-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathtrain.py
241 lines (206 loc) · 8.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import argparse
from torch.autograd import Variable
import torch.utils.data as data
from data import face, AnnotationTransform, Detection, detection_collate
from utils.augmentations import PyramidAugmentation
from layers.modules import MultiBoxLoss
from pyramid import build_sfd,SFD,SSHContext,ContextTexture
import numpy as np
import time
from layers import *
os.environ["CUDA_VISIBLE_DEVICES"]="2,3"
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(description='Single Shot MultiBox Detector Training')
parser.add_argument('--batch_size', default=32, type=int, help='Batch size for training')
parser.add_argument('--resume', default=None, type=str, help='Resume from checkpoint')
parser.add_argument('--num_workers', default=4, type=int, help='Number of workers used in dataloading')
parser.add_argument('--start_iter', default=0, type=int, help='Begin counting iterations starting from this value (should be used with resume)')
parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to train model')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float, help='initial learning rate')
parser.add_argument('--visdom', default=False, type=str2bool, help='Use visdom to for loss visualization')
parser.add_argument('--send_images_to_visdom', type=str2bool, default=False, help='Sample a random image from each 10th batch, send it to visdom after augmentations step')
parser.add_argument('--save_folder', default='weights/', help='Location to save checkpoint models')
parser.add_argument('--annoPath', default="/home/guoqiushan/share/face_box/wider.list", help='Location of wider face')
args = parser.parse_args()
if args.cuda and torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
cfg = face
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
train_sets = [('2007', 'trainval'), ('2012', 'trainval')]
# train_sets = 'train'
ssd_dim = 640 # only support 300 now
means = (104, 117, 123) # only support voc now
num_classes = 1 + 1
batch_size = args.batch_size
accum_batch_size = 32
iter_size = accum_batch_size / batch_size
max_iter = 120000
weight_decay = 0.0001
stepvalues = (80000, 100000, 120000)
gamma = 0.1
momentum = 0.9
if args.visdom:
import visdom
viz = visdom.Visdom()
ssd_net = build_sfd('train', 640, num_classes)
net = ssd_net
if args.cuda:
net = torch.nn.DataParallel(ssd_net)
cudnn.benchmark = True
if args.cuda:
net = net.cuda()
def xavier(param):
init.xavier_uniform(param)
def weights_init(m):
if isinstance(m, nn.Conv2d):
xavier(m.weight.data)
if 'bias' in m.state_dict().keys():
m.bias.data.zero_()
if isinstance(m, nn.ConvTranspose2d):
xavier(m.weight.data)
if 'bias' in m.state_dict().keys():
m.bias.data.zero_()
if isinstance(m, nn.BatchNorm2d):
m.weight.data[...] = 1
m.bias.data.zero_()
for layer in net.modules():
layer.apply(weights_init)
if not args.resume:
print('Initializing weights...')
if args.resume:
print('Resuming training, loading {}...'.format(args.resume))
ssd_net.load_weights(args.resume)
else:
pass
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=momentum, weight_decay=weight_decay)
criterion = MultiBoxLoss(num_classes, 0.35, True, 0, True, 3, 0.35, False, False, args.cuda)
criterion1 = MultiBoxLoss(num_classes, 0.35, True, 0, True, 3, 0.35, False, True, args.cuda)
def train():
net.train()
# loss counters
loc_loss = 0 # epoch
conf_loss = 0
epoch = 0
print('Loading Dataset...')
