-
Notifications
You must be signed in to change notification settings - Fork 10
/
functions.py
177 lines (133 loc) · 5.88 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# -*- coding: utf-8 -*-
# @Date : 2019-07-25
# @Author : Xinyu Gong ([email protected])
# @Link : None
# @Version : 0.0
import os
import numpy as np
import torch
import torch.nn as nn
from torchvision.utils import make_grid
from imageio import imsave
from tqdm import tqdm
from copy import deepcopy
import logging
from utils.inception_score import get_inception_score
from utils.fid_score import calculate_fid_given_paths
logger = logging.getLogger(__name__)
def train(args, gen_net: nn.Module, dis_net: nn.Module, gen_optimizer, dis_optimizer, gen_avg_param, train_loader, epoch,
writer_dict, schedulers=None):
writer = writer_dict['writer']
gen_step = 0
# train mode
gen_net = gen_net.train()
dis_net = dis_net.train()
for iter_idx, (imgs, _) in enumerate(tqdm(train_loader)):
global_steps = writer_dict['train_global_steps']
# Adversarial ground truths
real_imgs = imgs.type(torch.cuda.FloatTensor)
# Sample noise as generator input
z = torch.cuda.FloatTensor(np.random.normal(0, 1, (imgs.shape[0], args.latent_dim)))
# ---------------------
# Train Discriminator
# ---------------------
dis_optimizer.zero_grad()
real_validity = dis_net(real_imgs)
fake_imgs = gen_net(z).detach()
assert fake_imgs.size() == real_imgs.size()
fake_validity = dis_net(fake_imgs)
# cal loss
d_loss = torch.mean(nn.ReLU(inplace=True)(1.0 - real_validity)) + \
torch.mean(nn.ReLU(inplace=True)(1 + fake_validity))
d_loss.backward()
dis_optimizer.step()
writer.add_scalar('d_loss', d_loss.item(), global_steps)
# -----------------
# Train Generator
# -----------------
if global_steps % args.n_critic == 0:
gen_optimizer.zero_grad()
gen_z = torch.cuda.FloatTensor(np.random.normal(0, 1, (args.gen_batch_size, args.latent_dim)))
gen_imgs = gen_net(gen_z)
fake_validity = dis_net(gen_imgs)
# cal loss
g_loss = -torch.mean(fake_validity)
g_loss.backward()
gen_optimizer.step()
# adjust learning rate
if schedulers:
gen_scheduler, dis_scheduler = schedulers
g_lr = gen_scheduler.step(global_steps)
d_lr = dis_scheduler.step(global_steps)
writer.add_scalar('LR/g_lr', g_lr, global_steps)
writer.add_scalar('LR/d_lr', d_lr, global_steps)
# moving average weight
for p, avg_p in zip(gen_net.parameters(), gen_avg_param):
avg_p.mul_(0.999).add_(0.001, p.data)
writer.add_scalar('g_loss', g_loss.item(), global_steps)
gen_step += 1
# verbose
if gen_step and iter_idx % args.print_freq == 0:
tqdm.write(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" %
(epoch, args.max_epoch, iter_idx % len(train_loader), len(train_loader), d_loss.item(), g_loss.item()))
writer_dict['train_global_steps'] = global_steps + 1
def validate(args, fixed_z, fid_stat, gen_net: nn.Module, writer_dict):
writer = writer_dict['writer']
global_steps = writer_dict['valid_global_steps']
# eval mode
gen_net = gen_net.eval()
# generate images
sample_imgs = gen_net(fixed_z)
img_grid = make_grid(sample_imgs, nrow=5, normalize=True, scale_each=True)
# get fid and inception score
fid_buffer_dir = os.path.join(args.path_helper['sample_path'], 'fid_buffer')
os.makedirs(fid_buffer_dir)
eval_iter = args.num_eval_imgs // args.eval_batch_size
img_list = list()
for iter_idx in tqdm(range(eval_iter), desc='sample images'):
z = torch.cuda.FloatTensor(np.random.normal(0, 1, (args.eval_batch_size, args.latent_dim)))
# Generate a batch of images
gen_imgs = gen_net(z).mul_(127.5).add_(127.5).clamp_(0.0, 255.0).permute(0, 2, 3, 1).to('cpu', torch.uint8).numpy()
for img_idx, img in enumerate(gen_imgs):
file_name = os.path.join(fid_buffer_dir, f'iter{iter_idx}_b{img_idx}.png')
imsave(file_name, img)
img_list.extend(list(gen_imgs))
# get inception score
logger.info('=> calculate inception score')
mean, std = get_inception_score(img_list)
# get fid score
logger.info('=> calculate fid score')
fid_score = calculate_fid_given_paths([fid_buffer_dir, fid_stat], inception_path=None)
os.system('rm -r {}'.format(fid_buffer_dir))
writer.add_image('sampled_images', img_grid, global_steps)
writer.add_scalar('Inception_score/mean', mean, global_steps)
writer.add_scalar('Inception_score/std', std, global_steps)
writer.add_scalar('FID_score', fid_score, global_steps)
writer_dict['valid_global_steps'] = global_steps + 1
return mean, fid_score
class LinearLrDecay(object):
def __init__(self, optimizer, start_lr, end_lr, decay_start_step, decay_end_step):
assert start_lr > end_lr
self.optimizer = optimizer
self.delta = (start_lr - end_lr) / (decay_end_step - decay_start_step)
self.decay_start_step = decay_start_step
self.decay_end_step = decay_end_step
self.start_lr = start_lr
self.end_lr = end_lr
def step(self, current_step):
if current_step <= self.decay_start_step:
lr = self.start_lr
elif current_step >= self.decay_end_step:
lr = self.end_lr
else:
lr = self.start_lr - self.delta * (current_step - self.decay_start_step)
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
return lr
def load_params(model, new_param):
for p, new_p in zip(model.parameters(), new_param):
p.data.copy_(new_p)
def copy_params(model):
flatten = deepcopy(list(p.data for p in model.parameters()))
return flatten