspjI1phmIjRwnJAPyVpFoXqSuZ0XaxAsC0+a2k0UDDhMbcZt7OwFcfuoqPHumAbCNuiFeXur6Sk1cchZfcReuBylo+3HxGJQkRBNUunX9q1WeYo0NBoRBURsRUn6TzbxTgxZ+NKzLdWWvG1pkGXB1l1GglOXIlG/9d1L8eo2bioI/aB01NtUD9P07EQ7VGgm0+mYHNJ3UnqNpczS6GIAg4XKvwsvr4Vz3M3ZxWH7qKUd2bAKiaVKzvR+oFSD/vu6z8LlrCxZsF2HoqQ6Vb4kpW1Wc9Q0vLmDFSbhWiaaCn8vHWUxl11hfVVSha08GULK3HiRNpOXpvBwBevt0FbSyFQlAbBVrd5f6/fy5g8sAWcHaSKetADNXrg23IMdNEiYsS9d/Hpjh/o8Cg4nhNAy+q1d6313KKEaKlRilP5DvTG4sJjYVZYq6XrDqakoGqK4y6hohbOumu2aKjj9rDKI0R8cafJm9Dl/wS7VdumlRfEZaUV+KBL/+rY23rMOYmjdWW7FQ/kDeLV9/nMpnlajhmrk/CxuPX4ewkww4ttwewZDIDwKiuA2MM+nQHEl/rryyO1adYWlutkr5X6BdvFiDE13o3qx27bD8GtGqA/RrqX2qK1OO7veDvc9iupZDdXMmMoZq+vtFq72VIa2TvD/7BidmD8fux6+jatD5aNLwzqOP9P2xjIkRDMaFxYC5O1q0Jt6c7F+vru/9S8Mfxa5hoRLeTLaqem6Iu+5KzEPXmXxaJoUIh6FXbUZcHO5t/3iBzFy6XVwqI+eAfjGjXCO31mLulUiFoLWZN1lC/t/ZIGqYOaoGGPu4AqopbX1l9DGH+Hlb7zCaevaky3NkUpRUK7E/JqntFAgA8s+wADl6uSiTPvjcULk5O2JuciZW1kl+J9DhxlJOlWeqDYI675WobTmophWXSmG3S3G4VlGksDLVn1QdJWxY/rLXZtzn62/1m3yYAbDxxHQl/1Z1M6tOKUVNZhQKP3R7CD0A5I3NqVrHGOhyyLzW/p3+dSMdb60/gya/3qa1nrS42U7GFxsIsdXsBc3TPEDkyT7n5E3przGhsbimZRahUCCrDjMnx6Jo0ct+lLMz98zSe6N5EpabL1rCFxgzm/HEKd3+ciAMamzql0lhHRI5q1m9JVrlfFknXkp3JarOo2xq20JgoNasI3/x7CQDwyOI9Ks8JgoBx36vPlUBEZEt+2mueWyMQiYktNCbSVTnffe42XLbTe2YQSV09N17PERkqv6TcZmbtro0JjQVpmkbflq2a0EvsEIiIyIZ1nrMVT3+z3yaTGiY0JrJU0a8YujdTv1UBERFRtfLKqmkTzmUYdv8ua2BCQ0RERAaZ8ONBXLGxkgomNERERGSQlMwiPP3tPpzPyLfand3rwoTGRO/WcfdmIiIie3Q5swiDPt2JqDf/wqZaN9EUAxMaExxMycL+S5xmm4iIHNvEnw7hyBVxZwhnQmOCFBvrPyQi0wyLDhY7BCLJEvsGvExoiIhu8/d0EzsEIjISExoTKGxwHD4RGU/BrzSRZDGhMUF+SYXYIRARERGY0JjEFmdKJCJT8DtNJFVMaEhFoBdrCMhx8RqFSLqY0Jig0g473Mf1iRA7BCLRMKEhki4mNCZYvv+K2CGYnZc770BMjktglxORZDGhMcFlzkNDZFfYQkMkXUxoSEUP3nGbHFjj+h5ih0BERmJC46ACtEwg1qKht5UjIbId93YIETsEIjISExoH5c1aGSI1zjKZ2CEQkZGY0BAR3dbEv57YIRCRkZjQOChvd1exQyCyOU5OMrQKZrcrkRQxoXFQXz3dRewQiGxSKAuDiSSJCY2DCvHjQZuIiMxLzFsCMaEhNS/2ixQ7BCIRsTCYyFhizuXEhIbUxEQFih0CkUX5a5m2gIikS9IJzRdffIGmTZvC3d0dPXr0wP79+8UOyS5wtlSyd+/dHy12CER2SczTh2QTmpUrV2LatGmYNWsWDh8+jA4dOmDIkCG4ceOG2KERkY3TNrEkEUmXZBOa+fPnY/z48XjmmWfQpk0bLF68GPXq1cO3334rdmiSx7nFyN7J+CEnsggWBRuorKwMhw4dwsCBA5XLnJycMHDgQOzZs0fr6/Ly8lR+SktLrRGu5LDLieydrnxmTO9w6wVCZGdMPX2Ulpaqnav1JcmE5tatW6isrETDhg1Vljds2BDp6elaXxcWFgZfX1/lT0JCgqVDJSIb5CXXfuuPPlGB+HxUJytGQ0TVEhISVM7TYWFher9WkgmNsVJTU5Gbm6v8iY+PFzskm8TWeLJ3rRv5aH1OJpPxJpVERjK1hT8+Pl7lPJ2amqr3ayV5h8LAwEA4OzsjIyNDZXlGRgaCg4O1vs7Hxwc+PtoPZFSFXU5ERCQGuVwOuVxu1Gsl2ULj5uaGLl26YNu2bcplCoUC27ZtQ69evUSMTBruad9I7BCIiMgOCSIO3JZkCw0ATJs2DWPGjEHXrl3RvXt3LFiwAIWFhXjmmWfEDs3mhdVxR2F2ORERkTHEbOGXbELz2GOP4ebNm3j77beRnp6Ojh07YtOmTWqFwqSugbfu5jwXJ2Y0ZL+e7xshdghEZAGSTWgAYNKkSZg0aZLYYUjOkz10D0vt1tTfSpEQWZ+rMxN2InskyRoaMt5rQ1rCzUX3n93JSYaJsbxBJRERSQcTGtKorqSHiIioNjdn8c4dPGs5GBb8EhGRpTiJWIPJhIb0suYFDoc3xTMxTTH/0Q5ih0EGGNyGAwyIpIQJjYORQb/s+bFud6abTniwHdycnc3y/u0a+5plO1Iz6962eLBzqNhhkAEGt9U+SScR2R4mNKRRYz8P/DYpBl893QWPdg0zS1dVv5ZB+GZsVwR6uZm+MdJLygcjxA6BiMgqmNA4mGHR+l91tg/1w5C2wXA2U5/od890RwNvd7z/QDuzbM+WPNenmdgh6OX1Ya3EDsEidr9+t9ghEIBd0/uLHYLN6t6M02FYGhMaG9bYzwO7pvfHpil3GfxamQx4tKtqF8eUgc3RNNDTXOFZTN8WQfjkEePrTfq1DDJjNKq03YX5rXvaWOw9zcmS9XqN/TywZWpfy72BDpb4tYZFB8PTzTxdrfaqdmurmAWhtqBPVKDW5+Y+EG3W9/ppXA9M6h+Ft+9pgzB/D7NuG6g6h9wnsZu0MqGxYbtfvxth/vXQKlj9hpq9IwPQRsMdg1s09IKHqzNWPq9exGvKDKkNfdyNfm1tdR3y6rk646EuxtebWHImWEvchdlWrtzubtXApNf/82oswgN031bDEp7uGW6Ru8d4yl2waUpf/DSuBzZNuQtvjWiNf16JRe/IAOU621/th60iJXG24LdJfVQeC1ae937na+K0CN3fUfNx4L6OIRjeTr0V/O5WDRDVwFvnNhNf7YfkucMR26LqgkzbXGD9WgZh3xsD0Kd5IF4d0hLP9mmG+zs21jt2TecNTXZN74+eEQF1r2hDmNBIxInZgwFUzXK6akIvLB/fE39Ovktt5MymyX1x8K2BGk+S9dyMnxg6qI7bJdRl48t96l7JDL4Z0xW9IwOx5OkuVhul8vKA5gCM30cLn9Dc6mMJ2orCh7RtiG/HdsPA1tr32QOd1A+ap98dis1T+uL0u0Mhd3HWu+jcnKYNamGxbYf510Of5oFoFeyD5+6KQESQFz4f1QlvjWiNzVP6olmgJ5o31H2i0uTvabH47PGORsfVNby+xuUv9rPuhJghfqotA9bMZ9qH+iLAgvV4PzzbXetz79wXjbj+mvd17SRgzQu98e3YbgCAh+oYGODkJMN3z3TD7tfvxpSBzTWu890z3dUuMOvabnXLsrOTDEtGd9G5brXQ+ta/ODEVExqJ8HZ3xaWE4Tgxe4hKshIZ5KWynpOTDJ5y9cTFW8MyQ80Yqlp/4e6q38dnUv8otA25M7pJVkeFcbCv9tagpaO76nztgNsn5MFtg7FEy7rNG6jus4ga3XCt9bx6qanL7ZNLkFfdCc3CJzqhfajqSK8G3uZr/apLRJDmLkcXp6q/5dwHozG4TUM8E9NUbZ2EB9VrnzzcnNEy2Bset7tmLDHPUccwP63PrXuxN+p7GnZSG9HOtFa2AC85nrsrAi2DDU9kAGDO/dGIauCFkR0b45372qo8p28X16NdwzQunzJQv+Tu40c6IMhbjqd7qt8G5bdJMdg1vT9+mxSDSwnDcXjmIL22qUvt4vSayXHt7yNQNc1BXRcIMlS1omn6XGqy+Kk7J3J9PqdtQzQfC8b2bgrfeq54bYh6PZoMQOcmd5LNmKgA5fEBAGbf1wbvjmyLDXExWt9XJpOhsZ+HxnvqvTakpcbXuNaaCNW/xnfigU6NcW+HEPzzSix2Tu8vyURFX0xorMDU1o1qMpkM7q6qB7yaV0jaTlbmUvsg8NHD+tW5GHKSa+JfD9MGVx2Ue9xO3EZ1b4LEV/thzQu9MLC18d0iw6KDcWbOULV6l/+N6gQnGSB3ccL3z3QzevvaDKjRlXNP+xC1ZnoAGN2r6sTi5uyELVP7op6bM3zcXbD/zQE6t13dPK3Lx7frkcL8PbR2Kwm3O20aeLtjyeiumHWv6on2l/E91T57qydabm6iml17ulpgOjXR3FKhybg+zbB0dFe00XKiMpf/1aqzWvNCb+UVtLurE0bVmBJhTO+mKuu+M1JzncXQWkPIBS2dbLoK+CfERmBcn2b47/W78XCXUOx/YwDm3B+NSwnD0TPCHzIZ8OFD7dA+1A9h/vXQPtQPMplM5eRoim/HdkXzBl6YeU8bzBjaCm4uTnCSAZ8+1lFt3Vn3ttXaQlHbqO5N0CFU83QQo7qH4VLCcFxKGI6h0cH4e1pVC/aF94fjp3E9VNY9+rZ+iVvNpKJLrZYymUyG6Ma+mHN/NJ7uGY7PR3VWed7b3RWjezVFBw1Jeu3jpIuzE967PxrdmtbHqgm9kPTOEMT1j9IYU4ivu3IfvDWitcZ1IoK80Pj2+aL2vnVxkuGJHk2Uj0PrV61XWlGpcVu2StI3p5SKe9uH4Nvdl9SWe7u7IL+kwqRtB3nL8fEjHfDv+ZuYWuvA//KA5lh18CoAYOGTnTW93CDdmt758o5o38jk7dW2dWpfRAZ5KQsLvx3bDUdTc9C9mT9cnZ1MLmhe9JTmptboxr7Y/frdkLs4w9/TDRfnDsfBlCy0DvHBtJVH8ffpGzq363o7Xm2t7R9rKHB+qHMo1hy+quxvjx/WGl3C66NDqB+aBnpi3xsD4Owk09pN2MjXHe8/EI0ezQKw9kgaZq5P0hrfw11C8bARNUm/TuyFiT8dwsTYSPS6XTcyZ2RbfPPvJUwd1ELjTUx15a7tGvviRFquXu/91ojW6NLED+1CffWaA0mf2o2ZFizcDg+oh8uZRQj2ccd9HULw8i9HVJ5/d2Rb9I4MQLem/nCpNTX8qO5N8Mv+Kwj0kmNkxxAs/Oc8LmcV4Z372uKL7RcgCFWv33QyXfmaBlpq2nQlNNOHtFJ5vrqlVCaTYflzPZFZWKb14mvmPW0w549TAIBlY7vh4OUsjO7VFADw0t1R+PyfC2jiX095wtTk7lYNcXerO12ae16/G2WVCjTyVX3Nk7dPrA92CsXHm88iu6hc6zareWhp2Xp9WGuVFuGadSwxUapdQ371VBO32q0e1TS1gFerfidNLV/GeKpnOJ7SY1symQyrJ/bGlawiRDXwQqCXHFNWHgUAja2tUwa2wIK/zysfJ70zBO6uzhjYugH+Pn0Dz99VVYc4qE1DvPP7KbP8LtbAhMbC3hjeCqN7NcX6o2nIKixTfdJM/c3aTlih9evh72l9kVtcgc5N/Ex+ny7h/nhrRGtcvFmI14a0xO4Lt/R6XXStyfS0HXJdnJ1URkl4yl0Qo2PUgDnVPKg6O8nQ43Y/+Jsj2igTmpFaCgF7aCic6xnhj3fui0ZkkKfaCQyouhJ+qmcT5b7xcHPGyBqFfd7urjrj9XB1Vp4cnu4Zjqd7huPTrefw2bY7B6naXVu6aKp96drUHwffUr1qfbpXUzx9+0RmCFdnGeY93B7DPtul1/qecheMjakaCp9TVFbH2upGtG+E9o19kfDXGYNfa4xfxvfEX0npGNJWcw2Sp9xFa6H7rHvboE9UILqE14ersxM2T+2LWwVlaOzngVHdq07urrU+Q/1aBOHdkW0x67eTanUryXOHY/fFW3j6m/3KZd+M6aoz2XFykulsSR7Xpxnubd8IQd5yyGQy9K/R0vfygOboHF4f7Rr7GjTKKUBLF+2g27VvHm7OSHytP85cz8NjS/bC1VmGED8PXM4sqlpRS9NvoJcbHuoSil4RAfD10P49kslk6BJeH4cuZ2vs1vRxd8WjXUOx/ug1lFUo9P69xOLm4oSo291393YIgauzE7zdXdA+1K/O11a3vtZOOkPr18N3z3TD2GUH7ryPsxPKKm1zf7DLyQQRerQYPN83Eu6uzgaPhDDXfCFRDbzRJbx+nXUr+nrurggkPNjOoGZoW5tC3pA90SzQEwuf6IQX+0Wq1TsAVXVF1SeKmq0EMsjQMthbYzIDVCVvnZrUVztRmaJ2ftzE3/p95Zo+ZxFBnlg9sTdaN/LR2FpVF796bvh6dFeM69MMCzR0T2jyxROdDeqOMlWInwfG9WlmVH2Cu6szRrRvpKwdk7s4K1s6XJ2dNH5GZDIZRvdqisNvDcIXT3RG92b+WHa7u9TJSYa7mqt2RZoyIKBaAx93jX9fV2cn9G/ZAIFaEhRtFwI1/fxcD9Rzc0aX8ProWyN2Xw9X9IgIwKWE4Tj33jCt71EzIQ/0kiN+WGv0a1l39/TXo7vi08c6KIt2a5v3cAccnzW4zu0o47CRUevOTjKMaN8IffXokq5Lv5YN8O7IqmNfu8a+2KzjXFY9QEIsTGhM8OVT+nfjBHjJlf2S1QZpuZoDtA/ZkxKZDNgQF6N2ENT2pa9nxJwf2vqLzeme9iGYPrSVWpM0UFV3Y2mRetZG6XtxvGxsN7WaA201GYaqHUKrYG/880o/5RVwlIYCUH0MbNMQM+9po3X6gGAfd+Xf4rHbBbO2cnKxpPqebhjRvhFWTeiF/jpO4Ob6++qj+iTavak/Nk25C58+2rHO18REBeLQW4Pw68ReGlt5ZDKZzouyd0beudj48KH2esda39MND3QK1XmBVvM7rq1Wx96N7tX0dh1jbzQL9NSapGob+WUtTGhMoGl+GE1X8dVqztL7SJdQvUbFSEnNbq3/jeqEna/111j8psmjXUONmuvGmKtwSx3azdUKVpum/vixGvrFx+jZFdS/VQNsmNQHjXSMJjOX2iOBTN1D2k7MLreLqec/2gFv31tVK9MpzA8ht39HS9bPWMuDt0cG6RpabwsWPtEJXz7ZGUtHd0WrYB+9u6E83Jzr/A7V/Dy1qjFcvkVDb/w1+S788VIfvY85+pLJZPjz5bswfWjLOkdZOhl5DIhq4CVKi6ohmgZ6wu12cveChukB+rcMgtxF3IkoWUNjZk/2aIJZv53U+NyUgS2QXVQOD1dnzLq3DT7actbK0VnW/0Z1wpvrktCioZfOGSZrf+cvzh1u0O0V3hrRGu9tPI3Gfh46h/Ram7UmFXtzeGs80b2J2vLaw5ctlWDpUvst366VSNSet8ScwgM8ER5wpzXLxdkJG1++CxdvFqiNRrG0xn4eSMspBgCE+Jkncfzw4fZ4rFsYOhpTD2fF+WF83F0xvJ35Bw0AVV28x6/mQBCA+OGq3fLGTLlQ28iOIdhw9JraRUSbEB+9RscNNeDWMjWte7G31b+vvh6uyC0u11nIrU09V9tMHWwzKglZPr4Hnli6DwCwJ/5urTUTQFVhYM0aAjEmIbOk0Pr18L2Oyai0MfReUeP6NEPHMD9ENfBSea2x3RmWYMlj03gdMyEHectxM7/Ucm9uoNqFn9Wj8nZfuIX7OoTgme8OaHmledT3dENXT+vPxPzDuO748K8z6NM8UG0Uj7FcnZ00FqDrw7rz91qOr4crfr897YElEoBPH+2IuP5RGufGqUtofQ+1qQ10CfB0Q2ZhGQK95HUOArCEDXEx+CspHfcYMWK1SUA9DG8XjD9P3Bl5ZwufMSY0JuodGYh/XomFj4er1oI1baTex19zFM0gAwp/e0cGwtPNGYVllYg3ovhZJpOha40hw79P6oOtpzPwWDf1ycamDGyOBX+fx4Od9Z8a3FgTYiMwdeUxAFAOabU2H3cXZUJTr46Da7vGvrieWwIAiAoyTzIok8nw2eMd8dvRa3hJS4Fg9ai85JsFBm+/ZrO8MScda4kM8tI6sSOZxpItGU5OMrQwYObnmkO4De0yWvtib2w8cR33mDjRo7GaBnpq7DrS15dPdkGfD//B1exiM0ZlGiY0ZhBh5MlA4vkMwgM88dnjHXH8aq5BU667uzpj05S+uHCjAHc1N31YdrtQX7TTUqw3ZWALPNG9idkmN9RlZIfGKC1XwNlJpnX4rjHu6RCC2bfngtBVowUAnz3eCfd/sRuuzk54ZYjuWWPfuz8aqdnF8HRzxgv9NE/YZYyRHRurDEHXRteJSdszofXr4b37o7E3OVPrrKlE1jJnZFsMnL8DAPD+A/rNWFwtPMATL5rxeycGtxo9ErZwPmNCIyKpt9AA+p+8agvzr4cwKxXB1Z6ErOZIhce0TCFvDCcnGR7XUNtiqkAvOTZNuQuXM4tUZh3W5M4kgU4aR2XV1MDHHX9NNvxO7mLTd7IxusPK94x0GOEBnvjv9arZvK1x0US6MaGxIL96uvtF7a2GRir86rnh14m9cPxqLh7pavxdva2pVbCPxlF1mpjzzuiWxE+/9Vhz2LajYSJjO5jQWMAfL/XBH8ev13mytIcWGqnq2tRfpQ6HrE/X55/fDSIyFBMaC4hu7Ks23T/ZJ2MmA6QqbKG0HnY5kSUMaxeML7ZfBAC9Zma2NCY0IuLhXJp+fq4Hxi7bj4Y+7njACqOniEzFfIYsYVL/5sgqLIfcxUl5U1ExMaEhMlBMVCD2xg+At7urcuZMMhy7lYikzcPNGQkPGja6y5J4NBZRXkmFxuXhAbY9BTZVTRjHZIZsWc1bAOhzI10iqWMLjYgKSzUnNAEG3MmaSKrYQmNZXz7ZGQu2nkPXpvWtNkUCkZiY0BCRzWHBsOka+3ngoxq3WiGyd2wzt0HmvlsskS0S4+aZRGS/2EJjQ/pEBUKAgFcGc0p3sn/lFQqxQyAiO8KExob89FwPsUMgspq0HO03tWPjDREZil1OIuJBm4iIyDyY0BAREZHkMaEREacjJ0emrYHSx90Fcs7xQ0QGYg0NEYmidj4/oW8EWjT0Ro8If46AIiKDMaEREY/Z5Mhqf/w95S54qIvuO9QTEWnDdl0iEoWPh6vYIRCRHWFCQ0SiCK3vofKYNWVEZAomNCLi9O5ERETmwYSGiIiIJI8JDREREUkeExoisgmC2kBuIiL9MaEREYdtkyO7VVAqdghEZEeY0IjI39NN7BCIbEb3Zv5ih0BEEsaEhohsQlj9emKHQEQSxoSGiETCPlciMh8mNEQkCtaQEZE5MaEREcd0kCPz460PiMiMmNAQkSj86rEonojMhwkNEYmCPU5EZE5MaIhIFKyhISJzYkJDRKKQMaMhIjNiQiMigVXBREREZsGERkSuzrxCJSIiMgcmNCJydmJCQ0REZA5MaIjIJrCkhohMwYRGRDIOXCUiIjILJjQi4hUpERGReTChEdGRK9lih0BERGQXJJfQpKSkYNy4cWjWrBk8PDwQGRmJWbNmoaysTOzQDJaRVyp2CERERHbBRewADHXmzBkoFAp89dVXiIqKQlJSEsaPH4/CwkJ8/PHHYodnkAqFQuwQiGwG52UiIlNILqEZOnQohg4dqnwcERGBs2fPYtGiRZJLaCoVPIITVSsurxQ7BCKSMMklNJrk5ubC39+/zvXy8vJUHsvlcsjlckuFVSfmM0R3lFWwxZLI0ZWWlqK09E45Ru3zti6Sq6Gp7cKFC/j8888xYcKEOtcNCwuDr6+v8ichIcEKEWqnYBs7kVJZJRMaIkeXkJCgcp4OCwvT+7U2k9C8/vrrkMlkOn/OnDmj8pq0tDQMHToUjzzyCMaPH1/ne6SmpiI3N1f5Ex8fb6lfh4gMFOQlXmspEdmG+Ph4lfN0amqq3q+1mS6nV155BWPHjtW5TkREhPL/165dQ//+/dG7d28sWbJEr/fw8fGBj4+PKWESkYWE+HmIHQIRicyUUhCbSWiCgoIQFBSk17ppaWno378/unTpgmXLlsHJyWYamoiIiEgENpPQ6CstLQ39+vVDeHg4Pv74Y9y8eVP5XHBwsIiRGY4lNER3cOJsIjKF5BKarVu34sKFC7hw4QJCQ0NVnhMkliEIkFa8REREtkpyfTVjx46FIAgaf4iIiMgxSS6hsSe82zbRHbxZKxGZggmNiNjlREREZB5MaIjIJsjYRENEJmBCQ0RERJLHhEZErGMmIiIyDyY0REREJHlMaIiIiEjymNCIyNmJRZBERETmwIRGRC/f3VzsEIiIiOwCExoRNfJ1FzsEIiIiu8CERkzscSIHF9c/EgBwV/NAkSMhIqmT3M0pich+vDq4Je7r0BiRQZ5ih0JEEseEhohEI5PJ0DLYW+wwiMgOsMtJRCG+Hsr/B3q5iRgJERGRtDGhEVHTQE9MG9QCPSP88fNzPcUOh4iISLJkgmD/E/Dn5eXB19cXubm58PHxETscIiIi0oMh52+20BAREZHkMaEhIiIiyWNCQ0RERJLHhIaIiIgkjwkNERERSR4TGiIiIpI8JjREREQkeUxoiIiISPKY0BAREZHkMaGxgNLSUsyePRulpaVih+KQuP/Fxf0vLu5/8fFvIA7e+sAO3o9Ucf+Li/tfXNz/4uPfwHx46wMiIiJyKExoiIiISPJcxA7AGqp71fLy8qzyftXvY633I1Xc/+Li/hcX97/4+Dcwn+p9qE91jEPU0Fy9ehVhYWFih0FERERGSE1NRWhoqM51HCKhUSgUuHbtGry9vSGTycQOh4iIiPQgCALy8/MREhICJyfdVTIOkdAQERGRfWNRMBEREUkeExoiIiKSPCY0REREJHlMaGrYuXMn7r33XoSEhEAmk2H9+vV6v3b37t1wcXFBx44dDd6mIAh4++230ahRI3h4eGDgwIE4f/68ab+MRIn1Nxg7dixkMpnKz9ChQ037ZSTIEvs/ISEB3bp1g7e3Nxo0aID7778fZ8+eVVmnpKQEcXFxCAgIgJeXFx566CFkZGSY4TeSFrH2f79+/dQ+/xMnTjTDbyQtltj/ixYtQvv27eHj4wMfHx/06tULf/31l8o6/PybBxOaGgoLC9GhQwd88cUXBr0uJycHo0ePxoABA4za5rx58/C///0Pixcvxr59++Dp6YkhQ4agpKTE4N9B6sT6GwDA0KFDcf36deXPL7/8YlAM9sAS+3/Hjh2Ii4vD3r17sXXrVpSXl2Pw4MEoLCxUrjN16lT8/vvvWL16NXbs2IFr167hwQcfNPn3kRqx9j8AjB8/XuXzP2/ePJN+FymyxP4PDQ3FBx98gEOHDuHgwYO4++67MXLkSJw8eVK5Dj//ZiKQRgCEdevW6bXuY489Jrz11lvCrFmzhA4dOhi0TYVCIQQHBwsfffSRcllOTo4gl8uFX375xYjI7Ye1/gaCIAhjxowRRo4caVSc9soS+18QBOHGjRsCAGHHjh2CIFR93l1dXYXVq1cr1zl9+rQAQNizZ4+x4Uuetfa/IAhCbGysMHnyZOODtUOW2v+CIAj169cXvv76a0EQ+Pk3J7bQmGjZsmVITk7GrFmzjHr9pUuXkJ6ejoEDByqX+fr6okePHtizZ4+5wrRrpv4NqiUmJqJBgwZo2bIlXnjhBWRmZpopQvtm6P7Pzc0FAPj7+wMADh06hPLycpXvQKtWrdCkSRN+B/Rg6v6v9vPPPyMwMBDR0dGIj49HUVGR2WO1R4bs/8rKSqxYsQKFhYXo1asXAH7+zckhbn1gKefPn8frr7+OXbt2wcXFuF2Znp4OAGjYsKHK8oYNGyqfI+3M8TcAqrqbHnzwQTRr1gwXL17EG2+8gWHDhmHPnj1wdnY2Y8T2xdD9r1AoMGXKFMTExCA6OhpA1XfAzc0Nfn5+KuvyO1A3c+x/AHjiiScQHh6OkJAQHD9+HDNmzMDZs2exdu1aS4Yvefru/xMnTqBXr14oKSmBl5cX1q1bhzZt2gDg59+cmNAYqbKyEk888QTeeecdtGjRQuxwHJI5/waPP/648v/t2rVD+/btERkZicTERI394mTc/o+Li0NSUhL+/fdfC0dn/8y5/59//nnl/9u1a4dGjRphwIABuHjxIiIjI80at70wZP+3bNkSR48eRW5uLn799VeMGTMGO3bsUCY1ZCZi93nZKtTRf5qdnS0AEJydnZU/MplMuWzbtm16bfPixYsCAOHIkSMqy/v27Su8/PLLZvhNpMtafwNtAgMDhcWLFxsZvfSZe//HxcUJoaGhQnJyssrybdu2CQCE7OxsleVNmjQR5s+fb65fR3Kstf81KSgoEAAImzZtMvXXkCxLHH+qDRgwQHj++ecFQeDn35zYQmMkHx8fnDhxQmXZl19+iX/++Qe//vormjVrptd2mjVrhuDgYGzbtk053C8vLw/79u3DCy+8YO6w7Yq5/gaaXL16FZmZmWjUqJGpYdotffe/IAh46aWXsG7dOiQmJqr9Xbp06QJXV1ds27YNDz30EADg7NmzuHLlirLOgNSZa/9rcvToUQDg518HU44/CoUCpaWlAPj5NycmNDUUFBTgwoULyseXLl3C0aNH4e/vjyZNmiA+Ph5paWn44Ycf4OTkpNIHDQANGjSAu7u7yvK6timTyTBlyhS89957aN68OZo1a4aZM2ciJCQE999/v8V/Z1sjxt+goKAA77zzDh566CEEBwfj4sWLmD59OqKiojBkyBDL/9I2xBL7Py4uDsuXL8eGDRvg7e2trAvw9fWFh4cHfH19MW7cOEybNg3+/v7w8fHBSy+9hF69eqFnz57W+cVthBj7/+LFi1i+fDmGDx+OgIAAHD9+HFOnTkXfvn3Rvn176/ziNsIS+z8+Ph7Dhg1DkyZNkJ+fj+XLlyMxMRGbN28GAH7+zUnsJiJbsn37dgGA2s+YMWMEQaga2hsbG6v19ZqG7NW1TUGoGro9c+ZMoWHDhoJcLhcGDBggnD171vy/oASI8TcoKioSBg8eLAQFBQmurq5CeHi4MH78eCE9Pd0yv6QNs8T+17Q9AMKyZcuU6xQXFwsvvviiUL9+faFevXrCAw88IFy/ft38v6CNE2P/X7lyRejbt6/g7+8vyOVyISoqSnjttdeE3Nxcy/ySNswS+//ZZ58VwsPDBTc3NyEoKEgYMGCAsGXLFpV1+Pk3D95tm4iIiCSP89AQERGR5DGhISIiIsljQkNERESSx4SGiIiIJI8JDREREUkeExoiIiKSPCY0REREJHlMaIiIiEjymNAQERGR5DGhISJJ6devH6ZMmSJ2GAbJzMxEgwYNkJKSIloMjz/+OD755BPR3p/I0pjQENkgmUym82f27Nlih2hWhiQpa9euxZw5cywbkJm9//77GDlyJJo2baqyPD09HZMnT0ZUVBTc3d3RsGFDxMTEYNGiRSgqKgIAjB07VuONahMTEyGTyZCTk6NXDG+99Rbef/995ObmmvjbENkm3m2byAZdv35d+f+VK1fi7bffxtmzZ5XLvLy8xAhLVGVlZXBzc4O/v7/YoRikqKgI33zzjfLuytWSk5MRExMDPz8/zJ07F+3atYNcLseJEyewZMkSNG7cGPfdd5/Z4oiOjkZkZCR++uknxMXFmW27RLaCLTRENig4OFj54+vrC5lMprLMy8sLpaWlePnll9GgQQO4u7ujT58+OHDggHIb/fr1w6RJkzBp0iT4+voiMDAQM2fORM370da1DQBQKBSYN28eoqKiIJfL0aRJE7z//vvK5xISEtCsWTN4eHigQ4cO+PXXX1Ve369fP7z88suYPn06/P39ERwcrNLCNHbsWOzYsQOfffaZsgUqJSVFGf+UKVMQGBiIIUOGKLdXszVHV3yaDB8+HGPGjFE+3r59OwIDA1FZWan/H8gAf/75J+RyOXr27Kmy/MUXX4SLiwsOHjyIRx99FK1bt0ZERARGjhyJjRs34t577zXofVJSUjS25vXr10+5zr333osVK1aY49cisjlMaIgkavr06VizZg2+//57HD58GFFRURgyZAiysrKU63z//fdwcXHB/v378dlnn2H+/Pn4+uuvDdpGfHw8PvjgA8ycOROnTp3C8uXL0bBhQwBAQkICfvjhByxevBgnT57E1KlT8dRTT2HHjh0qsX7//ffw9PTEvn37MG/ePLz77rvYunUrAOCzzz5Dr169MH78eFy/fh3Xr19HWFiY8nVubm7YvXs3Fi9erHE/6IpPk8aNGyMtLU35ODY2FsXFxdi7d6++u94gu3btQpcuXVSWZWZmYsuWLYiLi4Onp6fG18lkMoPeJywsTLn/rl+/jiNHjiAgIAB9+/ZVrtO9e3fs378fpaWlhv8iRLZOICKbtmzZMsHX11dlWUFBgeDq6ir8/PPPymVlZWVCSEiIMG/ePEEQBCE2NlZo3bq1oFAolOvMmDFDaN26td7byMvLE+RyubB06VK1uEpKSoR69eoJ//33n8rycePGCaNGjVI+jo2NFfr06aOyTrdu3YQZM2aorDN58mSVdWJjY4VOnTqpvW/NdXXFp82sWbOEli1bqiwLCAgQ1q5dq/c2arp48aKwYcMGrc+PHDlSePbZZ1WW7d27VwCg9p4BAQGCp6en4OnpKUyfPl0QBEEYM2aM4OzsrFxe/ePu7i4AELKzs9Xes7i4WOjRo4dwzz33CJWVlcrlx44dEwAIKSkpRv2uRLaMNTREEnTx4kWUl5cjJiZGuczV1RXdu3fH6dOnlct69uypcqXfq1cvfPLJJ6isrNRrG6dPn0ZpaSkGDBigFsOFCxdQVFSEQYMGqSwvKytDp06dVJa1b99e5XGjRo1w48aNOn/P2i0btemKT5vaLTRHjx5FTk4OevXqpfc2avrrr7+Qn5+vtd6luLgY7u7uem1r//79UCgUePLJJ1VaUfr3749FixaprLtv3z489dRTGrfz7LPPIj8/H1u3boWT052GeA8PDwBQFhwT2RMmNESkVfUJUJOCggIAwMaNG9G4cWOV5+RyucpjV1dXlccymQwKhaLO99fWHaNPfNo0btwYBQUFyMvLg5eXF6ZOnYonn3wSwcHBAIDjx48jLi4OeXl5iIiIwIoVK/D4449DLpfj4sWLyMrKwsqVK9G1a1fs2LEDM2fOREBAAFauXIl///1XLebAwEBkZ2erLIuKioJMJlMp9AaAiIgIjb+Xp6cnoqKiVJZdvXpV4+/33nvvYfPmzdi/fz+8vb1VnqvuSgwKCtJnVxFJCmtoiCQoMjJSWVtSrby8HAcOHECbNm2Uy/bt26fyur1796J58+ZwdnbWaxvNmzeHh4cHtm3bphZDmzZtIJfLceXKFURFRan8VNfA6MvNzc2oolxd8WlTnXxdvXoVM2bMQHp6Oj7//HMAQElJCR5//HF8/fXXOHbsGEJCQvDzzz/j+PHj6Ny5Mw4cOIB3331XOZ9LbGws2rdvj61bt+LIkSMaE7BOnTrh1KlTKssCAgIwaNAgLFy4EIWFhQb/3tqsWbMG7777LlatWoXIyEi155OSkhAaGorAwECzvSeRrWALDZEEeXp64oUXXsBrr70Gf39/NGnSBPPmzUNRURHGjRunXO/KlSuYNm0aJkyYgMOHD+Pzzz9Xnoz12Ya7uztmzJiB6dOnw83NDTExMbh58yZOnjyJcePG4dVXX8XUqVOhUCjQp08f5ObmYvfu3fDx8VEZSVSXpk2bYt++fUhJSYGXl5feQ7Prik+T6oTmlVdewblz57Bz5074+PgAANavX49hw4ahZcuWAIBWrVohNTUVJSUleOWVVwAArVu3xo8//qiyj2vPL1PTkCFDEB8fj+zsbNSvX1+5/Msvv0RMTAy6du2K2bNno3379nBycsKBAwdw5syZOrvbaktKSsLo0aMxY8YMtG3bFunp6QCgMtR9165dGDx4sEHbJZIKJjREEvXBBx9AoVDg6aefRn5+Prp27YrNmzernDRHjx6N4uJidO/eHc7Ozpg8eTKef/55g7Yxc+ZMuLi44O2338a1a9fQqFEjTJw4EQAwZ84cBAUFISEhAcnJyfDz80Pnzp3xxhtvGPS7vPrqqxgzZgzatGmD4uJiXLp0Se/X6opPk8DAQMjlcly+fBk7duxQ6S47ffq0SgvXyZMn0bhxY7Rt2xbOzs4AgMOHD6Ndu3YAqlp5QkJCdMbXrl07dO7cGatWrcKECROUyyMjI3HkyBHMnTsX8fHxuHr1KuRyOdq0aYNXX30VL774ot77AAAOHjyIoqIivPfee3jvvfeUy2NjY5GYmIiSkhKsX78emzZtMmi7RFIhE4Qak1IQkd3o168fOnbsiAULFogdimQsXrwYFy9exEcffYSjR49i9OjRiIuLw/z585GUlIS8vDzcfffdWLt2LSIjI7F7924sWLAAq1ev1rndjRs34rXXXkNSUpJKka41LVq0COvWrcOWLVtEeX8iS2MNDRHRbU8//TROnTqF6OhoTJo0CStXrsTx48cxfPhwdOnSBf369cMHH3ygrE+Jjo5GcnIy2rVrp1YnU9OIESPw/PPPq4yusjZXV1dlrRCRPWILDZGdYguNedx1111Yvny5wYXORGRdTGiIiHSIiIhAcnKy2GEQUR2Y0BAREZHksYaGiIiIJI8JDREREUkeExoiIiKSPCY0REREJHlMaIiIiEjymNAQERGR5DGhISIiIsljQkNERESSx4SGiIiIJI8JDREREUkeExoiIiKSPCY0REREJHn/B7zGK6YtQ7OwAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -304,7 +304,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5OklEQVR4nO3dd1gT9x8H8PclQABlKlNRwIF7K+IeWBy12lq1jrrt0tqW1jrq1l+xtra2arWtrda2arW1rjrq3nvvgSCi4maphJDc7w8kJGSQQEKIvF/Pk+chd9+7fHIkl8991wmiKIogIiIiKoEktg6AiIiIyFaYCBEREVGJxUSIiIiISiwmQkRERFRiMREiIiKiEouJEBEREZVYTISIiIioxHKwdQDFnUqlwu3bt+Hm5gZBEGwdDhEREZlAFEWkpaUhMDAQEonheh8mQvm4ffs2goKCbB0GERERFcDNmzdRvnx5g+uZCOXDzc0NQPaBdHd3t3E0REREZIrU1FQEBQWpf8cNYSKUj5zmMHd3dyZCREREdia/bi3sLE1EREQlFhMhIiIiKrGYCBEREVGJxUSIiIiISiwmQkRERFRiMREiIiKiEouJEBEREZVYTISIiIioxGIiRERERCUWEyEiIiIqsZgIERERUYnFRIiIiIhKLCZCRGTXnmUqbR0CEdkxJkJEZLdOJDxG9UmbMXX9eVuHQkR2iokQEdmtLzdfBgAs3h9v20CIyG4xESIiIqISi4kQEdktEaKtQyAiO8dEiIiIiEosJkJERERUYjERIiK7JbJljIgKqdgkQnv27EHXrl0RGBgIQRCwZs0a9TqFQoExY8agdu3aKFWqFAIDAzFgwADcvn3b6D6nTJkCQRC0HtWqVbPyOyGiosI8iIgKq9gkQk+ePEHdunUxf/58nXVPnz7FiRMnMHHiRJw4cQKrV6/G5cuX8corr+S735o1a+LOnTvqx759+6wRPhEREdkhB1sHkKNTp07o1KmT3nUeHh7YunWr1rJ58+ahSZMmSEhIQIUKFQzu18HBAf7+/haNlYiKCVYJEVEhFZsaIXOlpKRAEAR4enoaLXf16lUEBgYiNDQU/fr1Q0JCgtHycrkcqampWg8iIiJ6MdllIpSRkYExY8agT58+cHd3N1guPDwcS5YswebNm7FgwQLExcWhZcuWSEtLM7hNTEwMPDw81I+goCBrvAUiIiIqBuwuEVIoFOjVqxdEUcSCBQuMlu3UqRN69uyJOnXqICoqChs3bkRycjJWrlxpcJtx48YhJSVF/bh586al3wIRWUiWSmXrEIjIzhWbPkKmyEmCbty4gR07dhitDdLH09MTVatWxbVr1wyWkclkkMlkhQ2ViIrAiYRkW4dARHbObmqEcpKgq1evYtu2bShTpozZ+0hPT0dsbCwCAgKsECERERHZm2KTCKWnp+PUqVM4deoUACAuLg6nTp1CQkICFAoFXn/9dRw7dgx//PEHlEolkpKSkJSUhMzMTPU+2rdvj3nz5qmff/LJJ9i9ezfi4+Nx4MABvPrqq5BKpejTp09Rvz0iIiIqhopN09ixY8fQtm1b9fPo6GgAwMCBAzFlyhSsW7cOAFCvXj2t7Xbu3Ik2bdoAAGJjY/HgwQP1usTERPTp0wcPHz6Ej48PWrRogUOHDsHHx8e6b4aIiIjsQrFJhNq0aQPRyHz5xtbliI+P13q+YsWKwoZFRHbiTGIy6pT3tHUYRGRnik3TGBFRYSzeH2/rEIjIDjERIqIXwunEZFuHQER2qNg0jRERmcsHj3HUeQTkogPC7i+1dThEZIdYI0REdmu10xQAgEzIsm0gRGS3mAgRkd1yE57aOgQisnNMhIjIbgm8/TwRFRITISKyWx6sESKiQmIiRERERCUWEyEiIiIqsZgIERERUYnFRIiIiIhKLCZCREREVGIxESIiIqISi4kQEb0Qmkou2DoEIrJDTISI6IWwwmmGrUMgIjvERIiIiIhKLCZCREREVGIxESIiIqISi4kQERERlVhMhIiIiKjEYiJEREREJRYTISIiIiqxmAgRERFRicVEiIiIiEosJkJERERUYjERIiIiohKLiRAR2SVRFG0dAhG9AJgIEZFd0pcH3Up+VvSBEJFdYyJERHZJX33QlaS0Io+DiOwbEyEisktyRZbOst1X7tsgEiKyZ0yEiMgu/Xbwhs4y9hsiInMxESIiuzRz80WdZUyDiMhcTISI6IWhYo0QEZmJiRAR2SVBzzIV8yAiMhMTISJ6YbCPEBGZi4kQEdmlCMl5nWUqlQ0CISK7VmwSoT179qBr164IDAyEIAhYs2aN1npRFDFp0iQEBATAxcUFkZGRuHr1ar77nT9/PoKDg+Hs7Izw8HAcOXLESu+AiIrSUOkmnWUiu0sTkZmKTSL05MkT1K1bF/Pnz9e7ftasWfjuu++wcOFCHD58GKVKlUJUVBQyMjIM7vPPP/9EdHQ0Jk+ejBMnTqBu3bqIiorCvXv3rPU2iKiICHqSHvYRIiJzFZtEqFOnTpgxYwZeffVVnXWiKGLOnDmYMGECunXrhjp16mDp0qW4ffu2Ts2Rpq+//hrDhw/H4MGDUaNGDSxcuBCurq745ZdfDG4jl8uRmpqq9SCi4kdfZ2m3TF7kEJF5ik0iZExcXBySkpIQGRmpXubh4YHw8HAcPHhQ7zaZmZk4fvy41jYSiQSRkZEGtwGAmJgYeHh4qB9BQUGWeyNEZDH6aoQgspMQEZnHLhKhpKQkAICfn5/Wcj8/P/W6vB48eAClUmnWNgAwbtw4pKSkqB83b94sZPREZA36m8b01RMRERnmYOsAihuZTAaZTGbrMIioIFgjRERmsosaIX9/fwDA3bt3tZbfvXtXvS6vsmXLQiqVmrUNEdmPisJdnWUtHv9jg0iIyJ7ZRSIUEhICf39/bN++Xb0sNTUVhw8fRkREhN5tnJyc0LBhQ61tVCoVtm/fbnAbIrIfFSW6HaP9MhNsEAkR2bNi0zSWnp6Oa9euqZ/HxcXh1KlT8Pb2RoUKFfDhhx9ixowZqFKlCkJCQjBx4kQEBgaie/fu6m3at2+PV199FSNHjgQAREdHY+DAgWjUqBGaNGmCOXPm4MmTJxg8eHBRvz0iKgKeqmRbh0BEdqbYJELHjh1D27Zt1c+jo6MBAAMHDsSSJUvw6aef4smTJ3jrrbeQnJyMFi1aYPPmzXB2dlZvExsbiwcPHqif9+7dG/fv38ekSZOQlJSEevXqYfPmzTodqInoxVDu2WVbh0BEdkYQeXMeo1JTU+Hh4YGUlBS4u7vbOhwiyjHFw8DylKKNg4iKJVN/v+2ijxARERGRNTARIiIiohKLiRARERGVWEyEiIiIqMRiIkREREQlFhMhIiIiKrGYCBEREVGJxUSIiIiISiwmQkRERFRiMREiIiKiEouJEBEREZVYTISI6IXxQOT9AInIPEyEiOiF8UyU2ToEIrIzTISI6IURJLlv6xCIyM4wESIiIqISi4kQERERlVhMhIiIiKjEYiJEREREJRYTISIiIiqxHAqyUUJCAm7cuIGnT5/Cx8cHNWvWhEzGYatERERkX0xOhOLj47FgwQKsWLECiYmJEEVRvc7JyQktW7bEW2+9hR49ekAiYUUTERERFX8mZSyjRo1C3bp1ERcXhxkzZuDChQtISUlBZmYmkpKSsHHjRrRo0QKTJk1CnTp1cPToUWvHTUSk45ZYxtYhEJGdMalGqFSpUrh+/TrKlNE9yfj6+qJdu3Zo164dJk+ejM2bN+PmzZto3LixxYMlIgIAlUrUuorboGyKl6WH8FtWB4y1WVREZI9MSoRiYmJM2tmdO3fQsWPHQgVERJSfLefuoJPG8ww42SwWIrJvJnfmiY6ONrr+zp07aNOmTWHjISLK158