diff --git a/docs/prediction/weights_of_evidence.md b/docs/prediction/weights_of_evidence.md new file mode 100644 index 00000000..e642df88 --- /dev/null +++ b/docs/prediction/weights_of_evidence.md @@ -0,0 +1,3 @@ +# Weights of evidence + +::: eis_toolkit.prediction.weights_of_evidence diff --git a/eis_toolkit/exceptions.py b/eis_toolkit/exceptions.py index b3fb4248..6dec2159 100644 --- a/eis_toolkit/exceptions.py +++ b/eis_toolkit/exceptions.py @@ -2,6 +2,10 @@ class CoordinatesOutOfBoundsException(Exception): """Exception error class for out of bound coordinates.""" +class ClassificationFailedException(Exception): + """Exception error class for classification failures.""" + + class EmptyDataFrameException(Exception): """Exception error class raised if the dataframe is empty.""" diff --git a/eis_toolkit/prediction/weights_of_evidence.py b/eis_toolkit/prediction/weights_of_evidence.py new file mode 100644 index 00000000..7f668ee1 --- /dev/null +++ b/eis_toolkit/prediction/weights_of_evidence.py @@ -0,0 +1,418 @@ +from numbers import Number + +import geopandas as gpd +import numpy as np +import pandas as pd +import rasterio +from beartype import beartype +from beartype.typing import Dict, List, Literal, Optional, Sequence, Tuple + +from eis_toolkit import exceptions +from eis_toolkit.vector_processing.rasterize_vector import rasterize_vector + +CLASS_COLUMN = "Class" +PIXEL_COUNT_COLUMN = "Pixel count" +DEPOSIT_COUNT_COLUMN = "Deposit count" +WEIGHT_PLUS_COLUMN = "W+" +WEIGHT_S_PLUS_COLUMN = "S_W+" +WEIGHT_MINUS_COLUMN = "W-" +WEIGHT_S_MINUS_COLUMN = "S_W-" +CONTRAST_COLUMN = "Contrast" +S_CONTRAST_COLUMN = "S_Contrast" +STUDENTIZED_CONTRAST_COLUMN = "Studentized contrast" +GENERALIZED_CLASS_COLUMN = "Generalized class" +GENERALIZED_WEIGHT_PLUS_COLUMN = "Generalized W+" +GENERALIZED_S_WEIGHT_PLUS_COLUMN = "Generalized S_W+" + +VALID_DF_COLUMNS = [ + CLASS_COLUMN, + PIXEL_COUNT_COLUMN, + DEPOSIT_COUNT_COLUMN, + WEIGHT_PLUS_COLUMN, + WEIGHT_S_PLUS_COLUMN, + WEIGHT_MINUS_COLUMN, + WEIGHT_S_MINUS_COLUMN, + CONTRAST_COLUMN, + S_CONTRAST_COLUMN, + STUDENTIZED_CONTRAST_COLUMN, + GENERALIZED_CLASS_COLUMN, + GENERALIZED_WEIGHT_PLUS_COLUMN, + GENERALIZED_S_WEIGHT_PLUS_COLUMN, +] + +DEFAULT_METRICS_UNIQUE = [CLASS_COLUMN, WEIGHT_PLUS_COLUMN, WEIGHT_S_PLUS_COLUMN] +DEFAULT_METRICS_CUMULATIVE = [ + CLASS_COLUMN, + WEIGHT_PLUS_COLUMN, + WEIGHT_S_PLUS_COLUMN, + GENERALIZED_WEIGHT_PLUS_COLUMN, + GENERALIZED_S_WEIGHT_PLUS_COLUMN, +] + + +def _read_and_preprocess_evidence( + raster: rasterio.io.DatasetReader, nodata: Optional[Number] = None, band: int = 1 +) -> np.ndarray: + """Read raster data and handle NoData values.""" + + array = np.array(raster.read(band), dtype=np.float32) + + if nodata is not None: + array[array == nodata] = np.nan + elif raster.meta["nodata"] is not None: + array[array == raster.meta["nodata"]] = np.nan + + return array + + +def _calculate_metrics_for_class( + deposits: np.ndarray, evidence: np.ndarray +) -> Tuple[float, float, float, float, float, float, float, float, float, float, float]: + """Calculate weights/metrics for given data.""" + A = np.sum(np.logical_and(deposits == 1, evidence == 1)) + B = np.sum(np.logical_and(deposits == 1, evidence == 0)) + C = np.sum(np.logical_and(deposits == 0, evidence == 1)) + D = np.sum(np.logical_and(deposits == 0, evidence == 0)) + + # If data has no deposits or every evidence pixel has a deposit + if A == 0 or C + D == 0: + return A, B, C, D, 0, 0, 0, 0, 0, 0, 0 + + p_A_nominator = A + p_C_nominator = C + B_adjusted = B + D_adjusted = D + + if B == 0: + p_A_nominator -= 0.99 + B_adjusted = 0.99 + + if D == 0: + p_C_nominator -= 0.99 + D_adjusted = 0.99 + + p_A = p_A_nominator / (A + B) # probability of presence of evidence given the presence of mineral deposit + p_C = p_C_nominator / (C + D) # probability of presence of evidence given the absence of mineral deposit + + # Calculate metrics + w_plus = np.log(p_A / p_C) if p_C != 0 else 0 # Check + w_minus = np.log((1 - p_A) / (1 - p_C)) + contrast = w_plus - w_minus + + # Calculate signifigance metrics + s_w_plus = np.sqrt((1 / p_A_nominator) + (1 / p_C_nominator)) + s_w_minus = np.sqrt((1 / B_adjusted) + (1 / D_adjusted)) + + s_contrast = np.sqrt(s_w_plus**2 + s_w_minus**2) + studentized_contrast = contrast / s_contrast + + return A, B, C, D, w_plus, s_w_plus, w_minus, s_w_minus, contrast, s_contrast, studentized_contrast + + +def _unique_weights(deposits: np.ndarray, evidence: np.ndarray) -> dict: + """Calculate unique weights for each class.""" + classes = np.unique(evidence) + return {cls: _calculate_metrics_for_class(deposits, evidence == cls) for cls in classes} + + +def _cumulative_weights(deposits: np.ndarray, evidence: np.ndarray, ascending: bool = True) -> dict: + """Calculate cumulative weights (ascending or descending) for each class.""" + classes = sorted(np.unique(evidence), reverse=not ascending) + cumulative_classes = [classes[: i + 1] for i in range(len(classes))] + return { + cls[i]: _calculate_metrics_for_class(deposits, np.isin(evidence, cls)) + for i, cls in enumerate(cumulative_classes) + } + + +def _generalized_classes_categorical(df: pd.DataFrame, studentized_contrast_threshold: Number) -> pd.DataFrame: + gen_df = df.copy() + gen_df[GENERALIZED_CLASS_COLUMN] = gen_df[CLASS_COLUMN] + + reclassified = False + for i in range(0, len(gen_df.index)): + if abs(gen_df.loc[i, STUDENTIZED_CONTRAST_COLUMN]) < studentized_contrast_threshold: + gen_df.loc[i, GENERALIZED_CLASS_COLUMN] = 99 + reclassified = True + + if not reclassified: + raise exceptions.ClassificationFailedException( + "Failed to create generalized classes with given studentized contrast treshold ({})".format( + studentized_contrast_threshold + ) + ) + + gen_df = gen_df.sort_values(by=GENERALIZED_CLASS_COLUMN, ascending=True) + + return gen_df + + +def _generalized_weights_categorical(df: pd.DataFrame, deposits) -> pd.DataFrame: + """Calculate generalized weights for categorical weights type. Assumes class 99 exists as the general class.""" + gen_df = df.copy() + total_deposits = np.sum(deposits == 1) + total_no_deposits = deposits.size - total_deposits + + # Class 99 (gen class) + class_99_count = 0 + class_99_point_count = 0 + + for i in range(0, len(gen_df.index)): + if gen_df.loc[i, GENERALIZED_CLASS_COLUMN] == 99: + # class_99_count = max(gen_df.loc[i, PIXEL_COUNT_COLUMN], class_99_count) + # class_99_point_count = max(gen_df.loc[i, DEPOSIT_COUNT_COLUMN], class_99_point_count) + class_99_count += gen_df.loc[i, PIXEL_COUNT_COLUMN] + class_99_point_count += gen_df.loc[i, DEPOSIT_COUNT_COLUMN] + + class_99_w_gen = np.log(class_99_point_count / total_deposits) - np.log( + (class_99_count - class_99_point_count) / total_no_deposits + ) + clas_99_s_wpls_gen = np.sqrt((1 / class_99_point_count) + (1 / (class_99_count - class_99_point_count))) + + gen_df[GENERALIZED_WEIGHT_PLUS_COLUMN] = gen_df[WEIGHT_PLUS_COLUMN] + gen_df[GENERALIZED_S_WEIGHT_PLUS_COLUMN] = gen_df[WEIGHT_S_PLUS_COLUMN] + + gen_df.loc[gen_df[GENERALIZED_CLASS_COLUMN] == 99, GENERALIZED_WEIGHT_PLUS_COLUMN] = round(class_99_w_gen, 4) + gen_df.loc[gen_df[GENERALIZED_CLASS_COLUMN] == 99, GENERALIZED_S_WEIGHT_PLUS_COLUMN] = round(clas_99_s_wpls_gen, 4) + + return gen_df + + +def _generalized_classes_cumulative(df: pd.DataFrame, studentized_contrast_threshold: Number) -> pd.DataFrame: + """Create generalized classes based on contrast and studentized contrast threhsold value.""" + gen_df = df.copy() + index = gen_df.idxmax()[CONTRAST_COLUMN] + + if ( + gen_df.loc[index, STUDENTIZED_CONTRAST_COLUMN] < studentized_contrast_threshold + or index == len(gen_df.index) - 1 + ): + raise exceptions.ClassificationFailedException( + "Failed to create generalized classes with given studentized contrast treshold ({} < {})".format( + gen_df.loc[index, STUDENTIZED_CONTRAST_COLUMN], studentized_contrast_threshold + ) + ) + + gen_df[GENERALIZED_CLASS_COLUMN] = 1 + for i in range(0, index + 1): + gen_df.loc[i, GENERALIZED_CLASS_COLUMN] = 2 + + return gen_df + + +def _generalized_weights_cumulative(df: pd.DataFrame, deposits: np.ndarray) -> pd.DataFrame: + """ + Calculate generalized weights for cumulative methods. + + Assumes there are classes 1 and 2 as the general classes. + """ + gen_df = df.copy() + total_deposits = np.sum(deposits == 1) + total_no_deposits = deposits.size - total_deposits + + # Class 2 + class_2_max_index = gen_df.idxmax()[CONTRAST_COLUMN] + class_2_count = gen_df.loc[class_2_max_index, PIXEL_COUNT_COLUMN] + class_2_point_count = gen_df.loc[class_2_max_index, DEPOSIT_COUNT_COLUMN] + + class_2_w_gen = np.log(class_2_point_count / total_deposits) - np.log( + (class_2_count - class_2_point_count) / total_no_deposits + ) + clas_2_s_wpls_gen = np.sqrt((1 / class_2_point_count) + (1 / (class_2_count - class_2_point_count))) + + gen_df[GENERALIZED_WEIGHT_PLUS_COLUMN] = round(class_2_w_gen, 4) + gen_df[GENERALIZED_S_WEIGHT_PLUS_COLUMN] = round(clas_2_s_wpls_gen, 4) + + # Class 1 + class_1_count = gen_df.loc[len(gen_df.index) - 1, PIXEL_COUNT_COLUMN] - class_2_count + class_1_point_count = gen_df.loc[len(gen_df.index) - 1, DEPOSIT_COUNT_COLUMN] - class_2_point_count + + class_1_w_gen = np.log(class_1_point_count / total_deposits) - np.log( + (class_1_count - class_1_point_count) / total_no_deposits + ) + clas_1_s_wpls_gen = np.sqrt((1 / class_1_point_count) + (1 / (class_1_count - class_1_point_count))) + gen_df.loc[gen_df[GENERALIZED_CLASS_COLUMN] == 1, GENERALIZED_WEIGHT_PLUS_COLUMN] = round(class_1_w_gen, 4) + gen_df.loc[gen_df[GENERALIZED_CLASS_COLUMN] == 1, GENERALIZED_S_WEIGHT_PLUS_COLUMN] = round(clas_1_s_wpls_gen, 4) + + return gen_df + + +def _generate_arrays_from_metrics( + evidence: np.ndarray, df: pd.DataFrame, metrics_to_include: List[str] +) -> Dict[str, np.ndarray]: + """Generate arrays for defined metrics.""" + array_dict = {} + for metric in metrics_to_include: + metric_array = np.full(evidence.shape, np.nan) + for _, row in df.iterrows(): + mask = np.isin(evidence, row[CLASS_COLUMN]) + metric_array[mask] = row[metric] + array_dict[metric] = metric_array + return array_dict + + +@beartype +def weights_of_evidence_calculate_weights( + evidential_raster: rasterio.io.DatasetReader, + deposits: gpd.GeoDataFrame, + raster_nodata: Optional[Number] = None, + weights_type: Literal["unique", "categorical", "ascending", "descending"] = "unique", + studentized_contrast_threshold: Number = 1, + arrays_to_generate: Optional[Sequence[str]] = None, +) -> Tuple[pd.DataFrame, dict, dict, int, int]: + """ + Calculate weights of spatial associations. + + Args: + evidential_raster: The evidential raster. + deposits: Vector data representing the mineral deposits or occurences point data. + raster_nodata: If nodata value of raster is wanted to specify manually. Optional parameter, defaults to None + (nodata from raster metadata is used). + weights_type: Accepted values are 'unique', 'categorical', 'ascending' and 'descending'. + Unique weights does not create generalized classes and does not use a studentized contrast threshold value + while categorical, cumulative