-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathltm_agent_with_wiki.py
65 lines (59 loc) · 2.35 KB
/
ltm_agent_with_wiki.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import codecs
import json
import os.path
from goodai.ltm.agent import LTMAgent, LTMAgentVariant
import wikipediaapi
# This example retrieves articles from wikipedia and stores them
# in the knowledge base of LTMAgent.
_log_count = 0
def _prompt_callback(session_id: str, label: str, context: list[dict], completion: str):
# This is for logging prompts into the local data directory
global _log_count
_log_count += 1
dir_name = f"data/{session_id}"
os.makedirs(dir_name, exist_ok=True)
prompt_file_path = os.path.join(dir_name, f"{label}-prompt-{_log_count}.json")
with codecs.open(prompt_file_path, "w") as fd:
json.dump(context, fd)
completion_file_path = os.path.join(dir_name, f"{label}-completion-{_log_count}.txt")
with codecs.open(completion_file_path, "w") as fd:
fd.write(completion)
if __name__ == '__main__':
# model here can be anything supported by litellm
agent = LTMAgent(model="gpt-3.5-turbo",
max_prompt_size=3000,
max_completion_tokens=1024,
variant=LTMAgentVariant.SEMANTIC_ONLY,
prompt_callback=_prompt_callback)
wiki_wiki = wikipediaapi.Wikipedia('en')
titles = [
'Earth',
'Python_(programming_language)',
]
for article_title in titles:
article_page = wiki_wiki.page(article_title)
article_text = article_page.text
agent.add_knowledge(article_text)
queries = [
"When did the Earth form?",
"Who originally created the Python programming language?",
"Describe the composition of Earth's atmosphere.",
"How does the garbage collector work in Python?",
"How did Earth's atmosphere form?",
"What are the functional programming aspects of Python?",
]
try:
for query in queries:
print(f'\n# User: {query}')
response = agent.reply(query)
print(f"# Assistant: {response}")
# Let's clear the message history
agent.new_session()
# Episodic memory test
query = "When exactly did I ask you about the origin of the Python language?"
print(f"# User: {query}")
response = agent.reply(query)
print(f"# Assistant: {response}")
finally:
# Workaround for exception in wiki_wiki destructor
wiki_wiki._session.adapters = {}