rFms9DxLuAQAaSq7YIhwismMmJ0KLFy/G//73P73rcpIgHx8fiwVGRGRIoPBQ63m45BIAoIP0hC3CISI7ZvKosXXr1qFjx47w9vbGu+++q16elJSEtm3bwtvbG5s3b7ZKkEREmiRQ2ToEInpBmJwItWzZEitXrkSPHj3g5eWFN954Q50EeXh44L///kPp0qWtGSsREQAmQkRkOWZNqNilSxf88ssvGDx4MDIyMjBr1iyULl0a//33H9zc3KwVIxGRlkgJm8CIyDLMnlm6b9++SE5OxtChQ9GgQQNs27YNHh4e1oiNiEgvD+GJrUMgoheEyYlQ/fr1IQiC+rmjoyOSk5PRtm1brXInTvBKjYiIiOyDyYlQ9+7dtZ5369bN0rEQEZkkTLhp6xCI6AVhciI0efJka8ZBRGQyZ0Fh6xCI6AXBu6MSERFRiWVSItSxY0ccOnQo33JpaWn44osvMH/+/EIHRkRERGRtJiVCPXv2RI8ePVCjRg2MGTMGq1atwv79+3H8+HFs27YN3333HXr16oWAgACcOHECXbt2tXigwcHBEARB5zFixAi95ZcsWaJT1tnZ2eJxERERkf0yqY/Q0KFD0b9/f6xatQp//vknfvzxR6SkpAAABEFAjRo1EBUVhaNHj6J69epWCfTo0aNQKpXq5+fOnUOHDh3Qs2dPg9u4u7vj8uXL6ueao96I6MVw2rkx6mYctXUYRGSnTO4sLZPJ0L9/f/Tv3x8AkJKSgmfPnqFMmTJwdHS0WoA58t7HbObMmahUqRJat25tcBtBEODv72/t0IjIhpReocAdJkJEVDAF7izt4eEBf3//IkmC8srMzMTvv/+OIUOGGK3lSU9PR8WKFREUFIRu3brh/Pnz+e5bLpcjNTVV60FExZcoSG0dAhHZMbscNbZmzRokJydj0KBBBsuEhYXhl19+wdq1a/H7779DpVKhWbNmSExMNLrvmJgYeHh4qB9BQUEWjp6ILEkUzJ4gn4hITRBFUbR1EOaKioqCk5MT1q9fb/I2CoUC1atXR58+fTB9+nSD5eRyOeRyufp5amoqgoKCkJKSAnd390LFTUQWMiX3tj5Hyg9Gk8TFGutSbBAQERU3qamp8PDwyPf32+4upW7cuIFt27Zh9erVZm3n6OiI+vXr49q1a0bLyWQyyGSywoRIREVJsMuKbSIqJuzuDLJ48WL4+vqiS5cuZm2nVCpx9uxZBAQEWCkyIrIFUcI+QkRUcAVKhJKTk7Fo0SKMGzcOjx49ApB9s9Vbt25ZNLi8VCoVFi9ejIEDB8LBQbsya8CAARg3bpz6+bRp0/Dff//h+vXrOHHiBPr3748bN25g2LBhVo2RiIqWgzsvboio4MxuGjtz5gwiIyPh4eGB+Ph4DB8+HN7e3li9ejUSEhKwdOlSa8QJANi2bRsSEhIwZMgQnXUJCQmQSHLzusePH2P48OFISkqCl5cXGjZsiAMHDqBGjRpWi4+Iil7dqiHAWVtHQUT2yuzO0pGRkWjQoAFmzZoFNzc3nD59GqGhoThw4AD69u2L+Ph4K4VqG6Z2tiKiIqTRWRq9lgIrB2isY2dpIjL999vsprGjR4/i7bff1llerlw5JCUlmbs7IqLCKRtm6wiIyI6ZnQjJZDK9kwxeuXJFZ/ZnIiKr86xg6wiIyI6ZnQi98sormDZtGhQKBYDs21gkJCRgzJgx6NGjh8UDJCIyivcQJKJCMDsRmj17NtLT0+Hr64tnz56hdevWqFy5Mtzc3PC///3PGjESERnm6GLrCIjIjpk9aszDwwNbt27F/v37cfr0aaSnp6NBgwaIjIy0RnxEREREVmNWIqRQKODi4oJTp06hefPmaN68ubXiIiIiIrI6s5rGHB0dUaFCBSiVSmvFQ0RERFRkzO4j9Nlnn2H8+PHqGaWJiIiI7JXZfYTmzZuHa9euITAwEBUrVkSpUqW01p84ccJiwRERERFZk9mJUPfu3a0QBhEREVHRMzsRmjx5sjXiICIiIipyBbr7PBEREdGLwOwaIYlEAsHITK4cUUZERET2wuxE6J9//tF6rlAocPLkSfz666+YOnWqxQIjIiIisjazE6Fu3brpLHv99ddRs2ZN/Pnnnxg6dKhFAiMiIiKyNov1EWratCm2b99uqd0RERERWZ1FEqFnz57hu+++Q7ly5SyxOyKiAhNF0dYhEJEdMbtpzMvLS6uztCiKSEtLg6urK37//XeLBkdElNeVu2moamS9SgSkhsdzEBFpMTsR+uabb7QSIYlEAh8fH4SHh8PLy8uiwRER5RV7L91oIqRUiZBKmAkRkWnMToTatWuHoKAgvUPoExISUKFCBYsERkRUEMduPEKzSmVtHQYR2Qmz+wiFhITg/v37OssfPnyIkJAQiwRFRFRQtx4/s3UIRGRHzE6EDHVETE9Ph7Ozc6EDIiIyxsh8rs/Xs1mMiExnctNYdHQ0gOyTzKRJk+Dq6qpep1QqcfjwYdSrV8/iARIR5WePVw+0evy3rcMgIjtkciJ08uRJANk1QmfPnoWTk5N6nZOTE+rWrYtPPvnE8hESEeUjq9EwYCsTISIyn8mJ0M6dOwEAgwcPxrfffgt3d3erBUVEZJhu05eHa3az/BNRVtTBEJGdM3vU2OLFi60RBxFRgQmCxSbJJ6ISxuxECACOHTuGlStXIiEhAZmZmVrrVq9ebZHAiIhMldM/mt2kichcZl9GrVixAs2aNcPFixfxzz//QKFQ4Pz589ixYwc8PDysESMRkdqDdLnOMkGSfSoTIPIWG0RkFrMToc8//xzffPMN1q9fDycnJ3z77be4dOkSevXqxckUicjqvvrvss4yibpGSMTFO2lFHBER2TOzE6HY2Fh06dIFQPZosSdPnkAQBHz00Uf48ccfLR4gEZGmJ/Is3YUafYR+2R9XhNEQkb0zOxHy8vJCWlr2FVe5cuVw7tw5AEBycjKePn1q2eiIiPJQqnSbvnLuLcY+QkRkLrM7S7dq1Qpbt25F7dq10bNnT3zwwQfYsWMHtm7divbt21sjRiIiNZWePkCCOgVi/yAiMo/ZidC8efOQkZEBAPjss8/g6OiIAwcOoEePHpgwYYLFAyQi0iTRk+wIz2uEZIKeZjMiIiPMSoSysrKwYcMGREVFAQAkEgnGjh1rlcCIiPSRQKX++3LFvgiDdhu/FMoij4mI7JdZfYQcHBzwzjvvqGuEiIiKmmY/oCcugQAAaVa6ellZpBRxRERkz8zuLN2kSROcOnXKCqEYN2XKFAiCoPWoVq2a0W1WrVqFatWqwdnZGbVr18bGjRuLKFoishbNGqEbQd2zl0lyT2UC+wkRkRnM7iP03nvvITo6Gjdv3kTDhg1RqlQprfV16tSxWHB51axZE9u2bVM/d3AwHP6BAwfQp08fxMTE4OWXX8ayZcvQvXt3nDhxArVq1bJajERkXZqJjkri9HwZb7FBRAVjdiL0xhtvAABGjRqlXiYIAkRRhCAIUCqt1z7v4OAAf39/k8p+++236NixI0aPHg0AmD59OrZu3Yp58+Zh4cKFVouRiKyrlqAxT1DOsHkht8GMQ+iJyBxmJ0JxcbabrOzq1asIDAyEs7MzIiIiEBMTY3A264MHDyI6OlprWVRUFNasWWP0NeRyOeTy3Cn8U1NTCx03EVlOmCRR49nzW2tIWCNERAVjdiJUsWJFa8SRr/DwcCxZsgRhYWG4c+cOpk6dipYtW+LcuXNwc3PTKZ+UlAQ/Pz+tZX5+fkhKSjL6OjExMZg6dapFYyciK8lJgLRqhNhHiIhMV6DLqN9++w3NmzdHYGAgbty4AQCYM2cO1q5da9HgNHXq1Ak9e/ZEnTp1EBUVhY0bNyI5ORkrV6606OuMGzcOKSkp6sfNmzctun8iKhztRCf7FBbg4apeIhU4fJ6ITGd2IrRgwQJER0ejc+fOSE5OVvcJ8vT0xJw5cywdn0Genp6oWrUqrl27pne9v78/7t69q7Xs7t27+fYxkslkcHd313oQUfGhlQg9rwly8gpULwqXXCrqkIjIjpmdCM2dOxc//fQTPvvsM0ilUvXyRo0a4ezZsxYNzpj09HTExsYiICBA7/qIiAhs375da9nWrVsRERFRFOERkZX0lu7SePb8FObool4i1RheT0SUH7MTobi4ONSvX19nuUwmw5MnTywSlD6ffPIJdu/ejfj4eBw4cACvvvoqpFIp+vTpAwAYMGAAxo0bpy7/wQcfYPPmzZg9ezYuXbqEKVOm4NixYxg5cqTVYiQi66sliVf/nXNrDU3sI0RE5jA7EQoJCdE7oeLmzZtRvXp1S8SkV2JiIvr06YOwsDD06tULZcqUwaFDh+Dj4wMASEhIwJ07d9TlmzVrhmXLluHHH39E3bp18ddff2HNmjWcQ4joBafvXmRERIaYPWosOjoaI0aMQEZGBkRRxJEjR7B8+XLExMRg0aJF1ogRALBixQqj63ft2qWzrGfPnujZs6eVIiKi4kjCpjEiMoPZidCwYcPg4uKCCRMm4OnTp+jbty8CAwPx7bffqidbJCIqCq5OuqcwNo0RkTnMToQAoF+/fujXrx+ePn2K9PR0+Pr6WjouIqJ8hYd46yxjZ2kiMkeBEiEAuHfvHi5fvgwge3r7nL46RERFRdBzPw3tUWVERMaZ3Vk6LS0Nb775JgIDA9G6dWu0bt0agYGB6N+/P1JSUqwRIxGRXoKeO4tVlyTYIBIisldmJ0LDhg3D4cOH8e+//yI5ORnJycnYsGEDjh07hrffftsaMRIR6eXuUuBKbSIiAAVoGtuwYQO2bNmCFi1aqJdFRUXhp59+QseOHS0aHBGRMYK+tjEiIjOYXSNUpkwZeHh46Cz38PCAl5eXRYIiIiIiKgpmJ0ITJkxAdHS01l3ck5KSMHr0aEycONGiwRER2Ytr99IQs/EiHj3JtHUoRGQGs5vGFixYgGvXrqFChQqoUKECgOxZnWUyGe7fv48ffvhBXfbEiROWi5SIqBiLmrMXSpWIGw+fYuGbDW0dDhGZyOxEqHv37lYIg4jIvilV2RM5nr3F0bNE9sTsRGjy5MnWiIOI6IXgIGUHbiJ7Uqixp+np6VCptGdxdXd3L1RARET2zEHCRIjInpjdWTouLg5dunRBqVKl1CPFvLy84OnpyVFjRFTiSTikn8iumF0j1L9/f4iiiF9++QV+fn6cx4OIiszi/XEYbOsg8sFTIpF9MTsROn36NI4fP46wsDBrxENEZNDU9Rcw2NnWURin77YfRFR8md001rhxY9y8edMasRAREREVKbNrhBYtWoR33nkHt27dQq1ateDo6Ki1vk6dOhYLjoiIiMiazE6E7t+/j9jYWAwenNtSLwgCRFGEIAhQKpUWDZCIyB5UFJLwqnQf9ok9bR0KEZnB7ERoyJAhqF+/PpYvX87O0kREz61zmgAP4SkaPrsLoLOtwyEiE5mdCN24cQPr1q1D5cqVrREPEZERoq0DMMhDeAoAqJV13saREJE5zO4s3a5dO5w+fdoasRARGSUpxolQjuIfIRFpMrtGqGvXrvjoo49w9uxZ1K5dW6ez9CuvvGKx4IiINDUWLptUTqUSIeEMz0RkArMToXfeeQcAMG3aNJ117CxNRNb0mePv6r+/y+qOUQbK3Up+hiBv16IJSgcTMCJ7YnbTmEqlMvhgEkRE1iRoNDzdFb0Nlvt848WiCMcANo4R2ROzEyFNGRkZloqDiChfYULuZK5KI6ev28nPiiIcvZQqJkJE9sTsREipVGL69OkoV64cSpcujevXrwMAJk6ciJ9//tniARIR5XAScmudnaAwWM6WqYjIpjEiu2J2IvS///0PS5YswaxZs+Dk5KReXqtWLSxatMiiwRERGdJVetDWIRDRC8DsRGjp0qX48ccf0a9fP0ilUvXyunXr4tKlSxYNjojIkJrCDYPrRBtWCbFhjMi+mJ0I3bp1S+9kiiqVCgqF4apqIiJLchXktg6BiF4AZidCNWrUwN69e3WW//XXX6hfv75FgiIiKgyR9TJEZCKz5xGaNGkSBg4ciFu3bkGlUmH16tW4fPkyli5dig0bNlgjRiIinL+dgpoazzcom+JlA2WdVLYb0crO0kT2xewaoW7dumH9+vXYtm0bSpUqhUmTJuHixYtYv349OnToYI0YiYjQ5bt9Ws/jRT+DZdvLd1g7HCJ6QZhdIwQALVu2xNatWy0dCxGRyV5tUMHgumBlfNEFkoe/8Nhmr01E5jO7Rig0NBQPHz7UWZ6cnIzQ0FCLBEVElB9nNy+D62orzhZhJERkz8xOhOLj4/XeSkMul+PWrVsWCYqIKD9Zpfy1nr+ZOVb9dwXVzbzFrUK05Th9IrIIk5vG1q1bp/57y5Yt8PDwUD9XKpXYvn07goODLRqcppiYGKxevRqXLl2Ci4sLmjVrhi+++AJhYWEGt1myZAkGDx6stUwmk/HWIER2KEJyXut53iTktlimKMPBtgt3Mfqv05jzRn20rupTpK9NRJZjciLUvXt3ANl3mB84cKDWOkdHRwQHB2P27NkWDU7T7t27MWLECDRu3BhZWVkYP348XnrpJVy4cAGlSpUyuJ27uzsuX76sfi4IHNFBZI+6SA5pL1CptJ4KRTxkftjSYwCAgb8cQfzMLkX62kRkOSYnQqrnJ52QkBAcPXoUZcuWtVpQ+mzevFnr+ZIlS+Dr64vjx4+jVatWBrcTBAH+/v4G1xORfXDJM4GirecKKoVnyIQjFAUbc0JExYTZfYTi4uKKPAnSJyUlBQDg7e1ttFx6ejoqVqyIoKAgdOvWDefPnzdaXi6XIzU1VetBRLbXQ6o9fD5v05jMyE1YLS4jBeedh+KI7D29sRCR/TA7ESoOVCoVPvzwQzRv3hy1atUyWC4sLAy//PIL1q5di99//x0qlQrNmjVDYmKiwW1iYmLg4eGhfgQFBVnjLRBRIeVt5HZCVtG9eGJ2s5iXkI7e0p02vbcZERWOXSZCI0aMwLlz57BixQqj5SIiIjBgwADUq1cPrVu3xurVq+Hj44MffvjB4Dbjxo1DSkqK+nHzZtGMPiEi8+TtE9S+ZqBN4vjC8Sfe0IPIjtld4/bIkSOxYcMG7NmzB+XLlzdrW0dHR9SvXx/Xrl0zWEYmk0EmkxU2TCKytjzVMOU8nIrutfMMumDTGJH9spsaIVEUMXLkSPzzzz/YsWMHQkJCzN6HUqnE2bNnERAQYIUIiagopVdoq/XcQ1aEI0LzJD5Mg4jsV6FqhDIyMpCZmam1zN3dvVABGTJixAgsW7YMa9euhZubG5KSkgAAHh4ecHFxAQAMGDAA5cqVQ0xMDABg2rRpaNq0KSpXrozk5GR8+eWXuHHjBoYNG2aVGImo6GS5aM8b5GDDyzoVa4SI7JbZidDTp0/x6aefYuXKlXpvtaFv1mlLWLBgAQCgTZs2WssXL16MQYMGAQASEhIgkeSeDR8/fozhw4cjKSkJXl5eaNiwIQ4cOIAaNWpYJUYishKl7ogwndxDZZ1zjymYBxHZL7MTodGjR2Pnzp1YsGAB3nzzTcyfPx+3bt3CDz/8gJkzZ1ojRgCmtcHv2rVL6/k333yDb775xkoREVGR2TpZZ1HeU4JQhInQgdgHaFZkr0ZE1mR2ZfL69evx/fffo0ePHnBwcEDLli0xYcIEfP755/jjjz+sESMRlXSH5ussyjuh4mP3akUVDRbujtWORZUbyylVpSKLg4gKz+xE6NGjR+q7zLu7u+PRo0cAgBYtWmDPnj2WjY6IyAB3Z0et53InT9sEAgBpuTecThedbRcHEZnN7EQoNDQUcXFxAIBq1aph5cqVALJrijw9PS0aHFnXvbQM9P3pEDaevWPrUMiGMrNUSHj41NZhmC3I21XreVF208k7Pm3O1isG1xFR8WZ2IjR48GCcPn0aADB27FjMnz8fzs7O+OijjzB69GiLB0jmiXvwBC2+2IHfDt3It+z0DRdxIPYh3vvjRBFERsVVz4UH0OrLndh/7YGtQymU8BDjt9uxpjWnk9R/SziYnsiumN1Z+qOPPlL/HRkZiUuXLuH48eOoXLky6tSpY9HgyHyT1p5D4uNnmLjmHN5sWtFo2cdPMo2up5LhdGL2fftWHbuJ5pVtfx/BgqpYppTW87OJKahd3qNIXlulUQ8kEVRF8ppFYd/VB/jz2E1MfaUmvEsZn7BSFEUIAuvDyP4UembpihUromJF4z+4VHTkWS/OSdhe3U5+htj76WhZxcfWobwQlCoR0gJst/7MbaslQnlv7yFqVK7nXWcv5FlK7Lh4DxGVysDTNTvp6f/zYQCAo0TA173rGdx2+oYLWH/6NjZ/2CrfhImouClQIrR9+3Zs374d9+7dg0ql/cP7yy+/WCQwsr68o26KwqWkVDxIy0SLKqbVPKTLszDwlyPoVMsfw1qGWjk6y2g2cwcA4NchTdC6auGToZMJjxFcphS8rPwDU1yv5pcdvoE38yzLFKWw5c9tvTJKIC33uVaN0PPvlTxLiQu3U1G3vCckkuJ5bDV9/d8V/LDnOqoHuGPTBy211iUmP9O7zaHrDzF3x1Xsv5Y9p9yS/XGIfinM6rFawuMnmRi29Bheb1gefZpUsHU4FrXz8j2kZWThlbrWvf9eyjMFFuyKRbd6gageYJ3JlIuC2X2Epk6dipdeegnbt2/HgwcP8PjxY60H2VgxvxjtOGcv+v98GNfvpxst9yxTiUV7r2Py2vM4fuMxZvx7sYgitJwjcboTjppr79X7ePX7A2g1a6cFIjKuOP5U33z0FBPXntdZPiFrSL7bnrqZbIWIsvm4aY8MC5Pk3pxZguyLw/eXncSr3x/AvJ3XsOV8EsI/34YjcY+sFlNhrTt9GwBw8U6qzrq887ily7MAAG/8eEidBAHQuQdbcTZ3xzUcv/EY41aftXUoFjd48VGMWn4Sd1MzLLZPURQxcc05/HYwXr1s+oYLWLg7Fp2+3Wux17EFs2uEFi5ciCVLluDNN/Neo1FxYKlantQMBSSCgNIy69yXN+7BE4T6lDa4/uutl/HT3jirvLYhSw/G46/jiVgyuInB6n2lSoTUxKt7fXOAPnqSif3XHqBDDT84O+bf4LP94j0AQNrzH56SZvvFu3qXiyakbdZMOlIctWv6FGLu/1ICFe6kPMN/F7Jj/3lfHFKeZc+M3f/nw7gyo5NJr3HtXjre/Pkw3mtTCW9GBFsmcBM9kWehlMZ3X2OaJPxx+AY+++ccpnWrqbuhng+9PEuJNxcdQZMQb3wSFfa8mO37Ez3R+E69+fNh1AvyxMf51GbdTn6GH3bHYlDzEISULWW0bHGQ/FQBP3fLTOdw8PpD9SCcnM/juVspFtm3rZldI5SZmYlmzTinanFVmKn+r91Lw+hVp3HtXhrqTPkPtSZvwZG4R1a/s/bNR0+RpdRuYjX2I5alVOHC7VSoNM7Ov+yLw9/HE42+Tro8S2ubvCatPY8ziSmYu+Oq3vX30jLQYPpWTF57zujr5ND3Sm/8eBDvLz+Jr7Zc1ruNUiVi3enbuGWgKaKwrt1L0/oB0GTJHyZRFHEvzTJXo3WFaxbZjyUpUrSnnLgt5jb1CgCu33+ifq6ZN2ea0YdvwpqzuJOSobdGzBhjn3FNWUoVziamQPm8vObX/Kv/tD+fmueAz/7J/vxPMjGuf8/cwZH4R5i3M/v/uOxwAhrN2GbRH9FTN5Mxb8dVKJQF6yO59+oDzN2R/+ds2K/H8OvBG3h9wQHEP3iCN38+jIOxha/5tRZTvtJpGQrE5lNDn13uxb0YMzsRGjZsGJYtW2aNWMgCzElZ8uY3ry88iFXHE9H5u33qZb1+OIhVx4wnGABw5W4aUp7q3g/KEMnzb+ifRxPQctZOVP5sE6atv4DbzxMAY+9j7Oqz6PzdXnz3PGG5+egppm24gI9XnTa4za3kZ6g1eQtCx2/E2UTjJ+AMhf5bNSzeH4+UZwr8ejD/qQkA/UnplbvZJ5x/DczdtOzwDYxaflLdFGZObqJSiUiXZ6HjnD2YtfmSzvqj8Y8Q+fUedPh6t97t76fLTX6trRfu4uW5e3HtXm5HmbOJKXjwfB/TN1xEk/9tx6pjNw3twiR/HktEsJCUf0E9cpqorKHv4wVaz/N2kP5+V+6P6mMzvhc5biU/Q6xGMmWqbRfuosbkzfj3TP5zg01adx5d5+1DzMaLuH4/HUkazSiXk9K0yiY+LnhinncAx/h/zuLhk0y8PHcfBvxyxOTEzZju8/fjq/+u4ItNup97Q/R9t/K76LvwvNnw4ZNMjFh2AnuvPkCfnw6ZFWvO61y9m2ZWYmzOvg35YXcsak/eggMaU2U0mrEN7Wfvzjcx1bdbW9fqWYrZiVBGRga+/vprtG7dGu+//z6io6O1HlQ4x288Rsymi3iWWbD7JhWm9ib5+Qk775dz7ensWXNTnirw3/kk9XqVSsTOy/ew/9oDvPTNHjT631bTX+z592fM37nt87/sj1N3NDbmr+c1P/OeX8Fdf5D/D8a6U7fVf3edt89o0qY0cGK29lf+0ZNM/HXillYMgomvOnX9eTSYsRVzd1zFpaQ0fL8rVqfMprPZCcXtFP01NXuu3FcnMvkZvvQYzt1KxfvLTwEAziQmo+u8fWg0YxuA7P8lAHy+Mbdv14HYBwge+y++266/xk2fi3dS9R6BtmG++W7rB+v1WfQRtPvRtJFqJ+HGEofdV+4bXPfttqtoN3sXms/cgftpuv+LDIUS4/85i12X70GhVOGnPddx4XZ2LJlZKgxbegwZChVGLMt/brBlhxMAAIv2xaHdbP3JcY57emLR5/FTBdaeuoUMhRKiKGLL+SQkPjY8WeeeK/dxMp++XKIoIjVD//c1bw3Qon35N6dPWHMWMRv19zlcsFv3e2NIYfrfxGy6hA7f7EHtKVsgzyrcPfIys1RatbyaPwEP0zPx1ZbLeGvpMZy7lYKYTZeQJs9C30WHEf/8vJmTqPZYcACnbyZj8zlDFx7FvANqIZjdAeTMmTOoV68eAODcOe0mghclO7SlHgsOAABkUkmBRl9oflTP3UrBj3uuY3RUGAI8nDHj34toVqkMXqrpb9Y+76Rk4NTNZIz9+wwuJaWhZqA7XJ2kqF/BCz/uua4up1CKmLLuPCIqlUGUntfI2/xl9H2Y8J3Lep4sDPv1KKoIibgp+uB28jMEerrku23MpouY2UP/vFcrjyWiUbA3ejUK0lpu7sfbnP5aT+RZaDDdjEQyj8X74wEAP+y+rnf9mpO3cP52/k0RZxNT0LZa/klGjtTnfV80O8y2/WqX+m/NI9D3p+yh2F9vvYJR7avo7EulEiEIz88jyTeBTZ+iqaSB3podB8f8x4z1d9gKYACA7BFC6fIslJY5YMv5JLxU09/kYd6rTyRCoVShd+MKSHmmwMxNFxGTp8z/HHNHywoQccPITN2/HbyhdzShUiXim21X9GyR66c917HscAKWHU7ApJdr4H/Pf9DjZ3bB11u1t72XlgHfPJ26M7NU6LfoEOpX8DL6OgcK2Nzz26Eb+O3QDfQLr4AWlcviXRMma1136hYOXX+IEW0rA8hO9l5feABNQ8pgwss18NZvx7H1wl1sHNUSNQJzRyZdu5eGyK/3YHDzYK39KZQqOEgEvb9HOy7dxe+HshPAHg3K66yftfkyhjQPwdi/z6BDDX90qRNgMO4H6bnzsImiiJM3k1HZt7TOrV/yin/wRH3elGep0GPBAWx4P3eUXmqGAsN/PYaudQPRP5+54ACg+RfZSfO5qVE6fTr7LjqkPpfm9FnLcTT+ESqWyZ2dXZ6lQrf5+wEAWz5shTB/N9x4+ATlPF3gIJXo1OyJoqi3Y72m3w/dQJC3q0VGz1qT2YnQzp3WH71CwNV76fhpz3UcjnuEBf0bwFFqWuWdZgLRde4eiJDg+oN09AuviCUH4rHkQDziZ3YBYPpV3vX7T9D9+RcEAM4/vwI9Gq97xZ3zGrN71sWvB+OxoH9DlHuemGzV+CLeT5WrO5DqfR96koj1p29jgZ6ajhbiCSyWfQkAeHneQqwY3TPfTt4Jj7R/qPL22fn0rzMo7+WClKcKXLyTChGm185ovAkcuv4QDhIBjYJ1Zz2+ejcNh64/RJ8mFXDawFWxKclXfrWA+64+wId/ntJalvDwKf46fhODmofolFcoVVh+JAHBZUqhVZ4T2LlbKTh0XfdHUvP/FWdCDV1emVkqdPx2D0LLlsKigY2Bte8BcXuwwmmj3vJpoV3y3ec70vUIHvsvGlb0wvEb2Z9V71JOePQkE2NXn8Wl6R3x5ZbLqOpXOjvJeaqAzFGi1Yk9Q6FE9Mrs2p6I0LJYuCcWy4/cREyh+p/q/38lP81/glPNvmN5mzL+PqHdhB31zR6MjqqG8l4u6v/jtot3cTT+sd7vbl6G+pKZ4o/DCXrPWd9s1U30cpqaW1Qui2cKJbZeuItzt1Jx7lYqJrxcQ33emLr+PAI9XfBem0qo4ueGb7Zl1yzmXATkqDf1PzQM9sbSIU2Q8lSB73ddQ3ioN9pV88OQJcfyjX3x/nisOXUba07dRpc6uZ8zY/1oNp9Lwrt/nEB5LxfsG9PO6P7P5vm/nbuVik1n7+DnfXEY3DwE60/fxuG4Rzgc90idCImiiLk7rsHPXYYONbKT+AyFEg+fZKprDpcfTsB/F5IwpmPuzYeNnRoEQVCPFMzrj8M3sPT5/6VVVR+U93JR1yDmeJKn1SJDocTXW6+gfTVfhIeWwdnEFExYk11ZkvObU1xZZ0gQWUTO1d7Gs3fQrV45g+UOxj5ExTKuiL2frh4y/J50LYY5/IsemVMRe0+KOxrNIcN+PYbEx09x7V7uF/vjlfr71zggC/Mdv8NRVRgWKXM/zMHCHTwS3ZAK/SO/cvrrTF57HosGNgIAPNPoe/Pp32fw6d9n9G5rqM/A+8tP6l3eQ5o7dHOw/A/UmuyOKzM6wUEiQCIRIM9S4tRN7RP/oyeZiPpmD7rVD4Sfm7O6I6emnBqMHL0a6V5B5lCqRGw8ewcNK+ZeaT9Iz8QbP2b3H7gyoxOcHLR/GDp8s0e97ZT1Fwzu25g5265gzjbjTU2XknSv2rrN34fHTxU6J2UIwK8H4tXTFZT3csGmD1rCzVFAilzEy3P36ewLMHzCFUUgKSUD3+bTHLY/9gGu33+S28k4zvgNnLs3zv8O71IhO6icJAjI/r/n+O3gDfz8vCmlY80A1J32H9xkDjg7NQoqlYjhS4/BwyX36r7VlzvRNDT/23jkN6Hitov3kPj4Kcp7uRotp+nq3TRMXX9Bqx9PfvWNj58qMP6f7KbnnNoCczoTn0xI1ll285Hp96TT15xl7HNw/naqOl59+zj8fADF9ot3cWZKlMED8CRTiT1X7iNDoUTdaf8BAH7Ycx1HP4s0Ke6HGs3D7WbvwozutdCsUlm0N9J8OGlddsfx/PpSZY+W012eU3N27Ib2eSpDoYRcocKlpFR1jd+Yv8/iwrQoNJi+FRmK3P9nzu/F6wsPGo0hx45Ld7HxrP5msKUa/SD3GGjKVeX50v+8Lw4/7rmOH/dcx46PW+P4jeI7VUReZidCT548wcyZMw1OqHj9uv6qeTKP5mfsqZH+Qt3m7VPfIkHTp45/AgDGO/yB4YpP8OfR3Gx+m54hyXmvJp9Hgc6SI4iSHkOU9Jg6EaooJGGX7GMAQHCG8Y7zR+MfYdzqs/gwUrcpxJA/jiTodNY0Ju8cv0D2lzd65Qk0rOCJ6rG/wA1eAFqrS116vv9Zm/WP3tJn31UD9+LKysSKw/H4bP1VOGgMEdI8pgqlSisR0kxM9f3/ANNG/xhLgi4npeHcrRT8tFf3O5nTgTdvzcCCnbE4Ep97Akt8/Az/Lv4cve5+g5GZYwCYfxud95ef0HmdEwmPUcW3NJQqEauOJWp9JnssOIC/89mnqVMYGHP0+fssgxR8879oeKAFUuSl8ehJJlafSMT2S/fUZZ0hxxvSnTgTFwqgqtH91pbEA8/rEA1p8UV2zXpOgpKaocAYAxcGADDk16O4+Uj7RzZv3zhjV/9L9sfhvTaV8cGKU0Zj15Qzq7SmlmbMZ7X6eX83U+WtpQWAOlP+01mWmpGFr7ZcNjjJY468fXga/2+b1nNDNXCa/Yyu33+Cvj8dxjutjSfemv25FEqVVm3YPycT8dGfpzGtW03M33lNp7nSmHrT/kOGQqVVywNkHyvNJKggDCVBppi6/rxOP0vNmmBjfc4ePcmEi6MULk4FmS/eOsxOhIYNG4bdu3fjzTffREBAAPsFWcmjp5rtz7nLMxRKzN1xFe2r+6FBBS+DP6LqbZ+fjO+mZn9RS+EZ3pDuxBZVYySKhttt3fAUm2Rj4YNknXXhEtMnN0x5psDyIwmIe5Cu0+fGkIlrTBuero8M2V/OYUuPYrPTWFRLuAk8v6j/S9nayJb509vJWKUCvq6OHs+eYDJ+QJZK/1fK2NfEUNOWQqXClvO5J6tzt1JQq5zpt4yImmO8ViVvXD5IRuObaxCH1riP3JqtN+5+DQCY7/gd6sgX6Y3d0HsQRVHdlKrpte8PGIzp+I3HgGWmPtHhggw8e75z9Tw/Tl+hniQWbSWnMFAxVm9frb+dpqCmJPsquVrG4nxfp53kJHaoGuRbrtbkLbg0vSO+2XoF2y7eM1juTrLuZ0+zOTW7c73hTOir/65g8/mC//AVhYVmdFTWV4NrLs1ENz/mxPbD7liMbFcFKU8V2HD2ts50AznnYlPkJDtf5BkFuuWc/vm1ikre5khTPXqSiQbTt6KUkxTnp3W0bFCFYHYitGnTJvz7779o3ry5NeKh5zTn0XF7cgM4cxio/Tp+3HMd83fGYv7OWJPaXZV5BgZ+5vA7+jrsxChxNerm+VHL4Yk0bJaNhb+gvx9BfqmvHx4hA06oJYnDUVU1qCBgwO0ZSD7UBEAjvds4Igs9pbuxX1UTN8TcjtZ1hWt4z2EdPs/qq7XckDAhuxZGBgWqSUwZui0iTLiJeNEf8gLctEGZ+RTSpw/gDGCB4xwMV3yit5zESCZ08PpDOEOODMi0lnf6dq9WVfvLc/dh84ctsfPSfQxuHgzntBuY6PAbFmV1xh2U0dpW8wffB4+1EhtNmnOD/OD0NRpIrqGz9DC6ZObtDgy4C7pX7E+fN3eqRMAVGXgGJ437bmWP9nFysP2Vnw8e44BsFBwFJSYoBuN3ZQf1unqS7B+51tIzgIFuazlJEAC4Iv8fsppCPHYg/0QIyE5w8/thye96c9Tyk1qdd/W/jvGOrfkpzrNiFydf/XcFb7WqpG6Ws4b8OtUXN+nyLDyVZ6m7TOT0L1KpRDxTKLUm77QFs1/dy8sL3t75t5OTGRTPgL2zgSub0UbSCcdUVTFIugUbVE0RLwag656XAQC/HozD13G5s7kGj/03311rJ0Ii+jpkV217CE/xp9M0TFYMwiVR+z47cxy/N5IEqVBfyG2OcYICmcjtR1FeuId9sg/Vz1dltcJBVQ10xj7g3j6ckL6tt2ZmqHQjxjquyH5fGs1ta2WTAAAVhbvYomqEKsItfKgYoX7NK3fTTJplWFNV4SZ8hGTsV9VGJ8kRLHD6FqdVoeiWOcOk7WXIBB5cxR+xTrj/8BFy3m0H6QmDP6QHYx/qjMYSoIIICQLTzuGw82T8nNUJ07OyZ2zvJDmM5o/P4U+hLcoIqXgsloab8Awd52S/vmzbeAxx2IyhDtk1dC9nfq7e7zvSdRjruALvZn6A8sJ9fOa4DLMVr2Ou8jWj76uBJPsqW/NHPz85Uy6UfnYHF5yzb3sxWTEQvypfwgqnGRBFAX0Un8FWN/CQIRNyOGG240I4Ctkn3xmOi7USIXOZclNV/e9WhBOytL4vQPZ9oQrL0LxUltTrB9P6nhQXefsbFaWcGZhLkmPxhhPlXw/E4+/jiVrNuQ/T5Ri+9BhOJCTj8Pj2FpsBuyDMnkdo+vTpmDRpEp4+Nb3THBnw5CGwbQrw9zBgz5dA0lkscZqFc87D8Injquf9cHJPut6J21FHML2KFshuGvPBY5RBCjpIjmutC5dcwmbZWJ1t8s6JkqOKkIg45/54w2GXetnb0vVoIzkFL2RfbbaQaDdr9XTYAw8h98P/leMP2YkERDggCyFC9gk8Upo7zLa2cB39pVuh+d6rSW7iA4d/0Fl6BDGOuTVZL32j3fyT34+UD5Lxn2wM/nCKQahwG5MdlwIA6kquY5Hjl4iSHDG6PQCscZoEzGuEzWuX4Yc9pvWJG7zkKJ5m5ta+NJOcw3nZULwm2YNPHFYCAIY6bIIU2T/WC5y+RX+H7Vgvm4AlTrOwVjYJvzvFwB8P8bZ0A4Y4bFbvq5YkXuu1chLKLx1/wGeO2Unlx45/6Y1rmPRffOM4H4LOEHUR1YQExDv31d63g3afMAlUWP7jTDRNWKheNtXxV9QUbqCp5CIipBfQW7oLXSSHNF7D8P9IAhU6SXT7phTUOdlQyJCJqpL8JwXV5ADDI6YqCAVLXGY7LsQV54Eon2f7+Tvz/04rlC/uHC7WonUPtCI2fUPBBj/Ys3gjU0Y8y1Tq9GlrOGMbTjzvkL+pCBJ5Y8yuEZo9ezZiY2Ph5+eH4OBgODpqX92cOJH/vBH03D9vA9eMzx3TUpJ7VdNVeghdpYfQJ/MzHFRp3+cn58rXB8kY5bBaZxtT1BTiUUdi+KS8VfapzjLNH9gzqhBsVjbRKdNfqt1J8bLzIADARVUFVJck4P3MkWgkya3qXS+bAAB4KOq/m3EP6V78p2yELarGAIBQIfdL5CUY7mTtg2QcdX5P/XyHTLsZK1J6EpHSkwjLWIIukkPYraqLh/BAQ+EyXIRM7FPVBgBUl2R3PH9NuhfHVHk7zoqoIdzAXdEL4xyXY6uyoTrOGpM242OHVeggOa5utvvaaSGuqnJHBP7rNB4dM78w+B7edViHiib+EOdNCkOEO3BEFq6I2X21qgiJmOD4BwBgrVL7tjlnZcPgJuh2Rn3HYQO2KRvgI4e/sUD5CoKFJPS5rdtnphRyt/3C8Se98VXOWIosSOGOp0hFKQTiAQ44jzLpvRkyWTEQUx1/VT93FJSIkhzVqTUcKt2IFcq2eJanORLITu7HOS7Hh5nvYY2qhc76f2ST841DIqh0aktzRjcOlm7Bv8pwvOuwDl9kvYFrouHRiEQvgttWumWQpZidCHXv3t0KYZRQ+SRBANBbuktnWRvJKXUi5IdH+NnpK9SSxGN+1it4R7pePWzYHF5Ixb+y8WZvp6mOJA51JLozu1aS6M/2cxKKuU7z9K5vLDE8oquvdDu2qBpjqPRfrRoRRyjRT7oNPkKyzjYNJKbNaJyTqAFApYzf8Ldsavb2GQvxCLnJmb7ap3jnflrPX5fuwXRFf0x0/N3g61WR5I6uqSa5iUqC4dE2Ax0KPunizucj/WpnLMIA6X8Y7bhSve5Th5VaZfUlQTn+kk0DADSXGr7XlKuQfz+a16R7ESYkYqjDJozMfB8fOuQ3Vix/CaLuZJDfOc3HHVG7OX+i4+8G/yfjHJcDAOY4fY81Gc3hA/PvifWhw2p86LAaHeUzdZqeRQCrZVMAZDenhmUsKVD/NCJ7sfqk8RGEmtNa2IIgWvuOmnYuNTUVHh4eSElJgbu7/hqKApti+gggTQuzXkaA8AhtJKfgoacDq7mCM5bpNIHYgweiO8oKhesAmp9TqkrqzrTt5V/CBXJseF5jtUXZCFtVDfGV4w8Wfc27oif89CRylvJ+5kiDyWdR+kbRAx85mp/8XFGVQ9Vp+pseBo+fgcVOXxY4ph+yuuBth9y+d1uUjRAlzX8SPmP6ZH6GntLdeE2aPQfTb1mReNMht5a0nfwrXBcDC/UaRPbOGpMumvr7XaCu2snJyfjrr78QGxuL0aNHw9vbGydOnICfnx/KlTM88R/lSnz8FAWtEH/HYYNFY1nqqDtCyB5YOwkCckcUAdk1Sl86/qh+njO/kqVZMwkCDNfAFTU/Ax3ybUkzCQJgkf/vxw6rtJp+NZMgIrI9sztLnzlzBlWrVsUXX3yBr776CsnJyQCA1atXY9y4cZaO74WVM6FacdBKarvRFfbkFYnhuW/IfH0d8r/Brj7jFMMsHIl1aSZB+uyQfYJAGJisk4iszuxEKDo6GoMGDcLVq1fh7Jw73K1z587Ysyf/CdwomwsKfudiso2W0oJP9EiWc1w0/2bExd0XGjWNRCVReiHubVdYZidCR48exdtvv62zvFy5ckhKKt4zlxYnr0jta04OIrIeXys3hxIVd49t2GHa7ERIJpMhNVW3b8aVK1fg42P4lg2kbYR0ja1DIKJiwpRJGoleZBIL3D+wwK9t7gavvPIKpk2bBoUie0ZZQRCQkJCAMWPGoEePHhYP8EVVQaL/jr5EVHAOMHyD4uKMd2ykks6GeZD5idDs2bORnp4OX19fPHv2DK1bt0blypXh5uaG//3vf9aIkYjIJIHlKuRfqBjyLYYj6IiKkuZNhIua2cPnPTw8sHXrVuzfvx+nT59Geno6GjRogMjISGvER0RksjLVWgB2WNlqifnAiOzZE7ntanPNToSWLl2K3r17o3nz5lp3oM/MzMSKFSswYMAAiwZIRGSqDjX8gL22joKIzHU/Pf/Z6K3F7KaxwYMHIyVFd8r5tLQ0DB482CJBERHpkyK6Gl0vsLMNkV367eANm7222YmQKIoQ9JxtEhMT4eFRsFtGEBGZYqrCeI2zT2ndm6gSUfEnMTsbsRyTm8bq168PQRAgCALat28PB4fcTZVKJeLi4tCxY0erBElEBAC3RB/89U6EwfVlmAgR2SWJDatzTU6Ecu46f+rUKURFRaF06dLqdU5OTggODubweSKyqph330BoBe/8CxKRXZHaQyI0efJkAEBwcDB69+6tdXuNojR//nx8+eWXSEpKQt26dTF37lw0adLEYPlVq1Zh4sSJiI+PR5UqVfDFF1+gc+fORRgxEVlKaIWC3qqYiIozu5pQceDAgXB2dkZmZiYSExORkJCg9bCmP//8E9HR0Zg8eTJOnDiBunXrIioqCvfu3dNb/sCBA+jTpw+GDh2KkydPonv37ujevTvOneM9o4heVOdUwbYOgYjMZMsJFQVRFM2a2/3q1asYMmQIDhzQvhN3TidqpdJ6cwGEh4ejcePGmDdvHgBApVIhKCgI77//PsaOHatTvnfv3njy5Ak2bNigXta0aVPUq1cPCxcu1PsacrkccnnuML7U1FQEBQUhJSUF7u7ulnszU9ixnMhsU3RHrOYVNW4Btsh0zwfFXXDGMluHQGQzZUvLcGyCZecjTE1NhYeHR76/32bPIzRo0CA4ODhgw4YNCAgI0DuCzBoyMzNx/PhxjBs3Tr1MIpEgMjISBw/qv4HpwYMHER0drbUsKioKa9asMfg6MTExmDp1qkViJqKid1m0z9mliUqyBzacR8jsROjUqVM4fvw4qlWrZo14DHrw4AGUSiX8/Py0lvv5+eHSpUt6t0lKStJbPikpyeDrjBs3Tit5yqkRIiLbOhs2CrVtHQQRvXDMToRq1KiBBw8eWCOWYkEmk0Em4xBcouLGt26UrUMgIiuR2lNn6S+++AKffvopdu3ahYcPHyI1NVXrYS1ly5aFVCrF3bt3tZbfvXsX/v7+erfx9/c3qzwRFV9+ZUwbNl+2tBPuixbsz0dEVmfL4fNmJ0KRkZE4dOgQ2rdvD19fX3h5ecHLywuenp7w8vKyRowAsucqatiwIbZv365eplKpsH37dkRE6J9gLSIiQqs8AGzdutVgeSIqnn7O6gT41TCpbCWf0lirbJ5/QSIqNmx5exyzm8Z27txpjThMEh0djYEDB6JRo0Zo0qQJ5syZgydPnqjvcTZgwACUK1cOMTExAIAPPvgArVu3xuzZs9GlSxesWLECx44dw48//miz90BE5pue9SaGmlFeRNGfVfcoa6OV9GyRvy7Ri8AuZpbO0bp1a4PrrD0/T+/evXH//n1MmjQJSUlJqFevHjZv3qzuEJ2QkACJxg1LmjVrhmXLlmHChAkYP348qlSpgjVr1qBWrVpWjZNs76iqKhpLrtg6DCqEb7NeQx/pDixXtrV1KCZ5BvYtJCqojrVs12XF7EQor7S0NCxfvhyLFi3C8ePHrTqPEACMHDkSI0eO1Ltu165dOst69uyJnj17WjUma1injMAUxUCccH7HKvtfltUWtSVxqC2JN3mbiYpB2KuqjV2yj60Sk6UMyByDw6rqGOGwBqMc1tg6HDJDe/mXSBD9oHh+avomqwdQyNqdLxRvYIzjCpPLL8rqhGEOm3BOFYxaZnw/oqTHChAdEQGAp6ujzV67wPd73bNnDwYOHIiAgAB89dVXaNeuHQ4dOmTJ2EqsdcoIjFKMxCOY1uHzhsoXMYo+JpXtIv8cwRnLMD5rOLpmfm6wXP2MhdijrI03MifgjCoE+5U18ZuyA+LFANTKWIT1yqbYq6yFFvI5Jr1uXgeU2f09BmeOxgVVRbO336msi07yGL3rrosBkMMJX2f10lr+TuaHZr9OXi3l3xhcNz/rFbP3d1VVrjDhAAD6ZY7Lv9BzHeSz9C5PF50hFx0wKHO00e3viLkdlhdkdTX5dU2VKPqok6Bs2UmQgxkjSgY1C9ZqGlukzP+WOnOzuiM68x28LJ+BGVlvIjhjGV7O/Bw95ZPwbdarGJQ5Gp8phpgcg7mscSyJ7Ik533FLMysRSkpKwsyZM1GlShX07NkT7u7ukMvlWLNmDWbOnInGjRtbK84XzglVZfXfMxVvaK2LUfRFzg9ARMZcrXVfPC87RTEA4xVDkSK6YpRiJH5QvowhmZ/k+7p5pxHfomykU+ZTxXA8hjsGKMbhkKoGXsmcgX6K8eqY0uGK9xWj8KZiPDJE480ByWIpddKjaYBiLFrI52Cnqj6+zXrV4PbfKHRv5JsolsVgxRhcFE1PoFJFV2xWNcHfyhbYqmyAncq6OmWmK/ob3cdFVRBuirnzUv2a1UH9t0KU4susN/RtZtSnirfQLOM7rWXxKj8DpbUNzByDEZmjsF9l+uw6j0Q3vcvXKJujunwJdqnqo3HG97iiJ0HbrqyPm6KP+vkpjc9wXj9mdcFYxTC9o7feyJyARhkLtJbNUPRDD/lkyOGkU/7Pt5ri4Lj2Bl8rr061A7BU+RIAYK2yWZ7EKtcD0R1jFcNQM+NnzM7qhdWqVjgnhmqVOSpWwzdZPbFLVR9/KC07662mWDHQavsmsgcuToVuoCowkxOhrl27IiwsDGfOnMGcOXNw+/ZtzJ07N/8NSa9BmWPwVuZHaC3/GguV2leDySil/vsOymCa4k318wXKV9AgYyGWKDtimbI96sl/xGmxMgABO1QN8G3Wa+qyO5T18o3jHcWHeC9zlPp5/8xxWKXM2w9MgKHmiQfwwOIs3fldboll0Fs+EW3ls5Gq8X6A7CQwCw5IFH019p9rXlY39d8LlV3RWv41ZiteVy97I3NCvu8rr8Oq7AlAP1a8h+GKTzBcodu893M+NQfzs7prPdeMWvX82QZlOM6rKmJ4ZjRiVQEYlZnbjPuvUvvmwB3ks3BSrILbKIsNynD18n6Z49EoYwHaymcjVhWgE8eqrFYYrXgLu1V18a+qqc76TxXDdZbFKPpgUOaneAgP9JZPRKJYVmu9CAGq56eD+/DEOMUwAMDfyhbomzkeExWDMFSRt7ZI9+48h1XVMEExGJ9n9cMKZTv8nKV7TA+pauABPPB7Vm5ys0jZBcfFMJ2yABAeWgY+bub1v2lQpy7CMpbgA8UInXWd5DGolrEYjeQLsELZDk/gYvJ+F2V1MrhurzK372EPefZNqn/M6mLSfjnKjch2TE7BNm3ahFGjRuHdd99FlSpVrBlTiZCKUvhPlVuD1k7+Fd6WbsAmVRM8g7NW2X+V4Zjk+Jv6uWaTmZgnlz2rClH/PUTxKeKlfY3GIUKidWW/z4zahRxTswair3QHZIICAKAUBXSXT8d9eALIrr3yFR6jgeQaAN2T/glV9udJJQqoLl+MMkjFSIe16vU3RH/MVb6K9aoI3BD9dN6zLn1Jm/YylYF9NMhYiJqSePzmNFO9bK2yGWYq+uAOymiVPSOGYrWyBV6T7sP3z5O3kYoPkJ0gCNiamV3btj+jJvyFRzgvBqOLtJ96+6ti7p3UU8XcZPEWsmtdHoj670c3Oku339jvWe3R32E7vlL0xGplS7SUnMUpVSUIAHao6uO6Ro3DYbE6Wsi/Q7xz7mdjl0q7huy4GIY6GT8hFa4ABByA7gADJaQ6y97MHIdM5Lb1563p+FvZQv33hKwhWKjsqpEQW44gQKt2aUjmJ+gsPYKJikE636/WVX2w+8p9k/b7v6x+GOawSe+6JI1mw+NiGMIylkAOJ7wh3QF34ZnR/RqqtSoKwWVcEf/wqc1e35jZPesiPNQb0zdcwJbzd/PfwIhGFb1w7MZjC0WWa07vevjwz1MW3y8VHZNrhPbt24e0tDQ0bNgQ4eHhmDdv3gs9w3RRuy4GYkzWW9ilqqez7i68MdtjLMS+K/Pdzz5JQ5ws11erJkJT45AyOstuoyz6Zo5HX4n+/iOGjO2Ue5uV+8j90a4k/0OdBAFAEsrgtcxpmKl4A4dV1fCnso3Wfu7DE00y5qO2fBHkcMJtlMXvWe3xU1ZnjR8zAfFigE4StEtPE5cpDN1p+BHcsVdVR6esZhIUKZ+FTxXD8beyJT5VvIWX5TPwnVKzeU876XoID5wXQwAIWn1sNH2v7IZnohN+yeqotdzUH8gJWUNRKeM3zFO+iiw44H3FKPys7IJFyi5aSZA+v2Z1wHZVA53l2TV52u9lwfN+UBuUTbFLVVfnTu9KSPDXO7nzdG1VNcRUxZvok/kZ+mWOw/jnNU3ZhHyToL/fLdicX5+8pF27tEPVAJ8o3tFJggCgim9pk/ZZu5yH0SQ8b3Kd89ltIv/epP3r0zg4e262ng3LI6pmdpPpm011m4QHRJjfzw4ANn3QErN71TNrmwNj2yG6Q1X1c82/C2Je3/paz4e2yL2Ya1/dF+W9XPHDm43wy6BGWPGWbg2oqV6q6YdZr9fB1FdqFngfvnpqJrvXL4dX6lqnadNa+zXV261DMap9FUzvVvBjZjLz7v9uUSYnQk2bNsVPP/2EO3fu4O2338aKFSsQGBgIlUqFrVu3Ii0tzZpxlngffzQOQtX8bzEw5ZXaeNxyCtapmuld36O9/ir4hm26w7tydg2VsanOBzULRqCHMyqWcUXf8NybWw7N/ATHVVXQJ/MzrfKaX6CFylfQO3MSMp4PM25ZpSwuTc/+4b8HL60miglZQ/G/LON9dgBgjGI4tigbYXA+nXzzMmeemZyyPRuWx/jO1XBNLI+VyrYQIUEWHHBODMXiweH57CWbYCAFSxR9UEv+M6ZlDdBaHq14FykOZTBa8Ra+UvTEaMVbBvf974dt8GlH/c1L+vTJ/AyzFL0xOWsQmobqJsgAcHlGR6x6JwL+7tkJxE5VfTTOmI/3FSORBQe8nJnd+b5/5jj0kk+EElI0CvbGL4Ny+p4JWKzshIOqmtivqq1VSxMX01n9425Iw4qmzSadV5C3q8lly3m54PNXc2tCa5fTrolrWaUswkO8sWy48f+xysBnKkNjWH1O38C9ylqIVQVgTtZreE0+xeA+Z71eF78OaYLp3WthYf+GuDS9I6Z3166dK+fpgmndzJ8SZFCzYFQPcEfDiqZNhLv949bYFt0agZ4uGNW+Cmb3rIuJL9fAqPYFbyFoWaUsXq6j/WMf4JGbrGr+Nrar5ofgMtrN7OYY0jwEvRoFYWCzYOTXL3fxYP39XY98pr+fmLWmwDG238KMsmob5pNvmQvTojCuU3VEd6iKNyOCEft5/oMO7JXZo8ZKlSqFIUOGYN++fTh79iw+/vhjzJw5E76+vnjlFfNHzZB+xydE4t02lczerkfD8hD0nJCPqqqiScZ8qJz0d5YFgP+9Whujo8Kw65M2uDS9I8p56vadmPJKTRwY1x67PmkDd+fcL+JlsQJ6ZE7FQZX2lcMbTSpondjycnaUokyp7B9HJ6n5gxiXf/wq3lZE45CqutFyGch70jD/zDWwWTDeaqX/f9ImrPDNO5pNTc6O2ceif/eu8PgsFrNmzMI85atYpWyDH99siD+G6f4oV/N3x3ttKqN+BU+TXu+gqia+V3YDIGBQsxC9ZWQOUjQO9sah8e3VtTP34QUREq0T8T5VbRwRc/8HbU04HoIg4Ote9bCwf0P1slJOus1tBdWjQXmD60a1q4wJXapjWIsQ9G9aEX3DK2DnJ20wqFkwfnizoVbZeX0b4M+3I+Dm7IhejQzv01BzKwC0kc9GJ3kMXsuchkoZv+FNxXi0z5yNOVmv44SYXaNSztMFpye9pLWds6MErav6wNlRCkEQ4Oyoe3wqljE96dNU3iv3+11all3z2L2e4RqISj6lUVmj9qxHw/JatTc5tnzYCtc1fjS9S+l2gM8xv59uTaSg8euf97LB3cX0JsQONXKT7AAPZzhonF/OTjF+UWnK5xcAagRkd1N4o3EFreVV/UrjkJ4O/mWMHAt9NM9SfZpUgJss9/2/buTzDQA/5vkcawrQc27XVM7TBa55Oi/nvUBuZGICbaqa5fR3BSgKBR4+DwBhYWGYNWsWEhMTsXz5ckvFRADKlJahV6Psu97rS0g01SqX/WVsWNELjlKJ3t/4G6I/7sHwB7ecpws8XBwxom1lBHm7wtlRCgep4WRByHOpMqJtboLQubY/moZ648yUl+AolWByV+PVqn8MD0e7ar5Y/Z7+WixNMa/VxqXpHbGgXwPM6V0P/nqSrJyryEHNgjFOMRSXVEH4XNFPqylPi1sg+msMQe9cW3tir1/zdAY3VD2/99Pcif8iDNSw5ExzsCTrJb3rc4ztWA3xM7tk17oJAgRBwPRuNTG8ZQhequmP5pXLGt1enzA//Ulwv/AKeoeu5tQC5WhY0Rtnp7yEuJjOuPq/Tlq1EO2raf9wCIKAiS/nf0uMUjIHdKzlDz/37FqTZpXL4sDYdijn6YIxHQ38v0yk70c6R/RLYRjWMhQTXq6R/Z0BEFK2FKa8UhOBni5atT+iRrWEsdp7QzVCABAvBuCiWBEVy7hqJbwb3s/tM/XfR63gkecq38vVvB9Ofar6lcbeT9vi7dbaI+IGRASr/94a3Qrf9K6LL3vWxfXPOyMupmBX/8FlXBHm7waJxuepbGnt9/B2q1As6NcAf7/bTOtiKoerRjLskifxc3VywLqRpnUs/7pXbrN53v9MKZlDvrVCg5oFaz3PreXMVjfIEyufNwNHVCqDvZ+2xZUZnfD3u82w+r3m8PdwxsZRLdFC47taprT5/8+TEztgx8etEfNabZye/BIuz+iIA2Pb4ZMo47W/mongq/W1R4E6O0iNJkqmGNbS8Pcrr5Vv59/EbWryaQ2FSoRySKVSdO/eHevWrbPE7ui5kLKlcGR8e+z4xPBs3gDwy6DG+LRjmPpKVvP7/X7mSOxX1tQ7z9BHkVWxsH8DvNO6El5vqHt14eace0XQL7wCFg8yPD2Cv0dusvbl63Wx4q0IjZOc8bbfav7u+GVQY9QycEXwUWRVzOpRB6/VL4fXG5aHs6MUnWoHoHv9cnB2kMLJQf/HOPqlqliubI+OmV/gDsrg7VahGNVOY8j32ARgdCzw8UVM+iB3dFF1/9zO6M9EJ5wSs7fJ+RFsGlpG7w+FZnOMoSRyraoFGmd8jylZA/WeiEZHhWFoixD009MP5M2IYHzWJTe5CCmrv5mgWaXcJOwDjWYLP42kceZrtRHg4YwvX6+DKQb6TPw4QDc+N2dHCIIAR6lEK0HQV4U/tEUIvs9zxR9Z3Q+BHs46fVr+frcZRkeF4cvX6yDQ0wX7x7YrUI2ophqB7pAZ+Gzkp16Qp/pvfbUw+uTX3Pr5q7Wxe3RusixzkKCST2n136Vk2lfgiwc3NvjaeZMaY2Z0r40gb1etvjyzetTR+t4EeLjg1frl4SiVQCLJTrxHta+irl3MmxTntfLtCLQJ88GfGj94S4c0QaOKXlqfAe9SThjXuTo61Q4w2CTn4eKIZcPCsWxYOFz01BDWKe+p/rtdNf0/nq/UDYSbniRL0xtNKhhdXzNQe+qHyj7ZFxIb3m+BkW0rY9mwcHVNGpD9/XdykKBhRS/18hqB7vh9WDi+faMeutYN1Eo+c9+PBxb2160ZA4BR7avAq5QTQp9/TiQSATIHKQI9XeDsKMVPA7STs9+GNoFEAAZGVIQgCPj81dpoXrkMpnWrqb7YALK/r8EGzh+miqrpj42jWmot06z9WzuiOcZ3roadn7RBk5D8m7gNnceLgu2GKpBBH0XmnrB885yAvn2jHiasOZed9IiAh6sjfN2c8V6b3B94zdqa9apmWK/RX0jzx6tPkyD4ujujYy3dIdoAMKd3fYxcdgKj2ldB59r6y4ztVA3nb6eiTdX825wB4MTEDmgwfatJZSd0qY7mlcui+vPq516Ng3TKSCQCzkx+CSrFM+B5X2/NUUtRNf3Uo00EQUAVzVoR59zEq6qB2pKcEW0AIELzh1//j17Z0k54kJ6JyOp+iL2XjtspGShbWoYH6XJ1mZyO5C/V1J1SvkvtAJNPUMFlXBH34AkA7U6V77erAn8PF7Sp6oMgb1d8u/0qgOxq/Mjqvijn6YL21f20fggC9dQ6Vs6nE7F21bn+49Gxpj/ea1MJ3++KBZDdHPPTgIY6x6+8lytGtDU8L1FB1S7nUaCRQq5ODvjnvWY6zVHGUvpflS9hgMNWbFLqv2DI6VMX5ueGy3fT0LGWP1ycpDg3NUqrRk7mIIE8S2WwVhEAxnWqjot30rDnyn0MzFNz0bm2PzaeTQIA/DSgkfpHyEkqQdNQb6TLs/Re+OQV3aEqojtURcozhU7NTF5NQrzRJER7eohWVX3Q6vl5oapfaVy5m65T26pPhxp+6lq6/JQp5YTrn3fGg3Q5hv56DG2r+cLDxRE9jTRh5visc3Xsvnwft5Kf4eTEDoj8ejcePslEoIGm/JyPbK1yHgYv2gzpVq8cutUrh7+OJ+qsc3d2NJgE5CRAhnSo4Yc2YT7YdTl71GPLKj64PKOT+vj1Da+g/txVD3DH3dTscvl1DBANVH0ObRGCn/fF4e1WoRAEATXyJIvjO1fHJ6tOA8hOaDW7ElTxLY2r99LzeWXbYCJUjMTP7IKklAy9zT05utUrh651ArWqnvPSXNOiclm8Ui8Qn/51xux4KvuWxuYPWxkt807r7A+6PCv31ip5r2I1v1OaVwx1yhs/mQxradpVr7OjFHAsDURORVbmM9z/zxMA4Krn5F09wHAfKS1Dt2H/shmIfpw7f1Hec0PLKmWx9+oDravSzR+2wqmEZLSt5ovWVX2wcHes+hjdePQUn/51GndTc5OiIG8X3Hz0DP2bVkCQl6tZV2kze9TBlHXnMSAiGBEatUDOjlK9I4sEAXqvSIHsK9dZr9eBm8wB7/5xAgDgIDH+Y9Sumi+61AnITjbi9ScbEomATztWUydC2XEU3QyyeV+qVVUfdDNxJE79Cub1gYgVy6Fmxs948nxkWmR1P2y7qDvk+/dh4fjvQhK61cturiidpybo9OSXkKUS862J+mVgI9xJydDpGB7g4YJD49pDKhG05l8SBAHLhzdV/20qD5fC3/pg+fCm2H3lPjoZuOhqXrkM9l97iE61/E1Kgr7uVRfLjyTg047VIJEI8HV3xnqNZsa89L3fUjIH7B/bTv38z7eb4vudsRj5vNbYGmOYNKNY0K8Bftx7HTGv1Ya/hzPqlvfA6cQU9fqCjpAzdPxmvV4HTf63PTsOQbsJMi/NWjdNn3Wujp6NyqOqb+559O1WoTh7KwWfdqyGSj6l8Mmq7OUyR+04lg5tgoiYHWa8k6LDRMhG+jetgN8PJaif51QxGkuCchhLggDtKt3fh4VDpRLViZCfuzPKe7lAqRJRprTlbhIpc5Di9OSXIBF0O9W55jnRb/mwFbZdvGu0D0eBtPgQDgCONZFDIghwkErQONhba/6Ryr5uWPFWU73DYHOIABDUGE1Hr8G/TzPRaMa23OUa5vVtgP/OJyFK42aBZUvLEPm8bT64bCnM7JE7FD+4bCm0q+aH5UcS1B1Vt37UGvdS5ahQgA6vfu7OWNDf9Hb+/PpE5PRJWzSgERykQr5V1VKJgPl9s6v0P71/2uQ4ipLmwIFfBjVCu2qmzdptSKV8rtBzRj62rFIWPw1oiJBxG3XK+LjJ0C/c8HB3U5viHKQSrSRoQpfqWH3iFka2rQwvA51yizIJ1VSmtAyvGenc+32/hth24a7Wd8mY1xqUN7q/HF3rBmL96dt4x4Rm1sq+bvi6dz2TXr+gNA9/p9oB6KRR0752ZAuIooi4B09QsUwpo6N3C8LXLfe3RRAElPdyxeioMGy7eBcnE5IBANuiW2HVsUS83Vr/8ZJIBFTz164FGtc5d5CEKIoID/FGlkrUaU4N8HDBksGNMWjxUQu9I8thImQjn3WugQYVvFA9wB1erk4mJUCmKlNahkPj2sNVln1ClUgEzOheC+nyLAR6umDXJ20AGB8mXxCGrhxbVi6L7vUC1U1cYf5uCPM3sWamAMpqJHgDmwXD2VGq1W/G0FDxvKQSQWtfeWVXwes21xkz8eXqqFXOHZHVs3+QnR2lBUqCCkLfaEJ9ImuYnyyM6VgNt5Mz0FtP8yWQ/eN/P02OKD3NgVal8ZYLmwQBwJAWwcCu/MstHdKkyJOOYS1DTa5FLW48XBzRw4TmOnPN6V0PH0ZWQWgB+sPk7eTtl08/KVPkl+QKgpBvc5gl5HwyR7StjHdbV8KKozfRoKInKvu6aSU2Zu9XENQ1Wfo+/5qjayt4uyLhUfGYyJOJkI24OElNuqIpqLyJVX+NphKHAgxTLwyJRMCcN+rnX9AKHKUSrfduTDV/N1xKSkOXOtrV913rBuLW46c688sUhKuTg9HaAGsK8LRcsp1XmdIy/K5nSH+OHR+3RuLjZ+pk2F7JHAz/kJX3ckHi4+wZpHN+BH4a0AjDlx7D2hG8hYYtSCVCvrV4hrQN88VbrUJRxbc0Xq4TaJHOvB1q+KFllbKor9EZv7DMmYfwjcZBWH3illa/MolE0JoTrrDyuwD4uENVzN56BTN71Ebfnw4DyO68b0tMhKhYyak5sIX177dAyjOFTi3Q3D62SeIsZfGgxth79QF6m1l7ZUluzo6oHlD4vibmer1BeRyJe4RqVqyBzBFStpQ6EcrRoYYf4meadr8xKl4EQcD4QtSO6OMoleC3oaZNvmqqav5uJt8iZmaPOpjevZbJndGt4f32VfBW61Cti4oQn8KNYCssJkJUrPw2tAmmb7iAj18yfYZkS3GUSow2hdmrttV80dbAMOMXXc9G5VHJtxTC/K1fE/V+uyrYe/WB0YkciSztg8gqEAQBnUzsX2XLJCiHsZpVW2AiRMVKNX93/DGs4PcTItIkCEKBb9NhriYh2ZOIusl4WqWi4+rkYHiyWDIJv7FERBaib6ZkIirebF9HRkRERCWWbSZ1yMVEiIiIiIpczhQuVYtgMIMxbBojIiKiInd2ykuQK1Q2b1JmIkRERERFztXJAa76J0EvUmwaIyIyQ0f5TPyZ1QbNMr6zdShEZAGsESIiMsMlsQLGZL1l6zCIyEJYI0REREQlFhMhIiIiKrGYCBEREVGJxUSIiIiISiwmQkREZsi5Me843t+J6IXAUWNERGbY9EFLHL/xCJHV/YCd2ctUosCrSiI7xUSIiMgMPm4ydKwVYOswiMhCeBFDRFRIEkG0dQhEVEBMhIiIiKjEYiJERFRIKlGwdQhEVEBMhIiIiKjEsotEKD4+HkOHDkVISAhcXFxQqVIlTJ48GZmZmUa3a9OmDQRB0Hq88847RRQ1ERERFXd2MWrs0qVLUKlU+OGHH1C5cmWcO3cOw4cPx5MnT/DVV18Z3Xb48OGYNm2a+rmrq6u1wyWiEoadpYnsl10kQh07dkTHjh3Vz0NDQ3H58mUsWLAg30TI1dUV/v7+1g6RiIiI7JBdNI3pk5KSAm9v73zL/fHHHyhbtixq1aqFcePG4enTp0bLy+VypKamaj2IiIjoxWQXNUJ5Xbt2DXPnzs23Nqhv376oWLEiAgMDcebMGYwZMwaXL1/G6tWrDW4TExODqVOnWjpkIiIiKoYEURRt1rg9duxYfPHFF0bLXLx4EdWq5d7T59atW2jdujXatGmDRYsWmfV6O3bsQPv27XHt2jVUqlRJbxm5XA65XK5+npqaiqCgIKSkpMDd3d2s1yOiF9wUD42/U2wXBxHpSE1NhYeHR76/3zatEfr4448xaNAgo2VCQ0PVf9++fRtt27ZFs2bN8OOPP5r9euHh4QBgNBGSyWSQyWRm75uIiIjsj00TIR8fH/j4+JhU9tatW2jbti0aNmyIxYsXQyIxv3vTqVOnAAABAbxPEBEREdlJZ+lbt26hTZs2qFChAr766ivcv38fSUlJSEpK0ipTrVo1HDlyBAAQGxuL6dOn4/jx44iPj8e6deswYMAAtGrVCnXq1LHVWyGiF9Az0cnWIRBRAdlFZ+mtW7fi2rVruHbtGsqXL6+1LqeLk0KhwOXLl9WjwpycnLBt2zbMmTMHT548QVBQEHr06IEJEyYUefxE9GLLgBNcbB0EERWITTtL2wNTO1sRUQn0vLP0Y9ENXlMTbRwMEWky9ffbLprGiIiKM95zlch+MREiIiKiEouJEBEREZVYTISIiAqNbWNE9oqJEBFRIYlMhIjsFhMhIiIiKrGYCBEREVGJxUSIiKiQOBkbkf1iIkREVEjsI0Rkv5gIEREVEufnJ7JfTISIiAqJeRCR/WIiRERERCUWEyEiokJiHyEi+8VEiIiokJgIEdkvJkJERERUYjERIiIiohKLiRARUSEFCI9sHQIRFRATISIiIiqxmAgRERFRicVEiIiIiEosJkJERERUYjERIiIiohKLiRARERGVWEyEiIiIqMRiIkREREQlFhMhIiIiKrGYCBEREVGJxUSIiIiISiwmQkRERFRiMREiIiKiEouJEBEREZVYTISIiIioxGIiRERUSCpRsHUIRFRATISIiArpGZxsHQIRFRATISKiAtqlrAsA+E3ZwcaREFFB2U0iFBwcDEEQtB4zZ840uk1GRgZGjBiBMmXKoHTp0ujRowfu3r1bRBET0YvuXcUH6J85Dl9l9bJ1KERUQHaTCAHAtGnTcOfOHfXj/fffN1r+o48+wvr167Fq1Srs3r0bt2/fxmuvvVZE0RLRi+4ZnLFPVRt+nm62DoWICsjB1gGYw83NDf7+/iaVTUlJwc8//4xly5ahXbt2AIDFixejevXqOHToEJo2bWrNUImoBFGJoq1DIKICsqsaoZkzZ6JMmTKoX78+vvzyS2RlZRkse/z4cSgUCkRGRqqXVatWDRUqVMDBgwcNbieXy5Gamqr1ICIyRqliIkRkr+ymRmjUqFFo0KABvL29ceDAAYwbNw537tzB119/rbd8UlISnJyc4OnpqbXcz88PSUlJBl8nJiYGU6dOtWToRPSCY40Qkf2yaY3Q2LFjdTpA531cunQJABAdHY02bdqgTp06eOeddzB79mzMnTsXcrncojGNGzcOKSkp6sfNmzctun8ievE4Se2qcp2INNi0Rujjjz/GoEGDjJYJDQ3Vuzw8PBxZWVmIj49HWFiYznp/f39kZmYiOTlZq1bo7t27RvsZyWQyyGQyk+InopJtYf8GiNl0CfP6NLB1KERUQDZNhHx8fODj41OgbU+dOgWJRAJfX1+96xs2bAhHR0ds374dPXr0AABcvnwZCQkJiIiIKHDMREQ5OtYKQMdaAbYOg4gKwS76CB08eBCHDx9G27Zt4ebmhoMHD+Kjjz5C//794eXlBQC4desW2rdvj6VLl6JJkybw8PDA0KFDER0dDW9vb7i7u+P9999HREQER4wRERERADtJhGQyGVasWIEpU6ZALpcjJCQEH330EaKjo9VlFAoFLl++jKdPn6qXffPNN5BIJOjRowfkcjmioqLw/fff2+ItEBERUTEkiCKHOxiTmpoKDw8PpKSkwN3d3dbhEBERkQlM/f3mUAciIiIqsZgIERERUYnFRIiIiIhKLCZCREREVGIxESIiIqISi4kQERERlVhMhIiIiKjEYiJEREREJRYTISIiIiqxmAgRERFRicVEiIiIiEosu7jpqi3l3IotNTXVxpEQERGRqXJ+t/O7pSoToXykpaUBAIKCgmwcCREREZkrLS0NHh4eBtfz7vP5UKlUuH37Ntzc3CAIgsX2m5qaiqCgINy8eZN3tX+Ox0QXj4kuHhNdPCbaeDx0lcRjIooi0tLSEBgYCInEcE8g1gjlQyKRoHz58lbbv7u7e4n5UJqKx0QXj4kuHhNdPCbaeDx0lbRjYqwmKAc7SxMREVGJxUSIiIiISiwmQjYik8kwefJkyGQyW4dSbPCY6OIx0cVjoovHRBuPhy4eE8PYWZqIiIhKLNYIERERUYnFRIiIiIhKLCZCREREVGIxESIiIqISi4mQjcyfPx/BwcFwdnZGeHg4jhw5YuuQLGLKlCkQBEHrUa1aNfX6jIwMjBgxAmXKlEHp0qXRo0cP3L17V2sfCQkJ6NKlC1xdXeHr64vRo0cjKytLq8yuXbvQoEEDyGQyVK5cGUuWLCmKt2eSPXv2oGvXrggMDIQgCFizZo3WelEUMWnSJAQEBMDFxQWRkZG4evWqVplHjx6hX79+cHd3h6enJ4YOHYr09HStMmfOnEHLli3h7OyMoKAgzJo1SyeWVatWoVq1anB2dkbt2rWxceNGi7/f/OR3PAYNGqTzmenYsaNWmRfpeABATEwMGjduDDc3N/j6+qJ79+64fPmyVpmi/K7Y+nxkyvFo06aNzufknXfe0SrzohwPAFiwYAHq1KmjngAxIiICmzZtUq8vSZ8PqxOpyK1YsUJ0cnISf/nlF/H8+fPi8OHDRU9PT/Hu3bu2Dq3QJk+eLNasWVO8c+eO+nH//n31+nfeeUcMCgoSt2/fLh47dkxs2rSp2KxZM/X6rKwssVatWmJkZKR48uRJcePGjWLZsmXFcePGqctcv35ddHV1FaOjo8ULFy6Ic+fOFaVSqbh58+Yifa+GbNy4Ufzss8/E1atXiwDEf/75R2v9zJkzRQ8PD3HNmjXi6dOnxVdeeUUMCQkRnz17pi7TsWNHsW7duuKhQ4fEvXv3ipUrVxb79OmjXp+SkiL6+fmJ/fr1E8+dOycuX75cdHFxEX/44Qd1mf3794tSqVScNWuWeOHCBXHChAmio6OjePbsWasfA035HY+BAweKHTt21PrMPHr0SKvMi3Q8RFEUo6KixMWLF4vnzp0TT506JXbu3FmsUKGCmJ6eri5TVN+V4nA+MuV4tG7dWhw+fLjW5yQlJUW9/kU6HqIoiuvWrRP//fdf8cqVK+Lly5fF8ePHi46OjuK5c+dEUSxZnw9rYyJkA02aNBFHjBihfq5UKsXAwEAxJibGhlFZxuTJk8W6devqXZecnCw6OjqKq1atUi+7ePGiCEA8ePCgKIrZP5oSiURMSkpSl1mwYIHo7u4uyuVyURRF8dNPPxVr1qypte/evXuLUVFRFn43hZf3h1+lUon+/v7il19+qV6WnJwsymQycfny5aIoiuKFCxdEAOLRo0fVZTZt2iQKgiDeunVLFEVR/P7770UvLy/1MRFFURwzZowYFhamft6rVy+xS5cuWvGEh4eLb7/9tkXfozkMJULdunUzuM2LfDxy3Lt3TwQg7t69WxTFov2uFMfzUd7jIYrZidAHH3xgcJsX+Xjk8PLyEhctWlTiPx+WxqaxIpaZmYnjx48jMjJSvUwikSAyMhIHDx60YWSWc/XqVQQGBiI0NBT9+vVDQkICAOD48eNQKBRa771atWqoUKGC+r0fPHgQtWvXhp+fn7pMVFQUUlNTcf78eXUZzX3klLGH4xcXF4ekpCSt+D08PBAeHq51DDw9PdGoUSN1mcjISEgkEhw+fFhdplWrVnByclKXiYqKwuXLl/H48WN1GXs5Trt27YKvry/CwsLw7rvv4uHDh+p1JeF4pKSkAAC8vb0BFN13pbiej/Iejxx//PEHypYti1q1amHcuHF4+vSpet2LfDyUSiVWrFiBJ0+eICIiosR/PiyNN10tYg8ePIBSqdT6cAKAn58fLl26ZKOoLCc8PBxLlixBWFgY7ty5g6lTp6Jly5Y4d+4ckpKS4OTkBE9PT61t/Pz8kJSUBABISkrSe2xy1hkrk5qaimfPnsHFxcVK767wct6Dvvg135+vr6/WegcHB3h7e2uVCQkJ0dlHzjovLy+DxylnH8VFx44d8dprryEkJASxsbEYP348OnXqhIMHD0Iqlb7wx0OlUuHDDz9E8+bNUatWLQAosu/K48ePi935SN/xAIC+ffuiYsWKCAwMxJkzZzBmzBhcvnwZq1evBvBiHo+zZ88iIiICGRkZKF26NP755x/UqFEDp06dKrGfD2tgIkQW1alTJ/XfderUQXh4OCpWrIiVK1cW6wSFbOeNN95Q/127dm3UqVMHlSpVwq5du9C+fXsbRlY0RowYgXPnzmHfvn22DqVYMHQ83nrrLfXftWvXRkBAANq3b4/Y2FhUqlSpqMMsEmFhYTh16hRSUlLw119/YeDAgdi9e7etw3rhsGmsiJUtWxZSqVSnd//du3fh7+9vo6isx9PTE1WrVsW1a9fg7++PzMxMJCcna5XRfO/+/v56j03OOmNl3N3di32ylfMejP3//f39ce/ePa31WVlZePTokUWOU3H/nIWGhqJs2bK4du0agBf7eIwcORIbNmzAzp07Ub58efXyovquFLfzkaHjoU94eDgAaH1OXrTj4eTkhMqVK6Nhw4aIiYlB3bp18e2335bYz4e1MBEqYk5OTmjYsCG2b9+uXqZSqbB9+3ZERETYMDLrSE9PR2xsLAICAtCwYUM4OjpqvffLly8jISFB/d4jIiJw9uxZrR++rVu3wt3dHTVq1FCX0dxHThl7OH4hISHw9/fXij81NRWHDx/WOgbJyck4fvy4usyOHTugUqnUJ/+IiAjs2bMHCoVCXWbr1q0ICwuDl5eXuow9HqfExEQ8fPgQAQEBAF7M4yGKIkaOHIl//vkHO3bs0GnWK6rvSnE5H+V3PPQ5deoUAGh9Tl6U42GISqWCXC4vcZ8Pq7N1b+2SaMWKFaJMJhOXLFkiXrhwQXzrrbdET09Prd799urjjz8Wd+3aJcbFxYn79+8XIyMjxbJly4r37t0TRTF7yGeFChXEHTt2iMeOHRMjIiLEiIgI9fY5Qz5feukl8dSpU+LmzZtFHx8fvUM+R48eLV68eFGcP39+sRo+n5aWJp48eVI8efKkCED8+uuvxZMnT4o3btwQRTF7+Lynp6e4du1a8cyZM2K3bt30Dp+vX7++ePjwYXHfvn1ilSpVtIaLJycni35+fuKbb74pnjt3TlyxYoXo6uqqM1zcwcFB/Oqrr8SLFy+KkydPtslwcWPHIy0tTfzkk0/EgwcPinFxceK2bdvEBg0aiFWqVBEzMjJeyOMhiqL47rvvih4eHuKuXbu0hoM/ffpUXaaovivF4XyU3/G4du2aOG3aNPHYsWNiXFycuHbtWjE0NFRs1arVC3k8RFEUx44dK+7evVuMi4sTz5w5I44dO1YUBEH877//RFEsWZ8Pa2MiZCNz584VK1SoIDo5OYlNmjQRDx06ZOuQLKJ3795iQECA6OTkJJYrV07s3bu3eO3aNfX6Z8+eie+9957o5eUlurq6iq+++qp4584drX3Ex8eLnTp1El1cXMSyZcuKH3/8sahQKLTK7Ny5U6xXr57o5OQkhoaGiosXLy6Kt2eSnTt3igB0HgMHDhRFMXsI/cSJE0U/Pz9RJpOJ7du3Fy9fvqy1j4cPH4p9+vQRS5cuLbq7u4uDBw8W09LStMqcPn1abNGihSiTycRy5cqJM2fO1Ill5cqVYtWqVUUnJyexZs2a4r///mu1922IsePx9OlT8aWXXhJ9fHxER0dHsWLFiuLw4cN1TrIv0vEQRVHv8QCg9Tkuyu+Krc9H+R2PhIQEsVWrVqK3t7cok8nEypUri6NHj9aaR0gUX5zjIYqiOGTIELFixYqik5OT6OPjI7Zv316dBIliyfp8WJsgiqJYdPVPRERERMUH+wgRERFRicVEiIiIiEosJkJERERUYjERIiIiohKLiRARERGVWEyEiIiIqMRiIkREREQlFhMhIiIiKrGYCBGRXRIEAWvWrLF1GCYZNGgQunfvbuswiEgPJkJEVCwlJSXh/fffR2hoKGQyGYKCgtC1a1edm0QSERWGg60DICLKKz4+Hs2bN4enpye+/PJL1K5dGwqFAlu2bMGIESNw6dIlW4dIRC8I1ggRUbHz3nvvQRAEHDlyBD169EDVqlVRs2ZNREdH49ChQ+pyDx48wKuvvgpXV1dUqVIF69atU69TKpUYOnQoQkJC4OLigrCwMHz77bdar5PTZPXVV18hICAAZcqUwYgRI6BQKNRlgoOD8fnnn2PIkCFwc3NDhQoV8OOPP2rt5+bNm+jVqxc8PT3h7e2Nbt26IT4+3joHh4gsiokQERUrjx49wubNmzFixAiUKlVKZ72np6f676lTp6JXr144c+YMOnfujH79+uHRo0cAAJVKhfLly2PVqlW4cOECJk2ahPHjx2PlypVa+9u5cydiY2Oxc+dO/Prrr1iyZAmWLFmiVWb27Nlo1KgRTp48iffeew/vvvsuLl++DABQKBSIioqCm5sb9u7di/3796N06dLo2LEjMjMzLXtwiMjybHfjeyIiXYcPHxYBiKtXrzZaDoA4YcIE9fP09HQRgLhp0yaD24wYMULs0aOH+vnAgQPFihUrillZWeplPXv2FHv37q1+XrFiRbF///7q5yqVSvT19RUXLFggiqIo/vbbb2JYWJioUqnUZeRyueji4iJu2bJF/TrdunXL550TkS2wjxARFSuiKJpctk6dOuq/S5UqBXd3d9y7d0+9bP78+fjll1+QkJCAZ8+eITMzE/Xq1dPaR82aNSGVStXPAwICcPbsWYOvIwgC/P391a9z+vRpXLt2DW5ublrbZGRkIDY21uT3QkS2wUSIiIqVKlWqQBAEkzpEOzo6aj0XBAEqlQoAsGLFCnzyySeYPXs2IiIi4Obmhi+//BKHDx82eR+mlElPT0fDhg3xxx9/6MTn4+OT73sgIttiIkRExYq3tzeioqIwf/58jBo1SqefUHJyslY/IUP279+PZs2a4b333lMvs0YNTYMGDfDnn3/C19cX7u7uFt8/EVkXO0sTUbEzf/58KJVKNGnSBH///TeuXr2Kixcv4rvvvkNERIRJ+6hSpQqOHTuGLVu24MqVK5g4cSKOHj1q8Vj79euHsmXLolu3bti7dy/i4uKwa9cujBo1ComJiRZ/PSKyLCZCRFTshIaG4sSJE2jbti0+/vhj1KpVCx06dMD27duxYMECk/bx9ttv47XXXkPv3r0RHh6Ohw8fatUOWYqrqyv27NmDChUq4LXXXkP16tUxdOhQZGRksIaIyA4Iojk9E4mIiIheIKwRIiIiohKLiRARERGVWEyEiIiIqMRiIkREREQlFhMhIiIiKrGYCBEREVGJxUSIiIiISiwmQkRERFRiMREiIiKiEouJEBEREZVYTISIiIioxPo/Q+hb4ZTPufQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5OklEQVR4nO3dd1gT9x8H8PclQABlKlNRwIF7K+IeWBy12lq1jrrt0tqW1jrq1l+xtra2arWtrda2arW1rjrq3nvvgSCi4maphJDc7w8kJGSQQEKIvF/Pk+chd9+7fHIkl8991wmiKIogIiIiKoEktg6AiIiIyFaYCBEREVGJxUSIiIiISiwmQkRERFRiMREiIiKiEouJEBEREZVYTISIiIioxHKwdQDFnUqlwu3bt+Hm5gZBEGwdDhEREZlAFEWkpaUhMDAQEonheh8mQvm4ffs2goKCbB0GERERFcDNmzdRvnx5g+uZCOXDzc0NQPaBdHd3t3E0REREZIrU1FQEBQWpf8cNYSKUj5zmMHd3dyZCREREdia/bi3sLE1EREQlFhMhIiIiKrGYCBEREVGJxUSIiIiISiwmQkRERFRiMREiIiKiEouJEBEREZVYTISIiIioxGIiRERERCUWEyEiIiIqsZgIERERUYnFRIiIiIhKLCZCRGTXnmUqbR0CEdkxJkJEZLdOJDxG9UmbMXX9eVuHQkR2iokQEdmtLzdfBgAs3h9v20CIyG4xESIiIqISi4kQEdktEaKtQyAiO8dEiIiIiEosJkJERERUYjERIiK7JbJljIgKqdgkQnv27EHXrl0RGBgIQRCwZs0a9TqFQoExY8agdu3aKFWqFAIDAzFgwADcvn3b6D6nTJkCQRC0HtWqVbPyOyGiosI8iIgKq9gkQk+ePEHdunUxf/58nXVPnz7FiRMnMHHiRJw4cQKrV6/G5cuX8corr+S735o1a+LOnTvqx759+6wRPhEREdkhB1sHkKNTp07o1KmT3nUeHh7YunWr1rJ58+ahSZMmSEhIQIUKFQzu18HBAf7+/haNlYiKCVYJEVEhFZsaIXOlpKRAEAR4enoaLXf16lUEBgYiNDQU/fr1Q0JCgtHycrkcqampWg8iIiJ6MdllIpSRkYExY8agT58+cHd3N1guPDwcS5YswebNm7FgwQLExcWhZcuWSEtLM7hNTEwMPDw81I+goCBrvAUiIiIqBuwuEVIoFOjVqxdEUcSCBQuMlu3UqRN69uyJOnXqICoqChs3bkRycjJWrlxpcJtx48YhJSVF/bh586al3wIRWUiWSmXrEIjIzhWbPkKmyEmCbty4gR07dhitDdLH09MTVatWxbVr1wyWkclkkMlkhQ2ViIrAiYRkW4dARHbObmqEcpKgq1evYtu2bShTpozZ+0hPT0dsbCwCAgKsECERERHZm2KTCKWnp+PUqVM4deoUACAuLg6nTp1CQkICFAoFXn/9dRw7dgx//PEHlEolkpKSkJSUhMzMTPU+2rdvj3nz5qmff/LJJ9i9ezfi4+Nx4MABvPrqq5BKpejTp09Rvz0iIiIqhopN09ixY8fQtm1b9fPo6GgAwMCBAzFlyhSsW7cOAFCvXj2t7Xbu3Ik2bdoAAGJjY/HgwQP1usTERPTp0wcPHz6Ej48PWrRogUOHDsHHx8e6b4aIiIjsQrFJhNq0aQPRyHz5xtbliI+P13q+YsWKwoZFRHbiTGIy6pT3tHUYRGRnik3TGBFRYSzeH2/rEIjIDjERIqIXwunEZFuHQER2qNg0jRERmcsHj3HUeQTkogPC7i+1dThEZIdYI0REdmu10xQAgEzIsm0gRGS3mAgRkd1yE57aOgQisnNMhIjIbgm8/TwRFRITISKyWx6sESKiQmIiRERERCUWEyEiIiIqsZgIERERUYnFRIiIiIhKLCZCREREVGIxESIiIqISi4kQEb0Qmkou2DoEIrJDTISI6IWwwmmGrUMgIjvERIiIiIhKLCZCREREVGIxESIiIqISi4kQERERlVhMhIiIiKjEYiJEREREJRYTISIiIiqxmAgRERFRicVEiIiIiEosJkJERERUYjERIiIiohKLiRAR2SVRFG0dAhG9AJgIEZFd0pcH3Up+VvSBEJFdYyJERHZJX33QlaS0Io+DiOwbEyEisktyRZbOst1X7tsgEiKyZ0yEiMgu/Xbwhs4y9hsiInMxESIiuzRz80WdZUyDiMhcTISI6IWhYo0QEZmJiRAR2SVBzzIV8yAiMhMTISJ6YbCPEBGZi4kQEdmlCMl5nWUqlQ0CISK7VmwSoT179qBr164IDAyEIAhYs2aN1npRFDFp0iQEBATAxcUFkZGRuHr1ar77nT9/PoKDg+Hs7Izw8HAcOXLESu+AiIrSUOkmnWUiu0sTkZmKTSL05MkT1K1bF/Pnz9e7ftasWfjuu++wcOFCHD58GKVKlUJUVBQyMjIM7vPPP/9EdHQ0Jk+ejBMnTqBu3bqIiorCvXv3rPU2iKiICHqSHvYRIiJzFZtEqFOnTpgxYwZeffVVnXWiKGLOnDmYMGECunXrhjp16mDp0qW4ffu2Ts2Rpq+//hrDhw/H4MGDUaNGDSxcuBCurq745ZdfDG4jl8uRmpqq9SCi4kdfZ2m3TF7kEJF5ik0iZExcXBySkpIQGRmpXubh4YHw8HAcPHhQ7zaZmZk4fvy41jYSiQSRkZEGtwGAmJgYeHh4qB9BQUGWeyNEZDH6aoQgspMQEZnHLhKhpKQkAICfn5/Wcj8/P/W6vB48eAClUmnWNgAwbtw4pKSkqB83b94sZPREZA36m8b01RMRERnmYOsAihuZTAaZTGbrMIioIFgjRERmsosaIX9/fwDA3bt3tZbfvXtXvS6vsmXLQiqVmrUNEdmPisJdnWUtHv9jg0iIyJ7ZRSIUEhICf39/bN++Xb0sNTUVhw8fRkREhN5tnJyc0LBhQ61tVCoVtm/fbnAbIrIfFSW6HaP9MhNsEAkR2bNi0zSWnp6Oa9euqZ/HxcXh1KlT8Pb2RoUKFfDhhx9ixowZqFKlCkJCQjBx4kQEBgaie/fu6m3at2+PV199FSNHjgQAREdHY+DAgWjUqBGaNGmCOXPm4MmTJxg8eHBRvz0iKgKeqmRbh0BEdqbYJELHjh1D27Zt1c+jo6MBAAMHDsSSJUvw6aef4smTJ3jrrbeQnJyMFi1aYPPmzXB2dlZvExsbiwcPHqif9+7dG/fv38ekSZOQlJSEevXqYfPmzTodqInoxVDu2WVbh0BEdkYQeXMeo1JTU+Hh4YGUlBS4u7vbOhwiyjHFw8DylKKNg4iKJVN/v+2ijxARERGRNTARIiIiohKLiRARERGVWEyEiIiIqMRiIkREREQlFhMhIiIiKrGYCBEREVGJxUSIiIiISiwmQkRERFRiMREiIiKiEouJEBEREZVYTISI6IXxQOT9AInIPEyEiOiF8UyU2ToEIrIzTISI6IURJLlv6xCIyM4wESIiIqISi4kQERERlVhMhIiIiKjEYiJEREREJRYTISIiIiqxHAqyUUJCAm7cuIGnT5/Cx8cHNWvWhEzGYatERERkX0xOhOLj47FgwQKsWLECiYmJEEVRvc7JyQktW7bEW2+9hR49ekAiYUUTERERFX8mZSyjRo1C3bp1ERcXhxkzZuDChQtISUlBZmYmkpKSsHHjRrRo0QKTJk1CnTp1cPToUWvHTUSk45ZYxtYhEJGdMalGqFSpUrh+/TrKlNE9yfj6+qJdu3Zo164dJk+ejM2bN+PmzZto3LixxYMlIgIAlUrUuorboGyKl6WH8FtWB4y1WVREZI9MSoRiYmJM2tmdO3fQsWPHQgVERJSfLefuoJPG8ww42SwWIrJvJnfmiY6ONrr+zp07aNOmTWHjISLK158rFms9DxLuAQAaSq7YIhwismMmJ0KLFy/G//73P73rcpIgHx8fiwVGRGRIoPBQ63m45BIAoIP0hC3CISI7ZvKosXXr1qFjx47w9vbGu+++q16elJSEtm3bwtvbG5s3b7ZKkEREmiRQ2ToEInpBmJwItWzZEitXrkSPHj3g5eWFN954Q50EeXh44L///kPp0qWtGSsREQAmQkRkOWZNqNilSxf88ssvGDx4MDIyMjBr1iyULl0a//33H9zc3KwVIxGRlkgJm8CIyDLMnlm6b9++SE5OxtChQ9GgQQNs27YNHh4e1oiNiEgvD+GJrUMgoheEyYlQ/fr1IQiC+rmjoyOSk5PRtm1brXInTvBKjYiIiOyDyYlQ9+7dtZ5369bN0rEQEZkkTLhp6xCI6AVhciI0efJka8ZBRGQyZ0Fh6xCI6AXBu6MSERFRiWVSItSxY0ccOnQo33JpaWn44osvMH/+/EIHRkRERGRtJiVCPXv2RI8ePVCjRg2MGTMGq1atwv79+3H8+HFs27YN3333HXr16oWAgACcOHECXbt2tXigwcHBEARB5zFixAi95ZcsWaJT1tnZ2eJxERERkf0yqY/Q0KFD0b9/f6xatQp//vknfvzxR6SkpAAABEFAjRo1EBUVhaNHj6J69epWCfTo0aNQKpXq5+fOnUOHDh3Qs2dPg9u4u7vj8uXL6ueao96I6MVw2rkx6mYctXUYRGSnTO4sLZPJ0L9/f/Tv3x8AkJKSgmfPnqFMmTJwdHS0WoA58t7HbObMmahUqRJat25tcBtBEODv72/t0IjIhpReocAdJkJEVDAF7izt4eEBf3//IkmC8srMzMTvv/+OIUOGGK3lSU9PR8WKFREUFIRu3brh/Pnz+e5bLpcjNTVV60FExZcoSG0dAhHZMbscNbZmzRokJydj0KBBBsuEhYXhl19+wdq1a/H7779DpVKhWbNmSExMNLrvmJgYeHh4qB9BQUEWjp6ILEkUzJ4gn4hITRBFUbR1EOaKioqCk5MT1q9fb/I2CoUC1atXR58+fTB9+nSD5eRyOeRyufp5amoqgoKCkJKSAnd390LFTUQWMiX3tj5Hyg9Gk8TFGutSbBAQERU3qamp8PDwyPf32+4upW7cuIFt27Zh9erVZm3n6OiI+vXr49q1a0bLyWQyyGSywoRIREVJsMuKbSIqJuzuDLJ48WL4+vqiS5cuZm2nVCpx9uxZBAQEWCkyIrIFUcI+QkRUcAVKhJKTk7Fo0SKMGzcOjx49ApB9s9Vbt25ZNLi8VCoVFi9ejIEDB8LBQbsya8CAARg3bpz6+bRp0/Dff//h+vXrOHHiBPr3748bN25g2LBhVo2RiIqWgzsvboio4MxuGjtz5gwiIyPh4eGB+Ph4DB8+HN7e3li9ejUSEhKwdOlSa8QJANi2bRsSEhIwZMgQnXUJCQmQSHLzusePH2P48OFISkqCl5cXGjZsiAMHDqBGjRpWi4+Iil7dqiHAWVtHQUT2yuzO0pGRkWjQoAFmzZoFNzc3nD59GqGhoThw4AD69u2L+Ph4K4VqG6Z2tiKiIqTRWRq9lgIrB2isY2dpIjL999vsprGjR4/i7bff1llerlw5JCUlmbs7IqLCKRtm6wiIyI6ZnQjJZDK9kwxeuXJFZ/ZnIiKr86xg6wiIyI6ZnQi98sormDZtGhQKBYDs21gkJCRgzJgx6NGjh8UDJCIyivcQJKJCMDsRmj17NtLT0+Hr64tnz56hdevWqFy5Mtzc3PC///3PGjESERnm6GLrCIjIjpk9aszDwwNbt27F/v37cfr0aaSnp6NBgwaIjIy0RnxEREREVmNWIqRQKODi4oJTp06hefPmaN68ubXiIiIiIrI6s5rGHB0dUaFCBSiVSmvFQ0RERFRkzO4j9Nlnn2H8+PHqGaWJiIiI7JXZfYTmzZuHa9euITAwEBUrVkSpUqW01p84ccJiwRERERFZk9mJUPfu3a0QBhEREVHRMzsRmjx5sjXiICIiIipyBbr7PBEREdGLwOwaIYlEAsHITK4cUUZERET2wuxE6J9//tF6rlAocPLkSfz666+YOnWqxQIjIiIisjazE6Fu3brpLHv99ddRs2ZN/Pnnnxg6dKhFAiMiIiKyNov1EWratCm2b99uqd0RERERWZ1FEqFnz57hu+++Q7ly5SyxOyKiAhNF0dYhEJEdMbtpzMvLS6uztCiKSEtLg6urK37//XeLBkdElNeVu2moamS9SgSkhsdzEBFpMTsR+uabb7QSIYlEAh8fH4SHh8PLy8uiwRER5RV7L91oIqRUiZBKmAkRkWnMToTatWuHoKAgvUPoExISUKFCBYsERkRUEMduPEKzSmVtHQYR2Qmz+wiFhITg/v37OssfPnyIkJAQiwRFRFRQtx4/s3UIRGRHzE6EDHVETE9Ph7Ozc6EDIiIyxsh8rs/Xs1mMiExnctNYdHQ0gOyTzKRJk+Dq6qpep1QqcfjwYdSrV8/iARIR5WePVw+0evy3rcMgIjtkciJ08uRJANk1QmfPnoWTk5N6nZOTE+rWrYtPPvnE8hESEeUjq9EwYCsTISIyn8mJ0M6dOwEAgwcPxrfffgt3d3erBUVEZJhu05eHa3az/BNRVtTBEJGdM3vU2OLFi60RBxFRgQmCxSbJJ6ISxuxECACOHTuGlStXIiEhAZmZmVrrVq9ebZHAiIhMldM/mt2kichcZl9GrVixAs2aNcPFixfxzz//QKFQ4Pz589ixYwc8PDysESMRkdqDdLnOMkGSfSoTIPIWG0RkFrMToc8//xzffPMN1q9fDycnJ3z77be4dOkSevXqxckUicjqvvrvss4yibpGSMTFO2lFHBER2TOzE6HY2Fh06dIFQPZosSdPnkAQBHz00Uf48ccfLR4gEZGmJ/Is3YUafYR+2R9XhNEQkb0zOxHy8vJCWlr2FVe5cuVw7tw5AEBycjKePn1q2eiIiPJQqnSbvnLuLcY+QkRkLrM7S7dq1Qpbt25F7dq10bNnT3zwwQfYsWMHtm7divbt21sjRiIiNZWePkCCOgVi/yAiMo/ZidC8efOQkZEBAPjss8/g6OiIAwcOoEePHpgwYYLFAyQi0iTRk+wIz2uEZIKeZjMiIiPMSoSysrKwYcMGREVFAQAkEgnGjh1rlcCIiPSRQKX++3LFvgiDdhu/FMoij4mI7JdZfYQcHBzwzjvvqGuEiIiKmmY/oCcugQAAaVa6ellZpBRxRERkz8zuLN2kSROcOnXKCqEYN2XKFAiCoPWoVq2a0W1WrVqFatWqwdnZGbVr18bGjRuLKFoishbNGqEbQd2zl0lyT2UC+wkRkRnM7iP03nvvITo6Gjdv3kTDhg1RqlQprfV16tSxWHB51axZE9u2bVM/d3AwHP6BAwfQp08fxMTE4OWXX8ayZcvQvXt3nDhxArVq1bJajERkXZqJjkri9HwZb7FBRAVjdiL0xhtvAABGjRqlXiYIAkRRhCAIUCqt1z7v4OAAf39/k8p+++236NixI0aPHg0AmD59OrZu3Yp58+Zh4cKFVouRiKyrlqAxT1DOsHkht8GMQ+iJyBxmJ0JxcbabrOzq1asIDAyEs7MzIiIiEBMTY3A264MHDyI6OlprWVRUFNasWWP0NeRyOeTy3Cn8U1NTCx03EVlOmCRR49nzW2tIWCNERAVjdiJUsWJFa8SRr/DwcCxZsgRhYWG4c+cOpk6dipYtW+LcuXNwc3PTKZ+UlAQ/Pz+tZX5+fkhKSjL6OjExMZg6dapFYyciK8lJgLRqhNhHiIhMV6DLqN9++w3NmzdHYGAgbty4AQCYM2cO1q5da9HgNHXq1Ak9e/ZEnTp1EBUVhY0bNyI5ORkrV6606OuMGzcOKSkp6sfNmzctun8iKhztRCf7FBbg4apeIhU4fJ6ITGd2IrRgwQJER0ejc+fOSE5OVvcJ8vT0xJw5cywdn0Genp6oWrUqrl27pne9v78/7t69q7Xs7t27+fYxkslkcHd313oQUfGhlQg9rwly8gpULwqXXCrqkIjIjpmdCM2dOxc//fQTPvvsM0ilUvXyRo0a4ezZsxYNzpj09HTExsYiICBA7/qIiAhs375da9nWrVsRERFRFOERkZX0lu7SePb8FObool4i1RheT0SUH7MTobi4ONSvX19nuUwmw5MnTywSlD6ffPIJdu/ejfj4eBw4cACvvvoqpFIp+vTpAwAYMGAAxo0bpy7/wQcfYPPmzZg9ezYuXbqEKVOm4NixYxg5cqTVYiQi66sliVf/nXNrDU3sI0RE5jA7EQoJCdE7oeLmzZtRvXp1S8SkV2JiIvr06YOwsDD06tULZcqUwaFDh+Dj4wMASEhIwJ07d9TlmzVrhmXLluHHH39E3bp18ddff2HNmjWcQ4joBafvXmRERIaYPWosOjoaI0aMQEZGBkRRxJEjR7B8+XLExMRg0aJF1ogRALBixQqj63ft2qWzrGfPnujZs6eVIiKi4kjCpjEiMoPZidCwYcPg4uKCCRMm4OnTp+jbty8CAwPx7bffqidbJCIqCq5OuqcwNo0RkTnMToQAoF+/fujXrx+ePn2K9PR0+Pr6WjouIqJ8hYd46yxjZ2kiMkeBEiEAuHfvHi5fvgwge3r7nL46RERFRdBzPw3tUWVERMaZ3Vk6LS0Nb775JgIDA9G6dWu0bt0agYGB6N+/P1JSUqwRIxGRXoKeO4tVlyTYIBIisldmJ0LDhg3D4cOH8e+//yI5ORnJycnYsGEDjh07hrffftsaMRIR6eXuUuBKbSIiAAVoGtuwYQO2bNmCFi1aqJdFRUXhp59+QseOHS0aHBGRMYK+tjEiIjOYXSNUpkwZeHh46Cz38PCAl5eXRYIiIiIiKgpmJ0ITJkxAdHS01l3ck5KSMHr0aEycONGiwRER2Ytr99IQs/EiHj3JtHUoRGQGs5vGFixYgGvXrqFChQqoUKECgOxZnWUyGe7fv48ffvhBXfbEiROWi5SIqBiLmrMXSpWIGw+fYuGbDW0dDhGZyOxEqHv37lYIg4jIvilV2RM5nr3F0bNE9sTsRGjy5MnWiIOI6IXgIGUHbiJ7Uqixp+np6VCptGdxdXd3L1RARET2zEHCRIjInpjdWTouLg5dunRBqVKl1CPFvLy84OnpyVFjRFTiSTikn8iumF0j1L9/f4iiiF9++QV+fn6cx4OIiszi/XEYbOsg8sFTIpF9MTsROn36NI4fP46wsDBrxENEZNDU9Rcw2NnWURin77YfRFR8md001rhxY9y8edMasRAREREVKbNrhBYtWoR33nkHt27dQq1ateDo6Ki1vk6dOhYLjoiIiMiazE6E7t+/j9jYWAwenNtSLwgCRFGEIAhQKpUWDZCIyB5UFJLwqnQf9ok9bR0KEZnB7ERoyJAhqF+/PpYvX87O0kREz61zmgAP4SkaPrsLoLOtwyEiE5mdCN24cQPr1q1D5cqVrREPEZERoq0DMMhDeAoAqJV13saREJE5zO4s3a5dO5w+fdoasRARGSUpxolQjuIfIRFpMrtGqGvXrvjoo49w9uxZ1K5dW6ez9CuvvGKx4IiINDUWLptUTqUSIeEMz0RkArMToXfeeQcAMG3aNJ117CxNRNb0mePv6r+/y+qOUQbK3Up+hiBv16IJSgcTMCJ7YnbTmEqlMvhgEkRE1iRoNDzdFb0Nlvt848WiCMcANo4R2ROzEyFNGRkZloqDiChfYULuZK5KI6ev28nPiiIcvZQqJkJE9sTsREipVGL69OkoV64cSpcujevXrwMAJk6ciJ9//tniARIR5XAScmudnaAwWM6WqYjIpjEiu2J2IvS///0PS5YswaxZs+Dk5KReXqtWLSxatMiiwRERGdJVetDWIRDRC8DsRGjp0qX48ccf0a9fP0ilUvXyunXr4tKlSxYNjojIkJrCDYPrRBtWCbFhjMi+mJ0I3bp1S+9kiiqVCgqF4apqIiJLchXktg6BiF4AZidCNWrUwN69e3WW//XXX6hfv75FgiIiKgyR9TJEZCKz5xGaNGkSBg4ciFu3bkGlUmH16tW4fPkyli5dig0bNlgjRiIinL+dgpoazzcom+JlA2WdVLYb0crO0kT2xewaoW7dumH9+vXYtm0bSpUqhUmTJuHixYtYv349OnToYI0YiYjQ5bt9Ws/jRT+DZdvLd1g7HCJ6QZhdIwQALVu2xNatWy0dCxGRyV5tUMHgumBlfNEFkoe/8Nhmr01E5jO7Rig0NBQPHz7UWZ6cnIzQ0FCLBEVElB9nNy+D62orzhZhJERkz8xOhOLj4/XeSkMul+PWrVsWCYqIKD9Zpfy1nr+ZOVb9dwXVzbzFrUK05Th9IrIIk5vG1q1bp/57y5Yt8PDwUD9XKpXYvn07goODLRqcppiYGKxevRqXLl2Ci4sLmjVrhi+++AJhYWEGt1myZAkGDx6stUwmk/HWIER2KEJyXut53iTktlimKMPBtgt3Mfqv05jzRn20rupTpK9NRJZjciLUvXt3ANl3mB84cKDWOkdHRwQHB2P27NkWDU7T7t27MWLECDRu3BhZWVkYP348XnrpJVy4cAGlSpUyuJ27uzsuX76sfi4IHNFBZI+6SA5pL1CptJ4KRTxkftjSYwCAgb8cQfzMLkX62kRkOSYnQqrnJ52QkBAcPXoUZcuWtVpQ+mzevFnr+ZIlS+Dr64vjx4+jVatWBrcTBAH+/v4G1xORfXDJM4GirecKKoVnyIQjFAUbc0JExYTZfYTi4uKKPAnSJyUlBQDg7e1ttFx6ejoqVqyIoKAgdOvWDefPnzdaXi6XIzU1VetBRLbXQ6o9fD5v05jMyE1YLS4jBeedh+KI7D29sRCR/TA7ESoOVCoVPvzwQzRv3hy1atUyWC4sLAy//PIL1q5di99//x0qlQrNmjVDYmKiwW1iYmLg4eGhfgQFBVnjLRBRIeVt5HZCVtG9eGJ2s5iXkI7e0p02vbcZERWOXSZCI0aMwLlz57BixQqj5SIiIjBgwADUq1cPrVu3xurVq+Hj44MffvjB4Dbjxo1DSkqK+nHzZtGMPiEi8+TtE9S+ZqBN4vjC8Sfe0IPIjtld4/bIkSOxYcMG7NmzB+XLlzdrW0dHR9SvXx/Xrl0zWEYmk0EmkxU2TCKytjzVMOU8nIrutfMMumDTGJH9spsaIVEUMXLkSPzzzz/YsWMHQkJCzN6HUqnE2bNnERAQYIUIiagopVdoq/XcQ1aEI0LzJD5Mg4jsV6FqhDIyMpCZmam1zN3dvVABGTJixAgsW7YMa9euhZubG5KSkgAAHh4ecHFxAQAMGDAA5cqVQ0xMDABg2rRpaNq0KSpXrozk5GR8+eWXuHHjBoYNG2aVGImo6GS5aM8b5GDDyzoVa4SI7JbZidDTp0/x6aefYuXKlXpvtaFv1mlLWLBgAQCgTZs2WssXL16MQYMGAQASEhIgkeSeDR8/fozhw4cjKSkJXl5eaNiwIQ4cOIAaNWpYJUYishKl7ogwndxDZZ1zjymYBxHZL7MTodGjR2Pnzp1YsGAB3nzzTcyfPx+3bt3CDz/8gJkzZ1ojRgCmtcHv2rVL6/k333yDb775xkoREVGR2TpZZ1HeU4JQhInQgdgHaFZkr0ZE1mR2ZfL69evx/fffo0ePHnBwcEDLli0xYcIEfP755/jjjz+sESMRlXSH5ussyjuh4mP3akUVDRbujtWORZUbyylVpSKLg4gKz+xE6NGjR+q7zLu7u+PRo0cAgBYtWmDPnj2WjY6IyAB3Z0et53InT9sEAgBpuTecThedbRcHEZnN7EQoNDQUcXFxAIBq1aph5cqVALJrijw9PS0aHFnXvbQM9P3pEDaevWPrUMiGMrNUSHj41NZhmC3I21XreVF208k7Pm3O1isG1xFR8WZ2IjR48GCcPn0aADB27FjMnz8fzs7O+OijjzB69GiLB0jmiXvwBC2+2IHfDt3It+z0DRdxIPYh3vvjRBFERsVVz4UH0OrLndh/7YGtQymU8BDjt9uxpjWnk9R/SziYnsiumN1Z+qOPPlL/HRkZiUuXLuH48eOoXLky6tSpY9HgyHyT1p5D4uNnmLjmHN5sWtFo2cdPMo2up5LhdGL2fftWHbuJ5pVtfx/BgqpYppTW87OJKahd3qNIXlulUQ8kEVRF8ppFYd/VB/jz2E1MfaUmvEsZn7BSFEUIAuvDyP4UembpihUromJF4z+4VHTkWS/OSdhe3U5+htj76WhZxcfWobwQlCoR0gJst/7MbaslQnlv7yFqVK7nXWcv5FlK7Lh4DxGVysDTNTvp6f/zYQCAo0TA173rGdx2+oYLWH/6NjZ/2CrfhImouClQIrR9+3Zs374d9+7dg0ql/cP7yy+/WCQwsr68o26KwqWkVDxIy0SLKqbVPKTLszDwlyPoVMsfw1qGWjk6y2g2cwcA4NchTdC6auGToZMJjxFcphS8rPwDU1yv5pcdvoE38yzLFKWw5c9tvTJKIC33uVaN0PPvlTxLiQu3U1G3vCckkuJ5bDV9/d8V/LDnOqoHuGPTBy211iUmP9O7zaHrDzF3x1Xsv5Y9p9yS/XGIfinM6rFawuMnmRi29Bheb1gefZpUsHU4FrXz8j2kZWThlbrWvf9eyjMFFuyKRbd6gageYJ3JlIuC2X2Epk6dipdeegnbt2/HgwcP8PjxY60H2VgxvxjtOGcv+v98GNfvpxst9yxTiUV7r2Py2vM4fuMxZvx7sYgitJwjcboTjppr79X7ePX7A2g1a6cFIjKuOP5U33z0FBPXntdZPiFrSL7bnrqZbIWIsvm4aY8MC5Pk3pxZguyLw/eXncSr3x/AvJ3XsOV8EsI/34YjcY+sFlNhrTt9GwBw8U6qzrq887ily7MAAG/8eEidBAHQuQdbcTZ3xzUcv/EY41aftXUoFjd48VGMWn4Sd1MzLLZPURQxcc05/HYwXr1s+oYLWLg7Fp2+3Wux17EFs2uEFi5ciCVLluDNN/Neo1FxYKlantQMBSSCgNIy69yXN+7BE4T6lDa4/uutl/HT3jirvLYhSw/G46/jiVgyuInB6n2lSoTUxKt7fXOAPnqSif3XHqBDDT84O+bf4LP94j0AQNrzH56SZvvFu3qXiyakbdZMOlIctWv6FGLu/1ICFe6kPMN/F7Jj/3lfHFKeZc+M3f/nw7gyo5NJr3HtXjre/Pkw3mtTCW9GBFsmcBM9kWehlMZ3X2OaJPxx+AY+++ccpnWrqbuhng+9PEuJNxcdQZMQb3wSFfa8mO37Ez3R+E69+fNh1AvyxMf51GbdTn6GH3bHYlDzEISULWW0bHGQ/FQBP3fLTOdw8PpD9SCcnM/juVspFtm3rZldI5SZmYlmzTinanFVmKn+r91Lw+hVp3HtXhrqTPkPtSZvwZG4R1a/s/bNR0+RpdRuYjX2I5alVOHC7VSoNM7Ov+yLw9/HE42+Tro8S2ubvCatPY8ziSmYu+Oq3vX30jLQYPpWTF57zujr5ND3Sm/8eBDvLz+Jr7Zc1ruNUiVi3enbuGWgKaKwrt1L0/oB0GTJHyZRFHEvzTJXo3WFaxbZjyUpUrSnnLgt5jb1CgCu33+ifq6ZN2ea0YdvwpqzuJOSobdGzBhjn3FNWUoVziamQPm8vObX/Kv/tD+fmueAz/7J/vxPMjGuf8/cwZH4R5i3M/v/uOxwAhrN2GbRH9FTN5Mxb8dVKJQF6yO59+oDzN2R/+ds2K/H8OvBG3h9wQHEP3iCN38+jIOxha/5tRZTvtJpGQrE5lNDn13uxb0YMzsRGjZsGJYtW2aNWMgCzElZ8uY3ry88iFXHE9H5u33qZb1+OIhVx4wnGABw5W4aUp7q3g/KEMnzb+ifRxPQctZOVP5sE6atv4DbzxMAY+9j7Oqz6PzdXnz3PGG5+egppm24gI9XnTa4za3kZ6g1eQtCx2/E2UTjJ+AMhf5bNSzeH4+UZwr8ejD/qQkA/UnplbvZJ5x/DczdtOzwDYxaflLdFGZObqJSiUiXZ6HjnD2YtfmSzvqj8Y8Q+fUedPh6t97t76fLTX6trRfu4uW5e3HtXm5HmbOJKXjwfB/TN1xEk/9tx6pjNw3twiR/HktEsJCUf0E9cpqorKHv4wVaz/N2kP5+V+6P6mMzvhc5biU/Q6xGMmWqbRfuosbkzfj3TP5zg01adx5d5+1DzMaLuH4/HUkazSiXk9K0yiY+LnhinncAx/h/zuLhk0y8PHcfBvxyxOTEzZju8/fjq/+u4ItNup97Q/R9t/K76LvwvNnw4ZNMjFh2AnuvPkCfnw6ZFWvO61y9m2ZWYmzOvg35YXcsak/eggMaU2U0mrEN7Wfvzjcx1bdbW9fqWYrZiVBGRga+/vprtG7dGu+//z6io6O1HlQ4x288Rsymi3iWWbD7JhWm9ib5+Qk775dz7ensWXNTnirw3/kk9XqVSsTOy/ew/9oDvPTNHjT631bTX+z592fM37nt87/sj1N3NDbmr+c1P/OeX8Fdf5D/D8a6U7fVf3edt89o0qY0cGK29lf+0ZNM/HXillYMgomvOnX9eTSYsRVzd1zFpaQ0fL8rVqfMprPZCcXtFP01NXuu3FcnMvkZvvQYzt1KxfvLTwEAziQmo+u8fWg0YxuA7P8lAHy+Mbdv14HYBwge+y++266/xk2fi3dS9R6BtmG++W7rB+v1WfQRtPvRtJFqJ+HGEofdV+4bXPfttqtoN3sXms/cgftpuv+LDIUS4/85i12X70GhVOGnPddx4XZ2LJlZKgxbegwZChVGLMt/brBlhxMAAIv2xaHdbP3JcY57emLR5/FTBdaeuoUMhRKiKGLL+SQkPjY8WeeeK/dxMp++XKIoIjVD//c1bw3Qon35N6dPWHMWMRv19zlcsFv3e2NIYfrfxGy6hA7f7EHtKVsgzyrcPfIys1RatbyaPwEP0zPx1ZbLeGvpMZy7lYKYTZeQJs9C30WHEf/8vJmTqPZYcACnbyZj8zlDFx7FvANqIZjdAeTMmTOoV68eAODcOe0mghclO7SlHgsOAABkUkmBRl9oflTP3UrBj3uuY3RUGAI8nDHj34toVqkMXqrpb9Y+76Rk4NTNZIz9+wwuJaWhZqA7XJ2kqF/BCz/uua4up1CKmLLuPCIqlUGUntfI2/xl9H2Y8J3Lep4sDPv1KKoIibgp+uB28jMEerrku23MpouY2UP/vFcrjyWiUbA3ejUK0lpu7sfbnP5aT+RZaDDdjEQyj8X74wEAP+y+rnf9mpO3cP52/k0RZxNT0LZa/klGjtTnfV80O8y2/WqX+m/NI9D3p+yh2F9vvYJR7avo7EulEiEIz88jyTeBTZ+iqaSB3podB8f8x4z1d9gKYACA7BFC6fIslJY5YMv5JLxU09/kYd6rTyRCoVShd+MKSHmmwMxNFxGTp8z/HHNHywoQccPITN2/HbyhdzShUiXim21X9GyR66c917HscAKWHU7ApJdr4H/Pf9DjZ3bB11u1t72XlgHfPJ26M7NU6LfoEOpX8DL6OgcK2Nzz26Eb+O3QDfQLr4AWlcviXRMma1136hYOXX+IEW0rA8hO9l5feABNQ8pgwss18NZvx7H1wl1sHNUSNQJzRyZdu5eGyK/3YHDzYK39KZQqOEgEvb9HOy7dxe+HshPAHg3K66yftfkyhjQPwdi/z6BDDX90qRNgMO4H6bnzsImiiJM3k1HZt7TOrV/yin/wRH3elGep0GPBAWx4P3eUXmqGAsN/PYaudQPRP5+54ACg+RfZSfO5qVE6fTr7LjqkPpfm9FnLcTT+ESqWyZ2dXZ6lQrf5+wEAWz5shTB/N9x4+ATlPF3gIJXo1OyJoqi3Y72m3w/dQJC3q0VGz1qT2YnQzp3WH71CwNV76fhpz3UcjnuEBf0bwFFqWuWdZgLRde4eiJDg+oN09AuviCUH4rHkQDziZ3YBYPpV3vX7T9D9+RcEAM4/vwI9Gq97xZ3zGrN71sWvB+OxoH9DlHuemGzV+CLeT5WrO5DqfR96koj1p29jgZ6ajhbiCSyWfQkAeHneQqwY3TPfTt4Jj7R/qPL22fn0rzMo7+WClKcKXLyTChGm185ovAkcuv4QDhIBjYJ1Zz2+ejcNh64/RJ8mFXDawFWxKclXfrWA+64+wId/ntJalvDwKf46fhODmofolFcoVVh+JAHBZUqhVZ4T2LlbKTh0XfdHUvP/FWdCDV1emVkqdPx2D0LLlsKigY2Bte8BcXuwwmmj3vJpoV3y3ec70vUIHvsvGlb0wvEb2Z9V71JOePQkE2NXn8Wl6R3x5ZbLqOpXOjvJeaqAzFGi1Yk9Q6FE9Mrs2p6I0LJYuCcWy4/cREyh+p/q/38lP81/glPNvmN5mzL+PqHdhB31zR6MjqqG8l4u6v/jtot3cTT+sd7vbl6G+pKZ4o/DCXrPWd9s1U30cpqaW1Qui2cKJbZeuItzt1Jx7lYqJrxcQ33emLr+PAI9XfBem0qo4ueGb7Zl1yzmXATkqDf1PzQM9sbSIU2Q8lSB73ddQ3ioN9pV88OQJcfyjX3x/nisOXUba07dRpc6uZ8zY/1oNp9Lwrt/nEB5LxfsG9PO6P7P5vm/nbuVik1n7+DnfXEY3DwE60/fxuG4Rzgc90idCImiiLk7rsHPXYYONbKT+AyFEg+fZKprDpcfTsB/F5IwpmPuzYeNnRoEQVCPFMzrj8M3sPT5/6VVVR+U93JR1yDmeJKn1SJDocTXW6+gfTVfhIeWwdnEFExYk11ZkvObU1xZZ0gQWUTO1d7Gs3fQrV45g+UOxj5ExTKuiL2frh4y/J50LYY5/IsemVMRe0+KOxrNIcN+PYbEx09x7V7uF/vjlfr71zggC/Mdv8NRVRgWKXM/zMHCHTwS3ZAK/SO/cvrrTF57HosGNgIAPNPoe/Pp32fw6d9n9G5rqM/A+8tP6l3eQ5o7dHOw/A/UmuyOKzM6wUEiQCIRIM9S4tRN7RP/oyeZiPpmD7rVD4Sfm7O6I6emnBqMHL0a6V5B5lCqRGw8ewcNK+ZeaT9Iz8QbP2b3H7gyoxOcHLR/GDp8s0e97ZT1Fwzu25g5265gzjbjTU2XknSv2rrN34fHTxU6J2UIwK8H4tXTFZT3csGmD1rCzVFAilzEy3P36ewLMHzCFUUgKSUD3+bTHLY/9gGu33+S28k4zvgNnLs3zv8O71IhO6icJAjI/r/n+O3gDfz8vCmlY80A1J32H9xkDjg7NQoqlYjhS4/BwyX36r7VlzvRNDT/23jkN6Hitov3kPj4Kcp7uRotp+nq3TRMXX9Bqx9PfvWNj58qMP6f7KbnnNoCczoTn0xI1ll285Hp96TT15xl7HNw/naqOl59+zj8fADF9ot3cWZKlMED8CRTiT1X7iNDoUTdaf8BAH7Ycx1HP4s0Ke6HGs3D7WbvwozutdCsUlm0N9J8OGlddsfx/PpSZY+W012eU3N27Ib2eSpDoYRcocKlpFR1jd+Yv8/iwrQoNJi+FRmK3P9nzu/F6wsPGo0hx45Ld7HxrP5msKUa/SD3GGjKVeX50v+8Lw4/7rmOH/dcx46PW+P4jeI7VUReZidCT548wcyZMw1OqHj9uv6qeTKP5mfsqZH+Qt3m7VPfIkHTp45/AgDGO/yB4YpP8OfR3Gx+m54hyXmvJp9Hgc6SI4iSHkOU9Jg6EaooJGGX7GMAQHCG8Y7zR+MfYdzqs/gwUrcpxJA/jiTodNY0Ju8cv0D2lzd65Qk0rOCJ6rG/wA1eAFqrS116vv9Zm/WP3tJn31UD9+LKysSKw/H4bP1VOGgMEdI8pgqlSisR0kxM9f3/ANNG/xhLgi4npeHcrRT8tFf3O5nTgTdvzcCCnbE4Ep97Akt8/Az/Lv4cve5+g5GZYwCYfxud95ef0HmdEwmPUcW3NJQqEauOJWp9JnssOIC/89mnqVMYGHP0+fssgxR8879oeKAFUuSl8ehJJlafSMT2S/fUZZ0hxxvSnTgTFwqgqtH91pbEA8/rEA1p8UV2zXpOgpKaocAYAxcGADDk16O4+Uj7RzZv3zhjV/9L9sfhvTaV8cGKU0Zj15Qzq7SmlmbMZ7X6eX83U+WtpQWAOlP+01mWmpGFr7ZcNjjJY468fXga/2+b1nNDNXCa/Yyu33+Cvj8dxjutjSfemv25FEqVVm3YPycT8dGfpzGtW03M33lNp7nSmHrT/kOGQqVVywNkHyvNJKggDCVBppi6/rxOP0vNmmBjfc4ePcmEi6MULk4FmS/eOsxOhIYNG4bdu3fjzTffREBAAPsFWcmjp5rtz7nLMxRKzN1xFe2r+6FBBS+DP6LqbZ+fjO+mZn9RS+EZ3pDuxBZVYySKhttt3fAUm2Rj4YNknXXhEtMnN0x5psDyIwmIe5Cu0+fGkIlrTBuero8M2V/OYUuPYrPTWFRLuAk8v6j/S9nayJb509vJWKUCvq6OHs+eYDJ+QJZK/1fK2NfEUNOWQqXClvO5J6tzt1JQq5zpt4yImmO8ViVvXD5IRuObaxCH1riP3JqtN+5+DQCY7/gd6sgX6Y3d0HsQRVHdlKrpte8PGIzp+I3HgGWmPtHhggw8e75z9Tw/Tl+hniQWbSWnMFAxVm9frb+dpqCmJPsquVrG4nxfp53kJHaoGuRbrtbkLbg0vSO+2XoF2y7eM1juTrLuZ0+zOTW7c73hTOir/65g8/mC//AVhYVmdFTWV4NrLs1ENz/mxPbD7liMbFcFKU8V2HD2ts50AznnYlPkJDtf5BkFuuWc/vm1ikre5khTPXqSiQbTt6KUkxTnp3W0bFCFYHYitGnTJvz7779o3ry5NeKh5zTn0XF7cgM4cxio/Tp+3HMd83fGYv7OWJPaXZV5BgZ+5vA7+jrsxChxNerm+VHL4Yk0bJaNhb+gvx9BfqmvHx4hA06oJYnDUVU1qCBgwO0ZSD7UBEAjvds4Igs9pbuxX1UTN8TcjtZ1hWt4z2EdPs/qq7XckDAhuxZGBgWqSUwZui0iTLiJeNEf8gLctEGZ+RTSpw/gDGCB4xwMV3yit5zESCZ08PpDOEOODMi0lnf6dq9WVfvLc/dh84ctsfPSfQxuHgzntBuY6PAbFmV1xh2U0dpW8wffB4+1EhtNmnOD/OD0NRpIrqGz9DC6ZObtDgy4C7pX7E+fN3eqRMAVGXgGJ437bmWP9nFysP2Vnw8e44BsFBwFJSYoBuN3ZQf1unqS7B+51tIzgIFuazlJEAC4Iv8fsppCPHYg/0QIyE5w8/thye96c9Tyk1qdd/W/jvGOrfkpzrNiFydf/XcFb7WqpG6Ws4b8OtUXN+nyLDyVZ6m7TOT0L1KpRDxTKLUm77QFs1/dy8sL3t75t5OTGRTPgL2zgSub0UbSCcdUVTFIugUbVE0RLwag656XAQC/HozD13G5s7kGj/03311rJ0Ii+jpkV217CE/xp9M0TFYMwiVR+z47cxy/N5IEqVBfyG2OcYICmcjtR1FeuId9sg/Vz1dltcJBVQ10xj7g3j6ckL6tt2ZmqHQjxjquyH5fGs1ta2WTAAAVhbvYomqEKsItfKgYoX7NK3fTTJplWFNV4SZ8hGTsV9VGJ8kRLHD6FqdVoeiWOcOk7WXIBB5cxR+xTrj/8BFy3m0H6QmDP6QHYx/qjMYSoIIICQLTzuGw82T8nNUJ07OyZ2zvJDmM5o/P4U+hLcoIqXgsloab8Awd52S/vmzbeAxx2IyhDtk1dC9nfq7e7zvSdRjruALvZn6A8sJ9fOa4DLMVr2Ou8jWj76uBJPsqW/NHPz85Uy6UfnYHF5yzb3sxWTEQvypfwgqnGRBFAX0Un8FWN/CQIRNyOGG240I4Ctkn3xmOi7USIXOZclNV/e9WhBOytL4vQPZ9oQrL0LxUltTrB9P6nhQXefsbFaWcGZhLkmPxhhPlXw/E4+/jiVrNuQ/T5Ri+9BhOJCTj8Pj2FpsBuyDMnkdo+vTpmDRpEp4+Nb3THBnw5CGwbQrw9zBgz5dA0lkscZqFc87D8Injquf9cHJPut6J21FHML2KFshuGvPBY5RBCjpIjmutC5dcwmbZWJ1t8s6JkqOKkIg45/54w2GXetnb0vVoIzkFL2RfbbaQaDdr9XTYAw8h98P/leMP2YkERDggCyFC9gk8Upo7zLa2cB39pVuh+d6rSW7iA4d/0Fl6BDGOuTVZL32j3fyT34+UD5Lxn2wM/nCKQahwG5MdlwIA6kquY5Hjl4iSHDG6PQCscZoEzGuEzWuX4Yc9pvWJG7zkKJ5m5ta+NJOcw3nZULwm2YNPHFYCAIY6bIIU2T/WC5y+RX+H7Vgvm4AlTrOwVjYJvzvFwB8P8bZ0A4Y4bFbvq5YkXuu1chLKLx1/wGeO2Unlx45/6Y1rmPRffOM4H4LOEHUR1YQExDv31d63g3afMAlUWP7jTDRNWKheNtXxV9QUbqCp5CIipBfQW7oLXSSHNF7D8P9IAhU6SXT7phTUOdlQyJCJqpL8JwXV5ADDI6YqCAVLXGY7LsQV54Eon2f7+Tvz/04rlC/uHC7WonUPtCI2fUPBBj/Ys3gjU0Y8y1Tq9GlrOGMbTjzvkL+pCBJ5Y8yuEZo9ezZiY2Ph5+eH4OBgODpqX92cOJH/vBH03D9vA9eMzx3TUpJ7VdNVeghdpYfQJ/MzHFRp3+cn58rXB8kY5bBaZxtT1BTiUUdi+KS8VfapzjLNH9gzqhBsVjbRKdNfqt1J8bLzIADARVUFVJck4P3MkWgkya3qXS+bAAB4KOq/m3EP6V78p2yELarGAIBQIfdL5CUY7mTtg2QcdX5P/XyHTLsZK1J6EpHSkwjLWIIukkPYraqLh/BAQ+EyXIRM7FPVBgBUl2R3PH9NuhfHVHk7zoqoIdzAXdEL4xyXY6uyoTrOGpM242OHVeggOa5utvvaaSGuqnJHBP7rNB4dM78w+B7edViHiib+EOdNCkOEO3BEFq6I2X21qgiJmOD4BwBgrVL7tjlnZcPgJuh2Rn3HYQO2KRvgI4e/sUD5CoKFJPS5rdtnphRyt/3C8Se98VXOWIosSOGOp0hFKQTiAQ44jzLpvRkyWTEQUx1/VT93FJSIkhzVqTUcKt2IFcq2eJanORLITu7HOS7Hh5nvYY2qhc76f2ST841DIqh0aktzRjcOlm7Bv8pwvOuwDl9kvYFrouHRiEQvgttWumWQpZidCHXv3t0KYZRQ+SRBANBbuktnWRvJKXUi5IdH+NnpK9SSxGN+1it4R7pePWzYHF5Ixb+y8WZvp6mOJA51JLozu1aS6M/2cxKKuU7z9K5vLDE8oquvdDu2qBpjqPRfrRoRRyjRT7oNPkKyzjYNJKbNaJyTqAFApYzf8Ldsavb2GQvxCLnJmb7ap3jnflrPX5fuwXRFf0x0/N3g61WR5I6uqSa5iUqC4dE2Ax0KPunizucj/WpnLMIA6X8Y7bhSve5Th5VaZfUlQTn+kk0DADSXGr7XlKuQfz+a16R7ESYkYqjDJozMfB8fOuQ3Vix/CaLuZJDfOc3HHVG7OX+i4+8G/yfjHJcDAOY4fY81Gc3hA/PvifWhw2p86LAaHeUzdZqeRQCrZVMAZDenhmUsKVD/NCJ7sfqk8RGEmtNa2IIgWvuOmnYuNTUVHh4eSElJgbu7/hqKApti+gggTQuzXkaA8AhtJKfgoacDq7mCM5bpNIHYgweiO8oKhesAmp9TqkrqzrTt5V/CBXJseF5jtUXZCFtVDfGV4w8Wfc27oif89CRylvJ+5kiDyWdR+kbRAx85mp/8XFGVQ9Vp+pseBo+fgcVOXxY4ph+yuuBth9y+d1uUjRAlzX8SPmP6ZH6GntLdeE2aPQfTb1mReNMht5a0nfwrXBcDC/UaRPbOGpMumvr7XaCu2snJyfjrr78QGxuL0aNHw9vbGydOnICfnx/KlTM88R/lSnz8FAWtEH/HYYNFY1nqqDtCyB5YOwkCckcUAdk1Sl86/qh+njO/kqVZMwkCDNfAFTU/Ax3ybUkzCQJgkf/vxw6rtJp+NZMgIrI9sztLnzlzBlWrVsUXX3yBr776CsnJyQCA1atXY9y4cZaO74WVM6FacdBKarvRFfbkFYnhuW/IfH0d8r/Brj7jFMMsHIl1aSZB+uyQfYJAGJisk4iszuxEKDo6GoMGDcLVq1fh7Jw73K1z587Ysyf/CdwomwsKfudiso2W0oJP9EiWc1w0/2bExd0XGjWNRCVReiHubVdYZidCR48exdtvv62zvFy5ckhKKt4zlxYnr0jta04OIrIeXys3hxIVd49t2GHa7ERIJpMhNVW3b8aVK1fg42P4lg2kbYR0ja1DIKJiwpRJGoleZBIL3D+wwK9t7gavvPIKpk2bBoUie0ZZQRCQkJCAMWPGoEePHhYP8EVVQaL/jr5EVHAOMHyD4uKMd2ykks6GeZD5idDs2bORnp4OX19fPHv2DK1bt0blypXh5uaG//3vf9aIkYjIJIHlKuRfqBjyLYYj6IiKkuZNhIua2cPnPTw8sHXrVuzfvx+nT59Geno6GjRogMjISGvER0RksjLVWgB2WNlqifnAiOzZE7ntanPNToSWLl2K3r17o3nz5lp3oM/MzMSKFSswYMAAiwZIRGSqDjX8gL22joKIzHU/Pf/Z6K3F7KaxwYMHIyVFd8r5tLQ0DB482CJBERHpkyK6Gl0vsLMNkV367eANm7222YmQKIoQ9JxtEhMT4eFRsFtGEBGZYqrCeI2zT2ndm6gSUfEnMTsbsRyTm8bq168PQRAgCALat28PB4fcTZVKJeLi4tCxY0erBElEBAC3RB/89U6EwfVlmAgR2SWJDatzTU6Ecu46f+rUKURFRaF06dLqdU5OTggODubweSKyqph330BoBe/8CxKRXZHaQyI0efJkAEBwcDB69+6tdXuNojR//nx8+eWXSEpKQt26dTF37lw0adLEYPlVq1Zh4sSJiI+PR5UqVfDFF1+gc+fORRgxEVlKaIWC3qqYiIozu5pQceDAgXB2dkZmZiYSExORkJCg9bCmP//8E9HR0Zg8eTJOnDiBunXrIioqCvfu3dNb/sCBA+jTpw+GDh2KkydPonv37ujevTvOneM9o4heVOdUwbYOgYjMZMsJFQVRFM2a2/3q1asYMmQIDhzQvhN3TidqpdJ6cwGEh4ejcePGmDdvHgBApVIhKCgI77//PsaOHatTvnfv3njy5Ak2bNigXta0aVPUq1cPCxcu1PsacrkccnnuML7U1FQEBQUhJSUF7u7ulnszU9ixnMhsU3RHrOYVNW4Btsh0zwfFXXDGMluHQGQzZUvLcGyCZecjTE1NhYeHR76/32bPIzRo0CA4ODhgw4YNCAgI0DuCzBoyMzNx/PhxjBs3Tr1MIpEgMjISBw/qv4HpwYMHER0drbUsKioKa9asMfg6MTExmDp1qkViJqKid1m0z9mliUqyBzacR8jsROjUqVM4fvw4qlWrZo14DHrw4AGUSiX8/Py0lvv5+eHSpUt6t0lKStJbPikpyeDrjBs3Tit5yqkRIiLbOhs2CrVtHQQRvXDMToRq1KiBBw8eWCOWYkEmk0Em4xBcouLGt26UrUMgIiuR2lNn6S+++AKffvopdu3ahYcPHyI1NVXrYS1ly5aFVCrF3bt3tZbfvXsX/v7+erfx9/c3qzwRFV9+ZUwbNl+2tBPuixbsz0dEVmfL4fNmJ0KRkZE4dOgQ2rdvD19fX3h5ecHLywuenp7w8vKyRowAsucqatiwIbZv365eplKpsH37dkRE6J9gLSIiQqs8AGzdutVgeSIqnn7O6gT41TCpbCWf0lirbJ5/QSIqNmx5exyzm8Z27txpjThMEh0djYEDB6JRo0Zo0qQJ5syZgydPnqjvcTZgwACUK1cOMTExAIAPPvgArVu3xuzZs9GlSxesWLECx44dw48//miz90BE5pue9SaGmlFeRNGfVfcoa6OV9GyRvy7Ri8AuZpbO0bp1a4PrrD0/T+/evXH//n1MmjQJSUlJqFevHjZv3qzuEJ2QkACJxg1LmjVrhmXLlmHChAkYP348qlSpgjVr1qBWrVpWjZNs76iqKhpLrtg6DCqEb7NeQx/pDixXtrV1KCZ5BvYtJCqojrVs12XF7EQor7S0NCxfvhyLFi3C8ePHrTqPEACMHDkSI0eO1Ltu165dOst69uyJnj17WjUma1injMAUxUCccH7HKvtfltUWtSVxqC2JN3mbiYpB2KuqjV2yj60Sk6UMyByDw6rqGOGwBqMc1tg6HDJDe/mXSBD9oHh+avomqwdQyNqdLxRvYIzjCpPLL8rqhGEOm3BOFYxaZnw/oqTHChAdEQGAp6ujzV67wPd73bNnDwYOHIiAgAB89dVXaNeuHQ4dOmTJ2EqsdcoIjFKMxCOY1uHzhsoXMYo+JpXtIv8cwRnLMD5rOLpmfm6wXP2MhdijrI03MifgjCoE+5U18ZuyA+LFANTKWIT1yqbYq6yFFvI5Jr1uXgeU2f09BmeOxgVVRbO336msi07yGL3rrosBkMMJX2f10lr+TuaHZr9OXi3l3xhcNz/rFbP3d1VVrjDhAAD6ZY7Lv9BzHeSz9C5PF50hFx0wKHO00e3viLkdlhdkdTX5dU2VKPqok6Bs2UmQgxkjSgY1C9ZqGlukzP+WOnOzuiM68x28LJ+BGVlvIjhjGV7O/Bw95ZPwbdarGJQ5Gp8phpgcg7mscSyJ7Ik533FLMysRSkpKwsyZM1GlShX07NkT7u7ukMvlWLNmDWbOnInGjRtbK84XzglVZfXfMxVvaK2LUfRFzg9ARMZcrXVfPC87RTEA4xVDkSK6YpRiJH5QvowhmZ/k+7p5pxHfomykU+ZTxXA8hjsGKMbhkKoGXsmcgX6K8eqY0uGK9xWj8KZiPDJE480ByWIpddKjaYBiLFrI52Cnqj6+zXrV4PbfKHRv5JsolsVgxRhcFE1PoFJFV2xWNcHfyhbYqmyAncq6OmWmK/ob3cdFVRBuirnzUv2a1UH9t0KU4susN/RtZtSnirfQLOM7rWXxKj8DpbUNzByDEZmjsF9l+uw6j0Q3vcvXKJujunwJdqnqo3HG97iiJ0HbrqyPm6KP+vkpjc9wXj9mdcFYxTC9o7feyJyARhkLtJbNUPRDD/lkyOGkU/7Pt5ri4Lj2Bl8rr061A7BU+RIAYK2yWZ7EKtcD0R1jFcNQM+NnzM7qhdWqVjgnhmqVOSpWwzdZPbFLVR9/KC07662mWDHQavsmsgcuToVuoCowkxOhrl27IiwsDGfOnMGcOXNw+/ZtzJ07N/8NSa9BmWPwVuZHaC3/GguV2leDySil/vsOymCa4k318wXKV9AgYyGWKDtimbI96sl/xGmxMgABO1QN8G3Wa+qyO5T18o3jHcWHeC9zlPp5/8xxWKXM2w9MgKHmiQfwwOIs3fldboll0Fs+EW3ls5Gq8X6A7CQwCw5IFH019p9rXlY39d8LlV3RWv41ZiteVy97I3NCvu8rr8Oq7AlAP1a8h+GKTzBcodu893M+NQfzs7prPdeMWvX82QZlOM6rKmJ4ZjRiVQEYlZnbjPuvUvvmwB3ks3BSrILbKIsNynD18n6Z49EoYwHaymcjVhWgE8eqrFYYrXgLu1V18a+qqc76TxXDdZbFKPpgUOaneAgP9JZPRKJYVmu9CAGq56eD+/DEOMUwAMDfyhbomzkeExWDMFSRt7ZI9+48h1XVMEExGJ9n9cMKZTv8nKV7TA+pauABPPB7Vm5ys0jZBcfFMJ2yABAeWgY+bub1v2lQpy7CMpbgA8UInXWd5DGolrEYjeQLsELZDk/gYvJ+F2V1MrhurzK372EPefZNqn/M6mLSfjnKjch2TE7BNm3ahFGjRuHdd99FlSpVrBlTiZCKUvhPlVuD1k7+Fd6WbsAmVRM8g7NW2X+V4Zjk+Jv6uWaTmZgnlz2rClH/PUTxKeKlfY3GIUKidWW/z4zahRxTswair3QHZIICAKAUBXSXT8d9eALIrr3yFR6jgeQaAN2T/glV9udJJQqoLl+MMkjFSIe16vU3RH/MVb6K9aoI3BD9dN6zLn1Jm/YylYF9NMhYiJqSePzmNFO9bK2yGWYq+uAOymiVPSOGYrWyBV6T7sP3z5O3kYoPkJ0gCNiamV3btj+jJvyFRzgvBqOLtJ96+6ti7p3UU8XcZPEWsmtdHoj670c3Oku339jvWe3R32E7vlL0xGplS7SUnMUpVSUIAHao6uO6Ro3DYbE6Wsi/Q7xz7mdjl0q7huy4GIY6GT8hFa4ABByA7gADJaQ6y97MHIdM5Lb1563p+FvZQv33hKwhWKjsqpEQW44gQKt2aUjmJ+gsPYKJikE636/WVX2w+8p9k/b7v6x+GOawSe+6JI1mw+NiGMIylkAOJ7wh3QF34ZnR/RqqtSoKwWVcEf/wqc1e35jZPesiPNQb0zdcwJbzd/PfwIhGFb1w7MZjC0WWa07vevjwz1MW3y8VHZNrhPbt24e0tDQ0bNgQ4eHhmDdv3gs9w3RRuy4GYkzWW9ilqqez7i68MdtjLMS+K/Pdzz5JQ5ws11erJkJT45AyOstuoyz6Zo5HX4n+/iOGjO2Ue5uV+8j90a4k/0OdBAFAEsrgtcxpmKl4A4dV1fCnso3Wfu7DE00y5qO2fBHkcMJtlMXvWe3xU1ZnjR8zAfFigE4StEtPE5cpDN1p+BHcsVdVR6esZhIUKZ+FTxXD8beyJT5VvIWX5TPwnVKzeU876XoID5wXQwAIWn1sNH2v7IZnohN+yeqotdzUH8gJWUNRKeM3zFO+iiw44H3FKPys7IJFyi5aSZA+v2Z1wHZVA53l2TV52u9lwfN+UBuUTbFLVVfnTu9KSPDXO7nzdG1VNcRUxZvok/kZ+mWOw/jnNU3ZhHyToL/fLdicX5+8pF27tEPVAJ8o3tFJggCgim9pk/ZZu5yH0SQ8b3Kd89ltIv/epP3r0zg4e262ng3LI6pmdpPpm011m4QHRJjfzw4ANn3QErN71TNrmwNj2yG6Q1X1c82/C2Je3/paz4e2yL2Ya1/dF+W9XPHDm43wy6BGWPGWbg2oqV6q6YdZr9fB1FdqFngfvnpqJrvXL4dX6lqnadNa+zXV261DMap9FUzvVvBjZjLz7v9uUSYnQk2bNsVPP/2EO3fu4O2338aKFSsQGBgIlUqFrVu3Ii0tzZpxlngffzQOQtX8bzEw5ZXaeNxyCtapmuld36O9/ir4hm26w7tydg2VsanOBzULRqCHMyqWcUXf8NybWw7N/ATHVVXQJ/MzrfKaX6CFylfQO3MSMp4PM25ZpSwuTc/+4b8HL60miglZQ/G/LON9dgBgjGI4tigbYXA+nXzzMmeemZyyPRuWx/jO1XBNLI+VyrYQIUEWHHBODMXiweH57CWbYCAFSxR9UEv+M6ZlDdBaHq14FykOZTBa8Ra+UvTEaMVbBvf974dt8GlH/c1L+vTJ/AyzFL0xOWsQmobqJsgAcHlGR6x6JwL+7tkJxE5VfTTOmI/3FSORBQe8nJnd+b5/5jj0kk+EElI0CvbGL4Ny+p4JWKzshIOqmtivqq1VSxMX01n9425Iw4qmzSadV5C3q8lly3m54PNXc2tCa5fTrolrWaUswkO8sWy48f+xysBnKkNjWH1O38C9ylqIVQVgTtZreE0+xeA+Z71eF78OaYLp3WthYf+GuDS9I6Z3166dK+fpgmndzJ8SZFCzYFQPcEfDiqZNhLv949bYFt0agZ4uGNW+Cmb3rIuJL9fAqPYFbyFoWaUsXq6j/WMf4JGbrGr+Nrar5ofgMtrN7OYY0jwEvRoFYWCzYOTXL3fxYP39XY98pr+fmLWmwDG238KMsmob5pNvmQvTojCuU3VEd6iKNyOCEft5/oMO7JXZo8ZKlSqFIUOGYN++fTh79iw+/vhjzJw5E76+vnjlFfNHzZB+xydE4t02lczerkfD8hD0nJCPqqqiScZ8qJz0d5YFgP+9Whujo8Kw65M2uDS9I8p56vadmPJKTRwY1x67PmkDd+fcL+JlsQJ6ZE7FQZX2lcMbTSpondjycnaUokyp7B9HJ6n5gxiXf/wq3lZE45CqutFyGch70jD/zDWwWTDeaqX/f9ImrPDNO5pNTc6O2ceif/eu8PgsFrNmzMI85atYpWyDH99siD+G6f4oV/N3x3ttKqN+BU+TXu+gqia+V3YDIGBQsxC9ZWQOUjQO9sah8e3VtTP34QUREq0T8T5VbRwRc/8HbU04HoIg4Ote9bCwf0P1slJOus1tBdWjQXmD60a1q4wJXapjWIsQ9G9aEX3DK2DnJ20wqFkwfnizoVbZeX0b4M+3I+Dm7IhejQzv01BzKwC0kc9GJ3kMXsuchkoZv+FNxXi0z5yNOVmv44SYXaNSztMFpye9pLWds6MErav6wNlRCkEQ4Oyoe3wqljE96dNU3iv3+11all3z2L2e4RqISj6lUVmj9qxHw/JatTc5tnzYCtc1fjS9S+l2gM8xv59uTaSg8euf97LB3cX0JsQONXKT7AAPZzhonF/OTjF+UWnK5xcAagRkd1N4o3EFreVV/UrjkJ4O/mWMHAt9NM9SfZpUgJss9/2/buTzDQA/5vkcawrQc27XVM7TBa55Oi/nvUBuZGICbaqa5fR3BSgKBR4+DwBhYWGYNWsWEhMTsXz5ckvFRADKlJahV6Psu97rS0g01SqX/WVsWNELjlKJ3t/4G6I/7sHwB7ecpws8XBwxom1lBHm7wtlRCgep4WRByHOpMqJtboLQubY/moZ648yUl+AolWByV+PVqn8MD0e7ar5Y/Z7+WixNMa/VxqXpHbGgXwPM6V0P/nqSrJyryEHNgjFOMRSXVEH4XNFPqylPi1sg+msMQe9cW3tir1/zdAY3VD2/99Pcif8iDNSw5ExzsCTrJb3rc4ztWA3xM7tk17oJAgRBwPRuNTG8ZQhequmP5pXLGt1enzA//Ulwv/AKeoeu5tQC5WhY0Rtnp7yEuJjOuPq/Tlq1EO2raf9wCIKAiS/nf0uMUjIHdKzlDz/37FqTZpXL4sDYdijn6YIxHQ38v0yk70c6R/RLYRjWMhQTXq6R/Z0BEFK2FKa8UhOBni5atT+iRrWEsdp7QzVCABAvBuCiWBEVy7hqJbwb3s/tM/XfR63gkecq38vVvB9Ofar6lcbeT9vi7dbaI+IGRASr/94a3Qrf9K6LL3vWxfXPOyMupmBX/8FlXBHm7waJxuepbGnt9/B2q1As6NcAf7/bTOtiKoerRjLskifxc3VywLqRpnUs/7pXbrN53v9MKZlDvrVCg5oFaz3PreXMVjfIEyufNwNHVCqDvZ+2xZUZnfD3u82w+r3m8PdwxsZRLdFC47taprT5/8+TEztgx8etEfNabZye/BIuz+iIA2Pb4ZMo47W/mongq/W1R4E6O0iNJkqmGNbS8Pcrr5Vv59/EbWryaQ2FSoRySKVSdO/eHevWrbPE7ui5kLKlcGR8e+z4xPBs3gDwy6DG+LRjmPpKVvP7/X7mSOxX1tQ7z9BHkVWxsH8DvNO6El5vqHt14eace0XQL7wCFg8yPD2Cv0dusvbl63Wx4q0IjZOc8bbfav7u+GVQY9QycEXwUWRVzOpRB6/VL4fXG5aHs6MUnWoHoHv9cnB2kMLJQf/HOPqlqliubI+OmV/gDsrg7VahGNVOY8j32ARgdCzw8UVM+iB3dFF1/9zO6M9EJ5wSs7fJ+RFsGlpG7w+FZnOMoSRyraoFGmd8jylZA/WeiEZHhWFoixD009MP5M2IYHzWJTe5CCmrv5mgWaXcJOwDjWYLP42kceZrtRHg4YwvX6+DKQb6TPw4QDc+N2dHCIIAR6lEK0HQV4U/tEUIvs9zxR9Z3Q+BHs46fVr+frcZRkeF4cvX6yDQ0wX7x7YrUI2ophqB7pAZ+Gzkp16Qp/pvfbUw+uTX3Pr5q7Wxe3RusixzkKCST2n136Vk2lfgiwc3NvjaeZMaY2Z0r40gb1etvjyzetTR+t4EeLjg1frl4SiVQCLJTrxHta+irl3MmxTntfLtCLQJ88GfGj94S4c0QaOKXlqfAe9SThjXuTo61Q4w2CTn4eKIZcPCsWxYOFz01BDWKe+p/rtdNf0/nq/UDYSbniRL0xtNKhhdXzNQe+qHyj7ZFxIb3m+BkW0rY9mwcHVNGpD9/XdykKBhRS/18hqB7vh9WDi+faMeutYN1Eo+c9+PBxb2160ZA4BR7avAq5QTQp9/TiQSATIHKQI9XeDsKMVPA7STs9+GNoFEAAZGVIQgCPj81dpoXrkMpnWrqb7YALK/r8EGzh+miqrpj42jWmot06z9WzuiOcZ3roadn7RBk5D8m7gNnceLgu2GKpBBH0XmnrB885yAvn2jHiasOZed9IiAh6sjfN2c8V6b3B94zdqa9apmWK/RX0jzx6tPkyD4ujujYy3dIdoAMKd3fYxcdgKj2ldB59r6y4ztVA3nb6eiTdX825wB4MTEDmgwfatJZSd0qY7mlcui+vPq516Ng3TKSCQCzkx+CSrFM+B5X2/NUUtRNf3Uo00EQUAVzVoR59zEq6qB2pKcEW0AIELzh1//j17Z0k54kJ6JyOp+iL2XjtspGShbWoYH6XJ1mZyO5C/V1J1SvkvtAJNPUMFlXBH34AkA7U6V77erAn8PF7Sp6oMgb1d8u/0qgOxq/Mjqvijn6YL21f20fggC9dQ6Vs6nE7F21bn+49Gxpj/ea1MJ3++KBZDdHPPTgIY6x6+8lytGtDU8L1FB1S7nUaCRQq5ODvjnvWY6zVHGUvpflS9hgMNWbFLqv2DI6VMX5ueGy3fT0LGWP1ycpDg3NUqrRk7mIIE8S2WwVhEAxnWqjot30rDnyn0MzFNz0bm2PzaeTQIA/DSgkfpHyEkqQdNQb6TLs/Re+OQV3aEqojtURcozhU7NTF5NQrzRJER7eohWVX3Q6vl5oapfaVy5m65T26pPhxp+6lq6/JQp5YTrn3fGg3Q5hv56DG2r+cLDxRE9jTRh5visc3Xsvnwft5Kf4eTEDoj8ejcePslEoIGm/JyPbK1yHgYv2gzpVq8cutUrh7+OJ+qsc3d2NJgE5CRAhnSo4Yc2YT7YdTl71GPLKj64PKOT+vj1Da+g/txVD3DH3dTscvl1DBANVH0ObRGCn/fF4e1WoRAEATXyJIvjO1fHJ6tOA8hOaDW7ElTxLY2r99LzeWXbYCJUjMTP7IKklAy9zT05utUrh651ArWqnvPSXNOiclm8Ui8Qn/51xux4KvuWxuYPWxkt807r7A+6PCv31ip5r2I1v1OaVwx1yhs/mQxradpVr7OjFHAsDURORVbmM9z/zxMA4Krn5F09wHAfKS1Dt2H/shmIfpw7f1Hec0PLKmWx9+oDravSzR+2wqmEZLSt5ovWVX2wcHes+hjdePQUn/51GndTc5OiIG8X3Hz0DP2bVkCQl6tZV2kze9TBlHXnMSAiGBEatUDOjlK9I4sEAXqvSIHsK9dZr9eBm8wB7/5xAgDgIDH+Y9Sumi+61AnITjbi9ScbEomATztWUydC2XEU3QyyeV+qVVUfdDNxJE79Cub1gYgVy6Fmxs948nxkWmR1P2y7qDvk+/dh4fjvQhK61cturiidpybo9OSXkKUS862J+mVgI9xJydDpGB7g4YJD49pDKhG05l8SBAHLhzdV/20qD5fC3/pg+fCm2H3lPjoZuOhqXrkM9l97iE61/E1Kgr7uVRfLjyTg047VIJEI8HV3xnqNZsa89L3fUjIH7B/bTv38z7eb4vudsRj5vNbYGmOYNKNY0K8Bftx7HTGv1Ya/hzPqlvfA6cQU9fqCjpAzdPxmvV4HTf63PTsOQbsJMi/NWjdNn3Wujp6NyqOqb+559O1WoTh7KwWfdqyGSj6l8Mmq7OUyR+04lg5tgoiYHWa8k6LDRMhG+jetgN8PJaif51QxGkuCchhLggDtKt3fh4VDpRLViZCfuzPKe7lAqRJRprTlbhIpc5Di9OSXIBF0O9W55jnRb/mwFbZdvGu0D0eBtPgQDgCONZFDIghwkErQONhba/6Ryr5uWPFWU73DYHOIABDUGE1Hr8G/TzPRaMa23OUa5vVtgP/OJyFK42aBZUvLEPm8bT64bCnM7JE7FD+4bCm0q+aH5UcS1B1Vt37UGvdS5ahQgA6vfu7OWNDf9Hb+/PpE5PRJWzSgERykQr5V1VKJgPl9s6v0P71/2uQ4ipLmwIFfBjVCu2qmzdptSKV8rtBzRj62rFIWPw1oiJBxG3XK+LjJ0C/c8HB3U5viHKQSrSRoQpfqWH3iFka2rQwvA51yizIJ1VSmtAyvGenc+32/hth24a7Wd8mY1xqUN7q/HF3rBmL96dt4x4Rm1sq+bvi6dz2TXr+gNA9/p9oB6KRR0752ZAuIooi4B09QsUwpo6N3C8LXLfe3RRAElPdyxeioMGy7eBcnE5IBANuiW2HVsUS83Vr/8ZJIBFTz164FGtc5d5CEKIoID/FGlkrUaU4N8HDBksGNMWjxUQu9I8thImQjn3WugQYVvFA9wB1erk4mJUCmKlNahkPj2sNVln1ClUgEzOheC+nyLAR6umDXJ20AGB8mXxCGrhxbVi6L7vUC1U1cYf5uCPM3sWamAMpqJHgDmwXD2VGq1W/G0FDxvKQSQWtfeWVXwes21xkz8eXqqFXOHZHVs3+QnR2lBUqCCkLfaEJ9ImuYnyyM6VgNt5Mz0FtP8yWQ/eN/P02OKD3NgVal8ZYLmwQBwJAWwcCu/MstHdKkyJOOYS1DTa5FLW48XBzRw4TmOnPN6V0PH0ZWQWgB+sPk7eTtl08/KVPkl+QKgpBvc5gl5HwyR7StjHdbV8KKozfRoKInKvu6aSU2Zu9XENQ1Wfo+/5qjayt4uyLhUfGYyJOJkI24OElNuqIpqLyJVX+NphKHAgxTLwyJRMCcN+rnX9AKHKUSrfduTDV/N1xKSkOXOtrV913rBuLW46c688sUhKuTg9HaAGsK8LRcsp1XmdIy/K5nSH+OHR+3RuLjZ+pk2F7JHAz/kJX3ckHi4+wZpHN+BH4a0AjDlx7D2hG8hYYtSCVCvrV4hrQN88VbrUJRxbc0Xq4TaJHOvB1q+KFllbKor9EZv7DMmYfwjcZBWH3illa/MolE0JoTrrDyuwD4uENVzN56BTN71Ebfnw4DyO68b0tMhKhYyak5sIX177dAyjOFTi3Q3D62SeIsZfGgxth79QF6m1l7ZUluzo6oHlD4vibmer1BeRyJe4RqVqyBzBFStpQ6EcrRoYYf4meadr8xKl4EQcD4QtSO6OMoleC3oaZNvmqqav5uJt8iZmaPOpjevZbJndGt4f32VfBW61Cti4oQn8KNYCssJkJUrPw2tAmmb7iAj18yfYZkS3GUSow2hdmrttV80dbAMOMXXc9G5VHJtxTC/K1fE/V+uyrYe/WB0YkciSztg8gqEAQBnUzsX2XLJCiHsZpVW2AiRMVKNX93/DGs4PcTItIkCEKBb9NhriYh2ZOIusl4WqWi4+rkYHiyWDIJv7FERBaib6ZkIirebF9HRkRERCWWbSZ1yMVEiIiIiIpczhQuVYtgMIMxbBojIiKiInd2ykuQK1Q2b1JmIkRERERFztXJAa76J0EvUmwaIyIyQ0f5TPyZ1QbNMr6zdShEZAGsESIiMsMlsQLGZL1l6zCIyEJYI0REREQlFhMhIiIiKrGYCBEREVGJxUSIiIiISiwmQkREZsi5Me843t+J6IXAUWNERGbY9EFLHL/xCJHV/YCd2ctUosCrSiI7xUSIiMgMPm4ydKwVYOswiMhCeBFDRFRIEkG0dQhEVEBMhIiIiKjEYiJERFRIKlGwdQhEVEBMhIiIiKjEsotEKD4+HkOHDkVISAhcXFxQqVIlTJ48GZmZmUa3a9OmDQRB0Hq88847RRQ1ERERFXd2MWrs0qVLUKlU+OGHH1C5cmWcO3cOw4cPx5MnT/DVV18Z3Xb48OGYNm2a+rmrq6u1wyWiEoadpYnsl10kQh07dkTHjh3Vz0NDQ3H58mUsWLAg30TI1dUV/v7+1g6RiIiI7JBdNI3pk5KSAm9v73zL/fHHHyhbtixq1aqFcePG4enTp0bLy+VypKamaj2IiIjoxWQXNUJ5Xbt2DXPnzs23Nqhv376oWLEiAgMDcebMGYwZMwaXL1/G6tWrDW4TExODqVOnWjpkIiIiKoYEURRt1rg9duxYfPHFF0bLXLx4EdWq5d7T59atW2jdujXatGmDRYsWmfV6O3bsQPv27XHt2jVUqlRJbxm5XA65XK5+npqaiqCgIKSkpMDd3d2s1yOiF9wUD42/U2wXBxHpSE1NhYeHR76/3zatEfr4448xaNAgo2VCQ0PVf9++fRtt27ZFs2bN8OOPP5r9euHh4QBgNBGSyWSQyWRm75uIiIjsj00TIR8fH/j4+JhU9tatW2jbti0aNmyIxYsXQyIxv3vTqVOnAAABAbxPEBEREdlJZ+lbt26hTZs2qFChAr766ivcv38fSUlJSEpK0ipTrVo1HDlyBAAQGxuL6dOn4/jx44iPj8e6deswYMAAtGrVCnXq1LHVWyGiF9Az0cnWIRBRAdlFZ+mtW7fi2rVruHbtGsqXL6+1LqeLk0KhwOXLl9WjwpycnLBt2zbMmTMHT548QVBQEHr06IEJEyYUefxE9GLLgBNcbB0EERWITTtL2wNTO1sRUQn0vLP0Y9ENXlMTbRwMEWky9ffbLprGiIiKM95zlch+MREiIiKiEouJEBEREZVYTISIiAqNbWNE9oqJEBFRIYlMhIjsFhMhIiIiKrGYCBEREVGJxUSIiKiQOBkbkf1iIkREVEjsI0Rkv5gIEREVEufnJ7JfTISIiAqJeRCR/WIiRERERCUWEyEiokJiHyEi+8VEiIiokJgIEdkvJkJERERUYjERIiIiohKLiRARUSEFCI9sHQIRFRATISIiIiqxmAgRERFRicVEiIiIiEosJkJERERUYjERIiIiohKLiRARERGVWEyEiIiIqMRiIkREREQlFhMhIiIiKrGYCBEREVGJxUSIiIiISiwmQkRERFRiMREiIiKiEouJEBEREZVYTISIiIioxGIiRERUSCpRsHUIRFRATISIiArpGZxsHQIRFRATISKiAtqlrAsA+E3ZwcaREFFB2U0iFBwcDEEQtB4zZ840uk1GRgZGjBiBMmXKoHTp0ujRowfu3r1bRBET0YvuXcUH6J85Dl9l9bJ1KERUQHaTCAHAtGnTcOfOHfXj/fffN1r+o48+wvr167Fq1Srs3r0bt2/fxmuvvVZE0RLRi+4ZnLFPVRt+nm62DoWICsjB1gGYw83NDf7+/iaVTUlJwc8//4xly5ahXbt2AIDFixejevXqOHToEJo2bWrNUImoBFGJoq1DIKICsqsaoZkzZ6JMmTKoX78+vvzyS2RlZRkse/z4cSgUCkRGRqqXVatWDRUqVMDBgwcNbieXy5Gamqr1ICIyRqliIkRkr+ymRmjUqFFo0KABvL29ceDAAYwbNw537tzB119/rbd8UlISnJyc4OnpqbXcz88PSUlJBl8nJiYGU6dOtWToRPSCY40Qkf2yaY3Q2LFjdTpA531cunQJABAdHY02bdqgTp06eOeddzB79mzMnTsXcrncojGNGzcOKSkp6sfNmzctun8ievE4Se2qcp2INNi0Rujjjz/GoEGDjJYJDQ3Vuzw8PBxZWVmIj49HWFiYznp/f39kZmYiOTlZq1bo7t27RvsZyWQyyGQyk+InopJtYf8GiNl0CfP6NLB1KERUQDZNhHx8fODj41OgbU+dOgWJRAJfX1+96xs2bAhHR0ds374dPXr0AABcvnwZCQkJiIiIKHDMREQ5OtYKQMdaAbYOg4gKwS76CB08eBCHDx9G27Zt4ebmhoMHD+Kjjz5C//794eXlBQC4desW2rdvj6VLl6JJkybw8PDA0KFDER0dDW9vb7i7u+P9999HREQER4wRERERADtJhGQyGVasWIEpU6ZALpcjJCQEH330EaKjo9VlFAoFLl++jKdPn6qXffPNN5BIJOjRowfkcjmioqLw/fff2+ItEBERUTEkiCKHOxiTmpoKDw8PpKSkwN3d3dbhEBERkQlM/f3mUAciIiIqsZgIERERUYnFRIiIiIhKLCZCREREVGIxESIiIqISi4kQERERlVhMhIiIiKjEYiJEREREJRYTISIiIiqxmAgRERFRicVEiIiIiEosu7jpqi3l3IotNTXVxpEQERGRqXJ+t/O7pSoToXykpaUBAIKCgmwcCREREZkrLS0NHh4eBtfz7vP5UKlUuH37Ntzc3CAIgsX2m5qaiqCgINy8eZN3tX+Ox0QXj4kuHhNdPCbaeDx0lcRjIooi0tLSEBgYCInEcE8g1gjlQyKRoHz58lbbv7u7e4n5UJqKx0QXj4kuHhNdPCbaeDx0lbRjYqwmKAc7SxMREVGJxUSIiIiISiwmQjYik8kwefJkyGQyW4dSbPCY6OIx0cVjoovHRBuPhy4eE8PYWZqIiIhKLNYIERERUYnFRIiIiIhKLCZCREREVGIxESIiIqISi4mQjcyfPx/BwcFwdnZGeHg4jhw5YuuQLGLKlCkQBEHrUa1aNfX6jIwMjBgxAmXKlEHp0qXRo0cP3L17V2sfCQkJ6NKlC1xdXeHr64vRo0cjKytLq8yuXbvQoEEDyGQyVK5cGUuWLCmKt2eSPXv2oGvXrggMDIQgCFizZo3WelEUMWnSJAQEBMDFxQWRkZG4evWqVplHjx6hX79+cHd3h6enJ4YOHYr09HStMmfOnEHLli3h7OyMoKAgzJo1SyeWVatWoVq1anB2dkbt2rWxceNGi7/f/OR3PAYNGqTzmenYsaNWmRfpeABATEwMGjduDDc3N/j6+qJ79+64fPmyVpmi/K7Y+nxkyvFo06aNzufknXfe0SrzohwPAFiwYAHq1KmjngAxIiICmzZtUq8vSZ8PqxOpyK1YsUJ0cnISf/nlF/H8+fPi8OHDRU9PT/Hu3bu2Dq3QJk+eLNasWVO8c+eO+nH//n31+nfeeUcMCgoSt2/fLh47dkxs2rSp2KxZM/X6rKwssVatWmJkZKR48uRJcePGjWLZsmXFcePGqctcv35ddHV1FaOjo8ULFy6Ic+fOFaVSqbh58+Yifa+GbNy4Ufzss8/E1atXiwDEf/75R2v9zJkzRQ8PD3HNmjXi6dOnxVdeeUUMCQkRnz17pi7TsWNHsW7duuKhQ4fEvXv3ipUrVxb79OmjXp+SkiL6+fmJ/fr1E8+dOycuX75cdHFxEX/44Qd1mf3794tSqVScNWuWeOHCBXHChAmio6OjePbsWasfA035HY+BAweKHTt21PrMPHr0SKvMi3Q8RFEUo6KixMWLF4vnzp0TT506JXbu3FmsUKGCmJ6eri5TVN+V4nA+MuV4tG7dWhw+fLjW5yQlJUW9/kU6HqIoiuvWrRP//fdf8cqVK+Lly5fF8ePHi46OjuK5c+dEUSxZnw9rYyJkA02aNBFHjBihfq5UKsXAwEAxJibGhlFZxuTJk8W6devqXZecnCw6OjqKq1atUi+7ePGiCEA8ePCgKIrZP5oSiURMSkpSl1mwYIHo7u4uyuVyURRF8dNPPxVr1qypte/evXuLUVFRFn43hZf3h1+lUon+/v7il19+qV6WnJwsymQycfny5aIoiuKFCxdEAOLRo0fVZTZt2iQKgiDeunVLFEVR/P7770UvLy/1MRFFURwzZowYFhamft6rVy+xS5cuWvGEh4eLb7/9tkXfozkMJULdunUzuM2LfDxy3Lt3TwQg7t69WxTFov2uFMfzUd7jIYrZidAHH3xgcJsX+Xjk8PLyEhctWlTiPx+WxqaxIpaZmYnjx48jMjJSvUwikSAyMhIHDx60YWSWc/XqVQQGBiI0NBT9+vVDQkICAOD48eNQKBRa771atWqoUKGC+r0fPHgQtWvXhp+fn7pMVFQUUlNTcf78eXUZzX3klLGH4xcXF4ekpCSt+D08PBAeHq51DDw9PdGoUSN1mcjISEgkEhw+fFhdplWrVnByclKXiYqKwuXLl/H48WN1GXs5Trt27YKvry/CwsLw7rvv4uHDh+p1JeF4pKSkAAC8vb0BFN13pbiej/Iejxx//PEHypYti1q1amHcuHF4+vSpet2LfDyUSiVWrFiBJ0+eICIiosR/PiyNN10tYg8ePIBSqdT6cAKAn58fLl26ZKOoLCc8PBxLlixBWFgY7ty5g6lTp6Jly5Y4d+4ckpKS4OTkBE9PT61t/Pz8kJSUBABISkrSe2xy1hkrk5qaimfPnsHFxcVK767wct6Dvvg135+vr6/WegcHB3h7e2uVCQkJ0dlHzjovLy+DxylnH8VFx44d8dprryEkJASxsbEYP348OnXqhIMHD0Iqlb7wx0OlUuHDDz9E8+bNUatWLQAosu/K48ePi935SN/xAIC+ffuiYsWKCAwMxJkzZzBmzBhcvnwZq1evBvBiHo+zZ88iIiICGRkZKF26NP755x/UqFEDp06dKrGfD2tgIkQW1alTJ/XfderUQXh4OCpWrIiVK1cW6wSFbOeNN95Q/127dm3UqVMHlSpVwq5du9C+fXsbRlY0RowYgXPnzmHfvn22DqVYMHQ83nrrLfXftWvXRkBAANq3b4/Y2FhUqlSpqMMsEmFhYTh16hRSUlLw119/YeDAgdi9e7etw3rhsGmsiJUtWxZSqVSnd//du3fh7+9vo6isx9PTE1WrVsW1a9fg7++PzMxMJCcna5XRfO/+/v56j03OOmNl3N3di32ylfMejP3//f39ce/ePa31WVlZePTokUWOU3H/nIWGhqJs2bK4du0agBf7eIwcORIbNmzAzp07Ub58efXyovquFLfzkaHjoU94eDgAaH1OXrTj4eTkhMqVK6Nhw4aIiYlB3bp18e2335bYz4e1MBEqYk5OTmjYsCG2b9+uXqZSqbB9+3ZERETYMDLrSE9PR2xsLAICAtCwYUM4OjpqvffLly8jISFB/d4jIiJw9uxZrR++rVu3wt3dHTVq1FCX0dxHThl7OH4hISHw9/fXij81NRWHDx/WOgbJyck4fvy4usyOHTugUqnUJ/+IiAjs2bMHCoVCXWbr1q0ICwuDl5eXuow9HqfExEQ8fPgQAQEBAF7M4yGKIkaOHIl//vkHO3bs0GnWK6rvSnE5H+V3PPQ5deoUAGh9Tl6U42GISqWCXC4vcZ8Pq7N1b+2SaMWKFaJMJhOXLFkiXrhwQXzrrbdET09Prd799urjjz8Wd+3aJcbFxYn79+8XIyMjxbJly4r37t0TRTF7yGeFChXEHTt2iMeOHRMjIiLEiIgI9fY5Qz5feukl8dSpU+LmzZtFHx8fvUM+R48eLV68eFGcP39+sRo+n5aWJp48eVI8efKkCED8+uuvxZMnT4o3btwQRTF7+Lynp6e4du1a8cyZM2K3bt30Dp+vX7++ePjwYXHfvn1ilSpVtIaLJycni35+fuKbb74pnjt3TlyxYoXo6uqqM1zcwcFB/Oqrr8SLFy+KkydPtslwcWPHIy0tTfzkk0/EgwcPinFxceK2bdvEBg0aiFWqVBEzMjJeyOMhiqL47rvvih4eHuKuXbu0hoM/ffpUXaaovivF4XyU3/G4du2aOG3aNPHYsWNiXFycuHbtWjE0NFRs1arVC3k8RFEUx44dK+7evVuMi4sTz5w5I44dO1YUBEH877//RFEsWZ8Pa2MiZCNz584VK1SoIDo5OYlNmjQRDx06ZOuQLKJ3795iQECA6OTkJJYrV07s3bu3eO3aNfX6Z8+eie+9957o5eUlurq6iq+++qp4584drX3Ex8eLnTp1El1cXMSyZcuKH3/8sahQKLTK7Ny5U6xXr57o5OQkhoaGiosXLy6Kt2eSnTt3igB0HgMHDhRFMXsI/cSJE0U/Pz9RJpOJ7du3Fy9fvqy1j4cPH4p9+vQRS5cuLbq7u4uDBw8W09LStMqcPn1abNGihSiTycRy5cqJM2fO1Ill5cqVYtWqVUUnJyexZs2a4r///mu1922IsePx9OlT8aWXXhJ9fHxER0dHsWLFiuLw4cN1TrIv0vEQRVHv8QCg9Tkuyu+Krc9H+R2PhIQEsVWrVqK3t7cok8nEypUri6NHj9aaR0gUX5zjIYqiOGTIELFixYqik5OT6OPjI7Zv316dBIliyfp8WJsgiqJYdPVPRERERMUH+wgRERFRicVEiIiIiEosJkJERERUYjERIiIiohKLiRARERGVWEyEiIiIqMRiIkREREQlFhMhIiIiKrGYCBGRXRIEAWvWrLF1GCYZNGgQunfvbuswiEgPJkJEVCwlJSXh/fffR2hoKGQyGYKCgtC1a1edm0QSERWGg60DICLKKz4+Hs2bN4enpye+/PJL1K5dGwqFAlu2bMGIESNw6dIlW4dIRC8I1ggRUbHz3nvvQRAEHDlyBD169EDVqlVRs2ZNREdH49ChQ+pyDx48wKuvvgpXV1dUqVIF69atU69TKpUYOnQoQkJC4OLigrCwMHz77bdar5PTZPXVV18hICAAZcqUwYgRI6BQKNRlgoOD8fnnn2PIkCFwc3NDhQoV8OOPP2rt5+bNm+jVqxc8PT3h7e2Nbt26IT4+3joHh4gsiokQERUrjx49wubNmzFixAiUKlVKZ72np6f676lTp6JXr144c+YMOnfujH79+uHRo0cAAJVKhfLly2PVqlW4cOECJk2ahPHjx2PlypVa+9u5cydiY2Oxc+dO/Prrr1iyZAmWLFmiVWb27Nlo1KgRTp48iffeew/vvvsuLl++DABQKBSIioqCm5sb9u7di/3796N06dLo2LEjMjMzLXtwiMjybHfjeyIiXYcPHxYBiKtXrzZaDoA4YcIE9fP09HQRgLhp0yaD24wYMULs0aOH+vnAgQPFihUrillZWeplPXv2FHv37q1+XrFiRbF///7q5yqVSvT19RUXLFggiqIo/vbbb2JYWJioUqnUZeRyueji4iJu2bJF/TrdunXL550TkS2wjxARFSuiKJpctk6dOuq/S5UqBXd3d9y7d0+9bP78+fjll1+QkJCAZ8+eITMzE/Xq1dPaR82aNSGVStXPAwICcPbsWYOvIwgC/P391a9z+vRpXLt2DW5ublrbZGRkIDY21uT3QkS2wUSIiIqVKlWqQBAEkzpEOzo6aj0XBAEqlQoAsGLFCnzyySeYPXs2IiIi4Obmhi+//BKHDx82eR+mlElPT0fDhg3xxx9/6MTn4+OT73sgIttiIkRExYq3tzeioqIwf/58jBo1SqefUHJyslY/IUP279+PZs2a4b333lMvs0YNTYMGDfDnn3/C19cX7u7uFt8/EVkXO0sTUbEzf/58KJVKNGnSBH///TeuXr2Kixcv4rvvvkNERIRJ+6hSpQqOHTuGLVu24MqVK5g4cSKOHj1q8Vj79euHsmXLolu3bti7dy/i4uKwa9cujBo1ComJiRZ/PSKyLCZCRFTshIaG4sSJE2jbti0+/vhj1KpVCx06dMD27duxYMECk/bx9ttv47XXXkPv3r0RHh6Ohw8fatUOWYqrqyv27NmDChUq4LXXXkP16tUxdOhQZGRksIaIyA4Iojk9E4mIiIheIKwRIiIiohKLiRARERGVWEyEiIiIqMRiIkREREQlFhMhIiIiKrGYCBEREVGJxUSIiIiISiwmQkRERFRiMREiIiKiEouJEBEREZVYTISIiIioxPo/Q+hb4ZTPufQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -314,11 +314,11 @@ } ], "source": [ - "ps_ref.align_to(ps_sig)\n", + "ps_ref_aligned = ps_ref.align_to(ps_sig)\n", "\n", "plt.figure()\n", "plt.plot(ps_sig.flux)\n", - "plt.plot(ps_ref.flux)\n", + "plt.plot(ps_ref_aligned.flux)\n", "plt.ylabel(f\"Antenna temperature ({ps_sig.flux.unit})\")\n", "plt.xlabel(\"Channel\");" ] @@ -338,7 +338,7 @@ "metadata": {}, "outputs": [], "source": [ - "ps_avg = average_spectra((ps_sig, ps_ref))" + "ps_avg = average_spectra((ps_sig, ps_ref_aligned))" ] }, { @@ -349,7 +349,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAGuCAYAAACX/tJnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZUElEQVR4nO3dd1xTV+MG8CesIEpAZCvTgXsr4raiaH1braPWDrVaa1s77VLbqm3fX7HV1g6tXW+1tcNq6+iwVkVQq4gTFQcKgqACTrbMnN8fSCQkhARCkkue7+fDp9zcc29ObmPycO4ZMiGEABEREZGVsTF3BYiIiIjMgSGIiIiIrBJDEBEREVklhiAiIiKySgxBREREZJUYgoiIiMgqMQQRERGRVWIIIiIiIqvEEERERERWiSGIiIiIrJKduSugzZ49e7B06VIcOXIEGRkZ2LRpE8aNGwcAKC0txZtvvomtW7fiwoULcHFxQXh4OJYsWQJfX98az7l48WK8/fbbao+FhITg7NmzWssrlUpcuXIFzs7OkMlkRnttRERE1HCEEMjLy4Ovry9sbHS39VhkCCooKEC3bt0wY8YMjB8/Xm1fYWEhjh49irfeegvdunXDrVu38MILL+D+++/H4cOHdZ63U6dO2Llzp2rbzq7ml3/lyhX4+fnV74UQERGRWaSnp6NVq1Y6y1hkCBo9ejRGjx6tdZ+Liwt27Nih9tiKFSvQt29fpKWlwd/fv8bz2tnZwdvbW686ODs7A6i4iAqFQs+a6yc3Nxd+fn4Ncm6p4jVRx+uhiddEE6+JJl4TTdZ2TSpfb+X3uC4WGYIMlZOTA5lMBldXV53lzp8/D19fXzg6OiIsLAyRkZE1hqaaboHJ5XLI5fL6VhkAoFAorOINaQheE3W8Hpp4TTTxmmjiNdHUWK9JcXExiouLNR7XpyuL5DtGFxUV4fXXX8eUKVN0/s8NDQ3FmjVrsG3bNqxatQopKSkYNGgQ8vLydJ7fz88PLi4uqp/IyEhjvwQiIiKqo8jISLXvaUO6ski6Jai0tBQPPvgghBBYtWqVzrJVb6917doVoaGhCAgIwPr16zFz5swaj6vefGisViAiIiKqv/nz52Pu3Lmq7crbYfqQbAiqDEAXL17Erl27DG7ic3V1Rbt27ZCUlKSzXEM0H8rlcixatIiBqgpeE3W8Hpp4TTTxmmjiNdHU2K9JfbqpyIQQwsj1MSqZTKY2RB64G4DOnz+P6OhoeHh4GHze/Px8+Pv7Y/HixXj++ec19ufm5sLFxQU5OTmN8h4qERFRY2TI97dF9gnKz89HfHw84uPjAQApKSmIj49HWloaSktLMXHiRBw+fBg//vgjysvLkZmZiczMTJSUlKjOMXz4cKxYsUK1/corr2D37t1ITU3F/v378cADD8DW1hZTpkwx9csjIiIiC2CRt8MOHz6MYcOGqbYr7/VNmzYNixcvxu+//w4A6N69u9px0dHRGDp0KAAgOTkZ169fV+27dOkSpkyZghs3bsDDwwMDBw7EgQMH6tSKRERERNJn8bfDzIW3w4iIiKRH8rfDiIiIiBoaQxARERFZJYYgIiIiskoMQURERGSVGIKIiIjIKjEEEZEkRSdexcroJOQWlZq7KkQkURY5TxARkS6Xs2/j8dWHAADpNwuxZEJXM9eIiKSILUFEJDmHUm6qfl93KN2MNSEiKWMIIiIiIqvEEEREkiOTqW+XlSvNUxEikjSGICKSvL9OZpi7CkQkQQxBRCQ5V3OL1bZzi8rMVBMikjKGICKSnBsFJWrbshrKERHpwhBERJJjW+2Tq3ofISIifTAEEZHk2Nqof3TJ2BZERHXAEERE0iOE2uaZjFwzVYSIpIwhiIgkZ0V0ktr22gMXzVQTIpIyhiAikhylqL0MEVFtGIKIiIjIKjEEERERkVViCCIiIiKrxBBEREREVokhiIiIiKwSQxARERFZJYYgIiIiskoMQURERGSVGIKIiIjIKjEEERERkVViCCIiIiKrxBBEREREVokhiIiIiKwSQxARERFZJYYgIiIiskoMQURERGSVGIKIiIjIKjEEERERkVViCCIiIiKrxBBEREREVokhiIiIiKySRYagPXv24L777oOvry9kMhk2b96stl8IgYULF8LHxwdNmjRBeHg4zp8/X+t5V65cicDAQDg6OiI0NBQHDx5soFdAREREls4iQ1BBQQG6deuGlStXat3/wQcf4NNPP8UXX3yBuLg4NG3aFBERESgqKqrxnL/88gvmzp2LRYsW4ejRo+jWrRsiIiJw9erVhnoZREREZMFkQghh7kroIpPJsGnTJowbNw5ARSuQr68vXn75ZbzyyisAgJycHHh5eWHNmjV46KGHtJ4nNDQUffr0wYoVKwAASqUSfn5+eO655zBv3jyN8rm5uXBxcUFOTg4UCkXDvDgiqpPAeX9pPJYSeS9kMpkZakNElsSQ72+LbAnSJSUlBZmZmQgPD1c95uLigtDQUMTGxmo9pqSkBEeOHFE7xsbGBuHh4TUeUyk3N1ftp7i42DgvhIiMKq+4zNxVICIzKC4u1viu1pfkQlBmZiYAwMvLS+1xLy8v1b7qrl+/jvLycoOOqeTn5wcXFxfVT2RkZD1qT0QNxd5Gch9nRGQEkZGRat/Tfn5+eh9r14D1ahTS09PVmtPkcrkZa0NERERVzZ8/H3PnzlVt5+bm6h2EJBeCvL29AQBZWVnw8fFRPZ6VlYXu3btrPcbd3R22trbIyspSezwrK0t1vpooFAr2CSKSAAGL7t5IRA1ELpfXuYFCcu3HQUFB8Pb2RlRUlOqx3NxcxMXFISwsTOsxDg4O6NWrl9oxSqUSUVFRNR5DRJYpu7BE6+NKZiAiMpBFhqD8/HzEx8cjPj4eQEVn6Pj4eKSlpUEmk+HFF1/Ef//7X/z+++84efIkpk6dCl9fX9UIMgAYPny4aiQYAMydOxdff/01vvvuO5w5cwZPP/00CgoK8Pjjj5v41RFRffwYl6b18aMXb5m4JkQkdRZ5O+zw4cMYNmyYarvyXt+0adOwZs0avPbaaygoKMCTTz6J7OxsDBw4ENu2bYOjo6PqmOTkZFy/fl21PXnyZFy7dg0LFy5EZmYmunfvjm3btml0liYiy7b0n0Stj9+qoYWIiKgmFj9PkLlwniAiy6RtjiAA+OjBbhjfs5WJa0NElqZRzxNERKQN/5wjIkMxBBFRo1DOFEREBmIIIqLGgRmIiAzEEEREjQLnCSIiQzEEEVGjwHmCiMhQDEFE1CiwSxARGYohiIgaBSVTEBEZiCGIiBoFTnlGRIZiCCKiRoERiIgMxRBERI2Ckj2jichADEFE1CgwAhGRoRiCiKhRYEMQERmKIYiIGgV2jCYiQzEEEVGjwAxERIZiCCKiRsHGRmbuKhCRxDAEEVGj4Ne8ibmrQEQSwxBERI3C13svmLsKRCQxDEFE1CgcSr1l