ascending and cumulative descending do. Categorical weights are calculated so + that all classes with studentized contrast below the defined threshold are grouped into one generalized + class. Cumulative ascending and descending weights find the class with max contrast and group classes + above/below into generalized classes. Generalized weights are also calculated for generalized classes. + studentized_contrast_threshold: Studentized contrast threshold value used with 'categorical', 'ascending' and + 'descending' weight types. Used either as reclassification threshold directly (categorical) or to check + that class with max contrast has studentized contrast value at least the defined value (cumulative). + Defaults to 1. + arrays_to_generate: Arrays to generate from the computed weight metrics. All column names + in the produced weights_df are valid choices. Defaults to ["Class", "W+", "S_W+] + for "unique" weights_type and ["Class", "W+", "S_W+", "Generalized W+", "Generalized S_W+"] + for the cumulative weight types. + + Returns: + Dataframe with weights of spatial association between the input data. + Dictionary of arrays for specified metrics. + Raster metadata. + Number of deposit pixels. + Number of all evidence pixels. + """ + + if arrays_to_generate is None: + if weights_type == "unique": + metrics_to_arrays = DEFAULT_METRICS_UNIQUE + else: + metrics_to_arrays = DEFAULT_METRICS_CUMULATIVE + else: + for col_name in arrays_to_generate: + if col_name not in VALID_DF_COLUMNS: + raise exceptions.InvalidColumnException( + f"Arrays to generate contains invalid metric / column name: {col_name}." + ) + metrics_to_arrays = arrays_to_generate.copy() + + # 1. Preprocess data + evidence_array = _read_and_preprocess_evidence(evidential_raster, raster_nodata) + raster_meta = evidential_raster.meta + + # Rasterize deposits + deposit_array, _ = rasterize_vector( + geodataframe=deposits, default_value=1.0, base_raster_profile=raster_meta, fill_value=0.0 + ) + + # Mask NaN out of the array + nodata_mask = np.isnan(evidence_array) + masked_evidence_array = evidence_array[~nodata_mask] + masked_deposit_array = deposit_array[~nodata_mask] + + # 2. WofE calculations + if weights_type == "unique" or weights_type == "categorical": + wofe_weights = _unique_weights(masked_deposit_array, masked_evidence_array) + elif weights_type == "ascending": + wofe_weights = _cumulative_weights(masked_deposit_array, masked_evidence_array, ascending=True) + elif weights_type == "descending": + wofe_weights = _cumulative_weights(masked_deposit_array, masked_evidence_array, ascending=False) + else: + raise exceptions.InvalidParameterValueException( + "Expected weights_type to be one of unique, categorical, ascending or descending." + ) + + # 3. Create DataFrame based on calculated metrics + df_entries = [] + for cls, metrics in wofe_weights.items(): + metrics = [round(metric, 4) if isinstance(metric, np.floating) else metric for metric in metrics] + A, _, C, _, w_plus, s_w_plus, w_minus, s_w_minus, contrast, s_contrast, studentized_contrast = metrics + df_entries.append( + { + CLASS_COLUMN: cls, + PIXEL_COUNT_COLUMN: A + C, + DEPOSIT_COUNT_COLUMN: A, + WEIGHT_PLUS_COLUMN: w_plus, + WEIGHT_S_PLUS_COLUMN: s_w_plus, + WEIGHT_MINUS_COLUMN: w_minus, + WEIGHT_S_MINUS_COLUMN: s_w_minus, + CONTRAST_COLUMN: contrast, + S_CONTRAST_COLUMN: s_contrast, + STUDENTIZED_CONTRAST_COLUMN: studentized_contrast, + } + ) + weights_df = pd.DataFrame(df_entries) + + # 4. If we use cumulative weights type, calculate generalized classes and weights + if weights_type == "categorical": + weights_df = _generalized_classes_categorical(weights_df, studentized_contrast_threshold) + weights_df = _generalized_weights_categorical(weights_df, masked_deposit_array) + elif weights_type == "ascending" or weights_type == "descending": + weights_df = _generalized_classes_cumulative(weights_df, studentized_contrast_threshold) + weights_df = _generalized_weights_cumulative(weights_df, masked_deposit_array) + + # 5. Generate arrays for desired metrics + arrays_dict = _generate_arrays_from_metrics(evidence_array, weights_df, metrics_to_arrays) + + # Return nr. of deposit pixels and nr. of all evidence pixels for to be used in calculate responses + nr_of_deposits = int(np.sum(masked_deposit_array == 1)) + nr_of_pixels = int(np.size(masked_evidence_array)) + + return weights_df, arrays_dict, raster_meta, nr_of_deposits, nr_of_pixels + + +@beartype +def weights_of_evidence_calculate_responses( + output_arrays: Sequence[Dict[str, np.ndarray]], nr_of_deposits: int, nr_of_pixels: int +) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + """Calculate the posterior probabilities for the given generalized weight arrays. + + Args: + output_arrays: List of output array dictionaries returned by weights of evidence calculations. + For each dictionary, generalized weight and generalized standard deviation arrays are used and summed + together pixel-wise to calculate the posterior probabilities. If generalized arrays are not found, + the W+ and S_W+ arrays are used (so if outputs from unique weight calculations are used for this function). + nr_of_deposits: Number of deposit pixels in the input data for weights of evidence calculations. + nr_of_pixels: Number of evidence pixels in the input data for weights of evidence calculations. + + Returns: + Array of posterior probabilites. + Array of standard deviations in the posterior probability calculations. + Array of confidence of the prospectivity values obtained in the posterior probability array. + """ + gen_weights_sum = sum( + [ + item[GENERALIZED_WEIGHT_PLUS_COLUMN] + if GENERALIZED_WEIGHT_PLUS_COLUMN in item.keys() + else item[WEIGHT_PLUS_COLUMN] + for item in output_arrays + ] + ) + gen_weights_variance_sum = sum( + [ + np.square(item[GENERALIZED_S_WEIGHT_PLUS_COLUMN]) + if GENERALIZED_S_WEIGHT_PLUS_COLUMN in item.keys() + else np.square(item[WEIGHT_S_PLUS_COLUMN]) + for item in output_arrays + ] + ) + + prior_probabilities = nr_of_deposits / nr_of_pixels + prior_odds = np.log(prior_probabilities / (1 - prior_probabilities)) + posterior_probabilities = np.exp(gen_weights_sum + prior_odds) / (1 + np.exp(gen_weights_sum + prior_odds)) + + posterior_probabilities_squared = np.square(posterior_probabilities) + posterior_probabilities_std = np.sqrt( + (1 / nr_of_deposits + gen_weights_variance_sum) * posterior_probabilities_squared + ) + + confidence_array = posterior_probabilities / posterior_probabilities_std + return posterior_probabilities, posterior_probabilities_std, confidence_array diff --git a/notebooks/weights_of_evidence.ipynb b/notebooks/weights_of_evidence.ipynb new file mode 100644 index 00000000..62bddc71 --- /dev/null +++ b/notebooks/weights_of_evidence.ipynb @@ -0,0 +1,1213 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import rasterio\n", + "from matplotlib import pyplot as plt\n", + "from rasterio.plot import show\n", + "import geopandas as gpd\n", + "\n", + "import sys\n", + "sys.path.insert(0, \"..\")\n", + "\n", + "from eis_toolkit.prediction.weights_of_evidence import weights_of_evidence_calculate_weights, weights_of_evidence_calculate_responses" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "108 1\n" + ] + } + ], + "source": [ + "with rasterio.open(\"../tests/data/remote/wofe/wofe_evidence_raster.tif\") as evidence_raster:\n", + " deposits = gpd.read_file(\"../tests/data/remote/wofe/wofe_deposits.shp\")\n", + "\n", + " weights_unique, arrays_unique, raster_meta, nr_of_deposits, nr_of_pixels = weights_of_evidence_calculate_weights(evidence_raster, deposits, weights_type='unique')\n", + " weights_categorical, arrays_categorical, _, _, _= weights_of_evidence_calculate_weights(evidence_raster, deposits, weights_type='categorical', studentized_contrast_threshold=1)\n", + " weights_ascending, arrays_ascending, _, _, _= weights_of_evidence_calculate_weights(evidence_raster, deposits, weights_type='ascending', studentized_contrast_threshold=1)\n", + " weights_descending, arrays_descending, _, _, _ = weights_of_evidence_calculate_weights(evidence_raster, deposits, weights_type='descending', studentized_contrast_threshold=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ClassPixel countDeposit countW+S_W+W-S_W-ContrastS_ContrastStudentized contrast
01.027590.48100.3389-0.39940.38060.88040.50961.7275
12.01100.00000.00000.00000.00000.00000.00000.0000
23.03965-0.49200.45010.34090.3059-0.83290.5442-1.5306
35.04310.12961.0118-0.00810.26090.13771.04490.1318
46.0100.00000.00000.00000.00000.00000.00000.0000
58.04300.00000.00000.00000.00000.00000.00000.0000
610.0213.86731.4142-0.06320.26073.93051.43802.7332
713.01000.00000.00000.00000.00000.00000.00000.0000
\n", + "
" + ], + "text/plain": [ + " Class Pixel count Deposit count W+ S_W+ W- S_W- \\\n", + "0 1.0 275 9 0.4810 0.3389 -0.3994 0.3806 \n", + "1 2.0 11 0 0.0000 0.0000 0.0000 0.0000 \n", + "2 3.0 396 5 -0.4920 0.4501 0.3409 0.3059 \n", + "3 5.0 43 1 0.1296 1.0118 -0.0081 0.2609 \n", + "4 6.0 1 0 0.0000 0.0000 0.0000 0.0000 \n", + "5 8.0 43 0 0.0000 0.0000 0.0000 0.0000 \n", + "6 10.0 2 1 3.8673 1.4142 -0.0632 0.2607 \n", + "7 13.0 10 0 0.0000 0.0000 0.0000 0.0000 \n", + "\n", + " Contrast S_Contrast Studentized contrast \n", + "0 0.8804 0.5096 1.7275 \n", + "1 0.0000 0.0000 0.0000 \n", + "2 -0.8329 0.5442 -1.5306 \n", + "3 0.1377 1.0449 0.1318 \n", + "4 0.0000 0.0000 0.0000 \n", + "5 0.0000 0.0000 0.0000 \n", + "6 3.9305 1.4380 2.7332 \n", + "7 0.0000 0.0000 0.0000 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Unique weights DF\n", + "weights_unique" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ClassPixel countDeposit countW+S_W+W-S_W-ContrastS_ContrastStudentized contrastGeneralized classGeneralized W+Generalized S_W+
01.027590.48100.3389-0.39940.38060.88040.50961.72751.00.48100.3389
23.03965-0.49200.45010.34090.3059-0.83290.5442-1.53063.0-0.49200.4501
610.0213.86731.4142-0.06320.26073.93051.43802.733210.03.86731.4142
12.01100.00000.00000.00000.00000.00000.00000.000099.0-0.80551.0047
35.04310.12961.0118-0.00810.26090.13771.04490.131899.0-0.80551.0047
46.0100.00000.00000.00000.00000.00000.00000.000099.0-0.80551.0047
58.04300.00000.00000.00000.00000.00000.00000.000099.0-0.80551.0047
713.01000.00000.00000.00000.00000.00000.00000.000099.0-0.80551.0047
\n", + "
" + ], + "text/plain": [ + " Class Pixel count Deposit count W+ S_W+ W- S_W- \\\n", + "0 1.0 275 9 0.4810 0.3389 -0.3994 0.3806 \n", + "2 3.0 396 5 -0.4920 0.4501 0.3409 0.3059 \n", + "6 10.0 2 1 3.8673 1.4142 -0.0632 0.2607 \n", + "1 2.0 11 0 0.0000 0.0000 0.0000 0.0000 \n", + "3 5.0 43 1 0.1296 1.0118 -0.0081 0.2609 \n", + "4 6.0 1 0 0.0000 0.0000 0.0000 0.0000 \n", + "5 8.0 43 0 0.0000 0.0000 0.0000 0.0000 \n", + "7 13.0 10 0 0.0000 0.0000 0.0000 0.0000 \n", + "\n", + " Contrast S_Contrast Studentized contrast Generalized class \\\n", + "0 0.8804 0.5096 1.7275 1.0 \n", + "2 -0.8329 0.5442 -1.5306 3.0 \n", + "6 3.9305 1.4380 2.7332 10.0 \n", + "1 0.0000 0.0000 0.0000 99.0 \n", + "3 0.1377 1.0449 0.1318 99.0 \n", + "4 0.0000 0.0000 0.0000 99.0 \n", + "5 0.0000 0.0000 0.0000 99.0 \n", + "7 0.0000 0.0000 0.0000 99.0 \n", + "\n", + " Generalized W+ Generalized S_W+ \n", + "0 0.4810 0.3389 \n", + "2 -0.4920 0.4501 \n", + "6 3.8673 1.4142 \n", + "1 -0.8055 1.0047 \n", + "3 -0.8055 1.0047 \n", + "4 -0.8055 1.0047 \n", + "5 -0.8055 1.0047 \n", + "7 -0.8055 1.0047 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Categorical weights DF\n", + "weights_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ClassPixel countDeposit countW+S_W+W-S_W-ContrastS_ContrastStudentized contrastGeneralized classGeneralized W+Generalized S_W+
