forked from 1991viet/Yolo-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_coco_images.py
92 lines (83 loc) · 4.6 KB
/
test_coco_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import glob
import argparse
import pickle
import cv2
import numpy as np
from src.utils import *
from src.yolo_net import Yolo
CLASSES = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat",
"traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog",
"horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella",
"handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
"baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle",
"wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange",
"broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant",
"bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors",
"teddy bear", "hair drier", "toothbrush"]
def get_args():
parser = argparse.ArgumentParser("You Only Look Once: Unified, Real-Time Object Detection")
parser.add_argument("--image_size", type=int, default=448, help="The common width and height for all images")
parser.add_argument("--conf_threshold", type=float, default=0.35)
parser.add_argument("--nms_threshold", type=float, default=0.5)
parser.add_argument("--pre_trained_model_type", type=str, choices=["model", "params"], default="model")
parser.add_argument("--pre_trained_model_path", type=str, default="trained_models/whole_model_trained_yolo_coco")
parser.add_argument("--input", type=str, default="test_images")
parser.add_argument("--output", type=str, default="test_images")
args = parser.parse_args()
return args
def test(opt):
if torch.cuda.is_available():
if opt.pre_trained_model_type == "model":
model = torch.load(opt.pre_trained_model_path)
else:
model = Yolo(80)
model.load_state_dict(torch.load(opt.pre_trained_model_path))
else:
if opt.pre_trained_model_type == "model":
model = torch.load(opt.pre_trained_model_path, map_location=lambda storage, loc: storage)
else:
model = Yolo(80)
model.load_state_dict(torch.load(opt.pre_trained_model_path, map_location=lambda storage, loc: storage))
model.eval()
colors = pickle.load(open("src/pallete", "rb"))
for image_path in glob.iglob(opt.input + os.sep + '*.jpg'):
if "prediction" in image_path:
continue
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
height, width = image.shape[:2]
image = cv2.resize(image, (opt.image_size, opt.image_size))
image = np.transpose(np.array(image, dtype=np.float32), (2, 0, 1))
image = image[None, :, :, :]
width_ratio = float(opt.image_size) / width
height_ratio = float(opt.image_size) / height
data = Variable(torch.FloatTensor(image))
if torch.cuda.is_available():
data = data.cuda()
with torch.no_grad():
logits = model(data)
predictions = post_processing(logits, opt.image_size, CLASSES, model.anchors, opt.conf_threshold,
opt.nms_threshold)
if len(predictions) != 0:
predictions = predictions[0]
output_image = cv2.imread(image_path)
for pred in predictions:
xmin = int(max(pred[0] / width_ratio, 0))
ymin = int(max(pred[1] / height_ratio, 0))
xmax = int(min((pred[0] + pred[2]) / width_ratio, width))
ymax = int(min((pred[1] + pred[3]) / height_ratio, height))
color = colors[CLASSES.index(pred[5])]
cv2.rectangle(output_image, (xmin, ymin), (xmax, ymax), color, 2)
text_size = cv2.getTextSize(pred[5] + ' : %.2f' % pred[4], cv2.FONT_HERSHEY_PLAIN, 1, 1)[0]
cv2.rectangle(output_image, (xmin, ymin), (xmin + text_size[0] + 3, ymin + text_size[1] + 4), color, -1)
cv2.putText(
output_image, pred[5] + ' : %.2f' % pred[4],
(xmin, ymin + text_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1,
(255, 255, 255), 1)
print("Object: {}, Bounding box: ({},{}) ({},{})".format(pred[5], xmin, xmax, ymin, ymax))
cv2.imwrite(image_path[:-4] + "_prediction.jpg", output_image)
if __name__ == "__main__":
opt = get_args()
test(opt)