7ioQkcQwBBEREZFVYggiIiIiq8QQRERERFaJIYiIiIisEkMQERERWSWGICIiIrJKDEFERERklRiCiIiIyCoxBBEREZFVYggiIiIiq8QQRESSoVQKc1eBiBoRhiAiIiKySgxBRCQZbAciImNiCCIiIiKrxBBEREREVokhiIgkQwjeECMi42EIIiLJYAQiImNiCCIiyTh9JdfcVSCiRoQhiIgko6Rcae4qEFEjwhBERJJRzskSiciIGIKISDJ2n7tm7ioQUSMi2RAUGBgImUym8TNnzhyt5desWaNR1tHR0cS1JqL6iD571dxVIKJGxM7cFairQ4cOoby8XLWdkJCAESNGYNKkSTUeo1AokJiYqNqWyWQNWkciMi4lh8gTkRFJNgR5eHiobS9ZsgStW7fGkCFDajxGJpPB29u7oatGRA2EGYiIjEmyt8OqKikpwQ8//IAZM2bobN3Jz89HQEAA/Pz8MHbsWJw6dcqEtSSi+ipnCiIiI5JsS1BVmzdvRnZ2NqZPn15jmZCQEHz77bfo2rUrcnJysGzZMvTv3x+nTp1Cq1atajwuN1d9XhK5XA65XG6sqhORAZiBiKi64uJiFBcXq7arf2/r0ihagv73v/9h9OjR8PX1rbFMWFgYpk6diu7du2PIkCHYuHEjPDw88OWXX+o8t5+fH1xcXFQ/kZGRxq4+EempuLRcbfvViBDV7x7O/OOEyBpFRkaqfU/7+fnpfazkW4IuXryInTt3YuPGjQYdZ29vjx49eiApKUlnufT0dCgUCtU2W4GIzOdKTpHatp+bk+p3HxeO9iSyRvPnz8fcuXNV27m5uXoHIcmHoNWrV8PT0xNjxowx6Ljy8nKcPHkS9957r85yCoVCLQQRkeW4cC1f9fuJSzlmrAkRmUt9uqlI+naYUqnE6tWrMW3aNNjZqee5qVOnYv78+artd955B9u3b8eFCxdw9OhRPProo7h48SKeeOIJU1ebiIykqJTLaBBR3Um6JWjnzp1IS0vDjBkzNPalpaXBxuZuxrt16xZmzZqFzMxMNG/eHL169cL+/fvRsWNHU1aZiIzIVtJ/xhGRuUk6BI0cORKihuEiMTExatvLly/H8uXLTVArIjIVW054SkT1wL+jiEiybGwYgoio7hiCiEiy7BiCiKgeGIKISLJsbfgRRkR1x08QIpIsdowmovrgRwgRSRZbgoioPvgJQkSSZcsuQURUDwxBRCRZtrwfRkT1wE8QIpIsjg4jovpgCCIiySor57IZRFR3DEFEJFmFJeXmrgIRSRhDEBFJlh37BBFRPfAThIgky57Dw4ioHhiCiEiy7DhPEBHVAz9BiEiyODqMiOqDIYiIJMuOt8OIqB4YgohIstgxmojqg58gRCRZvB1GRPXBEEREksUQRET1wRBERJLlYMePMCKqO36CEJFk+bo2MXcViEjCGIKISLJsZLwdRkR1xxBERJLR3ttZ9fuS8V04YzQR1QtDEBFJxtnMPNXvAS2awt/NyYy1ISKpYwgiIknKLy6DjLfDiKgeGIKISJKOpt0ydxWISOIYgohIkpRKYe4qEJHEMQQRkSSVlCvNXQUikjiGICKSpORrBeauAhFJHEMQERERWSWGICKSJGdHO3NXgYgkjiGIiCRpRAcvc1eBiCSOIYiIJIlTBBFRfTEEEZEkCY6QJ6J6YggiIkkSYAoiovphCCIiSXJyYMdoIqofhiAikqTeAc3NXQUikjiGICKSJG2Lp94uKTdDTYhIqhiCiEiSbLSMDsstKjV9RYhIshiCiEiSZNBMQRwxRkSGYAgiIkmyteVEQURUP5INQYsXL4ZMJlP7ad++vc5jNmzYgPbt28PR0RFdunTB1q1bTVRbIjK2ZnKODiOi+pFsCAKATp06ISMjQ/Xz77//1lh2//79mDJlCmbOnIljx45h3LhxGDduHBISEkxYYyIiIrIUkg5BdnZ28Pb2Vv24u7vXWPaTTz7BqFGj8Oqrr6JDhw5499130bNnT6xYscKENSaihsQJFInIEJIOQefPn4evry+Cg4PxyCOPIC0trcaysbGxCA8PV3ssIiICsbGxOp8jNzdX7ae4uNgodSciw9wqKKm1DDtGE1mf4uJije9qfUk2BIWGhmLNmjXYtm0bVq1ahZSUFAwaNAh5eXlay2dmZsLLS33VaS8vL2RmZup8Hj8/P7i4uKh+IiMjjfYaiEh/Obc5/J2INEVGRqp9T/v5+el9rGR7Fo4ePVr1e9euXREaGoqAgACsX78eM2fONNrzpKenQ6FQqLblcrnRzk1E+mMjDxFpM3/+fMydO1e1nZubq3cQkmwIqs7V1RXt2rVDUlKS1v3e3t7IyspSeywrKwve3t46z6tQKNRCEBGZh9DjXheDEpH1kcvldW6gkOztsOry8/ORnJwMHx8frfvDwsIQFRWl9tiOHTsQFhZmiuoRUT0p9Ug4F68XNHxFiKjRkGwIeuWVV7B7926kpqZi//79eOCBB2Bra4spU6YAAKZOnYr58+eryr/wwgvYtm0bPvzwQ5w9exaLFy/G4cOH8eyzz5rrJRCRkWWz3xARGUCyIejSpUuYMmUKQkJC8OCDD6JFixY4cOAAPDw8AABpaWnIyMhQle/fvz9++uknfPXVV+jWrRt+/fVXbN68GZ07dzbXSyAig9TeFHQw5aYJ6kFEjYVk+wStW7dO5/6YmBiNxyZNmoRJkyY1UI2IqCHpM/z90q3bDV8RImo0JNsSRETWZX/yjVrLZOUWmaAmRNRYMAQRkSREnb1aa5mTl3NMUBMiaiwYgohIEvQZIk9EZAiGICKShHJ9xsgTERmAIYiIJKGMIYiIjKzOo8NKS0uRmZmJwsJCeHh4wM3NzZj1IiJSo8/tMCcHWxPUhIgaC4NagvLy8rBq1SoMGTIECoUCgYGB6NChAzw8PBAQEIBZs2bh0KFDDVVXIrJiSVfzay1jI5OZoCZE1FjoHYI++ugjBAYGYvXq1QgPD8fmzZsRHx+Pc+fOITY2FosWLUJZWRlGjhyJUaNG4fz58w1ZbyKyMrcKa58NOr+4zAQ1IaLGQu/bYYcOHcKePXvQqVMnrfv79u2LGTNmYNWqVVizZg327t2Ltm3bGq2iRERERMakdwj6+eef9SpXVlaGp556qs4VIiIiIjIFg/oELV++XOf+vLw8RERE1KtCRERERKZgUAhasGABvv/+e637CgoKMGrUKNy4UfvU9kRERETmZlAIWrt2LWbPno3ff/9d7fGCggJERETg2rVriI6ONmoFiYiIiBqCQfMETZw4EdnZ2ZgyZQr++usvDB06VNUClJWVhd27d8PHx6eh6kpEZJEq5zCScYg+kaQYPFniE088gZs3b2Ls2LHYsmULFi5ciCtXrmD37t3w9fVtiDoSEVmsjJzbmPLVATSV22H97DA0ldd5DloiMrE6/Wt97bXXcPPmTQwfPhyBgYGIiYlBq1atjF03IiKLN3/jSaTeKAQArIhOwuuj2pu5RkSkL4NC0Pjx49W27e3t4e7ujhdeeEHt8Y0bN9a/ZkREEnAmI1f1e9qdMERE0mBQCHJxcVHbnjJlilErQ0QkNVWXNGOXICJpMSgErV69uqHqQUQkSVUXt+faZUTSYtAQeSIiUld1dXtmICJp0TsEpaWlGXTiy5cvG1wZIiKpqdIQBGYgImnROwT16dMHs2fPxqFDh2osk5OTg6+//hqdO3fGb7/9ZpQKEhFV1y/YzdxVUFFvCWIMIpISvfsEnT59Gv/3f/+HESNGwNHREb169YKvry8cHR1x69YtnD59GqdOnULPnj3xwQcf4N57723IehORFRvU1sPcVVBRawliBiKSFL1bglq0aIGPPvoIGRkZWLFiBdq2bYvr16/j/PnzAIBHHnkER44cQWxsLAMQEVmN7MJS1e8y3hAjkhSDJ0ts0qQJJk6ciIkTJzZEfYiINJRXHYIF9VtQluTABS4gTSQlHB1GRBbvox2JattVM5Cvi6OJa1Ozy9m3zV0FIjIAQxARWbyV0clq21Ubhp4f3tbEtSGixoIhiIgkR1TpjtzEwdaMNSEiKWMIIiLJcbS/G3w4SzMR1RVDEBFJzuTefqrfbW0YgoiobgweHaZNVlYWTp8+rfo5deoUzpw5g6ysLGOcnohITdVbYIxARFRX9QpBAwcOxPnz5+Hq6oqQkBC0b98eGzZswJ9//om2bdlZkYgaRtU7YJylmYjqql4hyNfXF0qlEpGRkRgyZAgAYMOGDejbt69RKkdEpE3VSQmr3w0rK1fCzpZ3+omodvX6pFi/fj2+/PJLfPzxxxg5ciTi4uL4VxkRNbiqwad6x+idZ66auDZEJFUGhaCdO3dqzNTapUsXbNq0Ce+99x7efvttZGVlIS4uzqiVJCKqquofWzbVPsWKy8pNXBsikiqDQlBERASuXbumdV/v3r2xdetWbN++HQsWLEB4eLhRKkhEVF3VliDbaimIrdFEpC+D+gTps17PgAEDEBUVhejo6DpXiohIl6pBJzTITX2fqStDRJLVYL0Hhw0b1lCnJiJSsWcnaCKqI4M/PVatWoWoqCjcunWrIepDRGSQ6i0/N/KLzVIPIpIeg0PQihUrMGLECLi7uyMwMBDjx4/Hf//7X2zduhWZmZkNUUetIiMj0adPHzg7O8PT0xPjxo1DYmKizmPWrFkDmUym9uPoaDkrUBNR/a0/fMncVSAiiTB4nqBTp06hrKwMx44dw9GjR3H06FF8/fXXSE9Ph0wmg7e3Ny5fvtwQdVWze/duzJkzB3369EFZWRkWLFiAkSNH4vTp02jatGmNxykUCrWwxE6URGQsfm5NzF0FIjKAQSGoMjD4+vrC19cXY8aMUe27ceMGjhw5gvj4eKNWsCbbtm1T216zZg08PT1x5MgRDB48uMbjKoMaETUOlvR3TBN7rmhPJCVGGx3WokULjBw5EiNHjqx3peoiJycHAODm5qazXH5+PgICAqBUKtGzZ0+899576NSpU43lc3Nz1bblcjnkcnn9K0xEjc69XXzMXQUiq1NcXIzi4rt9Aat/b+tiUJ+gbdu2wcXFxZBDTEKpVOLFF1/EgAED0Llz5xrLhYSE4Ntvv8WWLVvwww8/QKlUon///rh0qeY+BH5+fnBxcVH9REZGNsRLIKIapF4v0Lm/+i1tU7QM7TqbhW0JmRp/GDo5sCWIyNQiIyPVvqf9/Pz0PtagliBztfLUZs6cOUhISMC///6rs1xYWBjCwsJU2/3790eHDh3w5Zdf4t1339V6THp6OhQKhWqbrUBEppVzu9TcVVBz4MINzFhzGADw9dTeavtknKWIyOTmz5+PuXPnqrZzc3P1DkL1WkDVEjz77LP4888/sWfPHrRq1cqgY+3t7dGjRw8kJSXVWEahUKiFICIyrS92J5u7CmpWRt/9vFj6z1kz1oSIgPp1U5HsLGNCCDz77LPYtGkTdu3ahaCgIIPPUV5ejpMnT8LHh/fxiSzV3wmmm3pDH1VvvylF9X0mrgwR1YtkW4LmzJmDn376CVu2bIGzs7NqjiIXFxc0aVIxTHXq1Klo2bKlqh/PO++8g379+qFNmzbIzs7G0qVLcfHiRTzxxBNmex1EJC1V1y1T6rGUEBFZLsmGoFWrVgEAhg4dqvb46tWrMX36dABAWloabKosrnjr1i3MmjULmZmZaN68OXr16oX9+/ejY8eOpqo2EUlc1cYeZiAiaZNsCNJnMdeYmBi17eXLl2P58uUNVCMisgQ2DXxPykbtdhhTEJGUSbZPEBGRNjMHGt4/0BAyhiCiRoMhiIgk75mhrVW/uzSxb9DnqtonqKycIYhIyhiCiEhSfF00Fz2uegfsuZ+PNejzZ+UWqX7PyCnSUZKILB1DEBFJymuj2ms89vXeFNXv+cVlDfr8xy/lNOj5ich0GIKISFJaNHPQeKykTGmGmjRuhSVlKK8+ERJRI8MQRESSwu/lhpdwOQd9/y8K4R/tRlFpeY3lhBA4nHoTNwtKTFg7IuNhCCIii3VLy5crR2QZ39oDFxG59QzyiirWaXviu8PILy5DyvUCrI29qPUYpVJg7YGLmPhFLCI+3iO51jhd4Y6sB0MQEVmsT6LOazymZFOQUR1OvYm3Nifgyz0X8P62irXQMqt0/r5ZqBlEs3KLcM+HMVi45RQA4FpeMWIv3DBNhY3g8dUH0eOdHYg6k2XuqhhVwuUcvLDuGKLPXm3w53p/21k88d0hXMm+3eDP1ZAYgojIYqXeKNB4zFr6qZgq7O05f131+w8H0jTrUaXlraC4DDmFpXhzcwJSbxSapH7GdiYjF9GJ13C7tBwzvzts7uoY1X8++xdb4q/g8TWHjHre9YfSMXblPsQkVoSr/cnXsSomGTvPXMWLv8Qb9blMjSGIiCySEAIxidc0Hne0t9V4rKmD5mMNIf2m7i9+Y9ypE0Jg6rcH0fe9nTiadqv+J6x3fSr+ey2vGP3ei0Jo5E7sOK3ZgqJtFv8Vu85j4Pu7sP2U5SyCW1iiPnrwng9jsFPL66lKCIFVMclY8vdZ3C6xvttor/12AsfTszF9dUW4OpuRp9p3MOWmuaplFAxBRCQpg9q6azzW0EtlVDp5WffweGNUIzrxKvacu4br+SV46KsD9T+hFnlFpci5XdH/p3pyO3JR/UutMtws+fss8orLUFSqX98fIQSWbT+HS7du48m1R3A5+zZGLt+NyV/GGq3/0O2Scvxw4CLi6nEr7sK1Ajzxve4WoW0JmXh/21l8sTsZn8ck4aPtiZi7Pl5rnzUpuZZXbDUtqzWR7NphRGSdZFqShokykNps0doYoyUo9frd1iZ9w0JRaTlmrz2CguIyfPlYL7RoJq+xbGZOEYZ/GAOlAP5+YRByi9RbRqq3vlV+R6pCk56qX4tX1h/Huax8AEC7N//GJw91x9juLQ06Z3WfRJ3HF7uTAQAH5g+Ht5aJNI1he5WWos92Jal+L1cKfPJQD4POJYRAabmAg53p2iDSbhTi9d9OIKCFE5ZM6AoA+OP4FTz38zF09FHgr+cHav13VRNT/XszBbYEEZFFMiRQGPIBXh+1tYII1C0FZeTcxisbjuOeZTF458/TWsskZuZh/eF0FJaUIed2KY6l3VK10nyxOxm7z13D4Yu3sOj3Uzqf650/T6GgpBy3S8sxdFkM1uxP1Vn+rxMZd37T/dryispQcGeiSqVS4Hp+sdr+6h2nX1gXX+9+T5UBCAAWbknQWTbpah6W/nMW5+8Eserq0qqzJf6KQeWVSoGxK/eh93934FBqw95GupZXjD9PXMGW+Mt4cu1hxF64gXWH0tFl8T8A7s6sfjojF3vPX0fK9QKUlUtrhJ8xsCWIiEhPy3ee07m/ri1BYZG7dO6/XVKOiI/3AACOp2cjJvEaLmffxuL7OuKhvv74eOfdUXT7k7XfGjpy8Rb+OZWJ+LRsnc91o1oYqBwpVttre+7nY3CW2yHq5SGY89NRHEqtvT/TgZQb6NLSBc6OFeu9xSbfwD+nMjGtfyAAYN5vJ9C5pQve+k9HteO+2XsBcdX6omyvpV9P+Ed7dO5/c3MCXo0IwfFL2RjZ0RtNGqCf2cD3d+HKnaVWJn0Ri79fGIQOPgrV/sOpN3Ew9Sam9PFH86aak4JWtT/pOpZsO4sJPVuprldVff5vp9bj8orKcOmWet+2qd8eBAD0DXLD+tlhtb6OU1dyde4vVwokXc1HO69mJvsDpa4YgojIIhmSJ0qr/QUrhGiQD9+LtYyIaqjeFacz7n7p/Bh3dwTX4j9Oo6xaa8rNghIcuHAD7byc4Vbli3TCqv16PddPcZojxPSVV1yGCV/sR/pN/YZNP/x1nOp2DABM+bqiD9TfCRlwaWKPc1n5iEu5iU6+CnRu6YJ2Xs64eKMA//3rjNbzvbz+OJ4YFIQOPgqUKwXSbxYi0L0pjqdn11qXv05mYMfpLJSUKzG9fyAW399JtU9bp+9Kr/16HPuTb+CTh3qgV0Bznc9xpdpac6M/2Yvfnx2ApKv5GBriiYlfxAIAjl7MxjfTegMAysqVuHC9AG091QPFw9/EAQBOXMpBG89mKDSgw3ZNt1kPptzEN3svYPmOcwjxdsa80R2w8egljXK/HlF/rKi0HFeybyPYoxkAYPbaI9h5JgtPDg7Ggns76F0vc2AIIiLJq/4FcC2/GJ7ODdM/xNTSbhTi1JWaO2Tf0jKPT2WH6sm9/fD+xK5GqUeJnrdK9A1AlU5n5OLD7efwY9zdSRmzcouRlXv3dtrc9ccBAL893V/n2nC/Hb2EP45fwZoZffDw1xUh4ZWR7fS+bVX5GtfsT8X4ni3RtZUrYpNvYLOO49cfrggEE1btR+qSMXo9T1X3r9gHAOjke7dFaGeV+Ytmrz2CqDvz/nz+SE/4uzlh+Q71FslH7gQifWkb3VepMmAeTcvGg1/G6nW+MZ/uRfK1Arw/oQsm9/FX1f+rPRcYgoiI6kLXX9+1OZeZb5YQVJcq19Yv5p4PYzRae/T1y+F0LL6/U707smbk3MbeKvMJGduK6KTaC6EiaKye3kdnmZJypSoAAcCy7bpvYdbk/hX78MWjPfHUD0frdDxQ0Y+roKQMznI7tdY8barfYlr8+ymM7OilCkAA8MyPda9LVZF/nzXKeSolX6uYz+v1307ir5OWMx2CPhiCSKvr+cVoJrfTOicLkSnUZzX4bacyMFDLUPqGZmjHaKVSYNzn+3SWqS0A1Ra83v3rNNLqObFhbX2WTGn+xpMmey5DA5BSKWBzZwjh5mOX6zWR4Jr9qbV2WjeHwHl/6dy/55zm3F4AcPpKLrYlZGBiLz/4t3BqiKrVCUeHWSmlUtT4JXMo9Sb6vReFge9Ha0wsRmQq+nSsrdQv2E1tW9vMx6ZgaEvQ/uQbOHFJ99xDtT5nLft/ikvDv0kN14pjalWX9LA0f5y4grJyJV779bjkZ1I2tns/3YtPdyWp+n1ZCoYgK1Q5TLPXuzu0pvbp3x5E2Z0hrt/t1754IjW84rJyXLimfTivPnJul2oMU5aSJX9rdn71cNY+/82gth46z1VcVo63Nidg4ZYEi1roc/3h9HqfY1VMcu2FyCQ+2JaINm/8reonRBWdpt/cfLf17nL2bSiVAnEXbiBbS382U2MIsiLns/KwNjYVvx+/gpOXc1BcplQNjayqoEon04ZuCbqaV4Q/jl9RzS9iKH36jRxNu4WPd55DVrW/IItKy2tdBuGmkWaEzSsqxc8H03A+K6/2wqh4XWNX7MM9H+7G2thUg5/val4RwiKjEBYZhbOZ2vsiFJWW46e4NMRWGVIthEBxmWUsC1DZz6CqYPemWss+3Ndf57m+2ZuCtQcu4vvYi1i9L8Uo9asLIQSOpd3CuTvvg9+PGzbPDFm2yxJfTLQhTPv2oEbL7HPrjmHyVwfwn8/+NfuM1ewTZCXKypUYsVz3PBlFpeVo/9Y2g857NbcIR9NuYWiIp8H9h/YlXVcb1bD9pcFo5+Ws9/GZOUV47H9xcHa0w0+z+qk9/7/nr2Pp9kRM6NlStdL1nnPXsPGZAQAqr8dupN+smGslMSsPxaVKzBocrJq347Oo8/hwxzk81MdPNctqXS3acgobj10GAJz772i12WK1Dec+fzUfZzMrvijf2nIKj4UFGvR8y/5JVI2YenFdPLa9OFijzOfRSfj0zuy3++bdA18XR0z99iCOXLyFVY/2wpB2d1tXcotK4Sy3M8mcH2XlSrUgXpWyhtBrU8tUztsS7nbW3HkmC7OHtAYAZBeW4Hp+Mdp46v++02XpP4k4evEW7u/uq3U25IMpNzH5qwOQyYCYV4Ya5TmJLFn1+ZyAuxNwXrp1G6ev5KJLKxdTV0uFLUEWqi4jYxb/fgrjP9+HpKuarQ21tWhczS3SGoAqv3Sycouw8egl1dT5xWXlSLlegAc+34+nfjiK//51GqXlSmw+dhmB8/7C4lpmrU25XqAxrHPanVap7MIS3NByG6f6NVmw6STOX83H0bRsfB6TjDMZuShXClzLK8aj/4vD8fRsVQACKoZ83ioowaPfxKHNG3+rhvIu/uM0fj6Yjo3HLmP0J3tVt6A+vDMMdd0h9VsWQgiDm3ErAxAAXLnz16IQAnN+OopBH0TjZLV+IWXl+v3/T7tRiNlrD+OrPeq3RPKqLIVQ03IHn1aZ/j/qTBaOpmVj7/nrKCwpV/2/AIAt8ZfRdfF2BM3filUxyfUatVUTpVLgrxMV87QM/2g3ur29XWu5WYOCtZ9AR5WyC0vUOizLIENJmRIHLtzA4A+iEf7RHmw/lYn84jKs2HUe8zeeUM0rk5FzG0+tPYKPtifq/Vqizl7FC+vi8cqG46p+d5Wta8+vq5ilVwjgtV9P6H1OImoYbAmyMBk5t/HCunjcLCjBmsf7oFVzJ6RcL8CLv8Tjvq4+eKKGL4HDqTdVIwnCP9qDdU/2Q2iQm+ov9zQdt33KlQJ934vSum9ldDLkdrb46E4gGN7eE2+M6YCHv45T66D4w4E0tSbPNftTEdjCCcM7eMHPrWIkQFFpuaq15q8TmrcBMnKKcDn7dsW6Rkog0N0J2YWl+O+4znhy7REAwOrpfZB9uwRD23mqdSj9NOo8Po06j1GdvJGho+Pk/I0na+0k+t7WM5jYy0/tsclfxiIu5Sb6BDZHzu1SnL+aj7fv74SpVVpodp+7hnUH0zB7SGtEn72KT6IqZvHd+9owtXNVBsvY5Buqv4juW/Ev/N2cYG8rQ35xmdocKdrkFJbi9xNX8O6fp1FSpsQ/p7JwT3tPVYtG1ZyiT9vNsn8S8VhYgNZ9L6yLV/3+/raz8HdzwpiuPhrlhBAoVwr8fDANjva2mNirFWQyGbILS+DsaA/bKq0157Py4OfmpHo//HkyA8/fmcZflxEdvfR4NXetPXARC7ckaHRYfuL7w2r94Z5cewRTwwLwfWxFH7ifD6Zjz6vD8OqvxxGXchPbTgHuNfRHqsmvRy7h1yOX4GBro5p/xtnx7keutr+Qici0GIIsyIAlu9TuKc9dfxzrZvXDsGUxACqmyx8a4qG16b56yHnoqwNo6mCLUZ19cKOgWGNRxKo21NI586MqE3NFnb2qNm+FLov/OI13/jyNmFeG4au9yfjlUDoW3dcJj/YLwO1S7bc7/vvnadX6TJWLLVYGIAB4fM0hAECfwOZaO/1uO6V7jora9gPAzjNXsfOM+mus/MKqOmJp4ZZTeKxfAGQyGZKv5ataT/5OUH+Ol6qNEtkSfwUvjWiHq3nq9dcVVCvlF5chu7AE7/xxWmOZgAvXCtDG0xlnMnLVXme5qOiE2M3PFY72tsguLMHqfalqx+YWlWFltH4dbDcdu4yRnbxgb1vRkHzk4k1MWKU5qVqLZg5QKqGxQnd4By/VZGodfBSI6OSltuyDLobejntrs/b1pLQNCKgMQJU+3XVeLahUbVU0RNVJBvOKONqSqKp/k66b9XYYQ5CFOJ6erdGp7nh6No5fylZ7bPbaI/hmWh8E3ekgWlRajtyiUrU+D5UKSsrxm5Ypz6ub14DzbigF8H9bT+OfUxVfem9uToAQosYv3OoBoiaGDJ9uSIM+iMbnj/RUzfqqzeGL6nX9LjYVCZdzVH1+9JV2oxCDl0bXuP/Srdv49/x1zPjukNrjWbnFmPzVAQxo0wI/PtEPC7ec0qtDbvTZq5Dba94x33kmCwPf34XtLw1BRs5trQEIqBiaXT1MVh5f6UxGLs7UMolcXe06q31WXH3n8qm+NAARGd/Go5fw9NDWZnt+mWiIG/yNQG5uLlxcXJCTkwOFQlH7AfWQlVuEYctitK798vOsfhrzKrg3c8ChN8Ix56ej2CqB2TldneyRXai9XwrpJ3XJmFonKdPHjAFB+NZIo6OGt/fU2SrY0rWJ0UfL1LQswe2ScnRYaFinfiIyv3ZezbD9pSFGPach399sCTKzy9m3MWBJzbOx/u9fzS+s6/klCJq/tSGrZVQMQPVX/ZZaXRkrAAGo9baoKYcLN8SK30TU8Cq7PZgLQ5CZ3CooQXGZEpNqWdm56q0Dsl6bqowus1YvhbczdxWIqJFhCDKDq7lFNY7GIiLtbDmhBxEZGT9WzGCZAXOOEFEFWxt+XBGRcfFTxQzqu2AikTUaZIZV4YmocWMIMgNDh0YTEdC5pfnmEiGihlNUw7xxpsAQRERERGZjzkVUGYJMLOW65srYRERE1qqmhZFNgSHIxF400nwvRKTOwY4fZ0RSFHfBfOvo8VPDxCpXpyYi/fnfWYRXF4WjvQlqQkTGVlTGPkFERDXSZ70vrgBEJE0yGLYwsjExBBGRxRsW4llrGfdmchPUhIgaE0mHoJUrVyIwMBCOjo4IDQ3FwYMHdZbfsGED2rdvD0dHR3Tp0gVbt0pn/S0ia/bGmA61luEQeiJpkpmvIUi6IeiXX37B3LlzsWjRIhw9ehTdunVDREQErl7Vvqjj/v37MWXKFMycORPHjh3DuHHjMG7cOCQkJJi45kRkKLld7Qukdm3FEEREhpFsCProo48wa9YsPP744+jYsSO++OILODk54dtvv9Va/pNPPsGoUaPw6quvokOHDnj33XfRs2dPrFixwsQ1JyJDuDV10Kvc8A613zIjIqpKkiGopKQER44cQXh4uOoxGxsbhIeHIzY2VusxsbGxauUBICIiosbylXJzc9V+iouL6/8CiEhvP80K1atcq+a1jyAjIstT37thxcXFGt/V+pJkCLp+/TrKy8vh5eWl9riXlxcyMzO1HpOZmWlQ+Up+fn5wcXFR/URGRtav8kRkEB9FE3NXgYgsWGRkpNr3tJ+fn97H2jVgvRqF9PR0KBQK1bZczhEoRKbk4sT5f4ioZvPnz8fcuXNV27m5uXoHIUmGIHd3d9ja2iIrK0vt8aysLHh7e2s9xtvb26DylRQKhVoIIiLTCQtuYe4qEJGFk8vldW6gkOTtMAcHB/Tq1QtRUVGqx5RKJaKiohAWFqb1mLCwMLXyALBjx44ayxOR+Rk6dNalCVuNiKSGQ+TrYO7cufj666/x3Xff4cyZM3j66adRUFCAxx9/HAAwdepUzJ8/X1X+hRdewLZt2/Dhhx/i7NmzWLx4MQ4fPoxnn33WXC+BiGohN3A9sLf+07GBakJEDcd8KUiSt8MAYPLkybh27RoWLlyIzMxMdO/eHdu2bVN1fk5LS4ONzd0P0P79++Onn37Cm2++iQULFqBt27bYvHkzOnfubK6XQEQ62MiARfd1MuiYFs30G06vr8AWTghr3QI/H0w36nmJyDJINgQBwLPPPltjS05MTIzGY5MmTcKkSZMauFaNz8iOXjh1JReXs28bdNyWOQMwduW+BqoVWaKnhrTGF7uTjXKuva/fg5auho0MayY33kfaljkD0M3PFe/+edpo5yQiTfrOBdYQJHs7jCosus+4zf9PDg5W2/7lyX74ampv7Jt3D04uHgkAcHKwRcwrQ/Fg71Y1nmd8j5bo5ueq8fgnD3WvU70e6NESAHBfN18kv3cvQoPc6nQeYwrv4IWPJ3c32fP19Hc12XPVhXszB8wb3R7hHbxqL1wLe1uZwQEIAHoHNDeofOX7Shtt718iMr7mZhwByhBkoaaGBah+H9nRC9tfGoz1s8OQEnkvtswZAAB4YmAQ7mlft1ly+wRqflksn9wNC+5VX6MptMroHGdHe1x4714cXzQSge5NseDeDgh2b6pWPqCFE87/32h8VEM4uL+bL758rBe6+bkivMoMv8EeTbWWr/T22E5IXTIGn03pAVsbGf7vAe23MTffuTbVja/yZTdvdHskvB2B5ZO7aYTIp4a01np86pIxSH7vXvz53EB8PLk7Dr4xHF9P7YX7uvlqPP+gtu46X0t1j4T611pm7cy+eG98F637jr41wqDn04eu99WMAUFq26+Pao/h7T2x4an+AIARHev2nmzn1Uz1eyffui2BIZPJ8NfzA9UemzNM+//TX58Kw/Ia3qdV/32Ysc8mETUwSd8Oa0yc5XbIKy4DUPEF9Pqo9ghs0RTtfZzRv7X6l2o3P1ekLhkDAMi/cwwABLs3xYXrBVrPP75nS2w8elm1/fOsfmjzxt+q7ZOLR8LZsSKNr368Dz6PTsLUsECN89jYyGBz52vB1ckBUS8PQdD8uwvRbn9pMOxttWfrt/7TETKZDBGdvBHRyRtCCJy8nAP3ZnL43vmr/54PY3DhWsVraNW8CXoHNMfwDl5QOKr/pdDG01nrc3T3c0X8whHo/s4OtccX3dcJ3i6OCPF2xtjuFYHogR4VLVlv/1Hz7Y5mcjs8fCek2NrI0Lmli9pCnbYyoKVrE9WtwgA3J9hUGerQ2qMpZg9ujdd+O1Hjcwxq644f49Jq3F9RxgNAxfVVCoFfDqUj6Wo+Isd30WhKrvpeqtTWsxnOX81Xeyyikxfcm8m1PrdSCHT0UeB0RsXMq82d7HGrsBRLxnfBQ3398e2+FAAVr/3poa0B3A0aPf11t8ZceO9e7D53DccvZaNXQHP0CXRDRk4RWro2wSPfHMDVvOJ6tbAFVQvmr0ZUtE4dTcvGuO6++OP4Fbg1k6N3YEVrYoiXMxKz8gAAnVsq8PKIEPSqEoJ6B7rhm39T9H7+n54IxcPfxNW5/kTWxpyjwxiCTMyliT1ybpeqtjc+0x8dfRSQ29ngt6OXkXA5B3OGtUFTuR1mDAzScaYKzeR2+PKxXohJvIqnhrTGkKUxqn0yGSAE8PXU3gjv4KkWguxsbfDVY73wd0ImZg8JVgUgABgW4olhIfr9NS+r9u6tvtDl7MHB+HLPBXTyVeCxfgFq+2QyGbq2clV77M0xHTBjzWEAFbfOegXof9ursvXC1Uk9FHRt5QIXJ3u8Nqp9refoG9Qca2NtUVBSjtdGhWD24NawtdH9L/T7mX3x8c7zGNLOA82bOqj9gxYCuLerj84Q1MnXBasf74N/EjLxxKAgvPTLcZy8nKPa39bzbgtJO6+K8Fe9w/DamX3xzh+nMa5HS0wNC8Dbf5zGr0cuqfb/3wNd4ORgi6d+OIJLt27fuS6ueLRfAE5cyoGAQGZOEa7nlwAAlAL4ZlpvfPtvCga180C/YDdkZBch8E7A2DxnALYlZOLhvpqtWG29nLFsUjecupKDiE7eWHvgIv46kaHab2Mjw7D2nhhWpbWpMrhseKo/hBAa7ytDaPv/1cO/OXrcCWfTq7VkPTOsNV5YFw8AmD24tVq9gIqw2DugOQ5fvKXX8/dv446F/+mId3T0JRrb3Rdb4q/odT6ixk4I8z23TAhzPr3lys3NhYuLC3Jycow6WeJvRy7h5Q3HAQBD2nnguxl9jXZuAHhj00n8GJeGuSPaYWKvVigsKUebO1+iY1fuw/H0bHgp5IhbEF7LmfS3+PdTWLM/FZN6tcLSSd009peVK2FXQ+tQdUII7Dp7FXI7Wwys5bbSwZSbWHvgIqb09UMzuR06+ChUrVCXbhXimR+Pwr2ZHO+M7aRzXalxK/chPj0bALB/3j1QCoFzWXkY3NZD73pX9dzPx/DH8YovuG6tXLDl2YF47H9x2Hv+uqrM/6b1xp5z19DNzxXje6r3rSpXCtwoKMbCzaeQfC0fqx7tpfp/aIjoxKt4+ocj6NbKFeue7AeZTIYzGbl46KsDcGvqgL9fGARH+4rQKoTAg1/G4lBqxRf9mK4+WPlwT4OfsyaB8/5S/V7ZitmQPt55DhuPXsbi+zvinva6+ygplQK/HE6HDMCDvf1goyVE5RWVosvi7Xo9d+qSMSgrV2LnmasIdHdCcycHeCkcMerjPTibmQe5nQ0OvhGObm/rdz6ixm7HS4PR1kt7635dGPL9zRBUg4YKQUqlwKu/nsCV7NtYPrk7vF0cjXbuStmFJRqtIQBwLa8Y205l4p72nnXqdFoTIQQu3ihEQAunev0Fby5Xsm/jk53n0SfIDRN71dzZW1+ZOUUYuiwa5UqBP58bhBBvZyz95yxWRt8dNWWKIAAAt0vK4Whvo/b/pai0HA62Nhpf9inXCzD6kz2wlcmw8+Uh8HEx3nvkhwMX8cXuZLwY3s4o19gcqgY5XWr6f3s1rwh/HM/AsBAPBHs00/t81mrZpG5waWKPWd8fNndVqIFtf2mwqpXbGBiCjKChQhBZh+zCEpSWC3g4V0zlbq4QZKicwlLY2EDt9ihVqG8Iquv5OvkqcOqK/qti62vfvHswYMkug455dlgbrIhOMnpdtKm8jvHp2dideA3Ld56r87leDG+LQ6k3sS/phrGqBwD4YWYoHv1f4+z/1TfQDYWlZTiXmY+ScmWDPpc5QxD7BBE1gOotcTKJjDHiYqWW470HuqCkrByP9gvA6YxcBLo3Rddqt+Qm9GyF345equEMNVv5cE+DWoNfDG+LMV180NbLGT0DXDFjzWE8PbQ1VsXUfU6omQODcDYzt9Zg0t3PFd39XOsZgtoBAH6Mu4g3NiXU+TzVSbDhWy9/vzAIHXzuhofG3GrJIfJERGbm76bZZ+3hUH9MHxAEO1sbdG3lqjFCEgB8Xet2O72pvKIvmL7TObwY3k7VZ+Oe9l5IXTIGr2sZaLDYgHnL5o5oZ5I/DsZ09VH9/khogI6SQHtv7a0R2takGxbigRAt5QNb1Nz/UAru7+arFoCAiv6rDamWsScN+9zme2oiIgIqRok2hMf6BcBBy/prg+9MubB0YjcMaNMCD/ZuheMLR2JJDXNR6SOikxemDwhCq+a6W5jaeTXDl4/1QlO5HQT0743xvQGDSJwc7o5Srf79+lAfvxqPEwKIfmWoxuM/PhEK92bqq5S/P7Er3JvJsXp6Hzw7rA1eHtEOk3v74ZfZYYhbMNzgde+qmz04GKFBbnjvgS7Y9Ex/fDO1N14Y3hbfTO1dr/POGlT7qGNdGiKwtGhatxXgjYEhiIjIzKp/wX47XfsX3eTeNX+BazNrUDAS3x2l9tiySd1UneK9XRzx4xP98MHEbnBxssdDff01JsPU5YtHe6l+f2dsxQSmSydqjhCtlPB2BLa/NAQRnbwBaA6NfmF4W3gp5FoXwh2sZ2tE5WjRmrT2qHmkpYDQ2pLTuaULvp3eG83kdghs4YSz746Cp3NFK9yw9p54JSIEzw1vi/cndoWXwhFeCkfsn3cPXgxvCwDwVmhvsdM1/cakO4Hq4VB/9PBvjvCOXnhpRDuEd/TCew/UHFaHhnjg7fsrptBo6mCLmdWmWulRyzxetcXSIPemWFjLQsXeCke4Otljy5wB6KHHTPfNzbhsBvsEEZlA1SHuhi7tQI3Tuif74ae4NLXZ4SvVNKz/zf90wC+H7y7mqqszaU9/V/jf+UJ3tLdBUWlF59baRue9PjoE/YLdkF1Yin+TrmPWoOAay47q7I3T70RABhma3Gl96Rfsht+e7g9Hexu888dpxKXcBFAxM3r1cFI9BM0Z1gYvjWins36VpvT1g72tDb6Pvah6zNNZjtci2mPnmas1HvdwqD/+b+sZ1Xar5k1Uc2cJoTn3WaWurVxx8I3hkNvZ1jp3GAC0aCbHi+HtMKKjF/zcnDT6cwEVLXVr9qdqPV7XtBhT+vrh1JUctYlOV0/vg0OpNzFjYBCaOzkg2KMpgj2a4ZeD6pOh1lZzbWOlurVywe5z1wAAvQPcMGNgkM55sA4sGK6aGsXfzQnH0rJreVbzYQgiMoH7u/ki6uxVXLpViI/ruH4aNS79glugX5VladbPDsNnu85jko7WHmdHe8TOvwdzfzkOP7cm+E9XHzz38zHV/sHtPHD5ViFmD26NB6vc9vn92YH44cBFjWVetJHb2WLknZaaB3XcOqrk5KD+NSKTydDrTtBfOrEb7l/5L+R2Nng1IkTj2Kp9bVo0ddB6666q2UOC8eXuCwCAJwYFo7VHMzzQoyVOXs7Bf7r6wtnRTmPG+uqhpqncDqfejkDU2avoHdAcNwtK8J/P/gUAvDtO+3I8Nb1WfehaAub+7r5aQ1BlC1JNZDIZBrRRn2m++gSklbPMTx8QhE93JVU5Vt+a3/XMsDY4cTkHxaVK1dJKnVsqkHC5YtSitsk/K+dYe21Ue4ueGJQhiMgEbGxk+GxKD3NXgxqAj4sjMnKKAEBtPTxD9Q1yw9qZoXo8XxP8/GQ/1fbgdh7Yc+ev9DfHdNDaOtTOy1l1u8qU/Fs44cD84bC1kWldTuet+zpi97lrUAqB356uvV/Ui8PbwaOZHEHuTVW3tarOBl6ptUdTXMsrBgD4apmLrancDvffCYS+rk2w6Zn+KClToq+JFmZedF9HeDjL0dO/OX55sh82HbuM3eeuoYmDLd76T0e9Z+zXh+YK7TJ08FHgTIb2aRe0tcQ52ttizePqfbK+mdoHvx5Jx9AQT3Ru6VJj0Gnp2gSPDwjE6n2pdal+g2MIIiKqB383J7w+qj1OXMrBMzUs1tqQlk3siuU7z6FzSxejzrViLJWzkmvT0rUJ4t4YDqHUb3qGJg62eELH7blKSyd2w6QvYuEkt8Vzw3W3qgC195Mxtser9LsKDW6htlC1KXw/oy92nsnC23+cQlGpEq+MbIfQ4BZoYm+rs89UVd4ujnj2nrvXdu3MvlgVk6xaa7GqBfd2YAgiImqMZDJgXI+WGNejpVme31PhiMjxXc3y3Magbeh/ffm5OeHf14fBRibTugyKIZ67p42RamVcdZ3muLmTPTyc5ZjS1x8jO3ohMTMPocEt9OrnpMugth6qW3DV2dvaoJufK47fWZ6oqrl69gFrKBwdRkRUD5xz3zLZaVkaRl/rZ4dh5sAgRL08BC+P1OzLVBcfTOyKvoFu+GlW7bc8je2XJ/vB1cke97T3VLvl16KZHP3buNc7AOnjk8nd4eks1+jw/UQ9h+zXF1uCiIiIqugb5Gb0/kEP9vbDgwZOcaBL1YkaaxtxGhrcAkfeHGGSsFOTQPem2D/vHtjayBA0f6vqcbldzbdLTYEhiIioHhrr0glk2dp4NsO7YzvhWHq21pF31ZkzAFWy09I53twYgoiI6oG3w8hcHgsLxGNh5q5F/Zg7mlleLCMiIiIyAYYgIqJ64O0woroz978fhiAiIiIyGWdHy+mJwxBERKSHER21r+dFRIbZ+HR/TO7thzWP96lxrTZTsZw4RkRkwZx1rExORPpr6+WM9ydaxgSfbAkiItLDa6Paw8HOBhYw0piIjIQhiIhID94ujtg/7x7sff0edPBRmLs6RGQEbN8lItKTezM5APPPbUJExsGWICIiA3F+RKLGgSGIiKgeZGwXIpIshiAionoQbBcikiyGICIiIrJKDEFERPXA22FE0sUQRERUD7wdRiRdDEFERERklRiCiIjq4Xp+ibmrQER1xBBERGSglOv5qt+TrubrKElElowhiIjIQEWlSnNXgYiMgCGIiIiIrJLkQlBqaipmzpyJoKAgNGnSBK1bt8aiRYtQUqL7vvzQoUMhk8nUfp566ikT1ZqIiIgsjeQWUD179iyUSiW+/PJLtGnTBgkJCZg1axYKCgqwbNkyncfOmjUL77zzjmrbycmpoatLREREFkpyIWjUqFEYNWqUajs4OBiJiYlYtWpVrSHIyckJ3t7eDV1FIiIikgDJ3Q7TJicnB25ubrWW+/HHH+Hu7o7OnTtj/vz5KCwsrPWY3NxctZ/i4mJjVJmIiIiMoLi4WOO7Wl+SD0FJSUn47LPPMHv2bJ3lHn74Yfzwww+Ijo7G/PnzsXbtWjz66KO1nt/Pzw8uLi6qn8jISGNVnYiIiOopMjJS7Xvaz89P72NlQgiLmPN93rx5eP/993WWOXPmDNq3b6/avnz5MoYMGYKhQ4fim2++Mej5du3aheHDhyMpKQmtW7fW2J+bmwsXFxekp6dDoVCoHpfL5ZDL5QY9FxE1LoHz/lLbTl0yxkw1IaLi4mK1uzS5ubnw8/NDTk6O2ve3NhbTJ+jll1/G9OnTdZYJDg5W/X7lyhUMGzYM/fv3x1dffWXw84WGhgJAjSGokkKhqPUiEpH18nDmH0VE5lSfxgmLCUEeHh7w8PDQq+zly5cxbNgw9OrVC6tXr4aNjeF39eLj4wEAPj4+Bh9LRFTJzoaryBNJleT6BF2+fBlDhw6Fv78/li1bhmvXriEzMxOZmZlqZdq3b4+DBw8CAJKTk/Huu+/iyJEjSE1Nxe+//46pU6di8ODB6Nq1q7leChE1Ak4OtuauAhHVkcW0BOlrx44dSEpKQlJSElq1aqW2r7J7U2lpKRITE1WjvxwcHLBz5058/PHHKCgogJ+fHyZMmIA333zT5PUnosaljWczc1eBiOrIYjpGW5rKjtH6dKwiIusyYMkuXM6+DQCI6OSFLx/rbeYaEVElQ76/JXc7jIiIiMgYGIKIiAxUtQFdBnaMJpIqhiAiIgNV7UMgYwYikiyGICKiemAIIpIuhiAiIgNxOAlR48AQRERUD+wTRCRdDEFERAYSYFMQUWPAEEREZCC122FsCCKSLIYgIqJ6YAYiki6GICIiA/FmGFHjwBBEREREVokhiIjIQLwFRtQ4MAQRERGRVWIIIiIiIqvEEEREVA/sJE0kXQxBREQGUlsvjCmISLIYgoiIDMSlMogaB4YgIqJ64BIaRNLFEERERERWiSGIiIiIrBJDEBGRgWTsEkTUKDAEERHVg2CXICLJYggiIjIQG4KIGgeGICKiemBLEJF0MQQRERGRVWIIIiIiIqvEEEREZCBZleFhnCyRSLoYgoiIiMgqMQQREdUDO0YTSRdDEBEREVklhiAiIiKySgxBREQG4rIZRI0DQxARUT2wSxCRdDEEEREZiC1BRI0DQxARUT1wdBiRdDEEEREZSMYlVIkaBYYgIiIiskoMQURE9cL7