01.027590.48100.3389-0.39940.38060.88040.50961.727520.48100.3389
12.028690.44050.3387-0.37710.38070.81760.50951.60461-0.39940.3806
23.0682140.00210.2700-0.01430.71440.01630.76370.02141-0.39940.3806
35.0725150.01010.2609-0.14001.00900.15011.04220.14401-0.39940.3806
46.0726150.00870.2609-0.12171.00920.13041.04240.12511-0.39940.3806
58.076915-0.05010.26081.46941.0445-1.51941.0765-1.41141-0.39940.3806
610.077116-0.05070.26071.55471.0536-1.60541.0854-1.47911-0.39940.3806
713.078116-0.06260.26063.86731.4213-3.92991.4450-2.71961-0.39940.3806
\n", + "
" + ], + "text/plain": [ + " Class Pixel count Deposit count W+ S_W+ W- S_W- \\\n", + "0 1.0 275 9 0.4810 0.3389 -0.3994 0.3806 \n", + "1 2.0 286 9 0.4405 0.3387 -0.3771 0.3807 \n", + "2 3.0 682 14 0.0021 0.2700 -0.0143 0.7144 \n", + "3 5.0 725 15 0.0101 0.2609 -0.1400 1.0090 \n", + "4 6.0 726 15 0.0087 0.2609 -0.1217 1.0092 \n", + "5 8.0 769 15 -0.0501 0.2608 1.4694 1.0445 \n", + "6 10.0 771 16 -0.0507 0.2607 1.5547 1.0536 \n", + "7 13.0 781 16 -0.0626 0.2606 3.8673 1.4213 \n", + "\n", + " Contrast S_Contrast Studentized contrast Generalized class \\\n", + "0 0.8804 0.5096 1.7275 2 \n", + "1 0.8176 0.5095 1.6046 1 \n", + "2 0.0163 0.7637 0.0214 1 \n", + "3 0.1501 1.0422 0.1440 1 \n", + "4 0.1304 1.0424 0.1251 1 \n", + "5 -1.5194 1.0765 -1.4114 1 \n", + "6 -1.6054 1.0854 -1.4791 1 \n", + "7 -3.9299 1.4450 -2.7196 1 \n", + "\n", + " Generalized W+ Generalized S_W+ \n", + "0 0.4810 0.3389 \n", + "1 -0.3994 0.3806 \n", + "2 -0.3994 0.3806 \n", + "3 -0.3994 0.3806 \n", + "4 -0.3994 0.3806 \n", + "5 -0.3994 0.3806 \n", + "6 -0.3994 0.3806 \n", + "7 -0.3994 0.3806 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Ascending weights DF\n", + "weights_ascending" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ClassPixel countDeposit countW+S_W+W-S_W-ContrastS_ContrastStudentized contrastGeneralized classGeneralized W+Generalized S_W+
013.01000.00000.00000.00000.00000.00000.00000.000021.46941.0445
110.01211.46941.0445-0.05010.26081.51941.07651.411421.46941.0445
28.0551-0.12171.00920.00870.2609-0.13041.0424-0.12511-0.05010.2608
36.0561-0.14001.00900.01010.2609-0.15011.0422-0.14401-0.05010.2608
45.0992-0.01430.71440.00210.2700-0.01630.7637-0.02141-0.05010.2608
53.04957-0.37710.38070.44050.3387-0.81760.5095-1.60461-0.05010.2608
62.05067-0.39940.38060.48100.3389-0.88040.5096-1.72751-0.05010.2608
71.078116-0.06260.26063.86731.4213-3.92991.4450-2.71961-0.05010.2608
\n", + "
" + ], + "text/plain": [ + " Class Pixel count Deposit count W+ S_W+ W- S_W- \\\n", + "0 13.0 10 0 0.0000 0.0000 0.0000 0.0000 \n", + "1 10.0 12 1 1.4694 1.0445 -0.0501 0.2608 \n", + "2 8.0 55 1 -0.1217 1.0092 0.0087 0.2609 \n", + "3 6.0 56 1 -0.1400 1.0090 0.0101 0.2609 \n", + "4 5.0 99 2 -0.0143 0.7144 0.0021 0.2700 \n", + "5 3.0 495 7 -0.3771 0.3807 0.4405 0.3387 \n", + "6 2.0 506 7 -0.3994 0.3806 0.4810 0.3389 \n", + "7 1.0 781 16 -0.0626 0.2606 3.8673 1.4213 \n", + "\n", + " Contrast S_Contrast Studentized contrast Generalized class \\\n", + "0 0.0000 0.0000 0.0000 2 \n", + "1 1.5194 1.0765 1.4114 2 \n", + "2 -0.1304 1.0424 -0.1251 1 \n", + "3 -0.1501 1.0422 -0.1440 1 \n", + "4 -0.0163 0.7637 -0.0214 1 \n", + "5 -0.8176 0.5095 -1.6046 1 \n", + "6 -0.8804 0.5096 -1.7275 1 \n", + "7 -3.9299 1.4450 -2.7196 1 \n", + "\n", + " Generalized W+ Generalized S_W+ \n", + "0 1.4694 1.0445 \n", + "1 1.4694 1.0445 \n", + "2 -0.0501 0.2608 \n", + "3 -0.0501 0.2608 \n", + "4 -0.0501 0.2608 \n", + "5 -0.0501 0.2608 \n", + "6 -0.0501 0.2608 \n", + "7 -0.0501 0.2608 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Descending weights DF\n", + "weights_descending" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "colormap_name = \"jet\"" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI0AAAQ2CAYAAAC+xU2CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADMiklEQVR4nOzdeVyVZf7/8fcB5OAG4gKIopKa+24S7k2Y4zimM5lajmvappXapjMpaBmmVraYlr/U+Y6VZaOOU2a5lgtj5paamqaCmbikgEsCHq7fH+mpww3IQeCwvJ6Px3kc7+u+rvv+XPeNnsPb+9zHZowxAgAAAAAAAH7Hy9MFAAAAAAAAoOghNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAAC0IjAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAEAx8NVXX6lXr14KDQ2VzWbT8uXLbzhmw4YNat26tex2u+rVq6eFCxcWeJ0AAKDkIDQCAAAoBi5duqQWLVpo9uzZuep/9OhR9ezZU3fccYd27dqlMWPGaMSIEfr8888LuFIAAFBS2IwxxtNFAAAAIPdsNpuWLVumPn36ZNvn2Wef1aeffqq9e/c62wYMGKCkpCStWrWqEKoEAADFnY+nCwAAAED+i4uLU1RUlEtb9+7dNWbMmGzHpKamKjU11bmckZGhc+fOqUqVKrLZbAVVKgAAuEnGGF24cEGhoaHy8sq/D5URGgEAAJRAiYmJCg4OdmkLDg5WSkqKfvnlF5UtW9YyJjY2VpMnTy6sEgEAQD47fvy4atasmW/bIzQCAACAJGnChAkaN26cczk5OVm1atXS8ePH5e/v78HKAABATlJSUhQWFqaKFSvm63YJjQAAAEqgkJAQnTp1yqXt1KlT8vf3z/IqI0my2+2y2+2Wdn9/f0IjAACKgfz+ODnfngYAAFACRUZGau3atS5tq1evVmRkpIcqAgAAxQ2hEQAAQDFw8eJF7dq1S7t27ZIkHT16VLt27VJCQoKkXz9aNnjwYGf/hx9+WEeOHNEzzzyjAwcO6K233tJHH32ksWPHeqJ8AABQDBEaAQAAFAPffPONWrVqpVatWkmSxo0bp1atWmnSpEmSpJMnTzoDJEkKDw/Xp59+qtWrV6tFixZ6+eWX9f/+3/9T9+7dPVI/AAAofmzGGOPpIgAAAFD0pKSkKCAgQMnJydzTCACAIqygXrO50ggAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEZAMTF06FDVqVPH02V41M0cg6FDh6pChQr5W1ARUKdOHQ0dOtTTZQAAAAAogQiNgHwUExMjm82ms2fPZrm+adOm6tq1a+EWBbdcvnxZMTEx2rBhg0fr+OGHH/TQQw/plltukZ+fn/z9/dWhQwe99tpr+uWXXzxaGwAAAIDSwcfTBQDInXnz5ikjI8PTZXhUYRyDy5cva/LkyZLksYDv008/1b333iu73a7BgweradOmSktL06ZNm/T0009r3759eueddzxSGwAAAIDSg9AIKCbKlCnj6RI8rjQcg6NHj2rAgAGqXbu21q1bp+rVqzvXjRo1SocPH9ann37qwQoBAAAAlBZ8PA3woA0bNshms+mjjz7S1KlTVbNmTfn5+enOO+/U4cOHXfpmdT+fpKQkDR06VAEBAapUqZKGDBmiXbt2yWazaeHChc5+Xbt2zfKqmay2mZGRoVmzZqlJkyby8/NTcHCwHnroIZ0/fz7HuaxYsUI2m03ffvuts+3f//63bDab/vrXv7r0bdSokfr37+/StmjRIrVp00Zly5ZV5cqVNWDAAB0/fvyG9f78888aNGiQ/P39ncdg9+7dlmNw3YkTJ9SnTx9VqFBB1apV01NPPSWHwyFJOnbsmKpVqyZJmjx5smw2m2w2m2JiYiRJiYmJGjZsmGrWrCm73a7q1aurd+/eOnbsWI7Hxh3Tp0/XxYsX9e6777oERtfVq1dPTzzxRLbjz507p6eeekrNmjVThQoV5O/vrx49emj37t2Wvm+88YaaNGmicuXKKTAwUG3bttX777/vXH/hwgWNGTNGderUkd1uV1BQkLp166YdO3bkz2QBAAAAFGlcaQQUAdOmTZOXl5eeeuopJScna/r06Ro4cKC2bt2a7RhjjHr37q1Nmzbp4YcfVqNGjbRs2TINGTLkpmp56KGHtHDhQg0bNkyPP/64jh49qjfffFM7d+7U5s2bs73ap2PHjrLZbPrqq6/UvHlzSdLGjRvl5eWlTZs2OfudOXNGBw4c0OjRo51tU6dO1cSJE9WvXz+NGDFCZ86c0RtvvKHOnTtr586dqlSpUpb7zMjIUK9evfT111/rkUceUcOGDfWf//wn22PgcDjUvXt3RUREaObMmVqzZo1efvll1a1bV4888oiqVaumOXPm6JFHHtFf/vIXZ9h1fT733HOP9u3bp8cee0x16tTR6dOntXr1aiUkJOTbTcr/+9//6pZbblH79u3zNP7IkSNavny57r33XoWHh+vUqVN6++231aVLF3333XcKDQ2V9OtH/R5//HH17dtXTzzxhK5cuaJvv/1WW7du1f333y9Jevjhh/Xxxx9r9OjRaty4sX7++Wdt2rRJ+/fvV+vWrfNlvgAAAACKMAMg30RHRxtJ5syZM1mub9KkienSpYtzef369UaSadSokUlNTXW2v/baa0aS2bNnj7NtyJAhpnbt2s7l5cuXG0lm+vTpzrarV6+aTp06GUlmwYIFzvYuXbq47De7bW7cuNFIMu+9955Lv1WrVmXZntX8+vXr51xu3bq1uffee40ks3//fmOMMUuXLjWSzO7du40xxhw7dsx4e3ubqVOnumxrz549xsfHx6U9c73//ve/jSQza9YsZ5vD4TB/+MMfLMdgyJAhRpKZMmWKy35atWpl2rRp41w+c+aMkWSio6Nd+p0/f95IMjNmzMjxGNyM5ORkI8n07t0712Nq165thgwZ4ly+cuWKcTgcLn2OHj1q7Ha7y9x79+5tmjRpkuO2AwICzKhRo3JdC4CS5/q/S8nJyZ4uBQAA5KCgXrP5eBpQBAwbNky+vr7O5U6dOkn69aqR7KxcuVI+Pj565JFHnG3e3t567LHH8lzHkiVLFBAQoG7duuns2bPOR5s2bVShQgWtX78+x/GdOnXSxo0bJf360abdu3frwQcfVNWqVZ3tGzduVKVKldS0aVNJ0tKlS5WRkaF+/fq57DMkJET169fPcZ+rVq1SmTJlNHLkSGebl5eXRo0ale2Yhx9+2FJzTsf5urJly8rX11cbNmy44Uf18iolJUWSVLFixTxvw263y8vr13/aHQ6Hfv75Z1WoUEENGjRw+VhZpUqV9OOPP2rbtm3ZbqtSpUraunWrfvrppzzXAwAAAKD4KpWh0VdffaVevXopNDRUNptNy5cvd3sbxhjNnDlTt956q+x2u2rUqKGpU6fmf7EocWw2m6WtVq1aLsuBgYGSlGM4ER8fr+rVq6tChQou7Q0aNMhzbYcOHVJycrKCgoJUrVo1l8fFixd1+vTpHMd36tRJJ0+e1OHDh7VlyxbZbDZFRka6hEkbN25Uhw4dnMHGoUOHZIxR/fr1Lfvcv39/jvu8fgzKlSvn0l6vXr0s+/v5+TnvWXRdYGBgrkIgu92ul156SZ999pmCg4PVuXNnTZ8+XYmJiTmO++WXX5SYmOjyyI6/v7+kXwO3vMrIyNCrr76q+vXry263q2rVqqpWrZq+/fZbJScnO/s9++yzqlChgtq1a6f69etr1KhR2rx5s8u2pk+frr179yosLEzt2rVTTExMrgI2AAAAACVDqbyn0aVLl9SiRQsNHz7ccoPe3HriiSf0xRdfaObMmWrWrJnOnTunc+fO5XOlKG78/Pwk/RoUZOXy5cvOPr/n7e2dZX9jTL7UZbPZstzW9RtAX5eRkaGgoCC99957WW4nc+CSWceOHSX9GsweOXJErVu3Vvny5dWpUye9/vrrunjxonbu3OkSsGZkZMhms+mzzz7L8jhkDsVuRnbHObfGjBmjXr16afny5fr88881ceJExcbGat26dWrVqlWWYz788EMNGzbMpS278+rv76/Q0FDt3bs3zzW++OKLmjhxooYPH67nn39elStXlpeXl8aMGaOMjAxnv0aNGungwYP65JNPtGrVKv373//WW2+9pUmTJmny5MmSpH79+qlTp05atmyZvvjiC82YMUMvvfSSli5dqh49euS5RgAAAADFQ6kMjXr06JHjLzypqan6xz/+oQ8++EBJSUlq2rSpXnrpJee3T+3fv19z5szR3r17nVd1hIeHF0bpKOJq164tSTp48KDCwsJc1l2+fFnHjx/XXXfdlW/7Wrt2rS5evOgSrBw8eNDSNzAwMMsrROLj412W69atqzVr1qhDhw4qW7as2zXVqlVLtWrV0saNG3XkyBHnx+w6d+6scePGacmSJXI4HOrcubPLPo0xCg8P16233urW/mrXrq3169fr8uXLLlcbZf7mOXdkdSXY79WtW1dPPvmknnzySR06dEgtW7bUyy+/rEWLFmXZv3v37lq9enWu9//nP/9Z77zzjuLi4hQZGelW7ZL08ccf64477tC7777r0p6UlKSqVau6tJUvX179+/dX//79lZaWpr/+9a+aOnWqJkyY4Aw3q1evrkcffVSPPvqoTp8+rdatW2vq1KmERgAAAEApUCo/nnYjo0ePVlxcnBYvXqxvv/1W9957r/74xz/q0KFDkn77dqNPPvlE4eHhqlOnjkaMGMGVRtCdd94pX19fzZkzx+WqDkl65513dPXq1Xz7ZftPf/qTrl69qjlz5jjbHA6H3njjDUvfunXr6sCBAzpz5oyzbffu3ZaPI/Xr108Oh0PPP/+8ZRtXr15VUlLSDevq1KmT1q1bp6+//toZGrVs2VIVK1bUtGnTVLZsWbVp08bZ/69//au8vb01efJkyxU4xhj9/PPP2e6re/fuSk9P17x585xtGRkZmj179g3rzM718CnzXC9fvqwrV664tNWtW1cVK1ZUampqtturXr26oqKiXB45eeaZZ1S+fHmNGDFCp06dsqz/4Ycf9Nprr2U73tvb23IclyxZohMnTri0ZT6uvr6+aty4sYwxSk9Pl8PhcPk4myQFBQUpNDQ0x/kCAAAAKDlK5ZVGOUlISNCCBQuUkJDg/Grqp556SqtWrdKCBQv04osv6siRI4qPj9eSJUv0f//3f3I4HBo7dqz69u2rdevWeXgG8KSgoCBNmjRJzz33nDp37qy7775b5cqV05YtW/TBBx/orrvuUq9evfJlX7169VKHDh00fvx4HTt2TI0bN9bSpUstv+hL0vDhw/XKK6+oe/fueuCBB3T69GnNnTtXTZo0cd58WZK6dOmihx56SLGxsdq1a5fuuusulSlTRocOHdKSJUv02muvqW/fvjnW1alTJ7333nuy2WzOj6t5e3urffv2+vzzz9W1a1eXm37XrVtXL7zwgiZMmKBjx46pT58+qlixoo4ePaply5bpwQcf1FNPPZXlvvr06aN27drpySef1OHDh9WwYUOtWLHCGeDe6KqhrJQtW1aNGzfWhx9+qFtvvVWVK1dW06ZNdfXqVd15553q16+fGjduLB8fHy1btkynTp3SgAED3N5PdurWrav3339f/fv3V6NGjTR48GA1bdpUaWlp2rJli5YsWaKhQ4dmO/7Pf/6zpkyZomHDhql9+/bas2eP3nvvPd1yyy0u/e666y6FhISoQ4cOCg4O1v79+/Xmm2+qZ8+eqlixopKSklSzZk317dtXLVq0UIUKFbRmzRpt27ZNL7/8cr7NFwAAAEARlq/fxVYMSTLLli1zLn/yySdGkilfvrzLw8fHx/lV4iNHjjSSzMGDB53jtm/fbiSZAwcOFPYUUAQtWrTI3H777aZ8+fLGbrebhg0bmsmTJ5srV6649Fu/fr2RZJYsWeLSfvTo0Sy/Mv73XzdvjDE///yzGTRokPH39zcBAQFm0KBBZufOnZax12u65ZZbjK+vr2nZsqX5/PPPs9ymMca88847pk2bNqZs2bKmYsWKplmzZuaZZ54xP/300w3nvm/fPiPJNGrUyKX9hRdeMJLMxIkTsxz373//23Ts2NH5d65hw4Zm1KhRLn/Psqr3zJkz5v777zcVK1Y0AQEBZujQoWbz5s1Gklm8eLHL2PLly1v2Gx0dbTL/U7hlyxbTpk0b4+vraySZ6Ohoc/bsWTNq1CjTsGFDU758eRMQEGAiIiLMRx99dMNjkhfff/+9GTlypKlTp47x9fU1FStWNB06dDBvvPGGy89R7dq1zZAhQ5zLV65cMU8++aSpXr26KVu2rOnQoYOJi4szXbp0MV26dHH2e/vtt03nzp1NlSpVjN1uN3Xr1jVPP/208ys6U1NTzdNPP21atGhhKlasaMqXL29atGhh3nrrrQKZL4CiqaC+vhcAAOSvgnrNthmTT3faLaZsNpuWLVumPn36SPr1prUDBw7Uvn37LDfNrVChgkJCQhQdHa0XX3xR6enpznW//PKLypUrpy+++ELdunUrzCkALo4dO6bw8HAtWLAgxytSSrLly5frL3/5izZt2qQOHTp4uhwAKLZSUlIUEBCg5ORk5zc8AgCAoqegXrP5eFomrVq1ksPh0OnTp533Y8msQ4cOunr1qn744QfVrVtXkvT9999L+u1GyAAKxy+//OJy0+7r93Xy9/dX69atPVgZAAAAABRvpTI0unjxosu3Kx09elS7du1S5cqVdeutt2rgwIEaPHiwXn75ZbVq1UpnzpzR2rVr1bx5c/Xs2VNRUVFq3bq1hg8