dataset = Detection(args.annoPath, PyramidAugmentation(ssd_dim, means), AnnotationTransform())
epoch_size = len(dataset) // args.batch_size
print('Training SSD on', dataset.name)
step_index = 0
if args.visdom:
# initialize visdom loss plot
lot = viz.line(
X=torch.zeros((1,)).cpu(),
Y=torch.zeros((1, 3)).cpu(),
opts=dict(
xlabel='Iteration',
ylabel='Loss',
title='Current SSD Training Loss',
legend=['Loc Loss', 'Conf Loss', 'Loss']
)
)
epoch_lot = viz.line(
X=torch.zeros((1,)).cpu(),
Y=torch.zeros((1, 3)).cpu(),
opts=dict(
xlabel='Epoch',
ylabel='Loss',
title='Epoch SSD Training Loss',
legend=['Loc Loss', 'Conf Loss', 'Loss']
)
)
batch_iterator = None
data_loader = data.DataLoader(dataset, batch_size, num_workers=args.num_workers,
shuffle=True, collate_fn=detection_collate, pin_memory=True)
for iteration in range(args.start_iter, max_iter):
t0 = time.time()
if (not batch_iterator) or (iteration % epoch_size == 0):
# create batch iterator
batch_iterator = iter(data_loader)
if iteration in stepvalues:
step_index += 1
adjust_learning_rate(optimizer, args.gamma, step_index)
if args.visdom:
viz.line(
X=torch.ones((1, 3)).cpu() * epoch,
Y=torch.Tensor([loc_loss, conf_loss,
loc_loss + conf_loss]).unsqueeze(0).cpu() / epoch_size,
win=epoch_lot,
update='append'
)
# reset epoch loss counters
loc_loss = 0
conf_loss = 0
epoch += 1
# load train data
images, targets = next(batch_iterator)
if args.cuda:
images = Variable(images.cuda())
targets = [Variable(anno.cuda(), volatile=True) for anno in targets]
else:
images = Variable(images)
targets = [Variable(anno, volatile=True) for anno in targets]
# forward
t1 = time.time()
out = net(images)
# backprop
optimizer.zero_grad()
loss_l, loss_c = criterion(tuple(out[0:3]), targets)
loss_l_head, loss_c_head = criterion(tuple(out[3:6]), targets)
loss = loss_l + loss_c + 0.5 * loss_l_head + 0.5 * loss_c_head
loss.backward()
optimizer.step()
t2 = time.time()
loc_loss += loss_l.data[0]
conf_loss += loss_c.data[0]
if iteration % 10 == 0:
print('front and back Timer: {} sec.' .format((t2 - t1)))
print('iter ' + repr(iteration) + ' || Loss: %.4f ||' % (loss.data[0]))
print('Loss conf: {} Loss loc: {}'.format(loss_c.data[0],loss_l.data[0]))
print('Loss head conf: {} Loss head loc: {}'.format(loss_c_head.data[0],loss_l_head.data[0]))
print('lr: {}'.format(optimizer.param_groups[0]['lr']))
if args.visdom and args.send_images_to_visdom:
random_batch_index = np.random.randint(images.size(0))
viz.image(images.data[random_batch_index].cpu().numpy())
if args.visdom:
viz.line(
X=torch.ones((1, 3)).cpu() * iteration,
Y=torch.Tensor([loss_l.data[0], loss_c.data[0],
loss_l.data[0] + loss_c.data[0]]).unsqueeze(0).cpu(),
win=lot,
update='append'
)
# hacky fencepost solution for 0th epoch plot
if iteration == 0:
viz.line(
X=torch.zeros((1, 3)).cpu(),
Y=torch.Tensor([loc_loss, conf_loss,
loc_loss + conf_loss]).unsqueeze(0).cpu(),
win=epoch_lot,
update=True
)
if iteration % 5000 == 0:
print('Saving state, iter:', iteration)
torch.save(ssd_net.state_dict(), args.save_folder + 'Res50_pyramid_' +
repr(iteration) + '.pth')
torch.save(ssd_net.state_dict(), args.save_folder + 'Res50_pyramid' + '.pth')
def adjust_learning_rate(optimizer, gamma, step):
"""Sets the learning rate to the initial LR decayed by 10 at every specified step
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
lr = args.lr * (gamma ** (step))
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * gamma
if __name__ == '__main__':
train()