YURSxRBERGQgdowmahwkGYICAwMhk8nUfpYsWaLzmKKiIsyZMwctWrRAs2bNMGHCBGRlZZmoxkTUWLFjNJF0STIEAcA777yDjIwM1c9zzz2ns/xLL72EP/74Axs2bMDu3btx5coVjB8/3kS1JSIiIktjZ+4K1JWzszO8vb31KpuTk4P//e9/+Omnn3DPPfcAAFavXo0OHTrgwIED6NevX0NWlYgaGS9nR1y8UQgAcG8mN3NtiKiuJNsStGTJErRo0QI9evTA0qVLUVZWVmPZI0eOoLS0FOHh4arH2rdvD39/f8TGxpqiukTUiHwwsSuc5XZwa+qA10aFmLs6RFRHkmwJev7559GzZ0+4ublh//79mD9/PjIyMvDRRx9pLZ+ZmQkHBwe4urqqPe7l5YXMzEydz5Wbm6u2LZfLIZfzLz8iaxbo3hRxbwyHjUwGR3tbc1eHyKoVFxejuLhYtV39e1sXi2kJmjdvnkZn5+o/Z8+eBQDMnTsXQ4cORdeuXfHUU0/hww8/xGeffaZ2EYzFz88PLi4uqp/IyEijPwcRSY+Tgx0DEJEFiIyMVPue9vPz0/tYi2kJevnllzF9+nSdZYKDg7U+HhoairKyMqSmpiIkRLNp2tvbGyUlJcjOzlZrDcrKyqq1X1F6ejoUCoVqm61ARERElmP+/PmYO3euajs3N1fvIGQxIcjDwwMeHh51OjY+Ph42Njbw9PTUur9Xr16wt7dHVFQUJkyYAABITExEWloawsLCdJ5boVCohSAiIiKyHPXppmIxIUhfsbGxiIuLw7Bhw+Ds7IzY2Fi89NJLePTRR9G8eXMAwOXLlzF8+HB8//336Nu3L1xcXDBz5kzMnTsXbm5uUCgUeO655xAWFsaRYURERFZKciFILpdj3bp1WLx4MYqLixEUFISXXnpJrSmstLQUiYmJKCwsVD22fPly2NjYYMKECSguLkZERAQ+//xzc7wEIiIisgAyITjfqTa5ublwcXFBTk4Ob4cRERFJhCHf3xYzOoyIiIjIlBiCiIiIyCoxBBEREZFVYggiIiIiq8QQZAbFxcWq0W1UgddEHa+HJl4TTbwmmnhNNPGa1Iyjw2rQkKPDOPJME6+JOl4PTbwmmnhNNPGaaLK2a8LRYURERES1YAgiIiIiqyS5GaNNpfIuYW5urtHPXXnOhji3VPGaqOP10MRroonXRBOviSZruyaVr1Of3j7sE1SDS5cu6b0KLREREVmW9PR0tGrVSmcZhqAaKJVKXLlyBc7OzpDJZOauDhEREelBCIG8vDz4+vrCxkZ3rx+GICIiIrJK7BhNREREVokhiIiIiKwSQxARERFZJYYgE1u5ciUCAwPh6OiI0NBQHDx40NxVMorFixdDJpOp/bRv3161v6ioCHPmzEGLFi3QrFkzTJgwAVlZWWrnSEtLw5gxY+Dk5ARPT0+8+uqrKCsrUysTExODnj17Qi6Xo02bNlizZo0pXp5e9uzZg/vuuw++vr6QyWTYvHmz2n4hBBYuXAgfHx80adIE4eHhOH/+vFqZmzdv4pFHHoFCoYCrqytmzpyJ/Px8tTInTpzAoEGD4OjoCD8/P3zwwQcaddmwYQPat28PR0dHdOnSBVu3bjX669VHbddk+vTpGu+bUaNGqZVpTNckMjISffr0gbOzMzw9PTFu3DgkJiaqlTHlvxVL+DzS55oMHTpU433y1FNPqZVpTNdk1apV6Nq1KxQKBRQKBcLCwvD333+r9lvbe6RBCTKZdevWCQcHB/Htt9+KU6dOiVmzZglXV1eRlZVl7qrV26JFi0SnTp1ERkaG6ufatWuq/U899ZTw8/MTUVFR4vDhw6Jfv36if//+qv1lZWWic+fOIjw8XBw7dkxs3bpVuLu7i/nz56vKXLhwQTg5OYm5c+eK06dPi88++0zY2tqKbdu2mfS11mTr1q3ijTfeEBs3bhQAxKZNm9T2L1myRLi4uIjNmzeL48ePi/vvv18EBQWJ27dvq8qMGjVKdOvWTRw4cEDs3btXtGnTRkyZMkW1PycnR3h5eYlHHnlEJCQkiJ9//lk0adJEfPnll6oy+/btE7a2tuKDDz4Qp0+fFm+++aawt7cXJ0+ebPBrUF1t12TatGli1KhRau+bmzdvqpVpTNckIiJCrF69WiQkJIj4+Hhx7733Cn9/f5Gfn68qY6p/K5byeaTPNRkyZIiYNWuW2vskJydHtb+xXZPff/9d/PXXX+LcuXMiMTFRLFiwQNjb24uEhAQhhPW9RxoSQ5AJ9e3bV8yZM0e1XV5eLnx9fUVkZKQZa2UcixYtEt26ddO6Lzs7W9jb24sNGzaoHjtz5owAIGJjY4UQFV+WNjY2IjMzU1Vm1apVQqFQiOLiYiGEEK+99pro1KmT2rknT54sIiIijPxq6q/6F75SqRTe3t5i6dKlqseys7OFXC4XP//8sxBCiNOnTwsA4tChQ6oyf//9t5DJZOLy5ctCCCE+//xz0bx5c9U1EUKI119/XYSEhKi2H3zwQTFmzBi1+oSGhorZs2cb9TUaqqYQNHbs2BqPaezX5OrVqwKA2L17txDCtP9WLPXzqPo1EaIiBL3wwgs1HtPYr4kQQjRv3lx88803fI8YGW+HmUhJSQmOHDmC8PBw1WM2NjYIDw9HbGysGWtmPOfPn4evry+Cg4PxyCOPIC0tDQBw5MgRlJaWqr329u3bw9/fX/XaY2Nj0aVLF3h5eanKREREIDc3F6dOnVKVqXqOyjJSuH4pKSnIzMxUq7+LiwtCQ0PVroGrqyt69+6tKhMeHg4bGxvExcWpygwePBgODg6qMhEREUhMTMStW7dUZaR0nWJiYuDp6YmQkBA8/fTTuHHjhmpfY78mOTk5AAA3NzcApvu3YsmfR9WvSaUff/wR7u7u6Ny5M+bPn4/CwkLVvsZ8TcrLy7Fu3ToUFBQgLCyM7xEj47IZJnL9+nWUl5ervSkBwMvLC2fPnjVTrYwnNDQUa9asQUhICDIyMvD2229j0KBBSEhIQGZmJhwcHODq6qp2jJeXFzIzMwEAmZmZWq9N5T5dZXJzc3H79m00adKkgV5d/VW+Bm31r/r6PD091fbb2dnBzc1NrUxQUJDGOSr3NW/evMbrVHkOSzJq1CiMHz8eQUFBSE5OxoIFCzB69GjExsbC1ta2UV8TpVKJF198EQMGDEDnzp0BwGT/Vm7dumWRn0fargkAPPzwwwgICICvry9OnDiB119/HYmJidi4cSOAxnlNTp48ibCwMBQVFaFZs2bYtGkTOnbsiPj4eKt+jxgbQxAZxejRo1W/d+3aFaGhoQgICMD69estOpyQeT300EOq37t06YKuXbuidevWiImJwfDhw81Ys4Y3Z84cJCQk4N9//zV3VSxGTdfkySefVP3epUsX+Pj4YPjw4UhOTkbr1q1NXU2TCAkJQXx8PHJycvDrr79i2rRp2L17t7mr1ejwdpiJuLu7w9bWVqMHf1ZWFry9vc1Uq4bj6uqKdu3aISkpCd7e3igpKUF2drZamaqv3dvbW+u1qdynq4xCobD4oFX5GnT9//f29sbVq1fV9peVleHmzZtGuU5SeJ8FBwfD3d0dSUlJABrvNXn22Wfx559/Ijo6Wm1tI1P9W7HEz6Oarok2oaGhAKD2Pmls18TBwQFt2rRBr169EBkZiW7duuGTTz6x6vdIQ2AIMhEHBwf06tULUVFRqseUSiWioqIQFhZmxpo1jPz8fCQnJ8PHxwe9evWCvb292mtPTExEWlqa6rWHhYXh5MmTal94O3bsgEKhQMeOHVVlqp6jsowUrl9QUBC8vb3V6p+bm4u4uDi1a5CdnY0jR46oyuzatQtKpVL1oR8WFoY9e/agtLRUVWbHjh0ICQlB8+bNVWWkep0uXbqEGzduwMfHB0DjuyZCCDz77LPYtGkTdu3apXEbz1T/Vizp86i2a6JNfHw8AKi9TxrTNdFGqVSiuLjYKt8jDcrcPbOtybp164RcLhdr1qwRp0+fFk8++aRwdXVV68EvVS+//LKIiYkRKSkpYt++fSI8PFy4u7uLq1evCiEqhnT6+/uLXbt2icOHD4uwsDARFhamOr5ySOfIkSNFfHy82LZtm/Dw8NA6pPPVV18VZ86cEStXrrSoIfJ5eXni2LFj4tixYwKA+Oijj8SxY8fExYsXhRAVQ+RdXV3Fli1bxIkTJ8TYsWO1DpHv0aOHiIuLE//++69o27at2nDw7Oxs4eXlJR577DGRkJAg1q1bJ5ycnDSGg9vZ2Ylly5aJM2fOiEWLFpltiLyua5KXlydeeeUVERsbK1JSUsTOnTtFz549Rdu2bUVRUZHqHI3pmjz99NPCxcVFxMTEqA33LiwsVJUx1b8VS/k8qu2aJCUliXfeeUccPnxYpKSkiC1btojg4GAxePBg1Tka2zWZN2+e2L17t0hJSREnTpwQ8+bNEzKZTGzfvl0IYX3vkYbEEGRin332mfD39xcODg6ib9++4sCBA+auklFMnjxZ+Pj4CAcHB9GyZUsxefJkkZSUpNp/+/Zt8cwzz4jmzZsLJycn8cADD4iMjAy1c6SmporRo0eLJk2aCHd3d/Hyyy+L0tJStTLR0dGie/fuwsHBQQQHB4vVq1eb4uXpJTo6WgDQ+Jk2bZoQomKY/FtvvSW8vLyEXC4Xw4cPF4mJiWrnuHHjhpgyZYpo1qyZUCgU4vHHHxd5eXlqZY4fPy4GDhwo5HK5aNmypViyZIlGXdavXy/atWsnHBwcRKdOncRff/3VYK9bF13XpLCwUIwcOVJ4eHgIe3t7ERAQIGbNmqXxAduYrom2awFA7X1syn8rlvB5VNs1SUtLE4MHDxZubm5CLpeLNm3aiFdffVVtniAhGtc1mTFjhggICBAODg7Cw8NDDB8+XBWAhLC+90hD4iryREREZJXYJ4iIiIisEkMQERERWSWGICIiIrJKDEFERERklRiCiIiIyCoxBBEREZFVYggiIiIiq8QQRESSI5PJsHnzZnNXQy/Tp0/HuHHjzF0NItKCIYiILE5mZiaee+45BAcHQy6Xw8/PD/fdd5/GWkdERPVhZ+4KEBFVlZqaigEDBsDV1RVLly5Fly5dUFpain/++Qdz5szB2bNnzV1FImok2BJERBblmWeegUwmw8GDBzFhwgS0a9cOnTp1wty5c3HgwAFVuevXr+OBBx6Ak5MT2rZti99//121r7y8HDNnzkRQUBCaNGmCkJAQfPLJJ2rPU3mbatmyZfDx8UGLFi0wZ84ctdXoAwMD8d5772HGjBlwdnaGv78/vvrqK7XzpKen48EHH4Srqyvc3NwwduxYpKamNszFISKjYggiIotx8+ZNbNu2DXPmzEHTpk019ru6uqp+f/vtt/Hggw/ixIkTuPfee/HII4/g5s2bAAClUolWrVphw4YNOH36NBYuXIgFCxZg/fr1aueLjo5GcnIyoqOj8d1332HNmjVYs2aNWpkPP/wQvXv3xrFjx/DMM8/g6aefRmJiIgCgtLQUERERcHZ2xt69e7Fv3z40a9YMo0aNQklJiXEvDhEZn7lXcCUiqhQXFycAiI0bN+osB0C8+eabqu38/HwBQPz99981HjNnzhwxYcIE1fa0adNEQECAKCsrUz02adIkMXnyZNV2QECAePTRR1XbSqVSeHp6ilWrVgkhhFi7dq0ICQkRSqVSVaa4uFg0adJE/PPPP6rnGTt2bC2vnIjMgX2CiMhiCCH0Ltu1a1fV702bNoVCocDVq1dVj61cuRLffvst0tLScPv2bZSUlKB79+5q5+jUqRNsbW1V2z4+Pjh58mSNzyOTyeDt7a16nuPHjyMpKQnOzs5qxxQVFSE5OVnv10JE5sEQREQWo23btpDJZHp1fra3t1fblslkUCqVAIB169bhlVdewYcffoiwsDA4Oztj6dKliIuL0/sc+pTJz89Hr1698OOPP2rUz8PDo9bXQETmxRBERBbDzc0NERERWLlyJZ5//nmNfkHZ2dlq/YJqsm/fPvTv3x/PPPOM6rGGaJnp2bMnfvnlF3h6ekKhUBj9/ETUsNgxmogsysqVK1FeXo6+ffvit99+w/nz53HmzBl8+umnCAsL0+scbdu2xeHDh/HPP//g3LlzeOutt3Do0CGj1/WRRx6Bu7s7xo4di7179yIlJQUxMTF4/vnncenSJaM/HxEZF0MQEVmU4OBgHD16FMOGDcPLL7+Mzp07Y8SIEYiKisKqVav0Osfs2bMxfvx4TJ48GaGhobhx44Zaq5CxODk5Yc+ePfD398f48ePRoUMHzJw5E0VFRWwZIpIAmTCkJyIRERFRI8GWICIiIrJKDEFERERklRiCiIiIyCoxBBEREZFVYggiIiIiq8QQRERERFaJIYiIiIisEkMQERERWSWGICIiIrJKDEFERERklRiCiIiIyCoxBBEREZFV+n+3yseMgPmelAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAGuCAYAAACX/tJnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZUElEQVR4nO3dd1xTV+MG8CesIEpAZCvTgXsr4raiaH1braPWDrVaa1s77VLbqm3fX7HV1g6tXW+1tcNq6+iwVkVQq4gTFQcKgqACTrbMnN8fSCQkhARCkkue7+fDp9zcc29ObmPycO4ZMiGEABEREZGVsTF3BYiIiIjMgSGIiIiIrBJDEBEREVklhiAiIiKySgxBREREZJUYgoiIiMgqMQQRERGRVWIIIiIiIqvEEERERERWiSGIiIiIrJKduSugzZ49e7B06VIcOXIEGRkZ2LRpE8aNGwcAKC0txZtvvomtW7fiwoULcHFxQXh4OJYsWQJfX98az7l48WK8/fbbao+FhITg7NmzWssrlUpcuXIFzs7OkMlkRnttRERE1HCEEMjLy4Ovry9sbHS39VhkCCooKEC3bt0wY8YMjB8/Xm1fYWEhjh49irfeegvdunXDrVu38MILL+D+++/H4cOHdZ63U6dO2Llzp2rbzq7ml3/lyhX4+fnV74UQERGRWaSnp6NVq1Y6y1hkCBo9ejRGjx6tdZ+Liwt27Nih9tiKFSvQt29fpKWlwd/fv8bz2tnZwdvbW686ODs7A6i4iAqFQs+a6yc3Nxd+fn4Ncm6p4jVRx+uhiddEE6+JJl4TTdZ2TSpfb+X3uC4WGYIMlZOTA5lMBldXV53lzp8/D19fXzg6OiIsLAyRkZE1hqaaboHJ5XLI5fL6VhkAoFAorOINaQheE3W8Hpp4TTTxmmjiNdHUWK9JcXExiouLNR7XpyuL5DtGFxUV4fXXX8eUKVN0/s8NDQ3FmjVrsG3bNqxatQopKSkYNGgQ8vLydJ7fz88PLi4uqp/IyEhjvwQiIiKqo8jISLXvaUO6ski6Jai0tBQPPvgghBBYtWqVzrJVb6917doVoaGhCAgIwPr16zFz5swaj6vefGisViAiIiKqv/nz52Pu3Lmq7crbYfqQbAiqDEAXL17Erl27DG7ic3V1Rbt27ZCUlKSzXEM0H8rlcixatIiBqgpeE3W8Hpp4TTTxmmjiNdHU2K9JfbqpyIQQwsj1MSqZTKY2RB64G4DOnz+P6OhoeHh4GHze/Px8+Pv7Y/HixXj++ec19ufm5sLFxQU5OTmN8h4qERFRY2TI97dF9gnKz89HfHw84uPjAQApKSmIj49HWloaSktLMXHiRBw+fBg//vgjysvLkZmZiczMTJSUlKjOMXz4cKxYsUK1/corr2D37t1ITU3F/v378cADD8DW1hZTpkwx9csjIiIiC2CRt8MOHz6MYcOGqbYr7/VNmzYNixcvxu+//w4A6N69u9px0dHRGDp0KAAgOTkZ169fV+27dOkSpkyZghs3bsDDwwMDBw7EgQMH6tSKRERERNJn8bfDzIW3w4iIiKRH8rfDiIiIiBoaQxARERFZJYYgIiIiskoMQURERGSVGIKIiIjIKjEEEZEkRSdexcroJOQWlZq7KkQkURY5TxARkS6Xs2/j8dWHAADpNwuxZEJXM9eIiKSILUFEJDmHUm6qfl93KN2MNSEiKWMIIiIiIqvEEEREkiOTqW+XlSvNUxEikjSGICKSvL9OZpi7CkQkQQxBRCQ5V3OL1bZzi8rMVBMikjKGICKSnBsFJWrbshrKERHpwhBERJJjW+2Tq3ofISIifTAEEZHk2Nqof3TJ2BZERHXAEERE0iOE2uaZjFwzVYSIpIwhiIgkZ0V0ktr22gMXzVQTIpIyhiAikhylqL0MEVFtGIKIiIjIKjEEERERkVViCCIiIiKrxBBEREREVokhiIiIiKwSQxARERFZJYYgIiIiskoMQURERGSVGIKIiIjIKjEEERERkVViCCIiIiKrxBBEREREVokhiIiIiKwSQxARERFZJYYgIiIiskoMQURERGSVGIKIiIjIKjEEERERkVViCCIiIiKrxBBEREREVokhiIiIiKySRYagPXv24L777oOvry9kMhk2b96stl8IgYULF8LHxwdNmjRBeHg4zp8/X+t5V65cicDAQDg6OiI0NBQHDx5soFdAREREls4iQ1BBQQG6deuGlStXat3/wQcf4NNPP8UXX3yBuLg4NG3aFBERESgqKqrxnL/88gvmzp2LRYsW4ejRo+jWrRsiIiJw9erVhnoZREREZMFkQghh7kroIpPJsGnTJowbNw5ARSuQr68vXn75ZbzyyisAgJycHHh5eWHNmjV46KGHtJ4nNDQUffr0wYoVKwAASqUSfn5+eO655zBv3jyN8rm5uXBxcUFOTg4UCkXDvDgiqpPAeX9pPJYSeS9kMpkZakNElsSQ72+LbAnSJSUlBZmZmQgPD1c95uLigtDQUMTGxmo9pqSkBEeOHFE7xsbGBuHh4TUeUyk3N1ftp7i42DgvhIiMKq+4zNxVICIzKC4u1viu1pfkQlBmZiYAwMvLS+1xLy8v1b7qrl+/jvLycoOOqeTn5wcXFxfVT2RkZD1qT0QNxd5Gch9nRGQEkZGRat/Tfn5+eh9r14D1ahTS09PVmtPkcrkZa0NERERVzZ8/H3PnzlVt5+bm6h2EJBeCvL29AQBZWVnw8fFRPZ6VlYXu3btrPcbd3R22trbIyspSezwrK0t1vpooFAr2CSKSAAGL7t5IRA1ELpfXuYFCcu3HQUFB8Pb2RlRUlOqx3NxcxMXFISwsTOsxDg4O6NWrl9oxSqUSUVFRNR5DRJYpu7BE6+NKZiAiMpBFhqD8/HzEx8cjPj4eQEVn6Pj4eKSlpUEmk+HFF1/Ef//7X/z+++84efIkpk6dCl9fX9UIMgAYPny4aiQYAMydOxdff/01vvvuO5w5cwZPP/00CgoK8Pjjj5v41RFRffwYl6b18aMXb5m4JkQkdRZ5O+zw4cMYNmyYarvyXt+0adOwZs0avPbaaygoKMCTTz6J7OxsDBw4ENu2bYOjo6PqmOTkZFy/fl21PXnyZFy7dg0LFy5EZmYmunfvjm3btml0liYiy7b0n0Stj9+qoYWIiKgmFj9PkLlwniAiy6RtjiAA+OjBbhjfs5WJa0NElqZRzxNERKQN/5wjIkMxBBFRo1DOFEREBmIIIqLGgRmIiAzEEEREjQLnCSIiQzEEEVGjwHmCiMhQDEFE1CiwSxARGYohiIgaBSVTEBEZiCGIiBoFTnlGRIZiCCKiRoERiIgMxRBERI2Ckj2jichADEFE1CgwAhGRoRiCiKhRYEMQERmKIYiIGgV2jCYiQzEEEVGjwAxERIZiCCKiRsHGRmbuKhCRxDAEEVGj4Ne8ibmrQEQSwxBERI3C13svmLsKRCQxDEFE1CgcSr1l7ioQkcQwBBEREZFVYggiIiIiq8QQRERERFaJIYiIiIisEkMQERERWSWGICIiIrJKDEFERERklRiCiIiIyCoxBBEREZFVYggiIiIiq8QQRESSoVQKc1eBiBoRhiAiIiKySgxBRCQZbAciImNiCCIiIiKrxBBEREREVokhiIgkQwjeECMi42EIIiLJYAQiImNiCCIiyTh9JdfcVSCiRoQhiIgko6Rcae4qEFEjwhBERJJRzskSiciIGIKISDJ2n7tm7ioQUSMi2RAUGBgImUym8TNnzhyt5desWaNR1tHR0cS1JqL6iD571dxVIKJGxM7cFairQ4cOoby8XLWdkJCAESNGYNKkSTUeo1AokJiYqNqWyWQNWkciMi4lh8gTkRFJNgR5eHiobS9ZsgStW7fGkCFDajxGJpPB29u7oatGRA2EGYiIjEmyt8OqKikpwQ8//IAZM2bobN3Jz89HQEAA/Pz8MHbsWJw6dcqEtSSi+ipnCiIiI5JsS1BVmzdvRnZ2NqZPn15jmZCQEHz77bfo2rUrcnJysGzZMvTv3x+nTp1Cq1atajwuN1d9XhK5XA65XG6sqhORAZiBiKi64uJiFBcXq7arf2/r0ihagv73v/9h9OjR8PX1rbFMWFgYpk6diu7du2PIkCHYuHEjPDw88OWXX+o8t5+fH1xcXFQ/kZGRxq4+EempuLRcbfvViBDV7x7O/OOEyBpFRkaqfU/7+fnpfazkW4IuXryInTt3YuPGjQYdZ29vjx49eiApKUlnufT0dCgUCtU2W4GIzOdKTpHatp+bk+p3HxeO9iSyRvPnz8fcuXNV27m5uXoHIcmHoNWrV8PT0xNjxowx6Ljy8nKcPHkS9957r85yCoVCLQQRkeW4cC1f9fuJSzlmrAkRmUt9uqlI+naYUqnE6tWrMW3aNNjZqee5qVOnYv78+artd955B9u3b8eFCxdw9OhRPProo7h48SKeeOIJU1ebiIykqJTLaBBR3Um6JWjnzp1IS0vDjBkzNPalpaXBxuZuxrt16xZmzZqFzMxMNG/eHL169cL+/fvRsWNHU1aZiIzIVtJ/xhGRuUk6BI0cORKihuEiMTExatvLly/H8uXLTVArIjIVW054SkT1wL+jiEiybGwYgoio7hiCiEiy7BiCiKgeGIKISLJsbfgRRkR1x08QIpIsdowmovrgRwgRSRZbgoioPvgJQkSSZcsuQURUDwxBRCRZtrwfRkT1wE8QIpIsjg4jovpgCCIiySor57IZRFR3DEFEJFmFJeXmrgIRSRhDEBFJlh37BBFRPfAThIgky57Dw4ioHhiCiEiy7DhPEBHVAz9BiEiyODqMiOqDIYiIJMuOt8OIqB4YgohIstgxmojqg58gRCRZvB1GRPXBEEREksUQRET1wRBERJLlYMePMCKqO36CEJFk+bo2MXcViEjCGIKISLJsZLwdRkR1xxBERJLR3ttZ9fuS8V04YzQR1QtDEBFJxtnMPNXvAS2awt/NyYy1ISKpYwgiIknKLy6DjLfDiKgeGIKISJKOpt0ydxWISOIYgohIkpRKYe4qEJHEMQQRkSSVlCvNXQUikjiGICKSpORrBeauAhFJHEMQERERWSWGICKSJGdHO3NXgYgkjiGIiCRpRAcvc1eBiCSOIYiIJIlTBBFRfTEEEZEkCY6QJ6J6YggiIkkSYAoiovphCCIiSXJyYMdoIqofhiAikqTeAc3NXQUikjiGICKSJG2Lp94uKTdDTYhIqhiCiEiSbLSMDsstKjV9RYhIshiCiEiSZNBMQRwxRkSGYAgiIkmyteVEQURUP5INQYsXL4ZMJlP7ad++vc5jNmzYgPbt28PR0RFdunTB1q1bTVRbIjK2ZnKODiOi+pFsCAKATp06ISMjQ/Xz77//1lh2//79mDJlCmbOnIljx45h3LhxGDduHBISEkxYYyIiIrIUkg5BdnZ28Pb2Vv24u7vXWPaTTz7BqFGj8Oqrr6JDhw5499130bNnT6xYscKENSaihsQJFInIEJIOQefPn4evry+Cg4PxyCOPIC0trcaysbGxCA8PV3ssIiICsbGxOp8jNzdX7ae4uNgodSciw9wqKKm1DDtGE1mf4uJije9qfUk2BIWGhmLNmjXYtm0bVq1ahZSUFAwaNAh5eXlay2dmZsLLS33VaS8vL2RmZup8Hj8/P7i4uKh+IiMjjfYaiEh/Obc5/J2INEVGRqp9T/v5+el9rGR7Fo4ePVr1e9euXREaGoqAgACsX78eM2fONNrzpKenQ6FQqLblcrnRzk1E+mMjDxFpM3/+fMydO1e1nZubq3cQkmwIqs7V1RXt2rVDUlKS1v3e3t7IyspSeywrKwve3t46z6tQKNRCEBGZh9DjXheDEpH1kcvldW6gkOztsOry8/ORnJwMHx8frfvDwsIQFRWl9tiOHTsQFhZmiuoRUT0p9Ug4F68XNHxFiKjRkGwIeuWVV7B7926kpqZi//79eOCBB2Bra4spU6YAAKZOnYr58+eryr/wwgvYtm0bPvzwQ5w9exaLFy/G4cOH8eyzz5rrJRCRkWWz3xARGUCyIejSpUuYMmUKQkJC8OCDD6JFixY4cOAAPDw8AABpaWnIyMhQle/fvz9++uknfPXVV+jWrRt+/fVXbN68GZ07dzbXSyAig9TeFHQw5aYJ6kFEjYVk+wStW7dO5/6YmBiNxyZNmoRJkyY1UI2IqCHpM/z90q3bDV8RImo0JNsSRETWZX/yjVrLZOUWmaAmRNRYMAQRkSREnb1aa5mTl3NMUBMiaiwYgohIEvQZIk9EZAiGICKShHJ9xsgTERmAIYiIJKGMIYiIjKzOo8NKS0uRmZmJwsJCeHh4wM3NzZj1IiJSo8/tMCcHWxPUhIgaC4NagvLy8rBq1SoMGTIECoUCgYGB6NChAzw8PBAQEIBZs2bh0KFDDVVXIrJiSVfzay1jI5OZoCZE1FjoHYI++ugjBAYGYvXq1QgPD8fmzZsRHx+Pc+fOITY2FosWLUJZWRlGjhyJUaNG4fz58w1ZbyKyMrcKa58NOr+4zAQ1IaLGQu/bYYcOHcKePXvQqVMnrfv79u2LGTNmYNWqVVizZg327t2Ltm3bGq2iRERERMakdwj6+eef9SpXVlaGp556qs4VIiIiIjIFg/oELV++XOf+vLw8RERE1KtCRERERKZgUAhasGABvv/+e637CgoKMGrUKNy4UfvU9kRERETmZlAIWrt2LWbPno3ff/9d7fGCggJERETg2rVriI6ONmoFiYiIiBqCQfMETZw4EdnZ2ZgyZQr++usvDB06VNUClJWVhd27d8PHx6eh6kpEZJEq5zCScYg+kaQYPFniE088gZs3b2Ls2LHYsmULFi5ciCtXrmD37t3w9fVtiDoSEVmsjJzbmPLVATSV22H97DA0ldd5DloiMrE6/Wt97bXXcPPmTQwfPhyBgYGIiYlBq1atjF03IiKLN3/jSaTeKAQArIhOwuuj2pu5RkSkL4NC0Pjx49W27e3t4e7ujhdeeEHt8Y0bN9a/ZkREEnAmI1f1e9qdMERE0mBQCHJxcVHbnjJlilErQ0QkNVWXNGOXICJpMSgErV69uqHqQUQkSVUXt+faZUTSYtAQeSIiUld1dXtmICJp0TsEpaWlGXTiy5cvG1wZIiKpqdIQBGYgImnROwT16dMHs2fPxqFDh2osk5OTg6+//hqdO3fGb7/9ZpQKEhFV1y/YzdxVUFFvCWIMIpISvfsEnT59Gv/3f/+HESNGwNHREb169YKvry8cHR1x69YtnD59GqdOnULPnj3xwQcf4N57723IehORFRvU1sPcVVBRawliBiKSFL1bglq0aIGPPvoIGRkZWLFiBdq2bYvr16/j/PnzAIBHHnkER44cQWxsLAMQEVmN7MJS1e8y3hAjkhSDJ0ts0qQJJk6ciIkTJzZEfYiINJRXHYIF9VtQluTABS4gTSQlHB1GRBbvox2JattVM5Cvi6OJa1Ozy9m3zV0FIjIAQxARWbyV0clq21Ubhp4f3tbEtSGixoIhiIgkR1TpjtzEwdaMNSEiKWMIIiLJcbS/G3w4SzMR1RVDEBFJzuTefqrfbW0YgoiobgweHaZNVlYWTp8+rfo5deoUzpw5g6ysLGOcnohITdVbYIxARFRX9QpBAwcOxPnz5+Hq6oqQkBC0b98eGzZswJ9//om2bdlZkYgaRtU7YJylmYjqql4hyNfXF0qlEpGRkRgyZAgAYMOGDejbt69RKkdEpE3VSQmr3w0rK1fCzpZ3+omodvX6pFi/fj2+/PJLfPzxxxg5ciTi4uL4VxkRNbiqwad6x+idZ66auDZEJFUGhaCdO3dqzNTapUsXbNq0Ce+99x7efvttZGVlIS4uzqiVJCKqquofWzbVPsWKy8pNXBsikiqDQlBERASuXbumdV/v3r2xdetWbN++HQsWLEB4eLhRKkhEVF3VliDbaimIrdFEpC+D+gTps17PgAEDEBUVhejo6DpXiohIl6pBJzTITX2fqStDRJLVYL0Hhw0b1lCnJiJSsWcnaCKqI4M/PVatWoWoqCjcunWrIepDRGSQ6i0/N/KLzVIPIpIeg0PQihUrMGLECLi7uyMwMBDjx4/Hf//7X2zduhWZmZkNUUetIiMj0adPHzg7O8PT0xPjxo1DYmKizmPWrFkDmUym9uPoaDkrUBNR/a0/fMncVSAiiTB4nqBTp06hrKwMx44dw9GjR3H06FF8/fXXSE9Ph0wmg7e3Ny5fvtwQdVWze/duzJkzB3369EFZWRkWLFiAkSNH4vTp02jatGmNxykUCrWwxE6URGQsfm5NzF0FIjKAQSGoMjD4+vrC19cXY8aMUe27ceMGjhw5gvj4eKNWsCbbtm1T216zZg08PT1x5MgRDB48uMbjKoMaETUOlvR3TBN7rmhPJCVGGx3WokULjBw5EiNHjqx3peoiJycHAODm5qazXH5+PgICAqBUKtGzZ0+899576NSpU43lc3Nz1bblcjnkcnn9K0xEjc69XXzMXQUiq1NcXIzi4rt9Aat/b+tiUJ+gbdu2wcXFxZBDTEKpVOLFF1/EgAED0Llz5xrLhYSE4Ntvv8WWLVvwww8/QKlUon///rh0qeY+BH5+fnBxcVH9REZGNsRLIKIapF4v0Lm/+i1tU7QM7TqbhW0JmRp/GDo5sCWIyNQiIyPVvqf9/Pz0PtagliBztfLUZs6cOUhISMC///6rs1xYWBjCwsJU2/3790eHDh3w5Zdf4t1339V6THp6OhQKhWqbrUBEppVzu9TcVVBz4MINzFhzGADw9dTeavtknKWIyOTmz5+PuXPnqrZzc3P1DkL1WkDVEjz77LP4888/sWfPHrRq1cqgY+3t7dGjRw8kJSXVWEahUKiFICIyrS92J5u7CmpWRt/9vFj6z1kz1oSIgPp1U5HsLGNCCDz77LPYtGkTdu3ahaCgIIPPUV5ejpMnT8LHh/fxiSzV3wmmm3pDH1VvvylF9X0mrgwR1YtkW4LmzJmDn376CVu2bIGzs7NqjiIXFxc0aVIxTHXq1Klo2bKlqh/PO++8g379+qFNmzbIzs7G0qVLcfHiRTzxxBNmex1EJC1V1y1T6rGUEBFZLsmGoFWrVgEAhg4dqvb46tWrMX36dABAWloabKosrnjr1i3MmjULmZmZaN68OXr16oX9+/ejY8eOpqo2EUlc1cYeZiAiaZNsCNJnMdeYmBi17eXLl2P58uUNVCMisgQ2DXxPykbtdhhTEJGUSbZPEBGRNjMHGt4/0BAyhiCiRoMhiIgk75mhrVW/uzSxb9DnqtonqKycIYhIyhiCiEhSfF00Fz2uegfsuZ+PNejzZ+UWqX7PyCnSUZKILB1DEBFJymuj2ms89vXeFNXv+cVlDfr8xy/lNOj5ich0GIKISFJaNHPQeKykTGmGmjRuhSVlKK8+ERJRI8MQRESSwu/lhpdwOQd9/y8K4R/tRlFpeY3lhBA4nHoTNwtKTFg7IuNhCCIii3VLy5crR2QZ39oDFxG59QzyiirWaXviu8PILy5DyvUCrI29qPUYpVJg7YGLmPhFLCI+3iO51jhd4Y6sB0MQEVmsT6LOazymZFOQUR1OvYm3Nifgyz0X8P62irXQMqt0/r5ZqBlEs3KLcM+HMVi45RQA4FpeMWIv3DBNhY3g8dUH0eOdHYg6k2XuqhhVwuUcvLDuGKLPXm3w53p/21k88d0hXMm+3eDP1ZAYgojIYqXeKNB4zFr6qZgq7O05f131+w8H0jTrUaXlraC4DDmFpXhzcwJSbxSapH7GdiYjF9GJ13C7tBwzvzts7uoY1X8++xdb4q/g8TWHjHre9YfSMXblPsQkVoSr/cnXsSomGTvPXMWLv8Qb9blMjSGIiCySEAIxidc0Hne0t9V4rKmD5mMNIf2m7i9+Y9ypE0Jg6rcH0fe9nTiadqv+J6x3fSr+ey2vGP3ei0Jo5E7sOK3ZgqJtFv8Vu85j4Pu7sP2U5SyCW1iiPnrwng9jsFPL66lKCIFVMclY8vdZ3C6xvttor/12AsfTszF9dUW4OpuRp9p3MOWmuaplFAxBRCQpg9q6azzW0EtlVDp5WffweGNUIzrxKvacu4br+SV46KsD9T+hFnlFpci5XdH/p3pyO3JR/UutMtws+fss8orLUFSqX98fIQSWbT+HS7du48m1R3A5+zZGLt+NyV/GGq3/0O2Scvxw4CLi6nEr7sK1Ajzxve4WoW0JmXh/21l8sTsZn8ck4aPtiZi7Pl5rnzUpuZZXbDUtqzWR7NphRGSdZFqShokykNps0doYoyUo9frd1iZ9w0JRaTlmrz2CguIyfPlYL7RoJq+xbGZOEYZ/GAOlAP5+YRByi9RbRqq3vlV+R6pCk56qX4tX1h/Huax8AEC7N//GJw91x9juLQ06Z3WfRJ3HF7uTAQAH5g+Ht5aJNI1he5WWos92Jal+L1cKfPJQD4POJYRAabmAg53p2iDSbhTi9d9OIKCFE5ZM6AoA+OP4FTz38zF09FHgr+cHav13VRNT/XszBbYEEZFFMiRQGPIBXh+1tYII1C0FZeTcxisbjuOeZTF458/TWsskZuZh/eF0FJaUIed2KY6l3VK10nyxOxm7z13D4Yu3sOj3Uzqf650/T6GgpBy3S8sxdFkM1uxP1Vn+rxMZd37T/dryispQcGeiSqVS4Hp+sdr+6h2nX1gXX+9+T5UBCAAWbknQWTbpah6W/nMW5+8Eserq0qqzJf6KQeWVSoGxK/eh93934FBqw95GupZXjD9PXMGW+Mt4cu1hxF64gXWH0tFl8T8A7s6sfjojF3vPX0fK9QKUlUtrhJ8xsCWIiEhPy3ee07m/ri1BYZG7dO6/XVKOiI/3AACOp2cjJvEaLmffxuL7OuKhvv74eOfdUXT7k7XfGjpy8Rb+OZWJ+LRsnc91o1oYqBwpVttre+7nY3CW2yHq5SGY89NRHEqtvT/TgZQb6NLSBc6OFeu9xSbfwD+nMjGtfyAAYN5vJ9C5pQve+k9HteO+2XsBcdX6omyvpV9P+Ed7dO5/c3MCXo0IwfFL2RjZ0RtNGqCf2cD3d+HKnaVWJn0Ri79fGIQOPgrV/sOpN3Ew9Sam9PFH86aak4JWtT/pOpZsO4sJPVuprldVff5vp9bj8orKcOmWet+2qd8eBAD0DXLD+tlhtb6OU1dyde4vVwokXc1HO69mJvsDpa4YgojIIhmSJ0qr/QUrhGiQD9+LtYyIaqjeFacz7n7p/Bh3dwTX4j9Oo6xaa8rNghIcuHAD7byc4Vbli3TCqv16PddPcZojxPSVV1yGCV/sR/pN/YZNP/x1nOp2DABM+bqiD9TfCRlwaWKPc1n5iEu5iU6+CnRu6YJ2Xs64eKMA//3rjNbzvbz+OJ4YFIQOPgqUKwXSbxYi0L0pjqdn11qXv05mYMfpLJSUKzG9fyAW399JtU9bp+9Kr/16HPuTb+CTh3qgV0Bznc9xpdpac6M/2Yvfnx2ApKv5GBriiYlfxAIAjl7MxjfTegMAysqVuHC9AG091QPFw9/EAQBOXMpBG89mKDSgw3ZNt1kPptzEN3svYPmOcwjxdsa80R2w8egljXK/HlF/rKi0HFeybyPYoxkAYPbaI9h5JgtPDg7Ggns76F0vc2AIIiLJq/4FcC2/GJ7ODdM/xNTSbhTi1JWaO2Tf0jKPT2WH6sm9/fD+xK5GqUeJnrdK9A1AlU5n5OLD7efwY9zdSRmzcouRlXv3dtrc9ccBAL893V/n2nC/Hb2EP45fwZoZffDw1xUh4ZWR7fS+bVX5GtfsT8X4ni3RtZUrYpNvYLOO49cfrggEE1btR+qSMXo9T1X3r9gHAOjke7dFaGeV+Ytmrz2CqDvz/nz+SE/4uzlh+Q71FslH7gQifWkb3VepMmAeTcvGg1/G6nW+MZ/uRfK1Arw/oQsm9/FX1f+rPRcYgoiI6kLXX9+1OZeZb5YQVJcq19Yv5p4PYzRae/T1y+F0LL6/U707smbk3MbeKvMJGduK6KTaC6EiaKye3kdnmZJypSoAAcCy7bpvYdbk/hX78MWjPfHUD0frdDxQ0Y+roKQMznI7tdY8barfYlr8+ymM7OilCkAA8MyPda9LVZF/nzXKeSolX6uYz+v1307ir5OWMx2CPhiCSKvr+cVoJrfTOicLkSnUZzX4bacyMFDLUPqGZmjHaKVSYNzn+3SWqS0A1Ra83v3rNNLqObFhbX2WTGn+xpMmey5DA5BSKWBzZwjh5mOX6zWR4Jr9qbV2WjeHwHl/6dy/55zm3F4AcPpKLrYlZGBiLz/4t3BqiKrVCUeHWSmlUtT4JXMo9Sb6vReFge9Ha0wsRmQq+nSsrdQv2E1tW9vMx6ZgaEvQ/uQbOHFJ99xDtT5nLft/ikvDv0kN14pjalWX9LA0f5y4grJyJV779bjkZ1I2tns/3YtPdyWp+n1ZCoYgK1Q5TLPXuzu0pvbp3x5E2Z0hrt/t1754IjW84rJyXLimfTivPnJul2oMU5aSJX9rdn71cNY+/82gth46z1VcVo63Nidg4ZYEi1roc/3h9HqfY1VMcu2FyCQ+2JaINm/8reonRBWdpt/cfLf17nL2bSiVAnEXbiBbS382U2MIsiLns/KwNjYVvx+/gpOXc1BcplQNjayqoEon04ZuCbqaV4Q/jl9RzS9iKH36jRxNu4WPd55DVrW/IItKy2tdBuGmkWaEzSsqxc8H03A+K6/2wqh4XWNX7MM9H+7G2thUg5/val4RwiKjEBYZhbOZ2vsiFJWW46e4NMRWGVIthEBxmWUsC1DZz6CqYPemWss+3Ndf57m+2ZuCtQcu4vvYi1i9L8Uo9asLIQSOpd3CuTvvg9+PGzbPDFm2yxJfTLQhTPv2oEbL7HPrjmHyVwfwn8/+NfuM1ewTZCXKypUYsVz3PBlFpeVo/9Y2g857NbcIR9NuYWiIp8H9h/YlXVcb1bD9pcFo5+Ws9/GZOUV47H9xcHa0w0+z+qk9/7/nr2Pp9kRM6NlStdL1nnPXsPGZAQAqr8dupN+smGslMSsPxaVKzBocrJq347Oo8/hwxzk81MdPNctqXS3acgobj10GAJz772i12WK1Dec+fzUfZzMrvijf2nIKj4UFGvR8y/5JVI2YenFdPLa9OFijzOfRSfj0zuy3++bdA18XR0z99iCOXLyFVY/2wpB2d1tXcotK4Sy3M8mcH2XlSrUgXpWyhtBrU8tUztsS7nbW3HkmC7OHtAYAZBeW4Hp+Mdp46v++02XpP4k4evEW7u/uq3U25IMpNzH5qwOQyYCYV4Ya5TmJLFn1+ZyAuxNwXrp1G6ev5KJLKxdTV0uFLUEWqi4jYxb/fgrjP9+HpKuarQ21tWhczS3SGoAqv3Sycouw8egl1dT5xWXlSLlegAc+34+nfjiK//51GqXlSmw+dhmB8/7C4lpmrU25XqAxrHPanVap7MIS3NByG6f6NVmw6STOX83H0bRsfB6TjDMZuShXClzLK8aj/4vD8fRsVQACKoZ83ioowaPfxKHNG3+rhvIu/uM0fj6Yjo3HLmP0J3tVt6A+vDMMdd0h9VsWQgiDm3ErAxAAXLnz16IQAnN+OopBH0TjZLV+IWXl+v3/T7tRiNlrD+OrPeq3RPKqLIVQ03IHn1aZ/j/qTBaOpmVj7/nrKCwpV/2/AIAt8ZfRdfF2BM3filUxyfUatVUTpVLgrxMV87QM/2g3ur29XWu5WYOCtZ9AR5WyC0vUOizLIENJmRIHLtzA4A+iEf7RHmw/lYn84jKs2HUe8zeeUM0rk5FzG0+tPYKPtifq/Vqizl7FC+vi8cqG46p+d5Wta8+vq5ilVwjgtV9P6H1OImoYbAmyMBk5t/HCunjcLCjBmsf7oFVzJ6RcL8CLv8Tjvq4+eKKGL4HDqTdVIwnCP9qDdU/2Q2iQm+ov9zQdt33KlQJ934vSum9ldDLkdrb46E4gGN7eE2+M6YCHv45T66D4w4E0tSbPNftTEdjCCcM7eMHPrWIkQFFpuaq15q8TmrcBMnKKcDn7dsW6Rkog0N0J2YWl+O+4znhy7REAwOrpfZB9uwRD23mqdSj9NOo8Po06j1GdvJGho+Pk/I0na+0k+t7WM5jYy0/tsclfxiIu5Sb6BDZHzu1SnL+aj7fv74SpVVpodp+7hnUH0zB7SGtEn72KT6IqZvHd+9owtXNVBsvY5Buqv4juW/Ev/N2cYG8rQ35xmdocKdrkFJbi9xNX8O6fp1FSpsQ/p7JwT3tPVYtG1ZyiT9vNsn8S8VhYgNZ9L6yLV/3+/raz8HdzwpiuPhrlhBAoVwr8fDANjva2mNirFWQyGbILS+DsaA/bKq0157Py4OfmpHo//HkyA8/fmcZflxEdvfR4NXetPXARC7ckaHRYfuL7w2r94Z5cewRTwwLwfWxFH7ifD6Zjz6vD8OqvxxGXchPbTgHuNfRHqsmvRy7h1yOX4GBro5p/xtnx7keutr+Qici0GIIsyIAlu9TuKc9dfxzrZvXDsGUxACqmyx8a4qG16b56yHnoqwNo6mCLUZ19cKOgWGNRxKo21NI586MqE3NFnb2qNm+FLov/OI13/jyNmFeG4au9yfjlUDoW3dcJj/YLwO1S7bc7/vvnadX6TJWLLVYGIAB4fM0hAECfwOZaO/1uO6V7jora9gPAzjNXsfOM+mus/MKqOmJp4ZZTeKxfAGQyGZKv5ataT/5OUH+Ol6qNEtkSfwUvjWiHq3nq9dcVVCvlF5chu7AE7/xxWmOZgAvXCtDG0xlnMnLVXme5qOiE2M3PFY72tsguLMHqfalqx+YWlWFltH4dbDcdu4yRnbxgb1vRkHzk4k1MWKU5qVqLZg5QKqGxQnd4By/VZGodfBSI6OSltuyDLobejntrs/b1pLQNCKgMQJU+3XVeLahUbVU0RNVJBvOKONqSqKp/k66b9XYYQ5CFOJ6erdGp7nh6No5fylZ7bPbaI/hmWh8E3ekgWlRajtyiUrU+D5UKSsrxm5Ypz6ub14DzbigF8H9bT+OfUxVfem9uToAQosYv3OoBoiaGDJ9uSIM+iMbnj/RUzfqqzeGL6nX9LjYVCZdzVH1+9JV2oxCDl0bXuP/Srdv49/x1zPjukNrjWbnFmPzVAQxo0wI/PtEPC7ec0qtDbvTZq5Dba94x33kmCwPf34XtLw1BRs5trQEIqBiaXT1MVh5f6UxGLs7UMolcXe06q31WXH3n8qm+NAARGd/Go5fw9NDWZnt+mWiIG/yNQG5uLlxcXJCTkwOFQlH7AfWQlVuEYctitK798vOsfhrzKrg3c8ChN8Ix56ej2CqB2TldneyRXai9XwrpJ3XJmFonKdPHjAFB+NZIo6OGt/fU2SrY0rWJ0UfL1LQswe2ScnRYaFinfiIyv3ZezbD9pSFGPach399sCTKzy9m3MWBJzbOx/u9fzS+s6/klCJq/tSGrZVQMQPVX/ZZaXRkrAAGo9baoKYcLN8SK30TU8Cq7PZgLQ5CZ3CooQXGZEpNqWdm56q0Dsl6bqowus1YvhbczdxWIqJFhCDKDq7lFNY7GIiLtbDmhBxEZGT9WzGCZAXOOEFEFWxt+XBGRcfFTxQzqu2AikTUaZIZV4YmocWMIMgNDh0YTEdC5pfnmEiGihlNUw7xxpsAQRERERGZjzkVUGYJMLOW65srYRERE1qqmhZFNgSHIxF400nwvRKTOwY4fZ0RSFHfBfOvo8VPDxCpXpyYi/fnfWYRXF4WjvQlqQkTGVlTGPkFERDXSZ70vrgBEJE0yGLYwsjExBBGRxRsW4llrGfdmchPUhIgaE0mHoJUrVyIwMBCOjo4IDQ3FwYMHdZbfsGED2rdvD0dHR3Tp0gVbt0pn/S0ia/bGmA61luEQeiJpkpmvIUi6IeiXX37B3LlzsWjRIhw9ehTdunVDREQErl7Vvqjj/v37MWXKFMycORPHjh3DuHHjMG7cOCQkJJi45kRkKLld7Qukdm3FEEREhpFsCProo48wa9YsPP744+jYsSO++OILODk54dtvv9Va/pNPPsGoUaPw6quvokOHDnj33XfRs2dPrFixwsQ1JyJDuDV10Kvc8A613zIjIqpKkiGopKQER44cQXh4uOoxGxsbhIeHIzY2VusxsbGxauUBICIiosbylXJzc9V+iouL6/8CiEhvP80K1atcq+a1jyAjIstT37thxcXFGt/V+pJkCLp+/TrKy8vh5eWl9riXlxcyMzO1HpOZmWlQ+Up+fn5wcXFR/URGRtav8kRkEB9FE3NXgYgsWGRkpNr3tJ+fn97H2jVgvRqF9PR0KBQK1bZczhEoRKbk4sT5f4ioZvPnz8fcuXNV27m5uXoHIUmGIHd3d9ja2iIrK0vt8aysLHh7e2s9xtvb26DylRQKhVoIIiLTCQtuYe4qEJGFk8vldW6gkOTtMAcHB/Tq1QtRUVGqx5RKJaKiohAWFqb1mLCwMLXyALBjx44ayxOR+Rk6dNalCVuNiKSGQ+TrYO7cufj666/x3Xff4cyZM3j66adRUFCAxx9/HAAwdepUzJ8/X1X+hRdewLZt2/Dhhx/i7NmzWLx4MQ4fPoxnn33WXC+BiGohN3A9sLf+07GBakJEDcd8KUiSt8MAYPLkybh27RoWLlyIzMxMdO/eHdu2bVN1fk5LS4ONzd0P0P79++Onn37Cm2++iQULFqBt27bYvHkzOnfubK6XQEQ62MiARfd1MuiYFs30G06vr8AWTghr3QI/H0w36nmJyDJINgQBwLPPPltjS05MTIzGY5MmTcKkSZMauFaNz8iOXjh1JReXs28bdNyWOQMwduW+BqoVWaKnhrTGF7uTjXKuva/fg5auho0MayY33kfaljkD0M3PFe/+edpo5yQiTfrOBdYQJHs7jCosus+4zf9PDg5W2/7lyX74ampv7Jt3D04uHgkAcHKwRcwrQ/Fg71Y1nmd8j5bo5ueq8fgnD3WvU70e6NESAHBfN18kv3cvQoPc6nQeYwrv4IWPJ3c32fP19Hc12XPVhXszB8wb3R7hHbxqL1wLe1uZwQEIAHoHNDeofOX7Shtt718iMr7mZhwByhBkoaaGBah+H9nRC9tfGoz1s8OQEnkvtswZAAB4YmAQ7mlft1ly+wRqflksn9wNC+5VX6MptMroHGdHe1x4714cXzQSge5NseDeDgh2b6pWPqCFE87/32h8VEM4uL+bL758rBe6+bkivMoMv8EeTbWWr/T22E5IXTIGn03pAVsbGf7vAe23MTffuTbVja/yZTdvdHskvB2B5ZO7aYTIp4a01np86pIxSH7vXvz53EB8PLk7Dr4xHF9P7YX7uvlqPP+gtu46X0t1j4T611pm7cy+eG98F637jr41wqDn04eu99WMAUFq26+Pao/h7T2x4an+AIARHev2nmzn1Uz1eyffui2BIZPJ8NfzA9UemzNM+//TX58Kw/Ia3qdV/32Ysc8mETUwSd8Oa0yc5XbIKy4DUPEF9Pqo9ghs0RTtfZzRv7X6l2o3P1ekLhkDAMi/cwwABLs3xYXrBVrPP75nS2w8elm1/fOsfmjzxt+q7ZOLR8LZsSKNr368Dz6PTsLUsECN89jYyGBz52vB1ckBUS8PQdD8uwvRbn9pMOxttWfrt/7TETKZDBGdvBHRyRtCCJy8nAP3ZnL43vmr/54PY3DhWsVraNW8CXoHNMfwDl5QOKr/pdDG01nrc3T3c0X8whHo/s4OtccX3dcJ3i6OCPF2xtjuFYHogR4VLVlv/1Hz7Y5mcjs8fCek2NrI0Lmli9pCnbYyoKVrE9WtwgA3J9hUGerQ2qMpZg9ujdd+O1Hjcwxq644f49Jq3F9RxgNAxfVVCoFfDqUj6Wo+Isd30WhKrvpeqtTWsxnOX81Xeyyikxfcm8m1PrdSCHT0UeB0RsXMq82d7HGrsBRLxnfBQ3398e2+FAAVr/3poa0B3A0aPf11t8ZceO9e7D53DccvZaNXQHP0CXRDRk4RWro2wSPfHMDVvOJ6tbAFVQvmr0ZUtE4dTcvGuO6++OP4Fbg1k6N3YEVrYoiXMxKz8gAAnVsq8PKIEPSqEoJ6B7rhm39T9H7+n54IxcPfxNW5/kTWxpyjwxiCTMyliT1ybpeqtjc+0x8dfRSQ29ngt6OXkXA5B3OGtUFTuR1mDAzScaYKzeR2+PKxXohJvIqnhrTGkKUxqn0yGSAE8PXU3gjv4KkWguxsbfDVY73wd0ImZg8JVgUgABgW4olhIfr9NS+r9u6tvtDl7MHB+HLPBXTyVeCxfgFq+2QyGbq2clV77M0xHTBjzWEAFbfOegXof9ursvXC1Uk9FHRt5QIXJ3u8Nqp9refoG9Qca2NtUVBSjtdGhWD24NawtdH9L/T7mX3x8c7zGNLOA82bOqj9gxYCuLerj84Q1MnXBasf74N/EjLxxKAgvPTLcZy8nKPa39bzbgtJO6+K8Fe9w/DamX3xzh+nMa5HS0wNC8Dbf5zGr0cuqfb/3wNd4ORgi6d+OIJLt27fuS6ueLRfAE5cyoGAQGZOEa7nlwAAlAL4ZlpvfPtvCga180C/YDdkZBch8E7A2DxnALYlZOLhvpqtWG29nLFsUjecupKDiE7eWHvgIv46kaHab2Mjw7D2nhhWpbWpMrhseKo/hBAa7ytDaPv/1cO/OXrcCWfTq7VkPTOsNV5YFw8AmD24tVq9gIqw2DugOQ5fvKXX8/dv446F/+mId3T0JRrb3Rdb4q/odT6ixk4I8z23TAhzPr3lys3NhYuLC3Jycow6WeJvRy7h5Q3HAQBD2nnguxl9jXZuAHhj00n8GJeGuSPaYWKvVigsKUebO1+iY1fuw/H0bHgp5IhbEF7LmfS3+PdTWLM/FZN6tcLSSd009peVK2FXQ+tQdUII7Dp7FXI7Wwys5bbSwZSbWHvgIqb09UMzuR06+ChUrVCXbhXimR+Pwr2ZHO+M7aRzXalxK/chPj0bALB/3j1QCoFzWXkY3NZD73pX9dzPx/DH8YovuG6tXLDl2YF47H9x2Hv+uqrM/6b1xp5z19DNzxXje6r3rSpXCtwoKMbCzaeQfC0fqx7tpfp/aIjoxKt4+ocj6NbKFeue7AeZTIYzGbl46KsDcGvqgL9fGARH+4rQKoTAg1/G4lBqxRf9mK4+WPlwT4OfsyaB8/5S/V7ZitmQPt55DhuPXsbi+zvinva6+ygplQK/HE6HDMCDvf1goyVE5RWVosvi7Xo9d+qSMSgrV2LnmasIdHdCcycHeCkcMerjPTibmQe5nQ0OvhGObm/rdz6ixm7HS4PR1kt7635dGPL9zRBUg4YKQUqlwKu/nsCV7NtYPrk7vF0cjXbuStmFJRqtIQBwLa8Y205l4p72nnXqdFoTIQQu3ihEQAunev0Fby5Xsm/jk53n0SfIDRN71dzZW1+ZOUUYuiwa5UqBP58bhBBvZyz95yxWRt8dNWWKIAAAt0vK4Whvo/b/pai0HA62Nhpf9inXCzD6kz2wlcmw8+Uh8HEx3nvkhwMX8cXuZLwY3s4o19gcqgY5XWr6f3s1rwh/HM/AsBAPBHs00/t81mrZpG5waWKPWd8fNndVqIFtf2mwqpXbGBiCjKChQhBZh+zCEpSWC3g4V0zlbq4QZKicwlLY2EDt9ihVqG8Iquv5OvkqcOqK/qti62vfvHswYMkug455dlgbrIhOMnpdtKm8jvHp2dideA3Ld56r87leDG+LQ6k3sS/phrGqBwD4YWYoHv1f4+z/1TfQDYWlZTiXmY+ScmWDPpc5QxD7BBE1gOotcTKJjDHiYqWW470HuqCkrByP9gvA6YxcBLo3Rddqt+Qm9GyF345equEMNVv5cE+DWoNfDG+LMV180NbLGT0DXDFjzWE8PbQ1VsXUfU6omQODcDYzt9Zg0t3PFd39XOsZgtoBAH6Mu4g3NiXU+TzVSbDhWy9/vzAIHXzuhofG3GrJIfJERGbm76bZZ+3hUH9MHxAEO1sbdG3lqjFCEgB8Xet2O72pvKIvmL7TObwY3k7VZ+Oe9l5IXTIGr2sZaLDYgHnL5o5oZ5I/DsZ09VH9/khogI6SQHtv7a0R2takGxbigRAt5QNb1Nz/UAru7+arFoCAiv6rDamWsScN+9zme2oiIgIqRok2hMf6BcBBy/prg+9MubB0YjcMaNMCD/ZuheMLR2JJDXNR6SOikxemDwhCq+a6W5jaeTXDl4/1QlO5HQT0743xvQGDSJwc7o5Srf79+lAfvxqPEwKIfmWoxuM/PhEK92bqq5S/P7Er3JvJsXp6Hzw7rA1eHtEOk3v74ZfZYYhbMNzgde+qmz04GKFBbnjvgS7Y9Ex/fDO1N14Y3hbfTO1dr/POGlT7qGNdGiKwtGhatxXgjYEhiIjIzKp/wX47XfsX3eTeNX+BazNrUDAS3x2l9tiySd1UneK9XRzx4xP98MHEbnBxssdDff01JsPU5YtHe6l+f2dsxQSmSydqjhCtlPB2BLa/NAQRnbwBaA6NfmF4W3gp5FoXwh2sZ2tE5WjRmrT2qHmkpYDQ2pLTuaULvp3eG83kdghs4YSz746Cp3NFK9yw9p54JSIEzw1vi/cndoWXwhFeCkfsn3cPXgxvCwDwVmhvsdM1/cakO4Hq4VB/9PBvjvCOXnhpRDuEd/TCew/UHFaHhnjg7fsrptBo6mCLmdWmWulRyzxetcXSIPemWFjLQsXeCke4Otljy5wB6KHHTPfNzbhsBvsEEZlA1SHuhi7tQI3Tuif74ae4NLXZ4SvVNKz/zf90wC+H7y7mqqszaU9/V/jf+UJ3tLdBUWlF59baRue9PjoE/YLdkF1Yin+TrmPWoOAay47q7I3T70RABhma3Gl96Rfsht+e7g9Hexu888dpxKXcBFAxM3r1cFI9BM0Z1gYvjWins36VpvT1g72tDb6Pvah6zNNZjtci2mPnmas1HvdwqD/+b+sZ1Xar5k1Uc2cJoTn3WaWurVxx8I3hkNvZ1jp3GAC0aCbHi+HtMKKjF/zcnDT6cwEVLXVr9qdqPV7XtBhT+vrh1JUctYlOV0/vg0OpNzFjYBCaOzkg2KMpgj2a4ZeD6pOh1lZzbWOlurVywe5z1wAAvQPcMGNgkM55sA4sGK6aGsXfzQnH0rJreVbzYQgiMoH7u/ki6uxVXLpViI/ruH4aNS79glugX5VladbPDsNnu85jko7WHmdHe8TOvwdzfzkOP7cm+E9XHzz38zHV/sHtPHD5ViFmD26NB6vc9vn92YH44cBFjWVetJHb2WLknZaaB3XcOqrk5KD+NSKTydDrTtBfOrEb7l/5L+R2Nng1IkTj2Kp9bVo0ddB6666q2UOC8eXuCwCAJwYFo7VHMzzQoyVOXs7Bf7r6wtnRTmPG+uqhpqncDqfejkDU2avoHdAcNwtK8J/P/gUAvDtO+3I8Nb1WfehaAub+7r5aQ1BlC1JNZDIZBrRRn2m++gSklbPMTx8QhE93JVU5Vt+a3/XMsDY4cTkHxaVK1dJKnVsqkHC5YtSitsk/K+dYe21Ue4ueGJQhiMgEbGxk+GxKD3NXgxqAj4sjMnKKAEBtPTxD9Q1yw9qZoXo8XxP8/GQ/1fbgdh7Yc+ev9DfHdNDaOtTOy1l1u8qU/Fs44cD84bC1kWldTuet+zpi97lrUAqB356uvV/Ui8PbwaOZHEHuTVW3tarOBl6ptUdTXMsrBgD4apmLrancDvffCYS+rk2w6Zn+KClToq+JFmZedF9HeDjL0dO/OX55sh82HbuM3eeuoYmDLd76T0e9Z+zXh+YK7TJ08FHgTIb2aRe0tcQ52ttizePqfbK+mdoHvx5Jx9AQT3Ru6VJj0Gnp2gSPDwjE6n2pdal+g2MIIiKqB383J7w+qj1OXMrBMzUs1tqQlk3siuU7z6FzSxejzrViLJWzkmvT0rUJ4t4YDqHUb3qGJg62eELH7blKSyd2w6QvYuEkt8Vzw3W3qgC195Mxtser9LsKDW6htlC1KXw/oy92nsnC23+cQlGpEq+MbIfQ4BZoYm+rs89UVd4ujnj2nrvXdu3MvlgVk6xaa7GqBfd2YAgiImqMZDJgXI+WGNejpVme31PhiMjxXc3y3Magbeh/ffm5OeHf14fBRibTugyKIZ67p42RamVcdZ3muLmTPTyc5ZjS1x8jO3ohMTMPocEt9OrnpMugth6qW3DV2dvaoJufK47fWZ6oqrl69gFrKBwdRkRUD5xz3zLZaVkaRl/rZ4dh5sAgRL08BC+P1OzLVBcfTOyKvoFu+GlW7bc8je2XJ/vB1cke97T3VLvl16KZHP3buNc7AOnjk8nd4eks1+jw/UQ9h+zXF1uCiIiIqugb5Gb0/kEP9vbDgwZOcaBL1YkaaxtxGhrcAkfeHGGSsFOTQPem2D/vHtjayBA0f6vqcbldzbdLTYEhiIioHhrr0glk2dp4NsO7YzvhWHq21pF31ZkzAFWy09I53twYgoiI6oG3w8hcHgsLxGNh5q5F/Zg7mlleLCMiIiIyAYYgIqJ64O0woroz978fhiAiIiIyGWdHy+mJwxBERKSHER21r+dFRIbZ+HR/TO7thzWP96lxrTZTsZw4RkRkwZx1rExORPpr6+WM9ydaxgSfbAkiItLDa6Paw8HOBhYw0piIjIQhiIhID94ujtg/7x7sff0edPBRmLs6RGQEbN8lItKTezM5APPPbUJExsGWICIiA3F+RKLGgSGIiKgeZGwXIpIshiAionoQbBcikiyGICIiIrJKDEFERPXA22FE0sUQRERUD7wdRiRdDEFERERklRiCiIjq4Xp+ibmrQER1xBBERGSglOv5qt+TrubrKElElowhiIjIQEWlSnNXgYiMgCGIiIiIrJLkQlBqaipmzpyJoKAgNGnSBK1bt8aiRYtQUqL7vvzQoUMhk8nUfp566ikT1ZqIiIgsjeQWUD179iyUSiW+/PJLtGnTBgkJCZg1axYKCgqwbNkyncfOmjUL77zzjmrbycmpoatLREREFkpyIWjUqFEYNWqUajs4OBiJiYlYtWpVrSHIyckJ3t7eDV1FIiIikgDJ3Q7TJicnB25ubrWW+/HHH+Hu7o7OnTtj/vz5KCwsrPWY3NxctZ/i4mJjVJmIiIiMoLi4WOO7Wl+SD0FJSUn47LPPMHv2bJ3lHn74Yfzwww+Ijo7G/PnzsXbtWjz66KO1nt/Pzw8uLi6qn8jISGNVnYiIiOopMjJS7Xvaz89P72NlQgiLmPN93rx5eP/993WWOXPmDNq3b6/avnz5MoYMGYKhQ4fim2++Mej5du3aheHDhyMpKQmtW7fW2J+bmwsXFxekp6dDoVCoHpfL5ZDL5QY9FxE1LoHz/lLbTl0yxkw1IaLi4mK1uzS5ubnw8/NDTk6O2ve3NhbTJ+jll1/G9OnTdZYJDg5W/X7lyhUMGzYM/fv3x1dffWXw84WGhgJAjSGokkKhqPUiEpH18nDmH0VE5lSfxgmLCUEeHh7w8PDQq+zly5cxbNgw9OrVC6tXr4aNjeF39eLj4wEAPj4+Bh9LRFTJzoaryBNJleT6BF2+fBlDhw6Fv78/li1bhmvXriEzMxOZmZlqZdq3b4+DBw8CAJKTk/Huu+/iyJEjSE1Nxe+//46pU6di8ODB6Nq1q7leChE1Ak4OtuauAhHVkcW0BOlrx44dSEpKQlJSElq1aqW2r7J7U2lpKRITE1WjvxwcHLBz5058/PHHKCgogJ+fHyZMmIA333zT5PUnosaljWczc1eBiOrIYjpGW5rKjtH6dKwiIusyYMkuXM6+DQCI6OSFLx/rbeYaEVElQ76/JXc7jIiIiMgYGIKIiAxUtQFdBnaMJpIqhiAiIgNV7UMgYwYikiyGICKiemAIIpIuhiAiIgNxOAlR48AQRERUD+wTRCRdDEFERAYSYFMQUWPAEEREZCC122FsCCKSLIYgIqJ6YAYiki6GICIiA/FmGFHjwBBEREREVokhiIjIQLwFRtQ4MAQRERGRVWIIIiIiIqvEEEREVA/sJE0kXQxBREQGUlsvjCmISLIYgoiIDMSlMogaB4YgIqJ64BIaRNLFEERERERWiSGIiIiIrBJDEBGRgWTsEkTUKDAEERHVg2CXICLJYggiIjIQG4KIGgeGICKiemBLEJF0MQQRERGRVWIIIiIiIqvEEEREZCBZleFhnCyRSLoYgoiIiMgqMQQREdUDO0YTSRdDEBEREVklhiAiIiKySgxBREQG4rIZRI0DQxARUT2wSxCRdDEEEREZiC1BRI0DQxARUT1wdBiRdDEEEREZSMYlVIkaBYYgIiIiskoMQURE9cL7YURSxRBERGQgdowmahwkGYICAwMhk8nUfpYsWaLzmKKiIsyZMwctWrRAs2bNMGHCBGRlZZmoxkTUWLFjNJF0STIEAcA777yDjIwM1c9zzz2ns/xLL72EP/74Axs2bMDu3btx5coVjB8/3kS1JSIiIktjZ+4K1JWzszO8vb31KpuTk4P//e9/+Omnn3DPPfcAAFavXo0OHTrgwIED6NevX0NWlYgaGS9nR1y8UQgAcG8mN3NtiKiuJNsStGTJErRo0QI9evTA0qVLUVZWVmPZI0eOoLS0FOHh4arH2rdvD39/f8TGxpqiukTUiHwwsSuc5XZwa+qA10aFmLs6RFRHkmwJev7559GzZ0+4ublh//79mD9/PjIyMvDRRx9pLZ+ZmQkHBwe4urqqPe7l5YXMzEydz5Wbm6u2LZfLIZfzLz8iaxbo3hRxbwyHjUwGR3tbc1eHyKoVFxejuLhYtV39e1sXi2kJmjdvnkZn5+o/Z8+eBQDMnTsXQ4cORdeuXfHUU0/hww8/xGeffaZ2EYzFz88PLi4uqp/IyEijPwcRSY+Tgx0DEJEFiIyMVPue9vPz0/tYi2kJevnllzF9+nSdZYKDg7U+HhoairKyMqSmpiIkRLNp2tvbGyUlJcjOzlZrDcrKyqq1X1F6ejoUCoVqm61ARERElmP+/PmYO3euajs3N1fvIGQxIcjDwwMeHh51OjY+Ph42Njbw9PTUur9Xr16wt7dHVFQUJkyYAABITExEWloawsLCdJ5boVCohSAiIiKyHPXppmIxIUhfsbGxiIuLw7Bhw+Ds7IzY2Fi89NJLePTRR9G8eXMAwOXLlzF8+HB8//336Nu3L1xcXDBz5kzMnTsXbm5uUCgUeO655xAWFsaRYURERFZKciFILpdj3bp1WLx4MYqLixEUFISXXnpJrSmstLQUiYmJKCwsVD22fPly2NjYYMKECSguLkZERAQ+//xzc7wEIiIisgAyITjfqTa5ublwcXFBTk4Ob4cRERFJhCHf3xYzOoyIiIjIlBiCiIiIyCoxBBEREZFVYggiIiIiq8QQZAbFxcWq0W1UgddEHa+HJl4TTbwmmnhNNPGa1Iyjw2rQkKPDOPJME6+JOl4PTbwmmnhNNPGaaLK2a8LRYURERES1YAgiIiIiqyS5GaNNpfIuYW5urtHPXXnOhji3VPGaqOP10MRroonXRBOviSZruyaVr1Of3j7sE1SDS5cu6b0KLREREVmW9PR0tGrVSmcZhqAaKJVKXLlyBc7OzpDJZOauDhEREelBCIG8vDz4+vrCxkZ3rx+GICIiIrJK7BhNREREVokhiIiIiKwSQxARERFZJYYgE1u5ciUCAwPh6OiI0NBQHDx40NxVMorFixdDJpOp/bRv3161v6ioCHPmzEGLFi3QrFkzTJgwAVlZWWrnSEtLw5gxY+Dk5ARPT0+8+uqrKCsrUysTExODnj17Qi6Xo02bNlizZo0pXp5e9uzZg/vuuw++vr6QyWTYvHmz2n4hBBYuXAgfHx80adIE4eHhOH/+vFqZmzdv4pFHHoFCoYCrqytmzpyJ/Px8tTInTpzAoEGD4OjoCD8/P3zwwQcaddmwYQPat28PR0dHdOnSBVu3bjX669VHbddk+vTpGu+bUaNGqZVpTNckMjISffr0gbOzMzw9PTFu3DgkJiaqlTHlvxVL+DzS55oMHTpU433y1FNPqZVpTNdk1apV6Nq1KxQKBRQKBcLCwvD333+r9lvbe6RBCTKZdevWCQcHB/Htt9+KU6dOiVmzZglXV1eRlZVl7qrV26JFi0SnTp1ERkaG6ufatWuq/U899ZTw8/MTUVFR4vDhw6Jfv36if//+qv1lZWWic+fOIjw8XBw7dkxs3bpVuLu7i/nz56vKXLhwQTg5OYm5c+eK06dPi88++0zY2tqKbdu2mfS11mTr1q3ijTfeEBs3bhQAxKZNm9T2L1myRLi4uIjNmzeL48ePi/vvv18EBQWJ27dvq8qMGjVKdOvWTRw4cEDs3btXtGnTRkyZMkW1PycnR3h5eYlHHnlEJCQkiJ9//lk0adJEfPnll6oy+/btE7a2tuKDDz4Qp0+fFm+++aawt7cXJ0+ebPBrUF1t12TatGli1KhRau+bmzdvqpVpTNckIiJCrF69WiQkJIj4+Hhx7733Cn9/f5Gfn68qY6p/K5byeaTPNRkyZIiYNWuW2vskJydHtb+xXZPff/9d/PXXX+LcuXMiMTFRLFiwQNjb24uEhAQhhPW9RxoSQ5AJ9e3bV8yZM0e1XV5eLnx9fUVkZKQZa2UcixYtEt26ddO6Lzs7W9jb24sNGzaoHjtz5owAIGJjY4UQFV+WNjY2IjMzU1Vm1apVQqFQiOLiYiGEEK+99pro1KmT2rknT54sIiIijPxq6q/6F75SqRTe3t5i6dKlqseys7OFXC4XP//8sxBCiNOnTwsA4tChQ6oyf//9t5DJZOLy5ctCCCE+//xz0bx5c9U1EUKI119/XYSEhKi2H3zwQTFmzBi1+oSGhorZs2cb9TUaqqYQNHbs2BqPaezX5OrVqwKA2L17txDCtP9WLPXzqPo1EaIiBL3wwgs1HtPYr4kQQjRv3lx88803fI8YGW+HmUhJSQmOHDmC8PBw1WM2NjYIDw9HbGysGWtmPOfPn4evry+Cg4PxyCOPIC0tDQBw5MgRlJaWqr329u3bw9/fX/XaY2Nj0aVLF3h5eanKREREIDc3F6dOnVKVqXqOyjJSuH4pKSnIzMxUq7+LiwtCQ0PVroGrqyt69+6tKhMeHg4bGxvExcWpygwePBgODg6qMhEREUhMTMStW7dUZaR0nWJiYuDp6YmQkBA8/fTTuHHjhmpfY78mOTk5AAA3NzcApvu3YsmfR9WvSaUff/wR7u7u6Ny5M+bPn4/CwkLVvsZ8TcrLy7Fu3ToUFBQgLCyM7xEj47IZJnL9+nWUl5ervSkBwMvLC2fPnjVTrYwnNDQUa9asQUhICDIyMvD2229j0KBBSEhIQGZmJhwcHODq6qp2jJeXFzIzMwEAmZmZWq9N5T5dZXJzc3H79m00adKkgV5d/VW+Bm31r/r6PD091fbb2dnBzc1NrUxQUJDGOSr3NW/evMbrVHkOSzJq1CiMHz8eQUFBSE5OxoIFCzB69GjExsbC1ta2UV8TpVKJF198EQMGDEDnzp0BwGT/Vm7dumWRn0fargkAPPzwwwgICICvry9OnDiB119/HYmJidi4cSOAxnlNTp48ibCwMBQVFaFZs2bYtGkTOnbsiPj4eKt+jxgbQxAZxejRo1W/d+3aFaGhoQgICMD69estOpyQeT300EOq37t06YKuXbuidevWiImJwfDhw81Ys4Y3Z84cJCQk4N9//zV3VSxGTdfkySefVP3epUsX+Pj4YPjw4UhOTkbr1q1NXU2TCAkJQXx8PHJycvDrr79i2rRp2L17t7mr1ejwdpiJuLu7w9bWVqMHf1ZWFry9vc1Uq4bj6uqKdu3aISkpCd7e3igpKUF2drZamaqv3dvbW+u1qdynq4xCobD4oFX5GnT9//f29sbVq1fV9peVleHmzZtGuU5SeJ8FBwfD3d0dSUlJABrvNXn22Wfx559/Ijo6Wm1tI1P9W7HEz6Oarok2oaGhAKD2Pmls18TBwQFt2rRBr169EBkZiW7duuGTTz6x6vdIQ2AIMhEHBwf06tULUVFRqseUSiWioqIQFhZmxpo1jPz8fCQnJ8PHxwe9evWCvb292mtPTExEWlqa6rWHhYXh5MmTal94O3bsgEKhQMeOHVVlqp6jsowUrl9QUBC8vb3V6p+bm4u4uDi1a5CdnY0jR46oyuzatQtKpVL1oR8WFoY9e/agtLRUVWbHjh0ICQlB8+bNVWWkep0uXbqEGzduwMfHB0DjuyZCCDz77LPYtGkTdu3apXEbz1T/Vizp86i2a6JNfHw8AKi9TxrTNdFGqVSiuLjYKt8jDcrcPbOtybp164RcLhdr1qwRp0+fFk8++aRwdXVV68EvVS+//LKIiYkRKSkpYt++fSI8PFy4u7uLq1evCiEqhnT6+/uLXbt2icOHD4uwsDARFhamOr5ySOfIkSNFfHy82LZtm/Dw8NA6pPPVV18VZ86cEStXrrSoIfJ5eXni2LFj4tixYwKA+Oijj8SxY8fExYsXhRAVQ+RdXV3Fli1bxIkTJ8TYsWO1DpHv0aOHiIuLE//++69o27at2nDw7Oxs4eXlJR577DGRkJAg1q1bJ5ycnDSGg9vZ2Ylly5aJM2fOiEWLFpltiLyua5KXlydeeeUVERsbK1JSUsTOnTtFz549Rdu2bUVRUZHqHI3pmjz99NPCxcVFxMTEqA33LiwsVJUx1b8VS/k8qu2aJCUliXfeeUccPnxYpKSkiC1btojg4GAxePBg1Tka2zWZN2+e2L17t0hJSREnTpwQ8+bNEzKZTGzfvl0IYX3vkYbEEGRin332mfD39xcODg6ib9++4sCBA+auklFMnjxZ+Pj4CAcHB9GyZUsxefJkkZSUpNp/+/Zt8cwzz4jmzZsLJycn8cADD4iMjAy1c6SmporRo0eLJk2aCHd3d/Hyyy+L0tJStTLR0dGie/fuwsHBQQQHB4vVq1eb4uXpJTo6WgDQ+Jk2bZoQomKY/FtvvSW8vLyEXC4Xw4cPF4mJiWrnuHHjhpgyZYpo1qyZUCgU4vHHHxd5eXlqZY4fPy4GDhwo5HK5aNmypViyZIlGXdavXy/atWsnHBwcRKdOncRff/3VYK9bF13XpLCwUIwcOVJ4eHgIe3t7ERAQIGbNmqXxAduYrom2awFA7X1syn8rlvB5VNs1SUtLE4MHDxZubm5CLpeLNm3aiFdffVVtniAhGtc1mTFjhggICBAODg7Cw8NDDB8+XBWAhLC+90hD4iryREREZJXYJ4iIiIisEkMQERERWSWGICIiIrJKDEFERERklRiCiIiIyCoxBBEREZFVYggiIiIiq8QQRESSI5PJsHnzZnNXQy/Tp0/HuHHjzF0NItKCIYiILE5mZiaee+45BAcHQy6Xw8/PD/fdd5/GWkdERPVhZ+4KEBFVlZqaigEDBsDV1RVLly5Fly5dUFpain/++Qdz5szB2bNnzV1FImok2BJERBblmWeegUwmw8GDBzFhwgS0a9cOnTp1wty5c3HgwAFVuevXr+OBBx6Ak5MT2rZti99//121r7y8HDNnzkRQUBCaNGmCkJAQfPLJJ2rPU3mbatmyZfDx8UGLFi0wZ84ctdXoAwMD8d5772HGjBlwdnaGv78/vvrqK7XzpKen48EHH4Srqyvc3NwwduxYpKamNszFISKjYggiIotx8+ZNbNu2DXPmzEHTpk019ru6uqp+f/vtt/Hggw/ixIkTuPfee/HII4/g5s2bAAClUolWrVphw4YNOH36NBYuXIgFCxZg/fr1aueLjo5GcnIyoqOj8d1332HNmjVYs2aNWpkPP/wQvXv3xrFjx/DMM8/g6aefRmJiIgCgtLQUERERcHZ2xt69e7Fv3z40a9YMo0aNQklJiXEvDhEZn7lXcCUiqhQXFycAiI0bN+osB0C8+eabqu38/HwBQPz99981HjNnzhwxYcIE1fa0adNEQECAKCsrUz02adIkMXnyZNV2QECAePTRR1XbSqVSeHp6ilWrVgkhhFi7dq0ICQkRSqVSVaa4uFg0adJE/PPPP6rnGTt2bC2vnIjMgX2CiMhiCCH0Ltu1a1fV702bNoVCocDVq1dVj61cuRLffvst0tLScPv2bZSUlKB79+5q5+jUqRNsbW1V2z4+Pjh58mSNzyOTyeDt7a16nuPHjyMpKQnOzs5qxxQVFSE5OVnv10JE5sEQREQWo23btpDJZHp1fra3t1fblslkUCqVAIB169bhlVdewYcffoiwsDA4Oztj6dKliIuL0/sc+pTJz89Hr1698OOPP2rUz8PDo9bXQETmxRBERBbDzc0NERERWLlyJZ5//nmNfkHZ2dlq/YJqsm/fPvTv3x/PPPOM6rGGaJnp2bMnfvnlF3h6ekKhUBj9/ETUsNgxmogsysqVK1FeXo6+ffvit99+w/nz53HmzBl8+umnCAsL0+scbdu2xeHDh/HPP//g3LlzeOutt3Do0CGj1/WRRx6Bu7s7xo4di7179yIlJQUxMTF4/vnncenSJaM/HxEZF0MQEVmU4OBgHD16FMOGDcPLL7+Mzp07Y8SIEYiKisKqVav0Osfs2bMxfvx4TJ48GaGhobhx44Zaq5CxODk5Yc+ePfD398f48ePRoUMHzJw5E0VFRWwZIpIAmTCkJyIRERFRI8GWICIiIrJKDEFERERklRiCiIiIyCoxBBEREZFVYggiIiIiq8QQRERERFaJIYiIiIisEkMQERERWSWGICIiIrJKDEFERERklRiCiIiIyCoxBBEREZFV+n+3yseMgPmelAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -413,7 +413,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.0" + "version": "3.12.0" } }, "nbformat": 4, From e71b9a0e28c05e91d516d58e6c82df64ff188f57 Mon Sep 17 00:00:00 2001 From: astrofle Date: Fri, 25 Oct 2024 11:04:35 -0400 Subject: [PATCH 36/38] Fix: remove print statements --- src/dysh/spectra/scan.py | 18 +++++++----------- 1 file changed, 7 insertions(+), 11 deletions(-) diff --git a/src/dysh/spectra/scan.py b/src/dysh/spectra/scan.py index 2a1c4f7a..7827bd23 100644 --- a/src/dysh/spectra/scan.py +++ b/src/dysh/spectra/scan.py @@ -431,7 +431,6 @@ def timeaverage(self, weights="tsys"): i = 0 for scan in self.data: self._timeaveraged.append(scan.timeaverage(weights)) - print(f"timeaveraged[{i}]= {self._timeaveraged[i].data.data}") s = average_spectra(self._timeaveraged, weights=weights) s.merge_commentary(self) return s @@ -1559,8 +1558,8 @@ def calibrate(self, **kwargs): fold=True or fold=False is required """ if self._debug: - print(f'FOLD={kwargs["fold"]}') - print(f'METHOD={kwargs["shift_method"]}') + logger.debug(f'FOLD={kwargs["fold"]}') + logger.debug(f'METHOD={kwargs["shift_method"]}') # some helper functions, courtesy proto_getfs.py def channel_to_frequency(crval1, crpix1, cdelt1, vframe, nchan, nint, ndim=1): @@ -1656,26 +1655,23 @@ def do_fold(sig, ref, sig_freq, ref_freq, remove_wrap=False, shift_method="fft") sig_freq = self._sigcalon[0] df_sig = self._sdfits.index(bintable=self._bintable_index).iloc[self._sigonrows] df_ref = self._sdfits.index(bintable=self._bintable_index).iloc[self._refonrows] - if self._debug: - print("df_sig", type(df_sig), len(df_sig)) + logger.debug(f"df_sig {type(df_sig)} len(df_sig)") sig_freq = index_frequency(df_sig) ref_freq = index_frequency(df_ref) chan_shift = abs(sig_freq[0, 0] - ref_freq[0, 0]) / np.abs(np.diff(sig_freq)).mean() - if self._debug: - print("FS: shift=%g nchan=%d" % (chan_shift, self._nchan)) + logger.debug(f"FS: shift={chan_shift:g} nchan={self._nchan:g}") # tcal is the same for REF and SIG, and the same for all integrations actually. tcal = self._sdfits.index(bintable=self._bintable_index).iloc[self._sigonrows]["TCAL"].to_numpy() - if self._debug: - print("TCAL:", len(tcal), tcal[0]) + logger.debug(f"TCAL: {len(tcal)} {tcal[0]}") if len(tcal) != nspect: raise Exception(f"TCAL length {len(tcal)} and number of spectra {nspect} don't match") # @todo the nspect loop could be replaced with clever numpy? for i in range(nspect): tsys_sig = mean_tsys(calon=self._sigcalon[i], caloff=self._sigcaloff[i], tcal=tcal[i]) tsys_ref = mean_tsys(calon=self._refcalon[i], caloff=self._refcaloff[i], tcal=tcal[i]) - if i == 0 and self._debug: - print("Tsys(sig/ref)[0]=", tsys_sig, tsys_ref) + if i == 0: + logger.debug(f"Tsys(sig/ref)[0]={tsys_sig} / {tsys_ref}") tp_sig = 0.5 * (self._sigcalon[i] + self._sigcaloff[i]) tp_ref = 0.5 * (self._refcalon[i] + self._refcaloff[i]) # From 5377305bd02fcb654c86b974ab4fc4528c4ef473 Mon Sep 17 00:00:00 2001 From: astrofle Date: Fri, 25 Oct 2024 11:05:14 -0400 Subject: [PATCH 37/38] Fix: use a raw string in average_spectra docstring --- src/dysh/spectra/spectrum.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/dysh/spectra/spectrum.py b/src/dysh/spectra/spectrum.py index 7b42acae..d0b1bfc2 100644 --- a/src/dysh/spectra/spectrum.py +++ b/src/dysh/spectra/spectrum.py @@ -1527,7 +1527,7 @@ def spectrum_reader_gbtidl(fileobj, **kwargs): def average_spectra(spectra, weights="tsys", align=False): - """ + r""" Average `spectra`. The resulting `average` will have an exposure equal to the sum of the exposures, and coordinates and system temperature equal to the weighted average of the coordinates and system temperatures. From be4282fa8f98b31d2996439c9c4dddd9332fd30e Mon Sep 17 00:00:00 2001 From: astrofle Date: Fri, 25 Oct 2024 11:10:00 -0400 Subject: [PATCH 38/38] Add: mask slicing for Spectrum --- src/dysh/spectra/spectrum.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/src/dysh/spectra/spectrum.py b/src/dysh/spectra/spectrum.py index d0b1bfc2..5dfe3249 100644 --- a/src/dysh/spectra/spectrum.py +++ b/src/dysh/spectra/spectrum.py @@ -1368,7 +1368,9 @@ def wav2idx(wav, wcs, spectral_axis, coo, sto): # New Spectrum. return self.make_spectrum( - self.flux[start_idx:stop_idx], meta=meta, observer_location=Observatory[meta["TELESCOP"]] + Masked(self.flux[start_idx:stop_idx], self.mask[start_idx:stop_idx]), + meta=meta, + observer_location=Observatory[meta["TELESCOP"]], )