frlmzZikjI0OjRo1St27d3P72JwA357HHHtMvv/yiyMhIpaamaunSpdqyZYtefPHFPH0DHAAAAADgV6UyNPrmm290xx13OJfHjRsnSRoyZIgWLlyoBQsW6IUXXtCTTz6pEydOqGrVqrr99tv15z//WZLk5eWl//73v3rsscfUuXNnlS9fXj169ODmsIAH/OEPf9DLL7+sTz75RFeuXFG9evX0xhtvaPTo0Z4uDQAAAACKtVJ/TyMAAABkjXsaAQBQPBTUa7ZXvm0JAAAAAAAAJQahEQAAAAAAACxKzT2NMjIy9NNPP6lixYqy2WyeLgcAAGTDGKMLFy4oNDRUXl78/xYAAICnlJrQ6KefflJYWJinywAAALl0/Phx1axZ09NlAAAAlFqlJjSqWLGipF/fgHIjRwAAiq6UlBSFhYU5X7sBAADgGaUmNLr+kTR/f39CIwAAigE+Tg4AAOBZ3CgAAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFj7udK5Tp47i4+Mt7Y8++qhmz55taV+4cKGGDRvm0ma323XlyhVJUnp6up577jmtXLlSR44cUUBAgKKiojRt2jSFhobmuN/Y2FiNHz/enfILha2RpyvwsAMxBb+PhgW/D7O/wHcBAAAAAECR5lZotG3bNjkcDufy3r171a1bN917773ZjvH399fBgwedyzabzfnny5cva8eOHZo4caJatGih8+fP64knntDdd9+tb775xmU7U6ZM0ciRI53LFStWdKd0AAAAAAAAuMGt0KhatWouy9OmTVPdunXVpUuXbMfYbDaFhIRkuS4gIECrV692aXvzzTfVrl07JSQkqFatWs72ihUrZrsdAAAAAAAA5K8839MoLS1NixYt0vDhw12uHsrs4sWLql27tsLCwtS7d2/t27cvx+0mJyfLZrOpUqVKLu3Tpk1TlSpV1KpVK82YMUNXr17NcTupqalKSUlxeQAAAAAAACB33LrS6PeWL1+upKQkDR06NNs+DRo00Pz589W8eXMlJydr5syZat++vfbt26eaNWta+l+5ckXPPvus7rvvPvn7+zvbH3/8cbVu3VqVK1fWli1bNGHCBJ08eVKvvPJKtvuOjY3V5MmT8zo9AAAAAACAUs1mjDF5Gdi9e3f5+vrqv//9b67HpKenq1GjRrrvvvv0/PPPW9bdc889+vHHH7VhwwaX0Ciz+fPn66GHHtLFixdlt9uz7JOamqrU1FTnckpKisLCwpScnJzjtm8WN8KOKfh9cCNsACjRUlJSFBAQUOCv2bgxzgUAAMVDQb1m5+lKo/j4eK1Zs0ZLly51a1yZMmXUqlUrHT582KU9PT1d/fr1U3x8vNatW3fDCUZEROjq1as6duyYGjRokGUfu92ebaAEAAAAAACAnOXpnkYLFixQUFCQevbs6dY4h8OhPXv2qHr16s6264HRoUOHtGbNGlWpUuWG29m1a5e8vLwUFBTkdu0AAAAAAAC4MbevNMrIyNCCBQs0ZMgQ+fi4Dh88eLBq1Kih2NhYSdKUKVN0++23q169ekpKStKMGTMUHx+vESNGSPo1MOrbt6927NihTz75RA6HQ4mJiZKkypUry9fXV3Fxcdq6davuuOMOVaxYUXFxcRo7dqz+9re/KTAw8GbnDwAAAAAAgCy4HRqtWbNGCQkJGj58uGVdQkKCvLx+u3jp/PnzGjlypBITExUYGKg2bdpoy5Ytaty4sSTpxIkTWrFihSSpZcuWLttav369unbtKrvdrsWLFysmJkapqakKDw/X2LFjNW7cOHdLBwAAAAAAQC7l+UbYxU1h3ciRG2HHFPw+uBE2AJRo3Hy56OBcAABQPBTUa3ae7mkEAAAAAACAki1P356GHOThSpsN5rP8ryOTrrYeBb6PQpOXq5ncvDqp1F8xVgi4mgsAAAAAijauNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAAC0IjAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAACx9PF1DSbDCfebqELOWlrq62HgVQiYcciHGv/143+0tSX/eHlGa2Rp6uIGtmv6crAAAAAICigSuNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMDCx9MFlDRdbT08XQLyQ9MY98fszcOYvu4PQcGyNfJ0BVkz+z1dAQAAAIDShiuNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAADFxOzZs1WnTh35+fkpIiJCX3/9dY79Z82apQYNGqhs2bIKCwvT2LFjdeXKlUKqFgAAFHeERgAAAMXAhx9+qHHjxik6Olo7duxQixYt1L17d50+fTrL/u+//77Gjx+v6Oho7d+/X++++64+/PBD/f3vfy/kygEAQHFFaAQAAFAMvPLKKxo5cqSGDRumxo0ba+7cuSpXrpzmz5+fZf8tW7aoQ4cOuv/++1WnTh3ddddduu+++254dRIAAMB1hEYAAABFXFpamrZv366oqChnm5eXl6KiohQXF5flmPbt22v79u3OkOjIkSNauXKl/vSnP2W7n9TUVKWkpLg8AABA6eXj6QIAAACQs7Nnz8rhcCg4ONilPTg4WAcOHMhyzP3336+zZ8+qY8eOMsbo6tWrevjhh3P8eFpsbKwmT56cr7UDAIDiiyuNAAAASqANGzboxRdf1FtvvaUdO3Zo6dKl+vTTT/X8889nO2bChAlKTk52Po4fP16IFQMAgKKGK43yW8MY98ccyMMYFD1NYwp+H3vzsI+++V4FPMDWyNMVZM3s93QFQOlQtWpVeXt769SpUy7tp06dUkhISJZjJk6cqEGDBmnEiBGSpGbNmunSpUt68MEH9Y9//ENeXtb/O7Tb7bLb7fk/AQAAUCxxpREAAEAR5+vrqzZt2mjt2rXOtoyMDK1du1aRkZFZjrl8+bIlGPL29pYkGWMKrlgAAFBicKURAABAMTBu3DgNGTJEbdu2Vbt27TRr1ixdunRJw4YNkyQNHjxYNWrUUGxsrCSpV69eeuWVV9SqVStFRETo8OHDmjhxonr16uUMjwAAAHJCaAQAAFAM9O/fX2fOnNGkSZOUmJioli1batWqVc6bYyckJLhcWfTcc8/JZrPpueee04kTJ1StWjX16tVLU6dO9dQUAABAMWMzpeT65JSUFAUEBCg5OVn+/v4Ftp883XeEexoht7inEYoY7mmEglBYr9m4Mc4FAADFQ0G9ZnNPIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAsfdzrXqVNH8fHxlvZHH31Us2fPtrQvXLhQw4YNc2mz2+26cuWKJCk9PV3PPfecVq5cqSNHjiggIEBRUVGaNm2aQkNDnWPOnTunxx57TP/973/l5eWle+65R6+99poqVKjgTvlA8dc0xv0xe/Mwpq/7Q1A62Rq5P2bD/oj8LySTLtpa4PsAAAAASjq3QqNt27bJ4XA4l/fu3atu3brp3nvvzXaMv7+/Dh486Fy22WzOP1++fFk7duzQxIkT1aJFC50/f15PPPGE7r77bn3zzTfOfgMHDtTJkye1evVqpaena9iwYXrwwQf1/vvvu1M+AAAAAAAAcsmt0KhatWouy9OmTVPdunXVpUuXbMfYbDaFhIRkuS4gIECrV692aXvzzTfVrl07JSQkqFatWtq/f79WrVqlbdu2qW3btpKkN954Q3/60580c+ZMlyuSAAAAAAAAkD/yfE+jtLQ0LVq0SMOHD3e5eiizixcvqnbt2goLC1Pv3r21b9++HLebnJwsm82mSpUqSZLi4uJUqVIlZ2AkSVFRUfLy8tLWrdl//CA1NVUpKSkuDwAAAAAAAOROnkOj5cuXKykpSUOHDs22T4MGDTR//nz95z//0aJFi5SRkaH27dvrxx9/zLL/lStX9Oyzz+q+++6Tv7+/JCkxMVFBQUEu/Xx8fFS5cmUlJiZmu+/Y2FgFBAQ4H2FhYe5PEgAAAAAAoJTKc2j07rvvqkePHjl+PCwyMlKDBw9Wy5Yt1aVLFy1dulTVqlXT22+/bembnp6ufv36yRijOXPm5LUspwkTJig5Odn5OH78+E1vEwAAAAAAoLRw655G18XHx2vNmjVaunSpW+PKlCmjVq1a6fDhwy7t1wOj+Ph4rVu3znmVkSSFhITo9OnTLv2vXr2qc+fOZXuvJOnXb2mz2+1u1QcAAAAAAIBf5elKowULFigoKEg9e/Z0a5zD4dCePXtUvXp1Z9v1wOjQoUNas2aNqlSp4jImMjJSSUlJ2r59u7Nt3bp1ysjIUEREwX9tMwAAAAAAQGnk9pVGGRkZWrBggYYMGSIfH9fhgwcPVo0aNRQbGytJmjJlim6//XbVq1dPSUlJmjFjhuLj4zVixAhJvwZGffv21Y4dO/TJJ5/I4XA471NUuXJl+fr6qlGjRvrjH/+okSNHau7cuUpPT9fo0aM1YMAAvjkNAAAAAACggLgdGq1Zs0YJCQkaPny4ZV1CQoK8vH67eOn8+fMaOXKkEhMTFRgYqDZt2mjLli1q3LixJOnEiRNasWKFJKlly5Yu21q/fr26du0qSXrvvfc0evRo3XnnnfLy8tI999yj119/3d3SAQAAAAAAkEs2Y4zxdBGFISUlRQEBAUpOTna5Z1J+szXKw6ADMfldBvCbvTHuj+mb71UAThv2F/xHi7toa4HvAwWnsF6zcWOcCwAAioeCes3O87enAQAAAAAAoOQiNAIAAAAAAICF2/c0wg3k5aNmDfMwho+0FTkbzGduj+lq61EAlWTSNMb9Me5+pI2Ps6GI+VIF/xG4ro0K5yNwZn+h7AYAAACw4EojAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAAC0IjAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABY+ni6gpNlgPsvDKPfHdLX1cG9Awxi396EDeRhTGPIyF3cV1bkDJUDXRlsLfB8b9kcUyX3kZe62Rm4PKRRmv6crAAAAQEHjSiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsPDxdAElTVdbD7fHbDCfub+jhjHu9T/gZv+87CMP+4nW5Dzsw/0xkxsat/rn5Zzk5dwXWU1j3Ou/183+ktTX/SFAbnVttNXtMRv2RxRAJTe/j7zMpTDYGrnX3+wvmDoAAABQcLjSCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAAC0IjAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsfDxdAKSuth55GBXjXveGbvYvJJMbGvcHHYjJ9zoyy9s5AVCcdW201a3+G/ZHFFAlAAAAQNHAlUYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALHzc6VynTh3Fx8db2h999FHNnj3b0r5w4UINGzbMpc1ut+vKlSvO5aVLl2ru3Lnavn27zp07p507d6ply5YuY7p27aovv/zSpe2hhx7S3Llz3Sm/cDSMcX/MgTyMKarcnX8RnfsG85nbY7raehRAJSXYx3kY0zffqwAAAAAAZMOt0Gjbtm1yOBzO5b1796pbt2669957sx3j7++vgwcPOpdtNpvL+kuXLqljx47q16+fRo4cme12Ro4cqSlTpjiXy5Ur507pAAAAAAAAcINboVG1atVclqdNm6a6deuqS5cu2Y6x2WwKCQnJdv2gQYMkSceOHctx3+XKlctxOwAAAAAAAMg/eb6nUVpamhYtWqThw4dbrh76vYsXL6p27doKCwtT7969tW/fvjzt77333lPVqlXVtGlTTZgwQZcvX85r6QAAAAAAALgBt640+r3ly5crKSlJQ4cOzbZPgwYNNH/+fDVv3lzJycmaOXOm2rdvr3379qlmzZq53tf999+v2rVrKzQ0VN9++62effZZHTx4UEuXLs12TGpqqlJTU53LKSkpud4fAAAAAABAaZfn0Ojdd99Vjx49FBoamm2fyMhIRUZGOpfbt2+vRo0a6e2339bzzz+f6309+OCDzj83a9ZM1atX15133qkffvhBdevWzXJMbGysJk+enOt9AAAAAAAA4Dd5+nhafHy81qxZoxEjRrg1rkyZMmrVqpUOHz6cl906RURESFKO25kwYYKSk5Odj+PHj9/UPgEAAAAAAEqTPIVGCxYsUFBQkHr27OnWOIfDoT179qh69ep52a3Trl27JCnH7djtdvn7+7s8AAAAAAAAkDtufzwtIyNDCxYs0JAhQ+Tj4zp88ODBqlGjhmJjYyVJU6ZM0e2336569eopKSlJM2bMUHx8vMsVSufOnVNCQoJ++uknSdLBgwclSSEhIQoJCdEPP/yg999/X3/6059UpUoVffvttxo7dqw6d+6s5s2b53niAAAAAAAAyJ7bodGaNWuUkJCg4cOHW9YlJCTIy+u3i5fOnz+vkSNHKjExUYGBgWrTpo22bNmixo0bO/usWLFCw4YNcy4PGDBAkhQdHa2YmBj5+vpqzZo1mjVrli5duqSwsDDdc889eu6559wtHQAAAAAAALnkdmh01113yRiT5boNGza4LL/66qt69dVXc9ze0KFDc/wGtrCwMH355ZfulgkAAAAAAICbkKd7GgEAAAAAAKBkIzQCAAAAAACAhdsfT8MNHIgpnP00LKT9FLSSMo/SrmlM4exnr5v7yUtd/EwCAAAAgCSuNAIAAAAAAEAWCI0AAAAAAABgQWgEAABQTMyePVt16tSRn5+fIiIi9PXXX+fYPykpSaNGjVL16tVlt9t16623auXKlYVULQAAKO64pxEAAEAx8OGHH2rcuHGaO3euIiIiNGvWLHXv3l0HDx5UUFCQpX9aWpq6deumoKAgffzxx6pRo4bi4+NVqVKlwi8eAAAUS4RGAAAAxcArr7yikSNHatiwYZKkuXPn6tNPP9X8+fM1fvx4S//58+fr3Llz2rJli8qUKSNJqlOnTmGWDAAAijk+ngYAAFDEpaWlafv27YqKinK2eXl5KSoqSnFxcVmOWbFihSIjIzVq1CgFBweradOmevHFF+VwOLLdT2pqqlJSUlweAACg9CI0AgAAKOLOnj0rh8Oh4OBgl/bg4GAlJiZmOebIkSP6+OOP5XA4tHLlSk2cOFEvv/yyXnjhhWz3Exsbq4CAAOcjLCwsX+cBAACKF0IjAACAEigjI0NBQUF655131KZNG/Xv31//+Mc/NHfu3GzHTJgwQcnJyc7H8ePHC7FiAABQ1HBPIwAAgCKuatWq8vb21qlTp1zaT506pZCQkCzHVK9eXWXKlJG3t7ezrVGjRkpMTFRaWpp8fX0tY+x2u+x2e/4WDwAAii2uNAIAACjifH191aZNG61du9bZlpGRobVr1yoyMjLLMR06dNDhw4eVkZHhbPv+++9VvXr1LAMjAACAzAiNAAAAioFx48Zp3rx5+uc//6n9+/frkUce0aVLl5zfpjZ48GBNmDDB2f+RRx7RuXPn9MQTT+j777/Xp59+qhdffFGjRo3y1BQAAEAxw8fTAAAAioH+/fvrzJkzmjRpkhITE9WyZUutWrXKeXPshIQEeXn99v+BYWFh+vzzzzV27Fg1b95cNWrU0BNPPKFnn33WU1MAAADFjM0YYzxdRGFISUlRQECAkpOT5e/vX2D7sTUqsE2XTAdiCmU3G8xnbvXvauvh/k4axrg/ppDmX2rtjfF0BZ7V19MFILMN+yMKfB9dG20t8H3khdmf+76F9ZqNG+NcAABQPBTUazYfTwMAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAAC0IjAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABg4ePpAlBIDsR4uoIsRWuy22PuMO3cHtPV1sPtMW4rose4VGsa4/6YvXkYU1QVxs9kXo5X33yvwiM27I8olP10bbS1UPYDAAAAZMaVRgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAAC0IjAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABg4ePpAkqcAzGeriBrDWPcH1MIc7nDtHN7TFdbjwKoJJMierxQ8KKb2tweM3mvKYBK8sHeGE9XkLWP3ezft0Cq8IiujbZ6ugQAAAAg17jSCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAAC0IjAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsfNzpXKdOHcXHx1vaH330Uc2ePdvSvnDhQg0bNsylzW6368qVK87lpUuXau7cudq+fbvOnTunnTt3qmXLli5jrly5oieffFKLFy9WamqqunfvrrfeekvBwcHulF84Gsa4P+ZAHsa4u5+87KMQdLX18HQJnpWXnxd3FdFznydF9ee+qZv72etm/7zqWwj7+LgQ9lEY/0bmQddGWwt8HwAAAIAnuXWl0bZt23Ty5EnnY/Xq1ZKke++9N9sx/v7+LmMyh06XLl1Sx44d9dJLL2W7jbFjx+q///2vlixZoi+//FI//fST/vrXv7pTOgAAAAAAANzg1pVG1apVc1meNm2a6tatqy5dumQ7xmazKSQkJNv1gwYNkiQdO3Ysy/XJycl699139f777+sPf/iDJGnBggVq1KiR/ve//+n22293ZwoAAAAAAADIhTzf0ygtLU2LFi3S8OHDZbPZsu138eJF1a5dW2FhYerdu7f27dvn1n62b9+u9PR0RUVFOdsaNmyoWrVqKS4uLttxqampSklJcXkAAAAAAAAgd/IcGi1fvlxJSUkaOnRotn0aNGig+fPn6z//+Y8WLVqkjIwMtW/fXj/++GOu95OYmChfX19VqlTJpT04OFiJiYnZjouNjVVAQIDzERYWlut9AgAAAAAAlHZ5Do3effdd9ejRQ6Ghodn2iYyM1ODBg9WyZUt16dJFS5cuVbVq1fT222/ndbe5NmHCBCUnJzsfx48fL/B9AgAAAAAAlBRu3dPouvj4eK1Zs0ZLly51a1yZMmXUqlUrHT58ONdjQkJClJaWpqSkJJerjU6dOpXjvZLsdrvsdrtb9QEAAAAAAOBXebrSaMGCBQoKClLPnj3dGudwOLRnzx5Vr14912PatGmjMmXKaO3atc62gwcPKiEhQZGRkW7tHwAAAAAAALnj9pVGGRkZWrBggYYMGSIfH9fhgwcPVo0aNRQbGytJmjJlim6//XbVq1dPSUlJmjFjhuLj4zVixAjnmHPnzikhIUE//fSTpF8DIenXK4xCQkIUEBCgBx54QOPGjVPlypXl7++vxx57TJGRkXxzGgAAAAAAQAFxOzRas2aNEhISNHz4cMu6hIQEeXn9dvHS+fPnNXLkSCUmJiowMFBt2rTRli1b1LhxY2efFStWaNiwYc7lAQMGSJKio6MVExMjSXr11Vfl5eWle+65R6mpqerevbveeustd0sHAAAAAABALrkdGt11110yxmS5bsOGDS7Lr776ql599dUctzd06NAcv4FNkvz8/DR79mzNnj3bnVIBAAAAAACQR3n+9jQAAAAAAACUXIRGAAAAAAAAsHD742m4gQMxbg+J1uQ87Me9MZMV7f4+4J6GMZ6uoHgpjOOVl324+XdLkrQ3D/txV9+C30WRlZfjW5qPFwAAAJBPuNIIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgIWPpwsoacybk90eYxsdXQCVeEjDGPf6H3Czf2HJS13uzr2wFNW6iqjJe03B76Rvwe8iT/Lyc983D2M+dn8IAAAAgMLHlUYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYOHj6QJKGtvoaLfHmDcnF8p+CsWBGE9XkC82mM/cHtO1UUz+F4LC19fTBeSjwvj7mJd9NHWz/9487ONj94eUqHMPAAAA5AOuNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAAC0IjAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAABQTMyePVt16tSRn5+fIiIi9PXXX+dq3OLFi2Wz2dSnT5+CLRAAAJQoPp4uoOQZ4vYI22j3x7jvn4Wwj8KxwXxW4Pvo2mhrge8DheBAjKcryFrDmKK5n6J6vJrGuD+msI4xUIg+/PBDjRs3TnPnzlVERIRmzZql7t276+DBgwoKCsp23LFjx/TUU0+pU6dOhVgtAAAoCbjSCAAAoBh45ZVXNHLkSA0bNkyNGzfW3LlzVa5cOc2fPz/bMQ6HQwMHDtTkyZN1yy23FGK1AACgJCA0AgAAKOLS0tK0fft2RUVFOdu8vLwUFRWluLi4bMdNmTJFQUFBeuCBB3K1n9TUVKWkpLg8AABA6UVoBAAAUMSdPXtWDodDwcHBLu3BwcFKTEzMcsymTZv07rvvat68ebneT2xsrAICApyPsLCwm6obAAAUb4RGAAAAJcyFCxc0aNAgzZs3T1WrVs31uAkTJig5Odn5OH78eAFWCQAAijpuhA0AAFDEVa1aVd7e3jp16pRL+6lTpxQSEmLp/8MPP+jYsWPq1auXsy0jI0OS5OPjo4MHD6pu3bqWcXa7XXa7PZ+rBwAAxRVXGgEAABRxvr6+atOmjdauXetsy8jI0Nq1axUZGWnp37BhQ+3Zs0e7du1yPu6++27dcccd2rVrFx87AwAAucKVRgAAAMXAuHHjNGTIELVt21bt2rXTrFmzdOnSJQ0bNkySNHjwYNWoUUOxsbHy8/NT06ZNXcZXqlRJkiztAAAA2SE0AgAAKAb69++vM2fOaNKkSUpMTFTLli21atUq582xExIS5OXFReQAACD/EBoBAAAUE6NHj9bo0aOzXLdhw4Ycxy5cuDD/CwIAACUa/x0FAAAAAAAAC0IjAAAAAAAAWLj18bQ6deooPj7e0v7oo49q9uzZlvaFCxc6b854nd1u15UrV5zLxhhFR0dr3rx5SkpKUocOHTRnzhzVr18/x/3GxsZq/Pjx7pRfyg3Jw5h/5nsVFg1j3B7StZH7Y4Bi70CMpysoXvJyvPLw7xEAAABQkrkVGm3btk0Oh8O5vHfvXnXr1k333ntvtmP8/f118OBB57LNZnNZP336dL3++uv65z//qfDwcE2cOFHdu3fXd999Jz8/P2e/KVOmaOTIkc7lihUrulM6AAAAAAAA3OBWaFStWjWX5WnTpqlu3brq0qVLtmNsNptCQkKyXGeM0axZs/Tcc8+pd+/ekqT/+7//U3BwsJYvX64BAwY4+1asWDHb7QAAAAAAACB/5fmeRmlpaVq0aJGGDx9uuXro9y5evKjatWsrLCxMvXv31r59+5zrjh49qsTEREVFRTnbAgICFBERobi4OJftTJs2TVWqVFGrVq00Y8YMXb16Ncf6UlNTlZKS4vIAAAAAAABA7rh1pdHvLV++XElJSRo6dGi2fRo0aKD58+erefPmSk5O1syZM9W+fXvt27dPNWvWVGJioiQpODjYZVxwcLBznSQ9/vjjat26tSpXrqwtW7ZowoQJOnnypF555ZVs9x0bG6vJkyfndXoAAAAAAAClWp5Do3fffVc9evRQaGhotn0iIyMVGRnpXG7fvr0aNWqkt99+W88//3yu9zVu3Djnn5s3by5fX1899NBDio2Nld1uz3LMhAkTXMalpKQoLCws1/sEAAAAAAAozfL08bT4+HitWbNGI0aMcGtcmTJl1KpVKx0+fFiSnPcoOnXqlEu/U6dO5Xj/ooiICF29elXHjh3Lto/dbpe/v7/LAwAAAAAAALmTp9BowYIFCgoKUs+ePd0a53A4tGfPHlWvXl2SFB4erpCQEK1du9bZJyUlRVu3bnW5QimzXbt2ycvLS0FBQXkpHwAAAAAAADfg9sfTMjIytGDBAg0ZMkQ+Pq7DBw8erBo1aig2NlaSNGXKFN1+++2qV6+ekpKSNGPGDMXHxzuvULLZbBozZoxeeOEF1a9fX+Hh4Zo4caJCQ0PVp08fSVJcXJy2bt2qO+64QxUrVlRcXJzGjh2rv/3tbwoMDLzJ6QMAAAAAACArbodGa9asUUJCgoYPH25Zl5CQIC+v3y5eOn/+vEaOHKnExEQFBgaqTZs22rJlixo3buzs88wzz+jSpUt68MEHlZSUpI4dO2rVqlXy8/OT9OvHzBYvXqyYmBilpqYqPDxcY8eOdblfEQAAAAAAAPKXzRhjPF1EYUhJSVFAQICSk5ML9P5GNtvRAtt24ftnwe+iYUzB7wOl14EYT1eQtbz83BfVuZQk/HtUoMz+3PctrNds3BjnAgCA4qGgXrPzdE8jAAAAAAAAlGyERgAAAAAAALBw+55GyJkx4YWyn8L5GNyQPIxx8yNthfWRGz52UjKUlI9olZR5oFC02/+lW/2/btSlgCoBAABAacOVRgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAAC0IjAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABg4ePpApA3xoR7uoQs2WxD3BzxzwKpo7iIPmBzq//khqaAKvGAAzGergAoFr5u1MXTJQAAAKCU4kojAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAAC0IjAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABY+ni4AJYsx4W6OiCmIMixsjQphJwdi3B4yWdH5X0dx0TDG/TF5OMYopfLy8wUAAADABVcaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAAC0IjAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAICFj6cLAAqD2V8Ye4lxe4TN5v4YILeiNdmt/pMVXUCV3KSGMZ6uAAAAACiVuNIIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgIVboVGdOnVks9ksj1GjRmXZf+HChZa+fn5+Ln2MMZo0aZKqV6+usmXLKioqSocOHXLpc+7cOQ0cOFD+/v6qVKmSHnjgAV28eNHNqQIAAAAAACC3fNzpvG3bNjkcDufy3r171a1bN917773ZjvH399fBgwedyzabzWX99OnT9frrr+uf//ynwsPDNXHiRHXv3l3fffedM2AaOHCgTp48qdWrVys9PV3Dhg3Tgw8+qPfff9+d8oEix5gYT5eQL2yNPF0BsjJZ0W71Lyk/jwAAAADyh1uhUbVq1VyWp02bprp166pLly7ZjrHZbAoJCclynTFGs2bN0nPPPafevXtLkv7v//5PwcHBWr58uQYMGKD9+/dr1apV2rZtm9q2bStJeuONN/SnP/1JM2fOVGhoqDtTAAAAAAAAQC7k+Z5GaWlpWrRokYYPH265euj3Ll68qNq1ayssLEy9e/fWvn37nOuOHj2qxMRERUVFOdsCAgIUERGhuLg4SVJcXJwqVarkDIwkKSoqSl5eXtq6dWu2+01NTVVKSorLAwAAAAAAALmT59Bo+fLlSkpK0tChQ7Pt06BBA82fP1//+c9/tGjRImVkZKh9+/b68ccfJUmJiYmSpODgYJdxwcHBznWJiYkKCgpyWe/j46PKlSs7+2QlNjZWAQEBzkdYWFhepgkAAAAAAFAq5Tk0evfdd9WjR48cPx4WGRmpwYMHq2XLlurSpYuWLl2qatWq6e23387rbnNtwoQJSk5Odj6OHz9e4PsEAAAAAAAoKdy6p9F18fHxWrNmjZYuXerWuDJlyqhVq1Y6fPiwJDnvdXTq1ClVr17d2e/UqVNq2bKls8/p06ddtnP16lWdO3cu23slSZLdbpfdbnerPgAAAAAAAPwqT1caLViwQEFBQerZs6db4xwOh/bs2eMMiMLDwxUSEqK1a9c6+6SkpGjr1q2KjIyU9OvVSklJSdq+fbuzz7p165SRkaGIiIi8lA8AAAAAAIAbcPtKo4yMDC1YsEBDhgyRj4/r8MGDB6tGjRqKjY2VJE2ZMkW333676tWrp6SkJM2YMUPx8fEaMWKEpF+/WW3MmDF64YUXVL9+fYWHh2vixIkKDQ1Vnz59JEmNGjXSH//4R40cOVJz585Venq6Ro8erQEDBvDNaQAAAAAAAAXE7dBozZo1SkhI0PDhwy3rEhIS5OX128VL58+f18iRI5WYmKjAwEC1adNGW7ZsUePGjZ19nnnmGV26dEkPPvigkpKS1LFjR61atUp+fn7OPu+9955Gjx6tO++8U15eXrrnnnv0+uuvu1s6AAAAAAAAcslmjDGeLqIwpKSkKCAgQMnJyfL39/d0OUCJYmtUSDs6EFNIOyqdjInxdAmAJF6zixLOBQAAxUNBvWbn+dvTAAAAAAAAUHIRGgEAAAAAAMDC7XsaAUBmZn9h7SmmsHYEAAAAAKUeVxoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAUE7Nnz1adOnXk5+eniIgIff3119n2nTdvnjp16qTAwEAFBgYqKioqx/4AAACZERoBAAAUAx9++KHGjRun6Oho7dixQy1atFD37t11+vTpLPtv2LBB9913n9avX6+4uDiFhYXprrvu0okTJwq5cgAAUFzZjDHG00UUhpSUFAUEBCg5OVn+/v6eLgcAAGSD1+ysRURE6LbbbtObb74pScrIyFBYWJgee+wxjR8//objHQ6HAgMD9eabb2rw4MG52ifnAgCA4qGgXrN98m1LRdz1bCwlJcXDlQAAgJxcf60uJf+vlStpaWnavn27JkyY4Gzz8vJSVFSU4uLicrWNy5cvKz09XZUrV862T2pqqlJTU53LvG8CAKB0KzWh0YULFyRJYWFhHq4EAADkxoULFxQQEODpMoqEs2fPyuFwKDg42KU9ODhYBw4cyNU2nn32WYWGhioqKirbPrGxsZo8efJN1QoAAEqOUhMahYaG6vjx46pYsaJsNpunyyk0KSkpCgsL0/Hjx0vlZeWlef7MnbmXtrlLpXv+JWnuxhhduHBBoaGhni6lxJg2bZoWL16sDRs2yM/PL9t+EyZM0Lhx45zL13+uAABA6VRqQiMvLy/VrFnT02V4jL+/f7H/JeJmlOb5M3fmXhqV5vmXlLlzhZGrqlWrytvbW6dOnXJpP3XqlEJCQnIcO3PmTE2bNk1r1qxR8+bNc+xrt9tlt9tvul4AAFAy8O1pAAAARZyvr6/atGmjtWvXOtsyMjK0du1aRUZGZjtu+vTpev7557Vq1Sq1bdu2MEoFAAAlSKm50ggAAKA4GzdunIYMGaK2bduqXbt2mjVrli5duqRhw4ZJkgYPHqwaNWooNjZWkvTSSy9p0qRJev/991WnTh0lJiZKkipUqKAKFSp4bB4AAKD4IDQq4ex2u6Kjo0vtpealef7MnbmXRqV5/qV57qVF//79debMGU2aNEmJiYlq2bKlVq1a5bw5dkJCgry8fruIfM6cOUpLS1Pfvn1dthMdHa2YmJjCLB0AABRTNsP32QIAACALKSkpCggIUHJycom4VxYAACVVQb1mc08jAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNCpipk2bJpvNpjFjxjjb3nnnHXXt2lX+/v6y2WxKSkqyjDt37pwGDhwof39/VapUSQ888IAuXrzo0ufbb79Vp06d5Ofnp7CwME2fPt2ynSVLlqhhw4by8/NTs2bNtHLlSpf1xhhNmjRJ1atXV9myZRUVFaVDhw55dO516tSRzWZzeUybNq1Yz/3cuXN67LHH1KBBA5UtW1a1atXS448/ruTkZJdxCQkJ6tmzp8qVK6egoCA9/fTTunr1qkufDRs2qHXr1rLb7apXr54WLlxo2f/s2bNVp04d+fn5KSIiQl9//bXL+itXrmjUqFGqUqWKKlSooHvuuUenTp3Kl7nfzPwzn3ebzabFixcXq/ln9XP/0EMPqW7duipbtqyqVaum3r1768CBAy7jSsK5z+vcS+p5v84Yox49eshms2n58uUu60rCeQcAAEAxYlBkfP3116ZOnTqmefPm5oknnnC2v/rqqyY2NtbExsYaSeb8+fOWsX/84x9NixYtzP/+9z+zceNGU69ePXPfffc51ycnJ5vg4GAzcOBAs3fvXvPBBx+YsmXLmrffftvZZ/Pmzcbb29tMnz7dfPfdd+a5554zZcqUMXv27HH2mTZtmgkICDDLly83u3fvNnfffbcJDw83v/zyi8fmXrt2bTNlyhRz8uRJ5+PixYvFeu579uwxf/3rX82KFSvM4cOHzdq1a039+vXNPffc4xx39epV07RpUxMVFWV27txpVq5caapWrWomTJjg7HPkyBFTrlw5M27cOPPdd9+ZN954w3h7e5tVq1Y5+yxevNj4+vqa+fPnm3379pmRI0eaSpUqmVOnTjn7PPzwwyYsLMysXbvWfPPNN+b222837du3v6l53+z8jTFGklmwYIHLuf/9+Sjq88/u5/7tt982X375pTl69KjZvn276dWrlwkLCzNXr141xpSMc5/XuRtTcs/7da+88orp0aOHkWSWLVvmbC8J5x3FT3JyspFkkpOTPV0KAADIQUG9ZhMaFREXLlww9evXN6tXrzZdunTJ8heJ9evXZxmcfPfdd0aS2bZtm7Pts88+MzabzZw4ccIYY8xbb71lAgMDTWpqqrPPs88+axo0aOBc7tevn+nZs6fLtiMiIsxDDz1kjDEmIyPDhISEmBkzZjjXJyUlGbvdbj744AOPzN2YX0OjV199NdvtF/e5X/fRRx8ZX19fk56ebowxZuXKlcbLy8skJiY6+8yZM8f4+/s75/rMM8+YJk2auGynf//+pnv37s7ldu3amVGjRjmXHQ6HCQ0NNbGxsc55lilTxixZssTZZ//+/UaSiYuLy/Pcjbm5+RtjLL9UZ1aU5+/O3Hfv3m0kmcOHDxtjiv+5v5m5G1Oyz/vOnTtNjRo1zMmTJy3zLO7nHcUToREAAMVDQb1m8/G0ImLUqFHq2bOnoqKi3B4bFxenSpUqqW3bts62qKgoeXl5aevWrc4+nTt3lq+vr7NP9+7ddfDgQZ0/f97ZJ/P+u3fvrri4OEnS0aNHlZiY6NInICBAERERzj55cTNzv27atGmqUqWKWrVqpRkzZrh8XKOkzD05OVn+/v7y8fFx1tysWTMFBwe71JySkqJ9+/blal5paWnavn27Sx8vLy9FRUU5+2zfvl3p6ekufRo2bKhatWrd1Nylm5v/77dRtWpVtWvXTvPnz5cxxrmuKM8/t3O/dOmSFixYoPDwcIWFhTnnVZzP/c3M/ffbKGnn/fLly7r//vs1e/ZshYSEWNYX9/MOAACA4sfnxl1Q0BYvXqwdO3Zo27ZteRqfmJiooKAglzYfHx9VrlxZiYmJzj7h4eEufa7/4pGYmKjAwEAlJia6/DJyvc/vt/H7cVn1cdfNzl2SHn/8cbVu3VqVK1fWli1bNGHCBJ08eVKvvPKKs+7iPvezZ8/q+eef14MPPuhsy67m39ebXZ+UlBT98ssvOn/+vBwOR5Z9rt9HJjExUb6+vqpUqZKlT17nLt38/CVpypQp+sMf/qBy5crpiy++0KOPPqqLFy/q8ccfd9ZeFOefm7m/9dZbeuaZZ3Tp0iU1aNBAq1evdgafxfnc3+zcpZJ73seOHav27durd+/eWa4vzucdAAAAxROhkYcdP35cTzzxhFavXi0/Pz9Pl1Oo8mvu48aNc/65efPm8vX11UMPPaTY2FjZ7fb8KDXfuTP3lJQU9ezZU40bN1ZMTEzhFFjA8mv+EydOdP65VatWunTpkmbMmOEMD4qi3M594MCB6tatm06ePKmZM2eqX79+2rx5c7H+dyK/5l4Sz/uKFSu0bt067dy50wPVAQAAAFnj42ketn37dp0+fVqtW7eWj4+PfHx89OWXX+r111+Xj4+PHA7HDbcREhKi06dPu7RdvXpV586dc37EISQkxPLNN9eXb9Tn9+t/Py6rPu7Ij7lnJSIiQlevXtWxY8ecdRfXuV+4cEF//OMfVbFiRS1btkxlypRxbuNm5uXv76+yZcuqatWq8vb2vuHc09LSLN9cl9e559f8sxIREaEff/xRqampRXb+uZ17QECA6tevr86dO+vjjz/WgQMHtGzZshzndX1dSZ57VkrCeV+9erV++OEHVapUybleku655x517do1x3ldX1dU5w4AAIDii9DIw+68807t2bNHu3btcj7atm2rgQMHateuXfL29r7hNiIjI5WUlKTt27c729atW6eMjAxFREQ4+3z11VdKT0939lm9erUaNGigwMBAZ5+1a9e6bHv16tWKjIyUJIWHhyskJMSlT0pKirZu3ersU9hzz8quXbvk5eXl/MhecZ17SkqK7rrrLvn6+mrFihWWqxMiIyO1Z88el8Bw9erV8vf3V+PGjXM1L19fX7Vp08alT0ZGhtauXevs06ZNG5UpU8alz8GDB5WQkJCnuefX/LOya9cuBQYGOq8wK4rzz8vPvfn1SwucoUhxPff5MfeslITz/o9//EPffvuty3pJevXVV7VgwQLnvIrjeQcAAEAxlq+31Ua+yPyNOidPnjQ7d+408+bNM5LMV199ZXbu3Gl+/vlnZ58//vGPplWrVmbr1q1m06ZNpn79+ua+++5zrk9KSjLBwcFm0KBBZu/evWbx4sWmXLlylq+d9/HxMTNnzjT79+830dHRWX7tfKVKlcx//vMf8+2335revXvny9fO53XuW7ZsMa+++qrZtWuX+eGHH8yiRYtMtWrVzODBg4v13JOTk01ERIRp1qyZOXz4sMtXi2f+2vW77rrL7Nq1y6xatcpUq1Yty6/ffvrpp83+/fvN7Nmzs/z6bbvdbhYuXGi+++478+CDD5pKlSq5fEPTww8/bGrVqmXWrVtnvvnmGxMZGWkiIyPzZd55nf+KFSvMvHnzzJ49e8yhQ4fMW2+9ZcqVK2cmTZpU7Ob/+7n/8MMP5sUXXzTffPONiY+PN5s3bza9evUylStXdn4lekk69+7OvaSe96wo07enlaTzjuKDb08DAKB4KKjXbEKjIijzLxLR0dFGkuWxYMECZ5+ff/7Z3HfffaZChQrG39/fDBs2zFy4cMFlu7t37zYdO3Y0drvd1KhRw0ybNs2y748++sjceuutxtfX1zRp0sR8+umnLuszMjLMxIkTTXBwsLHb7ebOO+80Bw8e9Njct2/fbiIiIkxAQIDx8/MzjRo1Mi+++KK5cuVKsZ77+vXrs5y3JHP06FHnmGPHjpkePXqYsmXLmqpVq5onn3zS5Svpr2+rZcuWxtfX19xyyy0uPzfXvfHGG6ZWrVrG19fXtGvXzvzvf/9zWf/LL7+YRx991AQGBppy5cqZv/zlL+bkyZP5Nve8zP+zzz4zLVu2NBUqVDDly5c3LVq0MHPnzjUOh6PYzf/3cz9x4oTp0aOHCQoKMmXKlDE1a9Y0999/vzlw4IDLmJJy7t2de0k971nJHBoZU3LOO4oPQiMAAIqHgnrNthnzu+8pBgAAAK5JSUlRQECAkpOT5e/v7+lyAABANgrqNZt7GgEAAAAAAMCC0AgAAAAAAAAWPp4uoDBduXJFaWlpni4DAADcgK+vb66+NREAAAAFp9SERleuXFHZstUkXfR0KQAA4AZCQkJ09OhRgiMAAAAPKjWh0a9XGF2UNFZS+WutZa49+2TznNP6Mrnok1/rbzTm+vINeN9gl145rPPOpj0v67NbVyaLvjnV7Z2L9bndxo3qzunY3eyxcfa7dk96H4fLs8376q+LPg55X2vz9sm49nz12vO1dq9rz8r62efas5dl/bV9KMPZ7m3pe9VlG96/6/trv8zrb1zDjfq4X0P2/TLPNbt9/7bNG/WzHrPc1nnjY3bjGm54bh3Xnq9e24fDXFuWy7Pt113p2q6sz45rj8xt7ixff85uX4583taNlnO7rczbcKe2/NzWDWpLvzb22qm2LF91uA5Jz2ZT2bX/fn1O63K7jdzsI1XSq4mJSktLIzQCAADwoFITGv3GLun6G9DswpfcLGcXGhXEcm7HZMOWy2cv/XaXq+yeM4comZ9vFJxklYHdKMy6mfW53cYNA51c7CMvY12ecw6NbGUcsl1vcz7/us7r2rKXl2tw4JUpnLCGRdkHKdmHJDcKUXK/Pv/3cf3ZO4d9eeVyG7Zr/bxcxv32bMu0HZuz7be/DrZM21SmZ3OtX+b268/XazUu/b1lfvfnjEz7uvbsuPZ89Vqd2YVG2YUVOYUsuRnjbnt+biurdu/frc98oK+Pye7fvczbtGVan/nf0uv9s2LLtJz5+0tNNu3Z1Wak9GvB0rVTrXRbpuVrXW8U8ORm+UZ9b7QNnxus9/7dnwEAAOB53AgbAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACx8PF1A4UvVb9N2XHu+vnz1Bsvpv1suc+3PZTL1yfycH+tvNOb6cjZMLp8zrj2UxbPt2rMj0/L1Z2WznLmG7Pb7e5n37Z1Nf0em9Znbr+q3Q+SdaV3m9uwOv3em56xOV263kd16Z79rE/RxuDwb719/Do2PQ+Z6m0/Gtedf12Vca7d5XXtW1s8ZzgOQ+fnqtX6/P4jX9uV8vuoyxlzra5zbvpppOevn6+sdcsj72p8zP2dkWvZyLl91jv11OSPHfj6/6+edaV12+/5tmzfqd30fv9WQ0/6z2sb1/j7Z1pD9829/Nte2Ya5t89dnb8e156vX1l871dd+nJzPtuun/Go2z7/9KCjTj0Dul68/Z7cvRz5v60bLud1W5m24U1tut3Wj5+z+Tf7dc/q1fzqunWrLcuYS0uVe++/X57Qut9vIzT5SBQAAgKKg1IRGvr6+CgkJUWLiq54uxXMy/zKCYuF6Vpau337hAoCSLiQkRL6+vp4uAwAAoFQrNaGRn5+fjh49qrS0NE+Xkq2UlBSFhYXp+PHj8vf393Q5xRrHMn9wHPMHxzF/cBzzR3E5jr6+vvLz8/N0GQAAAKVaqQmNpF+Do+LwBtTf379Iv5EvTjiW+YPjmD84jvmD45g/OI4AAAC4EW6EDQAAAAAAAAtCIwAAAAAAAFgQGhUhdrtd0dHRstvtni6l2ONY5g+OY/7gOOYPjmP+4DgCAAAgt2zGGHPjbgAAAChtUlJSFBAQoOTkZO6BBQBAEVZQr9lcaQQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGRUBsbKxuu+02VaxYUUFBQerTp48OHjzo6bKKvWnTpslms2nMmDGeLqXYOXHihP72t7+pSpUqKlu2rJo1a6ZvvvnG02UVKw6HQxMnTlR4eLjKli2runXr6vnnnxffPXBjX331lXr16qXQ0FDZbDYtX77cZb0xRpMmTVL16tVVtmxZRUVF6dChQ54ptgjL6Timp6fr2WefVbNmzVS+fHmFhoZq8ODB+umnnzxXMAAAAIocQqMi4Msvv9SoUaP0v//9T6tXr1Z6erruuusuXbp0ydOlFVvbtm3T22+/rebNm3u6lGLn/Pnz6tChg8qUKaPPPvtM3333nV5++WUFBgZ6urRi5aWXXtKcOXP05ptvav/+/XrppZc0ffp0vfHGG54urci7dOmSWrRoodmzZ2e5fvr06Xr99dc1d+5cbd26VeXLl1f37t115cqVQq60aMvpOF6+fFk7duzQxIkTtWPHDi1dulQHDx7U3Xff7YFKAQAAUFTZDP/tXeScOXNGQUFB+vLLL9W5c2dPl1PsXLx4Ua1bt9Zbb72lF154QS1bttSsWbM8XVaxMX78eG3evFkbN270dCnF2p///GcFBwfr3Xffdbbdc889Klu2rBYtWuTByooXm82mZcuWqU+fPpJ+vcooNDRUTz75pJ566ilJUnJysoKDg7Vw4UINGDDAg9UWXZmPY1a2bdumdu3aKT4+XrVq1Sq84lCkFdTX9wIAgPxVUK/ZXGlUBCUnJ0uSKleu7OFKiqdRo0apZ8+eioqK8nQpxdKKFSvUtm1b3XvvvQoKClKrVq00b948T5dV7LRv315r167V999/L0navXu3Nm3apB49eni4suLt6NGjSkxMdPn7HRAQoIiICMXFxXmwsuIvOTlZNptNlSpV8nQpAAAAKCJ8PF0AXGVkZGjMmDHq0KGDmjZt6ulyip3Fixdrx44d2rZtm6dLKbaOHDmiOXPmaNy4cfr73/+ubdu26fHHH5evr6+GDBni6fKKjfHjxyslJUUNGzaUt7e3HA6Hpk6dqoEDB3q6tGItMTFRkhQcHOzSHhwc7FwH9125ckXPPvus7rvvPq4mAQAAgBOhUREzatQo7d27V5s2bfJ0KcXO8ePH9cQTT2j16tXy8/PzdDnFVkZGhtq2basXX3xRktSqVSvt3btXc+fOJTRyw0cffaT33ntP77//vpo0aaJdu3ZpzJgxCg0N5TiiSElPT1e/fv1kjNGcOXM8XQ4AAACKED6eVoSMHj1an3zyidavX6+aNWt6upxiZ/v27Tp9+rRat24tHx8f+fj46Msvv9Trr78uHx8fORwOT5dYLFSvXl2NGzd2aWvUqJESEhI8VFHx9PTTT2v8+PEaMGCAmjVrpkGDBmns2LGKjY31dGnFWkhIiCTp1KlTLu2nTp1yrkPuXQ+M4uPjtXr1aq4yAgAAgAtCoyLAGKPRo0dr2bJlWrduncLDwz1dUrF05513as+ePdq1a5fz0bZtWw0cOFC7du2St7e3p0ssFjp06KCDBw+6tH3//feqXbu2hyoqni5fviwvL9d/Yr29vZWRkeGhikqG8PBwhYSEaO3atc62lJQUbd26VZGRkR6srPi5HhgdOnRIa9asUZUqVTxdEgAAAIoYPp5WBIwaNUrvv/++/vOf/6hixYrO+3IEBASobNmyHq6u+KhYsaLlPlDly5dXlSpVuD+UG8aOHav27dvrxRdfVL9+/fT111/rnXfe0TvvvOPp0oqVXr16aerUqapVq5aaNGminTt36pVXXtHw4cM9XVqRd/HiRR0+fNi5fPToUe3atUuVK1dWrVq1NGbMGL3wwguqX7++wsPDNXHiRIWGhub4zWClUU7HsXr16urbt6927NihTz75RA6Hw/naU7lyZfn6+nqqbAAAABQhNmOM8XQRpZ3NZsuyfcGCBRo6dGjhFlPCdO3aVS1bttSsWbM8XUqx8sknn2jChAk6dOiQwsPDNW7cOI0cOdLTZRUrFy5c0MSJE7Vs2TKdPn1aoaGhuu+++zRp0iR+Ib+BDRs26I477rC0DxkyRAsXLpQxRtHR0XrnnXeUlJSkjh076q233tKtt97qgWqLrpyOY0xMTLZXta5fv15du3Yt4OpQXBTU1/cCAID8VVCv2YRGAAAAyBKhEQAAxUNBvWZzTyMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAFBMzJ49W3Xq1JGfn58iIiL09ddf59h/yZIlatiwofz8/NSsWTOtXLmykCoFAAAlAaERAABAMfDhhx9q3Lhxio6O1o4dO9SiRQt1795dp0+fzrL/li1bdN999+mBBx7Qzp071adPH/Xp00d79+4t5MoBAEBxZTPGGE8XAQAAgJxFRETotttu05tvvilJysjIUFhYmB577DGNHz/e0r9///66dOmSPvnkE2fb7bffrpYtW2ru3Lm52mdKSooCAgKUnJwsf3///JkIAADIdwX1mu2Tb1sCAABAgUhLS9P27ds1YcIEZ5uXl5eioqIUFxeX5Zi4uDiNGzfOpa179+5avnx5tvtJTU1Vamqqczk5OVnSr29EAQBA0XX9tTq/rwsiNAIAACjizp49K4fDoeDgYJf24OBgHThwIMsxiYmJWfZPTEzMdj+xsbGaPHmypT0sLCwPVQMAgML2888/KyAgIN+2R2gEAAAASdKECRNcrk5KSkpS7dq1lZCQkK9vQOG+lJQUhYWF6fjx43xU0IM4D0UH56Lo4FwUDcnJyapVq5YqV66cr9slNAIAACjiqlatKm9vb506dcql/dSpUwoJCclyTEhIiFv9Jclut8tut1vaAwIC+EWgiPD39+dcFAGch6KDc1F0cC6KBi+v/P2+M749DQAAoIjz9fVVmzZttHbtWmdbRkaG1q5dq8jIyCzHREZGuvSXpNWrV2fbHwAAIDOuNAIAACgGxo0bpyFDhqht27Zq166dZs2apUuXLmnYsGGSpMGDB6tGjRqKjY2VJD3xxBPq0qWLXn75ZfXs2VOLFy/WN998o3feeceT0wAAAMUIoREAAEAx0L9/f505c0aTJk1SYmKiWrZsqVWrVjlvdp2QkOBySXr79u31/vvv67nnntPf//531a9fX8uXL1fTpk1zvU+73a7o6OgsP7KGwsW5KBo4D0UH56Lo4FwUDQV1Hmwmv7+PDQAAAAAAAMUe9zQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAgFJs9uzZqlOnjvz8/BQREaGvv/46x/5LlixRw4YN5efnp2bNmmnlypWFVGnJ5865mDdvnjp16qTAwEAFBgYqKirqhucOuePu34nrFi9eLJvNpj59+hRsgaWIu+ciKSlJo0aNUvXq1WW323Xrrbfyb1Q+cPc8zJo1Sw0aNFDZsmUVFhamsWPH6sqVK4VUbcn11VdfqVevXgoNDZXNZtPy5ctvOGbDhg1q3bq17Ha76tWrp4ULF7q9X0IjAACAUurDDz/UuHHjFB0drR07dqhFixbq3r27Tp8+nWX/LVu26L777tMDDzygnTt3qk+fPurTp4/27t1byJWXPO6eiw0bNui+++7T+vXrFRcXp7CwMN111106ceJEIVdesrh7Hq47duyYnnrqKXXq1KmQKi353D0XaWlp6tatm44dO6aPP/5YBw8e1Lx581SjRo1Crrxkcfc8vP/++xo/fryio6O1f/9+vfvuu/rwww/197//vZArL3kuXbqkFi1aaPbs2bnqf/ToUfXs2VN33HGHdu3apTFjxmjEiBH6/PPP3dqvzRhj8lIwAAAAireIiAjddtttevPNNyVJGRkZCgsL02OPPabx48db+vfv31+XLl3SJ5984my7/fbb1bJlS82dO7fQ6i6J3D0XmTkcDgUGBurNN9/U4MGDC7rcEisv58HhcKhz584aPny4Nm7cqKSkpFxdAYCcuXsu5s6dqxkzZujAgQMqU6ZMYZdbYrl7HkaPHq39+/dr7dq1zrYnn3xSW7du1aZNmwqt7pLOZrNp2bJlOV7Z+Oyzz+rTTz91+Y+dAQMGKCkpSatWrcr1vrjSCAAAoBRKS0vT9u3bFRUV5Wzz8vJSVFSU4uLishwTFxfn0l+Sunfvnm1/5E5ezkVmly9fVnp6uipXrlxQZZZ4eT0PU6ZMUVBQkB544IHCKLNUyMu5WLFihSIjIzVq1CgFBweradOmevHFF+VwOAqr7BInL+ehffv22r59u/MjbEeOHNHKlSv1pz/9qVBqxm/y6zXbJz+LAgAAQPFw9uxZORwOBQcHu7QHBwfrwIEDWY5JTEzMsn9iYmKB1Vka5OVcZPbss88qNDTU8gsCci8v52HTpk169913tWvXrkKosPTIy7k4cuSI1q1bp4EDB2rlypU6fPiwHn30UaWnpys6Orowyi5x8nIe7r//fp09e1YdO3aUMUZXr17Vww8/zMfTPCC71+yUlBT98ssvKlu2bK62w5VGAAAAQDE2bdo0LV68WMuWLZOfn5+nyyk1Lly4oEGDBmnevHmqWrWqp8sp9TIyMhQUFKR33nlHbdq0Uf/+/fWPf/yDj84Wsg0bNujFF1/UW2+9pR07dmjp0qX69NNP9fzzz3u6NOQRVxoBAACUQlWrVpW3t7dOnTrl0n7q1CmFhIRkOSYkJMSt/sidvJyL62bOnKlp06ZpzZo1at68eUGWWeK5ex5++OEHHTt2TL169XK2ZWRkSJJ8fHx08OBB1a1bt2CLLqHy8neievXqKlOmjLy9vZ1tjRo1UmJiotLS0uTr61ugNZdEeTkPEydO1KBBgzRixAhJUrNmzXTp0iU9+OCD+sc//iEvL65bKSzZvWb7+/vn+iojiSuNAAAASiVfX1+1adPG5WalGRkZWrt2rSIjI7McExkZ6dJfklavXp1tf+ROXs6FJE2fPl3PP/+8Vq1apbZt2xZGqSWau+ehYcOG2rNnj3bt2uV83H333c5vKgoLCyvM8kuUvPyd6NChgw4fPuwM7iTp+++/V/Xq1QmM8igv5+Hy5cuWYOh6kMd3cBWufHvNNgAAACiVFi9ebOx2u1m4cKH57rvvzIMPPmgqVapkEhMTjTHGDBo0yIwfP97Zf/PmzcbHx8fMnDnT7N+/30RHR5syZcqYPXv2eGoKJYa752LatGnG19fXfPzxx+bkyZPOx4ULFzw1hRLB3fOQ2ZAhQ0zv3r0LqdqSzd1zkZCQYCpWrGhGjx5tDh48aD755BMTFBRkXnjhBU9NoURw9zxER0ebihUrmg8++MAcOXLEfPHFF6Zu3bqmX79+nppCiXHhwgWzc+dOs3PnTiPJvPLKK2bnzp0mPj7eGGPM+PHjzaBBg5z9jxw5YsqVK2eefvpps3//fjN79mzj7e1tVq1a5dZ++XgaAABAKdW/f3+dOXNGkyZNUmJiolq2bKlVq1Y5b5yZkJDg8j/G7du31/vvv6/nnntOf//731W/fn0tX75cTZs29dQUSgx3z8WcOXOUlpamvn37umwnOjpaMTExhVl6ieLueUDBcfdchIWF6fPPP9fYsWPVvHlz1ahRQ0888YSeffZZT02hRHD3PDz33HOy2Wx67rnndOLECVWrVk29evXS1KlTPTWFEuObb77RHXfc4VweN26cJGnIkCFauHChTp48qYSEBOf68PBwffrppxo7dqxee+011axZU//v//0/de/e3a392ozhGjEAAAAAAAC4IiYHAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCI6AEGDp0qOrUqePpMjzqZo7B0KFDVaFChfwtCAAAeAzvjXhvBCB/EBoBhSQmJkY2m01nz57Ncn3Tpk3VtWvXwi0Kbrl8+bJiYmK0YcOGQt/3Rx99JJvNpmXLllnWtWjRQjabTevXr7esq1Wrltq3b18YJQIA4BbeGxV/nnxvdN2ePXvUt29f1a5dW35+fqpRo4a6deumN954I9fbmD59umw2m3bu3OnSboxRYGCgbDabjh496rLuypUrstvtuv/++/NlHkBRRWgElADz5s3TwYMHPV2GRxXGMbh8+bImT57skTdGHTt2lCRt2rTJpT0lJUV79+6Vj4+PNm/e7LLu+PHjOn78uHMsAAClBe+NSv57I0nasmWL2rZtq927d2vkyJF68803NWLECHl5eem1117L9Xaye5+1b98+JSUlZfk+a9u2bUpLS+N9Fko8H08XAODmlSlTxtMleFxJPwahoaEKDw+3vJmJi4uTMUb33nuvZd315ZzezGzYsEF33HGHjh49Wuov4wcAlBwl/X1BbpSGYzB16lQFBARo27ZtqlSpksu606dP53o7bdu2lZ+fnzZt2qTHHnvM2b5582ZVqVJFbdu21aZNm/S3v/3NuS4377MWLlyoYcOGyRiT61qAooYrjYAiasOGDbLZbProo480depU1axZU35+frrzzjt1+PBhl75ZfWY9KSlJQ4cOVUBAgCpVqqQhQ4Zo165dstlsWrhwobNf165ds7z0O6ttZmRkaNasWWrSpIn8/PwUHByshx56SOfPn89xLitWrJDNZtO3337rbPv3v/8tm82mv/71ry59GzVqpP79+7u0LVq0SG3atFHZsmVVuXJlDRgwQMePH79hvT///LMGDRokf39/5zHYvXu35Rhcd+LECfXp00cVKlRQtWrV9NRTT8nhcEiSjh07pmrVqkmSJk+eLJvNJpvNppiYGElSYmKihg0bppo1a8put6t69erq3bu3jh07luOxcUfHjh21c+dO/fLLL862zZs3q0mTJurRo4f+97//KSMjw2WdzWZThw4d8q0GAAA8hfdGv+G90a9++OEHNWnSxBIYSVJQUFCut+Pr66vbbrvNcjXR5s2bFRkZqQ4dOmS5rlKlSmratGmeageKC0IjoIibNm2ali1bpqeeekoTJkzQ//73Pw0cODDHMcYY9e7dW//617/0t7/9TS+88IJ+/PFHDRky5KZqeeihh/T000+rQ4cOeu211zRs2DC999576t69u9LT07Md17FjR9lsNn311VfOto0bN8rLy8vl6pgzZ87owIED6ty5s7Nt6tSpGjx4sOrXr69XXnlFY8aM0dq1a9W5c2clJSVlu8+MjAz16tVLH3zwgYYMGaKpU6fq5MmT2R4Dh8Oh7t27q0qVKpo5c6a6dOmil19+We+8844kqVq1apozZ44k6S9/+Yv+9a9/6V//+pfzjd0999yjZcuWadiwYXrrrbf0+OOP68KFC0pISLjxgc2ljh07Kj09XVu3bnW2bd68We3bt1f79u2VnJysvXv3uqxr2LChqlSpkm81AADgabw34r3RdbVr19b27dtd3v/kVceOHXXixAmXUOv377Ouf1RN+vXnacuWLYqMjJSXF79So4QzAApFdHS0kWTOnDmT5fomTZqYLl26OJfXr19vJJlGjRqZ1NRUZ/trr71mJJk9e/Y424YMGWJq167tXF6+fLmRZKZPn+5su3r1qunUqZORZBYsWOBs79Kli8t+s9vmxo0bjSTz3nvvufRbtWpVlu1Zza9fv37O5datW5t7773XSDL79+83xhizdOlSI8ns3r3bGGPMsWPHjLe3t5k6darLtvbs2WN8fHxc2jPX++9//9tIMrNmzXK2ORwO84c//MFyDIYMGWIkmSlTprjsp1WrVqZNmzbO5TNnzhhJJjo62qXf+fPnjSQzY8aMHI/Bzdq3b5+RZJ5//nljjDHp6emmfPny5p///Kcxxpjg4GAze/ZsY4wxKSkpxtvb24wcOTLHbV7/OTt69GiB1g4AQGa8N+K90c364osvjLe3t/H29jaRkZHmmWeeMZ9//rlJS0tze1uffvqpkWT+9a9/GWOMOXnypJFkvvzyS3PhwgXj7e1tPv30U2OMMXv37jWSLOchswULFhh+5UZxRywKFHHDhg2Tr6+vc7lTp06SpCNHjmQ7ZuXKlfLx8dEjjzzibPP29nb5jLa7lixZooCAAHXr1k1nz551Ptq0aaMKFSpk+c1dv9epUydt3LhRknThwgXt3r1bDz74oKpWreps37hxo8tlvkuXLlVGRob69evnss+QkBDVr18/x32uWrVKZcqU0ciRI51tXl5eGjVqVLZjHn74YUvNOR3n68qWLStfX19t2LDhhpej34xGjRqpSpUqzv+B3L17ty5duuT8drT27ds7L52Oi4uTw+GwfM4+OTnZ5VgmJydLks6fP+/SfvHixQKbBwAAN4P3Rrw3uq5bt26Ki4vT3Xffrd27d2v69Onq3r27atSooRUrVri1rfbt27tc6bV582aVKVNGt912mypUqKDmzZs732ddf878Piu791O/bzt79qwuX758s1MHCk2pDI2++uor9erVS6GhobLZbFq+fLnb2zDGaObMmbr11ltlt9tVo0YNTZ06Nf+LRalis9ksbbVq1XJZDgwMlKQcX4Dj4+NVvXp1VahQwaW9QYMGea7t0KFDSk5OVlBQkKpVq+byuHjx4g1vNtipUyedPHlShw8f1pYtW2Sz2RQZGenyhmnjxo3q0KGD8zLfQ4cOyRij+vXrW/a5f//+HPd5/RiUK1fOpb1evXpZ9vfz83N+Lv+6wMDAXL3Rsdvteumll/TZZ58pODhYnTt31vTp05WYmJjjuF9++UWJiYkuj5zYbDa1b9/eee+izZs3KygoyDmn34dG2b2Z6d27t8tx7NOnjySpdevWLu2jR4++4bwBlC68f4In8N6I90Y3ctttt2np0qU6f/68vv76a02YMEEXLlxQ37599d13391w/HWVKlVSkyZNXN5LtWrVSmXLlpVkfZ/l6+urdu3auWyjVatWLufkeiiZ+VxNnz4913UBnlYqvz3t0qVLatGihYYPH2650VxuPfHEE/riiy80c+ZMNWvWTOfOndO5c+fyuVKUJH5+fpLkchPj37t8+bKzz+95e3tn2d/k07cw2Gy2LLd1/SaH12VkZCgoKEjvvfdeltvJ/KYis+vhxVdffaUjR46odevWKl++vDp16qTXX39dFy9e1M6dO11+ecjIyJDNZtNnn32W5XHI/MbvZmR3nHNrzJgx6tWrl5YvX67PP/9cEydOVGxsrNatW6dWrVplOebDDz/UsGHDXNpudF47duyo//73v9qzZ4/zc/bXtW/fXk8//bROnDihTZs2KTQ0VLfccovL+Jdfftnlzd7u3bv11FNPadGiRQoODna2h4aG5nruAEoH3j8hv/HeiPdGmeXlvdF1129mfdttt+nWW2/VsGHDtGTJEkVHR+e65o4dO2ru3LlKSkrK8n3W/PnzlZ6erk2bNqlNmzaWn8/33nvP5ef5iy++0IwZM7R69WqXfpnfnwFFWakMjXr06KEePXpkuz41NVX/+Mc/9MEHHygpKUlNmzbVSy+95PwWhf3792vOnDnau3ev838nwsPDC6N0FGO1a9eWJB08eFBhYWEu6y5fvqzjx4/rrrvuyrd9rV27VhcvXnR583Dw4EFL38DAwCwvM46Pj3dZrlu3rtasWaMOHTo4/8fFHbVq1VKtWrW0ceNGHTlyxHkpeefOnTVu3DgtWbJEDofD5UaPdevWlTFG4eHhuvXWW93aX+3atbV+/XpdvnzZ5X/UMn+7ijuy+t/O36tbt66efPJJPfnk/2/vzuOjqPK9j387ZAE0HUAJAY2AoCwqsniNCTioBFF5KZlBGZUrmwHnihsOLjxXTYM+JlcYcfTiMiJh5kHF0QuRcRhHFtERkEGEEVG5IJC4EJwRkgBKyHKePyAtnepOUkUv6c7n/Xr1q6mqc+r8TlUvP36p7v61duzYof79++s3v/mNFi1a5Lf9iBEjLElEY+oSzA8++EBr167VPffc4902aNAgJSUlac2aNdqwYYOuueYaS/9Bgwb5LMfHH3sbGDx4sOUXVgDgRORPCDZyI3Kj+pzkRv5cdNFFkqS9e/fa6jdkyBA999xzWrlypTZv3qz77rvPuy0rK0s//vij/vznP2vXrl0aPXq0pX/9X6z9+uuvJUnZ2dl2pwA0Gy3y42mNueOOO7R+/XotXrxYn3zyiW644QZdddVV2rFjhyTpT3/6k84++2y99dZb6t69u7p166bc3Fz+UoYGDRs2TImJiXruued8fhZdkn73u9+purq6wWTcjmuuuUbV1dXeX7SQjv117JlnnrG07dGjh7744gv985//9K77xz/+YflZ0TFjxqimpkaPPvqoZR/V1dUN/lpHnUsvvVSrV6/W3//+d29i1L9/fyUnJ6ugoEBt2rTxKWr84he/UKtWrTRz5kzLX5mMMfr+++8DjlX3qyUvvviid11tba3mzZvXaJyB1CVY9ef6ww8/6MiRIz7revTooeTkZFVWVgbcX+fOnZWdne1za8xFF12k1q1b6+WXX9Y333zj8xewpKQkDRw4UPPmzdPhw4ctH00DgFAif4Jd5EbkRvXZzY3effddv1ciLV++XJL9jx/W5U5PPvmkqqqqfPKsbt26qXPnzt6PlpFnoaVokVcaNaSkpESFhYUqKSnxfjxj+vTpevvtt1VYWKjHH39cu3btUnFxsV5//XX94Q9/UE1NjaZNm6brr79eq1evjvAM0FylpqbqkUce0UMPPaSf/exnuu6669S2bVutW7dOr776qq688kpde+21QRnr2muv1eDBg/Xggw9qz5496tu3r5YsWeL90uMTTZo0SU8++aRGjBihW2+9Vd99952ef/55nXfeeaqoqPC2Gzp0qG677Tbl5+dry5YtuvLKK5WQkKAdO3bo9ddf129/+1tdf/31DcZ16aWX6uWXX5bL5fK+0bZq1UpZWVn661//qssuu8zniy179Oihxx57TDNmzNCePXuUk5Oj5ORk7d69W0uXLtWUKVM0ffp0v2Pl5OTo4osv1q9//Wvt3LlTvXv31rJly7z/OWnsL2P+tGnTRn379tVrr72mc889Vx06dND555+v6upqDRs2TGPGjFHfvn0VHx+vpUuXat++fbrxxhttj9OQukuv//a3vykpKcly5VBWVpZ+85vfSCKZARA+5E9wgtyI3Ohk3Xnnnfrhhx/085//XL1799bRo0e1bt06vfbaa+rWrZvlo26NOeuss5Senq7169erW7dulo/rZ2Vl6X/+53/kcrksVxUBMSvsv9fWzEgyS5cu9S6/9dZbRpI55ZRTfG7x8fHen8ScPHmykWS2b9/u7bdp0yYjyXzxxRfhngKizKJFi8wll1xiTjnlFJOUlGR69+5tZs6caY4cOeLTru5nZV9//XWf9bt37/b7s6gn/qSqMcZ8//335pZbbjFut9ukpKSYW265xWzevNnSty6ms88+2yQmJpr+/fubv/71r373aYwxv/vd78ygQYNMmzZtTHJysrngggvM/fffb7799ttG5173k/F9+vTxWf/YY48ZSebhhx/22+9//ud/zJAhQ7zPx969e5upU6f6PAf9xfvPf/7T3HzzzSY5OdmkpKSYCRMmmLVr1xpJZvHixT59TznlFMu4dT8FfKJ169aZQYMGmcTERO9PzP7rX/8yU6dONb179zannHKKSUlJMRkZGeaPf/xjo8fEiRkzZhhJJisry7Kt7qd5k5OTTXV1daP7qnuc7d69OwSRAohV5E8IJnIjciOn/vKXv5hJkyaZ3r17m1NPPdUkJiaanj17mjvvvNPs27fP0T5vuukmI8ncfPPNlm1PPvmk3/MVSGFhoeV4AdHGZUyQvjEuSrlcLi1dutT7C0Kvvfaaxo4dq23btlm+/O3UU09VWlqa8vLy9Pjjj6uqqsq77ccff1Tbtm31zjvvaPjw4eGcAtBke/bsUffu3VVYWKgJEyZEOpyIKCoq0s9//nN98MEH/IUIABwif0KsIDciNwLQMD6eVs+AAQNUU1Oj7777zvu54voGDx6s6upqffnll+rRo4ck6X//938l/fSFfgAi78cff/T5Ysq67y5wu90aOHBgBCMDgNhC/gREB3IjAHa1yKLRoUOHfH4lYPfu3dqyZYs6dOigc889V2PHjtW4ceP0m9/8RgMGDNA///lPrVq1Sv369dPIkSOVnZ2tgQMHatKkSXrqqadUW1urqVOnavjw4bZ/xQBA6Nx555368ccflZmZqcrKSi1ZskTr1q3T448/7uhXTgCgJSN/AqJfS8yNysvL9eOPPzbYJi0tLUzRAFEo0p+Pi4S6z0PXv40fP94YY8zRo0fNI488Yrp162YSEhJM586dzc9//nPzySefePfxzTffmF/84hfm1FNPNZ06dTITJkww33//fYRmBDSNv8/8x7KXX37ZDBw40LjdbpOYmGj69u1rnnnmmUiHBQBRifwJsYjcKPZzo/Hjx/t97TrxBiCwFv+dRgAAAACA2PTZZ5/p22+/bbBNdnZ2mKIBog9FIwAAAAAAAFjERToAAAAAAAAAND8t5ouwa2tr9e233yo5OVkulyvS4QAAgACMMTp48KC6dOmiuDj+vhVJ5E8AAESHUOVPLaZo9O233yo9PT3SYQAAgCb66quvdOaZZ0Y6jBaN/AkAgOgS7PypxRSNkpOTJR07gG63O8LRAACAQCoqKpSenu5970bkkD8BABAdQpU/tZiiUd0l1W63m6QHAIAowMehIo/8CQCA6BLs/IkvCgAAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACARbydxt26dVNxcbFl/e2336558+ZZ1i9cuFATJ070WZeUlKQjR45IkqqqqvTQQw9p+fLl2rVrl1JSUpSdna2CggJ16dKlwXHz8/P14IMP2gk/LFwuT6RDiKxcT+jHmB/6MYwJ/RgAgJaB/KlxrrWRjiDCisIwRk7ohzCDQz8GACC8bBWNNm7cqJqaGu/yp59+quHDh+uGG24I2Mftdmv79u3eZZfL5f33Dz/8oI8//lgPP/ywLrzwQh04cEB33323rrvuOn300Uc++5k1a5YmT57sXU5OTrYTOgAAQESQPwEAgGhlq2jUsWNHn+WCggL16NFDQ4cODdjH5XIpLS3N77aUlBStWLHCZ91///d/6+KLL1ZJSYnOOuss7/rk5OSA+wEAAGiuyJ8AAEC0cvydRkePHtWiRYs0adIkn79+1Xfo0CF17dpV6enpGjVqlLZt29bgfsvLy+VyudSuXTuf9QUFBTrttNM0YMAAzZ49W9XV1Q3up7KyUhUVFT43AACASCJ/AgAA0cTWlUYnKioqUllZmSZMmBCwTa9evbRgwQL169dP5eXlmjNnjrKysrRt2zadeeaZlvZHjhzRAw88oJtuuklut9u7/q677tLAgQPVoUMHrVu3TjNmzNDevXv15JNPBhw7Pz9fM2fOdDo9AACAoCN/AgAA0cRljDFOOo4YMUKJiYn605/+1OQ+VVVV6tOnj2666SY9+uijlm2jR4/W119/rTVr1vgkPfUtWLBAt912mw4dOqSkpCS/bSorK1VZWeldrqioUHp6usrLyxvc98nii7A9oR+DL8IGgJhWUVGhlJSUkL9nRwL5k398EXYYxsgJ/RB8ETYARE6o8idHVxoVFxdr5cqVWrJkia1+CQkJGjBggHbu3OmzvqqqSmPGjFFxcbFWr17d6AQzMjJUXV2tPXv2qFevXn7bJCUlBUyIAAAAwo38CQAARBtH32lUWFio1NRUjRw50la/mpoabd26VZ07d/auq0t4duzYoZUrV+q0005rdD9btmxRXFycUlNTbccOAAAQCeRPAAAg2ti+0qi2tlaFhYUaP3684uN9u48bN05nnHGG8vPzJR37mddLLrlEPXv2VFlZmWbPnq3i4mLl5uZKOpbwXH/99fr444/11ltvqaamRqWlpZKkDh06KDExUevXr9eGDRt0+eWXKzk5WevXr9e0adP07//+72rfvv3Jzh8AACDkyJ8AAEA0sl00WrlypUpKSjRp0iTLtpKSEsXF/XTx0oEDBzR58mSVlpaqffv2GjRokNatW6e+fftKkr755hstW7ZMktS/f3+ffb377ru67LLLlJSUpMWLF8vj8aiyslLdu3fXtGnTdO+999oNHQAAICLInwAAQDRy/EXY0SZcX6rJF2F7Qj8GX4QNADEtlr8IO9qELX/ii7BDLyf0Q/BF2AAQOaF6z3b0nUYAAAAAAACIbY5+PQ0NcHKlzfwwXOyV6wr9GOHi6Bjb69PirxgLA67mAgB4FTnoM8cT5CD8mB6GMcKlyEGfHHvNW/wVY2HA1VwAwo0rjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYuY4yJdBDhUFFRoZSUFJWXl8vtdodsHJcrhg5nrivSEUTOGw76lHmCHQUiwBhPpEMAWrxwvWejceHLnzwh23fYTfdEOoKIMZfbzx1dKTGUO7dgZnCkIwAQqvdsrjQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYxEc6gJiT64p0BAiG6x30ecNjv0+Zgz4IKZfLE+kQ/DLGE+kQACB0pnsiHQGCwPWusd3HXG4/d3al2B8HoeVaG+kI/DODIx0BEP240ggAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABbxkQ4g5sz32O+T66APmp/rnXTy2Gv+hoMhymyOgWbJ5fJEOgS/jPFEOgQAsSDHQZ+iIMeAiHC9a0I+hrncZbuPKyX0cSH0XGsjHYF/ZnCkIwCajiuNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFvF2Gnfr1k3FxcWW9bfffrvmzZtnWb9w4UJNnDjRZ11SUpKOHDkiSaqqqtJDDz2k5cuXa9euXUpJSVF2drYKCgrUpUsXb5/9+/frzjvv1J/+9CfFxcVp9OjR+u1vf6tTTz3VTvhA9LveQZ83PPb7lDnogxbJ5fI46JUX7DAsjHGFfAygqcifgMhyvWts9zGX238fcaXYHwctk2utg05DPMEOw8KY0I+B6GOraLRx40bV1NR4lz/99FMNHz5cN9xwQ8A+brdb27dv9y67XD+9AP/www/6+OOP9fDDD+vCCy/UgQMHdPfdd+u6667TRx995G03duxY7d27VytWrFBVVZUmTpyoKVOm6JVXXrETPgAAQNiRPwEAgGhlq2jUsWNHn+WCggL16NFDQ4cODdjH5XIpLS3N77aUlBStWLHCZ91///d/6+KLL1ZJSYnOOussff7553r77be1ceNGXXTRRZKkZ555Rtdcc43mzJnj8xc1AACA5ob8CQAARCvH32l09OhRLVq0SJMmTfL561d9hw4dUteuXZWenq5Ro0Zp27ZtDe63vLxcLpdL7dq1kyStX79e7dq18yY8kpSdna24uDht2LAh4H4qKytVUVHhcwMAAIgk8icAABBNHBeNioqKVFZWpgkTJgRs06tXLy1YsEBvvvmmFi1apNraWmVlZenrr7/22/7IkSN64IEHdNNNN8ntdkuSSktLlZqa6tMuPj5eHTp0UGlpacCx8/PzlZKS4r2lp6fbnyQAAEAQkT8BAIBo4rho9NJLL+nqq69u8PLmzMxMjRs3Tv3799fQoUO1ZMkSdezYUS+88IKlbVVVlcaMGSNjjJ577jmnYXnNmDFD5eXl3ttXX3110vsEAAA4GeRPAAAgmtj6TqM6xcXFWrlypZYsWWKrX0JCggYMGKCdO3f6rK9LeIqLi7V69WrvX8kkKS0tTd99951P++rqau3fvz/gZ/2lY78ykpSUZCs+AACAUCF/AgAA0cbRlUaFhYVKTU3VyJEjbfWrqanR1q1b1blzZ++6uoRnx44dWrlypU477TSfPpmZmSorK9OmTZu861avXq3a2lplZGQ4CR8AACDsyJ8AAEC0sX2lUW1trQoLCzV+/HjFx/t2HzdunM444wzl5+dLkmbNmqVLLrlEPXv2VFlZmWbPnq3i4mLl5uZKOpbwXH/99fr444/11ltvqaamxvs5+w4dOigxMVF9+vTRVVddpcmTJ+v5559XVVWV7rjjDt1444388gcAAIgK5E8AACAa2S4arVy5UiUlJZo0aZJlW0lJieLifrp46cCBA5o8ebJKS0vVvn17DRo0SOvWrVPfvn0lSd98842WLVsmSerfv7/Pvt59911ddtllkqSXX35Zd9xxh4YNG6a4uDiNHj1aTz/9tN3QAQAAIoL8CQAARCOXMcZEOohwqKioUEpKisrLy30+8x9sLpfHfqdcB32ApnrDQZ8yT7CjAE6QF/IRjAn8U+Zo/sL1no3GhS1/WuugU1GwowB+Yi63/z7iSmkR/61CpAzxhHwIY0I/BkInVO/Zjn89DQAAAAAAALGLohEAAAAAAAAsbH+nERrh5KNm8x304SNtzc98B5ck54bhIzTXO+jzhsdeez7OhmbG5QrHRwRmhmEMLhVHC1HkoE9OmMZBaM3x2O8z3UEfm1zv2n8fsfuRNj7OhubG0Vet2PVBGMaQZAaHZZgWgSuNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgER/pAGLOfOOgU17Qw7CY77HfJ9dBn3BwMhe7muvcgZgwMwxjhOF11dEY9ufucnkcjBN6xngiHQJiyRyPgz4Oxpluc5wcB2MUOegTDjlhGKMoDGMALdUHntCPMaSZjuFg7q619ocJBzM40hHYx5VGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC5cxxkQ6iHCoqKhQSkqKysvL5Xa7QzaOa7KDTvOdnIKZ9prneuwPMd9BH7vjOJq7EzaPl/LsD5Hrst8nVrzhoE+ZJ9hRACfJwfM+LOy+fjVPxnia3DZc79loXNjyp/scdJrjsd/nA5t9iuwPoRwHfeyO42TuTtg9XkNstpek6Q76xAhzuf3c0ZXSIv7rhmji5HkfDnZfv5opM7jpbUP1ns2VRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAIv4SAcASbkuB5089prPt9k+bGba75Lrsd9nvt0xnJwTANHN7utRXkiiANBE0z32+xTZbJ9jf4iw+MBjv09RsIPww8k5ARDd7L4eDbHZHhHHlUYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCIt9O4W7duKi4utqy//fbbNW/ePMv6hQsXauLEiT7rkpKSdOTIEe/ykiVL9Pzzz2vTpk3av3+/Nm/erP79+/v0ueyyy/Tee+/5rLvtttv0/PPP2wk/POZ77PfJddCnubI7/+Y69/nGfp9cV/DjiGXtPPb7lDnoAwARRv7UBDkO+hQFOYZIyrHZvigEMQTDHI/9PtMd9GnBTLn9fNOV4iCvBYDjbBWNNm7cqJqaGu/yp59+quHDh+uGG24I2Mftdmv79u3eZZfL94Xu8OHDGjJkiMaMGaPJkycH3M/kyZM1a9Ys73Lbtm3thA4AABAR5E8AACBa2SoadezY0We5oKBAPXr00NChQwP2cblcSktLC7j9lltukSTt2bOnwbHbtm3b4H4AAACaI/InAAAQrRx/p9HRo0e1aNEiTZo0yfLXrxMdOnRIXbt2VXp6ukaNGqVt27Y5Gu/ll1/W6aefrvPPP18zZszQDz/84DR0AACAiCB/AgAA0cTWlUYnKioqUllZmSZMmBCwTa9evbRgwQL169dP5eXlmjNnjrKysrRt2zadeeaZTR7r5ptvVteuXdWlSxd98skneuCBB7R9+3YtWbIkYJ/KykpVVlZ6lysqKpo8HgAAQCiQPwEAgGjiuGj00ksv6eqrr1aXLl0CtsnMzFRmZqZ3OSsrS3369NELL7ygRx99tMljTZkyxfvvCy64QJ07d9awYcP05ZdfqkePHn775Ofna+bMmU0eAwAAINTInwAAQDRx9PG04uJirVy5Urm5ubb6JSQkaMCAAdq5c6eTYb0yMjIkqcH9zJgxQ+Xl5d7bV199dVJjAgAAnAzyJwAAEG0cFY0KCwuVmpqqkSNH2upXU1OjrVu3qnPnzk6G9dqyZYskNbifpKQkud1unxsAAECkkD8BAIBoY/vjabW1tSosLNT48eMVH+/bfdy4cTrjjDOUn58vSZo1a5YuueQS9ezZU2VlZZo9e7aKi4t9/sK2f/9+lZSU6Ntvv5Uk78/LpqWlKS0tTV9++aVeeeUVXXPNNTrttNP0ySefaNq0afrZz36mfv36OZ44AABAuJA/AQCAaGS7aLRy5UqVlJRo0qRJlm0lJSWKi/vp4qUDBw5o8uTJKi0tVfv27TVo0CCtW7dOffv29bZZtmyZJk6c6F2+8cYbJUl5eXnyeDxKTEzUypUr9dRTT+nw4cNKT0/X6NGj9dBDD9kNHQAAICLInwAAQDSyXTS68sorZYzxu23NmjU+y3PnztXcuXMb3N+ECRMa/AWR9PR0vffee3bDBAAAaDbInwAAQDRy9J1GAAAAAAAAiG0UjQAAAAAAAGBh++NpaESuJzzjzA/TOKEWK/No6a4P0zhveOy1dxIXj0kACL+iMI2TE6ZxQi0n0gEgGFzv+v/IarCZy1222juKK8d+FwDRgSuNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFi5jjIl0EOFQUVGhlJQUlZeXy+12h2wcl8sTsn3HpFxPeMaZb/NhnutyMIbHfp9wzb+leiPSAURYmSfSEcAiLwxjzAzDGPYZ42ly23C9Z6NxYcuf1oZs17GpKEzjzPHYaz/dZntJyrHfJWzzb6HM5Q7y4BjiSmkR/z2OLkM8oR/jgzCM4YAZ3PS2oXrP5kojAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYxEc6AIRJrifSEfg334RnnFxXGMbwhH4M2HO9gz5vBD2KyAnHY9LJ8SrzBDuKCMkL0zgzwzQOAIuiSAcQwBxPeMaZHoZxikI/BOxxvWs/PzeXhyHXDpei0A/h5Hi5UsL0/6ZQG+IJzzgfhGmcFoArjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABbxkQ4g5uR6Ih2Bf/M99vs017nkukI/RiwdL9hTZuz3aReGx6QTb0Q6gADaeey1L7PZvlmbGekAgOapKNIBBJDjoE9RkGMIlume0I+R46BPUZBjQES4RubZ7mP+3DzfE83lzTOvM+X24nKlOMhpm6sPPJGOoEXjSiMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIBFvJ3G3bp1U3FxsWX97bffrnnz5lnWL1y4UBMnTvRZl5SUpCNHjniXlyxZoueff16bNm3S/v37tXnzZvXv39+nz5EjR/TrX/9aixcvVmVlpUaMGKFnn31WnTp1shN+eMz32O+T66CP3XGcjBEOua5IRxBZTh4vdjXXc+9Ec33cX2+z/RshicKqzBP6MdqFYYxwvEY6MjMMYyAWkD81QY6DPkVhGMfJGOEw3RPpCCIrJwxjFIVhjHDJsdm+KAQx+OF619hqby4Pz/8bXCn24nLClIdhLkUO+uQEOQZ/PvCEYRAEk60rjTZu3Ki9e/d6bytWrJAk3XDDDQH7uN1unz71k6bDhw9ryJAh+q//+q+A+5g2bZr+9Kc/6fXXX9d7772nb7/9Vr/4xS/shA4AABAR5E8AACBa2brSqGPHjj7LBQUF6tGjh4YOHRqwj8vlUlpaWsDtt9xyiyRpz549freXl5frpZde0iuvvKIrrrhCklRYWKg+ffroww8/1CWXXGJnCgAAAGFF/gQAAKKV4+80Onr0qBYtWqRJkybJ5Qp8ed2hQ4fUtWtXpaena9SoUdq2bZutcTZt2qSqqiplZ2d71/Xu3VtnnXWW1q9fH7BfZWWlKioqfG4AAACRRP4EAACiieOiUVFRkcrKyjRhwoSAbXr16qUFCxbozTff1KJFi1RbW6usrCx9/fXXTR6ntLRUiYmJateunc/6Tp06qbS0NGC//Px8paSkeG/p6elNHhMAACAUyJ8AAEA0cVw0eumll3T11VerS5cuAdtkZmZq3Lhx6t+/v4YOHaolS5aoY8eOeuGFF5wO22QzZsxQeXm59/bVV1+FfEwAAICGkD8BAIBoYus7jeoUFxdr5cqVWrJkia1+CQkJGjBggHbu3NnkPmlpaTp69KjKysp8/lq2b9++Bj/rn5SUpKSkJFvxAQAAhAr5EwAAiDaOrjQqLCxUamqqRo4caatfTU2Ntm7dqs6dOze5z6BBg5SQkKBVq1Z5123fvl0lJSXKzMy0NT4AAECkkD8BAIBoY/tKo9raWhUWFmr8+PGKj/ftPm7cOJ1xxhnKz8+XJM2aNUuXXHKJevbsqbKyMs2ePVvFxcXKzc319tm/f79KSkr07bffSjqW0EjH/kKWlpamlJQU3Xrrrbr33nvVoUMHud1u3XnnncrMzOSXPwAAQFQgfwIAANHIdtFo5cqVKikp0aRJkyzbSkpKFBf308VLBw4c0OTJk1VaWqr27dtr0KBBWrdunfr27etts2zZMk2cONG7fOONN0qS8vLy5PF4JElz585VXFycRo8ercrKSo0YMULPPvus3dABAAAigvwJAABEI9tFoyuvvFLGGL/b1qxZ47M8d+5czZ07t8H9TZgwocFfEJGk1q1ba968eZo3b56dUAEAAJoF8icAABCNHP96GgAAAAAAAGIXRSMAAAAAAABY2P54GhqR67HfZ77/y9UbluegD0JqvifSEUSXcBwvR2M4eG694WAYu8o8YRikmQrH8QUQWUUO+szxOOhjs/10B2PAnpxIBxBlcprpGHafW5LM5S4HA9njSnHy/6zY4OT4utRyjxcC40ojAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYxEc6gFiTN99lu8/MXBOCSCJkvsde+1yb7cPFSVx25x4uzTWu5qqd/eewbWWe0I/hRLge9+0c9AEQ0/LmOMifpsdQ/pRjs31RCGIIhiIHfXKCHEOw5EQ6gOhi/jwz5GO4Uprpc77IfhdXjv25mPIw5KiAH1xpBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsHAZY0ykgwiHiooKpaSkqLy8XG63O2TjuCbb75M332W7z8zcFnHaIme+k+M7M+hhACcl1xPpCILjjTCNU+YJ00AtkzGeJrcN13s2Ghe2/Ok++33y5jjIn6aTP4XUHI/9Ph846AOEUlGkAwgOc7n910gnXCm8roaSGdz0tqF6z+ZKIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgIXLGGMiHUQ4VFRUKCUlReXl5XK73SEbx+Vqpocz1xXpCIJnfjiO8cwwjIGQy/VEOgL/5nsiHYF/zfV4OdFcj3ELZoynyW3D9Z6NxoUvf/KEbN8nZbon0hEEzxxP6Mf4IAxjIPSKIh1AADmRDiCAokgHEEQ5kQ4A9ZnBTW8bqvdsrjQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIBFvJ3G3bp1U3FxsWX97bffrnnz5lnWL1y4UBMnTvRZl5SUpCNHjniXjTHKy8vTiy++qLKyMg0ePFjPPfeczjnnnAbHzc/P14MPPmgn/JZtvrHfJ9cV/Djqm+8J/RhALMj1RDqC6OLkePF6hBAhf4piczz2+0x30MeuHCd9PEEOAogCRZEOIMoUOeiTE+QY0OzYKhpt3LhRNTU13uVPP/1Uw4cP1w033BCwj9vt1vbt273LLpdvIeKJJ57Q008/rd///vfq3r27Hn74YY0YMUKfffaZWrdu7W03a9YsTZ482bucnJxsJ3QAAICIIH8CAADRylbRqGPHjj7LBQUF6tGjh4YOHRqwj8vlUlpamt9txhg99dRTeuihhzRq1ChJ0h/+8Ad16tRJRUVFuvHGG71tk5OTA+4HAACguSJ/AgAA0crxdxodPXpUixYt0qRJkyx//TrRoUOH1LVrV6Wnp2vUqFHatm2bd9vu3btVWlqq7Oxs77qUlBRlZGRo/fr1PvspKCjQaaedpgEDBmj27Nmqrq5uML7KykpVVFT43AAAACKJ/AkAAEQTW1canaioqEhlZWWaMGFCwDa9evXSggUL1K9fP5WXl2vOnDnKysrStm3bdOaZZ6q0tFSS1KlTJ59+nTp18m6TpLvuuksDBw5Uhw4dtG7dOs2YMUN79+7Vk08+GXDs/Px8zZw50+n0AAAAgo78CQAARBPHRaOXXnpJV199tbp06RKwTWZmpjIzM73LWVlZ6tOnj1544QU9+uijTR7r3nvv9f67X79+SkxM1G233ab8/HwlJSX57TNjxgyffhUVFUpPT2/ymAAAAMFG/gQAAKKJo4+nFRcXa+XKlcrNzbXVLyEhQQMGDNDOnTslyfsZ+3379vm027dvX4Ofv8/IyFB1dbX27NkTsE1SUpLcbrfPDQAAIFLInwAAQLRxVDQqLCxUamqqRo4caatfTU2Ntm7dqs6dO0uSunfvrrS0NK1atcrbpqKiQhs2bPD5C1t9W7ZsUVxcnFJTU52EDwAAEHbkTwAAINrY/nhabW2tCgsLNX78eMXH+3YfN26czjjjDOXn50s69jOvl1xyiXr27KmysjLNnj1bxcXF3r+wuVwu3XPPPXrsscd0zjnneH8ytkuXLsrJyZEkrV+/Xhs2bNDll1+u5ORkrV+/XtOmTdO///u/q3379ic5fQAAgNAjfwIAANHIdtFo5cqVKikp0aRJkyzbSkpKFBf308VLBw4c0OTJk1VaWqr27dtr0KBBWrdunfr27ettc//99+vw4cOaMmWKysrKNGTIEL399ttq3bq1pGOXSS9evFgej0eVlZXq3r27pk2b5vN5ewAAgOaM/AkAAEQjlzHGRDqIcKioqFBKSorKy8tD+vl8lyuGDmdu4J8CDpr5ntCPgZYr1xPpCPxz8rhvrnOJJbwehZQxnia3Ddd7NhoXvvzJE7J9h910T+jHyAn9EGjBiiIdQAA5DvoUBTkGWOVEOoDYZgY3vW2o3rMdfacRAAAAAAAAYhtFIwAAAAAAAFjY/k4jNMyYMHykS2H6GNx8B2PY/UhbuD5yw8dOYkOsfEQrVuaBMMmz2X5mSKIAQsnOxxdPRlg+BjfHwRh2P9JWZH8IR3LCNA5CqyjSAQRJUaQDQFQZ4rHX/gOb7VsQrjQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYxEc6ADhjjCvSIfjlchl7HXKb5zzCJ89m+5khiSIicj2RjgCIEjH0vAcizBhPpEPwy+Xy2Osw3Wb7WDPEY6/9BzbbN2dFkQ4AiBKx9LyPMK40AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACARXykA0BsMcYV6RD8cs0PwyC5ntCPEY55hMt8j/0+4TjGiA1OHl8AECHGeCIdgl+utWEYpMhBn+meIAcRRXIc9CkKcgyIXTmRDgDNEVcaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALOIjHQAQDsZ4Ih2CX67JkY4AMW2+sdc+1xWaOE7WfE+kIwCAFskMDsMgDsZw3Rf8MACvOR577afbbB8uOZEOALGCK40AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBhq2jUrVs3uVwuy23q1Kl+2y9cuNDStnXr1j5tjDF65JFH1LlzZ7Vp00bZ2dnasWOHT5v9+/dr7NixcrvdateunW699VYdOnTI5lQBAADCj/wJAABEq3g7jTdu3Kiamhrv8qeffqrhw4frhhtuCNjH7XZr+/bt3mWXy+Wz/YknntDTTz+t3//+9+revbsefvhhjRgxQp999pk3QRo7dqz27t2rFStWqKqqShMnTtSUKVP0yiuv2AkfaHbMizY7vOgJRRgnzeXyRDoE+JPrarzNCWw/HsOlmT7ugaYifwKCy8yOdATB4Vob6Qjg13SPreax8ngEArFVNOrYsaPPckFBgXr06KGhQ4cG7ONyuZSWluZ3mzFGTz31lB566CGNGjVKkvSHP/xBnTp1UlFRkW688UZ9/vnnevvtt7Vx40ZddNFFkqRnnnlG11xzjebMmaMuXbrYmQIAAEBYkT8BAIBo5fg7jY4ePapFixZp0qRJlr9+nejQoUPq2rWr0tPTNWrUKG3bts27bffu3SotLVV2drZ3XUpKijIyMrR+/XpJ0vr169WuXTtvwiNJ2dnZiouL04YNGwKOW1lZqYqKCp8bAABAJJE/AQCAaOK4aFRUVKSysjJNmDAhYJtevXppwYIFevPNN7Vo0SLV1tYqKytLX3/9tSSptLRUktSpUyeffp06dfJuKy0tVWpqqs/2+Ph4dejQwdvGn/z8fKWkpHhv6enpTqYJAAAQNORPAAAgmjguGr300ku6+uqrG7y8OTMzU+PGjVP//v01dOhQLVmyRB07dtQLL7zgdNgmmzFjhsrLy723r776KuRjAgAANIT8CQAARBNb32lUp7i4WCtXrtSSJUts9UtISNCAAQO0c+dOSfJ+Vn/fvn3q3Lmzt92+ffvUv39/b5vvvvvOZz/V1dXav39/wM/6S1JSUpKSkpJsxQcAABAq5E8AACDaOLrSqLCwUKmpqRo5cqStfjU1Ndq6das3wenevbvS0tK0atUqb5uKigpt2LBBmZmZko79ta2srEybNm3ytlm9erVqa2uVkZHhJHwAAICwI38CAADRxvaVRrW1tSosLNT48eMVH+/bfdy4cTrjjDOUn58vSZo1a5YuueQS9ezZU2VlZZo9e7aKi4uVm5sr6dgvg9xzzz167LHHdM4553h/MrZLly7KycmRJPXp00dXXXWVJk+erOeff15VVVW64447dOONN/LLHwAAICqQPwEAgGhku2i0cuVKlZSUaNKkSZZtJSUliov76eKlAwcOaPLkySotLVX79u01aNAgrVu3Tn379vW2uf/++3X48GFNmTJFZWVlGjJkiN5++221bt3a2+bll1/WHXfcoWHDhikuLk6jR4/W008/bTd0AACAiCB/AgAA0chljDGRDiIcKioqlJKSovLycrnd7kiHA8QUl8sTnoFywzROC2VejHQEwDG8ZzcfnAsgdFxrwzRQUZjGaaHM7EhHABwTqvdsx7+eBgAAAAAAgNhF0QgAAAAAAAAWtr/TCADqM8YT6RAAAACiihkcpoHCNQ6AmMSVRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsIiPdADhYoyRJFVUVEQ4EgAA0JC69+q6925EDvkTAADRIVT5U4spGh08eFCSlJ6eHuFIAABAUxw8eFApKSmRDqNFI38CACC6BDt/cpkW8me82tpaffvtt0pOTpbL5Yp0OGFTUVGh9PR0ffXVV3K73ZEOJ+xa8vyZO3NvaXOXWvb8Y2nuxhgdPHhQXbp0UVwcn6SPJPKn6H8+OdGS58/cmTtzb1liaf6hyp9azJVGcXFxOvPMMyMdRsS43e6ofxKcjJY8f+bO3Fuiljz/WJk7Vxg1D+RPsfF8cqolz5+5M/eWpiXPXYqd+Ycif+LPdwAAAAAAALCgaAQAAAAAAAALikYxLikpSXl5eUpKSop0KBHRkufP3Jl7S9SS59+S5w4EW0t/PrXk+TN35t7StOS5S8y/KVrMF2EDAAAAAACg6bjSCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdGomSkoKJDL5dI999zjXfe73/1Ol112mdxut1wul8rKyiz99u/fr7Fjx8rtdqtdu3a69dZbdejQIZ82n3zyiS699FK1bt1a6enpeuKJJyz7ef3119W7d2+1bt1aF1xwgZYvX+6z3RijRx55RJ07d1abNm2UnZ2tHTt2RHTu3bp1k8vl8rkVFBRE9dz379+vO++8U7169VKbNm101lln6a677lJ5eblPv5KSEo0cOVJt27ZVamqq7rvvPlVXV/u0WbNmjQYOHKikpCT17NlTCxcutIw/b948devWTa1bt1ZGRob+/ve/+2w/cuSIpk6dqtNOO02nnnqqRo8erX379gVl7icz//rn3eVyafHixVE1f3+P+9tuu009evRQmzZt1LFjR40aNUpffPGFT79YOPdO5x6r572OMUZXX321XC6XioqKfLbFwnkHQoH8ifxJaln5U0vOnfzNXyJ/In8ifwoZg2bj73//u+nWrZvp16+fufvuu73r586da/Lz801+fr6RZA4cOGDpe9VVV5kLL7zQfPjhh+Zvf/ub6dmzp7npppu828vLy02nTp3M2LFjzaeffmpeffVV06ZNG/PCCy9426xdu9a0atXKPPHEE+azzz4zDz30kElISDBbt271tikoKDApKSmmqKjI/OMf/zDXXXed6d69u/nxxx8jNveuXbuaWbNmmb1793pvhw4diuq5b9261fziF78wy5YtMzt37jSrVq0y55xzjhk9erS3X3V1tTn//PNNdna22bx5s1m+fLk5/fTTzYwZM7xtdu3aZdq2bWvuvfde89lnn5lnnnnGtGrVyrz99tveNosXLzaJiYlmwYIFZtu2bWby5MmmXbt2Zt++fd42v/rVr0x6erpZtWqV+eijj8wll1xisrKyTmreJzt/Y4yRZAoLC33O/Ynno7nPP9Dj/oUXXjDvvfee2b17t9m0aZO59tprTXp6uqmurjbGxMa5dzp3Y2L3vNd58sknzdVXX20kmaVLl3rXx8J5B0KB/In8qaXlTy05dwo0f2PIn8ifyJ9ChaJRM3Hw4EFzzjnnmBUrVpihQ4f6fSK8++67ft/4P/vsMyPJbNy40bvuL3/5i3G5XOabb74xxhjz7LPPmvbt25vKykpvmwceeMD06tXLuzxmzBgzcuRIn31nZGSY2267zRhjTG1trUlLSzOzZ8/2bi8rKzNJSUnm1VdfjcjcjTmW9MydOzfg/qN97nX++Mc/msTERFNVVWWMMWb58uUmLi7OlJaWets899xzxu12e+d6//33m/POO89nP7/85S/NiBEjvMsXX3yxmTp1qne5pqbGdOnSxeTn53vnmZCQYF5//XVvm88//9xIMuvXr3c8d2NObv7GGMubQn3Nef525v6Pf/zDSDI7d+40xkT/uT+ZuRsT2+d98+bN5owzzjB79+61zDPazzsQCuRP5E8tLX9qybmTMeRP5E/kT5HAx9OaialTp2rkyJHKzs623Xf9+vVq166dLrroIu+67OxsxcXFacOGDd42P/vZz5SYmOhtM2LECG3fvl0HDhzwtqk//ogRI7R+/XpJ0u7du1VaWurTJiUlRRkZGd42TpzM3OsUFBTotNNO04ABAzR79myfyw1jZe7l5eVyu92Kj4/3xnzBBReoU6dOPjFXVFRo27ZtTZrX0aNHtWnTJp82cXFxys7O9rbZtGmTqqqqfNr07t1bZ5111knNXTq5+Z+4j9NPP10XX3yxFixYIGOMd1tznn9T53748GEVFhaqe/fuSk9P984rms/9ycz9xH3E2nn/4YcfdPPNN2vevHlKS0uzbI/28w6EAvkT+VNjYi1/asm5U13s5E/kTycifwq9+MabINQWL16sjz/+WBs3bnTUv7S0VKmpqT7r4uPj1aFDB5WWlnrbdO/e3adN3ROntLRU7du3V2lpqc+Tqa7Nifs4sZ+/Nnad7Nwl6a677tLAgQPVoUMHrVu3TjNmzNDevXv15JNPeuOO9rn/61//0qOPPqopU6Z41wWK+cR4A7WpqKjQjz/+qAMHDqimpsZvm7rPQZeWlioxMVHt2rWztHE6d+nk5y9Js2bN0hVXXKG2bdvqnXfe0e23365Dhw7prrvu8sbeHOfflLk/++yzuv/++3X48GH16tVLK1as8Cbu0XzuT3buUuye92nTpikrK0ujRo3yuz2azzsQCuRP5E+NibX8qSXnThL5E/kT+VOkUDSKsK+++kp33323VqxYodatW0c6nLAK1tzvvfde77/79eunxMRE3XbbbcrPz1dSUlIwQg06O3OvqKjQyJEj1bdvX3k8nvAEGGLBmv/DDz/s/feAAQN0+PBhzZ492/vm1xw1de5jx47V8OHDtXfvXs2ZM0djxozR2rVro/p1Ilhzj8XzvmzZMq1evVqbN2+OQHRA9CF/In9qaflTS86dJPIn8ifyp0ji42kRtmnTJn333XcaOHCg4uPjFR8fr/fee09PP/204uPjVVNT0+g+0tLS9N133/msq66u1v79+72X6KWlpVm+ub1uubE2J24/sZ+/NnYEY+7+ZGRkqLq6Wnv27PHGHa1zP3jwoK666iolJydr6dKlSkhI8O7jZObldrvVpk0bnX766WrVqlWjcz969Kjll1eczj1Y8/cnIyNDX3/9tSorK5vt/Js695SUFJ1zzjn62c9+pjfeeENffPGFli5d2uC86rbF8tz9iYXzvmLFCn355Zdq166dd7skjR49WpdddlmD86rb1lznDoQC+RP5U0vLn1py7mRn/uRP5E8S+VOwUTSKsGHDhmnr1q3asmWL93bRRRdp7Nix2rJli1q1atXoPjIzM1VWVqZNmzZ5161evVq1tbXKyMjwtnn//fdVVVXlbbNixQr16tVL7du397ZZtWqVz75XrFihzMxMSVL37t2Vlpbm06aiokIbNmzwtgn33P3ZsmWL4uLivJecR+vcKyoqdOWVVyoxMVHLli2zVNczMzO1detWn4R3xYoVcrvd6tu3b5PmlZiYqEGDBvm0qa2t1apVq7xtBg0apISEBJ8227dvV0lJiaO5B2v+/mzZskXt27f3/oW0Oc7fyePeHPvRAu+berSe+2DM3Z9YOO//+Z//qU8++cRnuyTNnTtXhYWF3nlF43kHQoH8ifyppeVPLTl3aur86yN/In+qm1c0nvdmJTLfv42G1P9G+L1795rNmzebF1980Ugy77//vtm8ebP5/vvvvW2uuuoqM2DAALNhwwbzwQcfmHPOOcfnJ2PLyspMp06dzC233GI+/fRTs3jxYtO2bVvLz6bGx8ebOXPmmM8//9zk5eX5/dnUdu3amTfffNN88sknZtSoUUH52VSnc1+3bp2ZO3eu2bJli/nyyy/NokWLTMeOHc24ceOieu7l5eUmIyPDXHDBBWbnzp0+P41Z/2dDr7zySrNlyxbz9ttvm44dO/r9+cj77rvPfP7552bevHl+fz4yKSnJLFy40Hz22WdmypQppl27dj6/MPCrX/3KnHXWWWb16tXmo48+MpmZmSYzMzMo83Y6/2XLlpkXX3zRbN261ezYscM8++yzpm3btuaRRx6JuvmfOPcvv/zSPP744+ajjz4yxcXFZu3atebaa681HTp08P6kZyyde7tzj9Xz7o8C/GRsLJx3IBTIn5o+d/Kn2Hgtbcm5U/35kz+RP9Uhfwo+ikbNUP0nQl5enpFkuRUWFnrbfP/99+amm24yp556qnG73WbixInm4MGDPvv9xz/+YYYMGWKSkpLMGWecYQoKCixj//GPfzTnnnuuSUxMNOedd57585//7LO9trbWPPzww6ZTp04mKSnJDBs2zGzfvj1ic9+0aZPJyMgwKSkppnXr1qZPnz7m8ccfN0eOHInqudf9RK6/2+7du7199uzZY66++mrTpk0bc/rpp5tf//rXPj+rWrev/v37m8TERHP22Wf7PG7qPPPMM+ass84yiYmJ5uKLLzYffvihz/Yff/zR3H777aZ9+/ambdu25uc//7nZu3dv0ObuZP5/+ctfTP/+/c2pp55qTjnlFHPhhRea559/3tTU1ETd/E+c+zfffGOuvvpqk5qaahISEsyZZ55pbr75ZvPFF1/49ImVc2937rF63v2pn/QYEzvnHQgF8qemz538KTZeS1ty7lR//uRP5E91yJ+Cz2XMCb+zBwAAAAAAAIjvNAIAAAAAAIAfFI0AAAAAAABgER/pAMLpyJEjOnr0aKTDAAAAjUhMTGzSL/8g9MifAACIDqHIn1pM0ejIkSNq06ajpEORDgUAADQiLS1Nu3fvpnAUYeRPAABEj1DkTy2maHTsL2SHJE2TdMrxtQnH7+MD3De0PaEJbYK1vbE+dcuNaNXIkHENbGsVYL2T7YG2Jfhp21DcrZqwvan7aCzuho7dyR4bb7vj30kfX+Nz72pVfWwxvkatjq9rFV97/L76+P3x9XHH7+X/Pv74fZxl+/ExVOtd38rSttpnH61OaHusXf3tjcfQWBv7MQRuV3+ugcb+aZ+NtbMes6bG2fgxazyGRs9tzfH76uNj1Jjjy/K5dx0bSseHst7XHL/VX2dnue4+0Fg1Qd5XY8tN3Vf9fdiJLZj7aiS2quN9j59qy3J1jW+XqgC7CrT+xO0NbWvqPpoyRqWkuaWlOnr0KEWjCDv5/CnQtmDmT03tG4T8yV/u1NCQJ5MjNLXvyeRPjeVFwcyfgp1b+suf/OROkkKSP/nLA068D2b+FDh/C17+1HjuErz8qf4xC0X+FHj8EORPTt/rneQCoczF6paDmKM0Glsoc7H66+v1CUX+5CTvsdPO33RO3Baq/KnFFI1+kiSp7gAGSh6ashwo6QnFclP7BOBq4n2cfkp+At3XTwLq3zclsWks6Qnm9qbuo9GEpAljOOnrc99w0ciVUCNX3Trv/bFtcceX4+J83/ji6r25Bk42rG/wgYskjRVRmr49+GPU3bdqYKy4Ju7DdbxdnE+/n+5d9fbj8q776engqrdP1bs3x9vVX193Xxer8WnfSuaEf9fWG+v4fc3x++rjcQZKegK92TZUZGlKH7vrg7kvf+tbnbC9/oGu6xPoda/+Pl31ttd/La1r74+r3nL93y81AdYHis1IVccTo+OnWlWuesvHmzaWoDRlubG2je0jvpHtrU74N5obp/lToG3BzJdOdowA/OVL/nKnptw7yZ9CmR/VbW8sNwlm/hTM3MvnPnDRyJVQP28KXv7UeHEkePlT4znLyedP/nIn3/vg5U/x9dqGIn/ylzv53gcxfzrZHMVOv1DmYvXHqJ8nhSJ/akrudGLfOk7ypzjfNqHIn5zkVk1p5y9/qn+aQpk/8UXYAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAIv4SAcQfpX6ado1x+/rlqsbWa46YTnh+L8T6rWpfx+M7Y31qVsOwDTxvvb4TX7uXcfva+ot190rwHL9GAKNe6L6Y7cK0L6m3vb666v10yFqVW9b/fWBDn+revf+TldT9xFou7fd8QnG1/jcm1bHHocmvkambl187fH7Y9tqj693xR2/l//7Wu8BqH9ffbzdiQfx+Fje+2qfPuZ4W+Pdd3W9Zf/3ddtrVKNWx/9d/7623nKcd7na2/fYcm2D7eJPaNeq3rZAY/+0z8ba1Y3xUwwNje9vH3Xt4wPGEPj+p3+b4/swx/d57L5VzfH76uPbj5/q4w8n772r7pRXB7j/6aGgeg+Bpi/X3QcaqybI+2psuan7qr8PO7E1dV+N3Qd6TT7hvur4S8fxU21Zrh9CleytP3F7Q9uauo+mjFEpND9O86eqettCkT81tW8Q8qdAOUwo8icTYDmY+ZO/3EkKTf5kNz9ykj/5yZ1874OZP/nLnX66D2b+dGLudOzQBD9/ajx3CV7+FO9n/BP7BiN/ajyXCmL+5DRvcJLzhDIXq1s+2X3ZOQ5O9+Ukf6q3LhT5k5O8x067E9f72xaq/KnFFI0SExOVlpam0tK5kQ4lcuo/mRAV6nK9Kv30ogAAsS4tLU2JiYmRDqPFM8bo1FNP1aFD5E/kT9HjxNzpxHsAiHWhyJ9cxpj6f8eIWUeOHNHRo0cjHUZIVFRUKD09XV999ZXcbnekwwm6WJ+fxBxjQazPT4r9Ocb6/KTomWNiYqJat24d6TBavIqKCqWkpDT7x0u4RcvzKNw4LlYcE/84Lv5xXPzjuFgFOiahyJ9azJVGktS6deuYT0DdbndMP5FifX4Sc4wFsT4/KfbnGOvzk1rGHBE8PF7847j4x3Gx4pj4x3Hxj+PiH8fFKhzHhC/CBgAAAAAAgAVFIwAAAAAAAFhQNIoRSUlJysvLU1JSUqRDCYlYn5/EHGNBrM9Piv05xvr8pJYxRwQPjxf/OC7+cVysOCb+cVz847j4x3GxCucxaVFfhA0AAAAAAICm4UojAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRaMoMm/ePHXr1k2tW7dWRkaG/v73vzfY/vXXX1fv3r3VunVrXXDBBVq+fHmYInXGzvwWLlwol8vlc2vdunUYo7Xv/fff17XXXqsuXbrI5XKpqKio0T5r1qzRwIEDlZSUpJ49e2rhwoUhj9Mpu/Nbs2aN5Ry6XC6VlpaGJ2Cb8vPz9W//9m9KTk5WamqqcnJytH379kb7RdPz0Mkco+m5+Nxzz6lfv35yu91yu93KzMzUX/7ylwb7RNP5k+zPMZrOH0In1vMLp+wclxdffFGXXnqp2rdvr/bt2ys7O7vR4xiN7D5W6ixevFgul0s5OTmhDTBC7B6XsrIyTZ06VZ07d1ZSUpLOPffcmHwe2T0uTz31lHr16qU2bdooPT1d06ZN05EjR8IUbejF+v8FnLJ7XJYsWaLhw4erY8eO3lznr3/9a3iCDSMnj5c6a9euVXx8vPr37x+UWCgaRYnXXntN9957r/Ly8vTxxx/rwgsv1IgRI/Tdd9/5bb9u3TrddNNNuvXWW7V582bl5OQoJydHn376aZgjbxq785Mkt9utvXv3em/FxcVhjNi+w4cP68ILL9S8efOa1H737t0aOXKkLr/8cm3ZskX33HOPcnNzm+2Lot351dm+fbvPeUxNTQ1RhCfnvffe09SpU/Xhhx9qxYoVqqqq0pVXXqnDhw8H7BNtz0Mnc5Si57l45plnqqCgQJs2bdJHH32kK664QqNGjdK2bdv8to+28yfZn6MUPecPoRHr+YVTdo/LmjVrdNNNN+ndd9/V+vXrlZ6eriuvvFLffPNNmCMPHSe5miTt2bNH06dP16WXXhqmSMPL7nE5evSohg8frj179uiNN97Q9u3b9eKLL+qMM84Ic+ShZfe4vPLKK3rwwQeVl5enzz//XC+99JJee+01/Z//83/CHHnoxPr/BZyye1zef/99DR8+XMuXL9emTZt0+eWX69prr9XmzZtDHGl4Of2/VVlZmcaNG6dhw4YFLxiDqHDxxRebqVOnepdrampMly5dTH5+vt/2Y8aMMSNHjvRZl5GRYW677baQxumU3fkVFhaalJSUMEUXfJLM0qVLG2xz//33m/POO89n3S9/+UszYsSIEEYWHE2Z37vvvmskmQMHDoQlpmD77rvvjCTz3nvvBWwTbc/D+poyx2h/LrZv397Mnz/f77ZoP391GppjtJ8/nLxYzy+csntc6quurjbJycnm97//fahCDDsnx6S6utpkZWWZ+fPnm/Hjx5tRo0aFIdLwsntcnnvuOXP22Webo0ePhivEiLB7XKZOnWquuOIKn3X33nuvGTx4cEjjjJRY/7+AU005Lv707dvXzJw5M/gBNRN2jssvf/lL89BDD5m8vDxz4YUXBmV8rjSKAkePHtWmTZuUnZ3tXRcXF6fs7GytX7/eb5/169f7tJekESNGBGwfSU7mJ0mHDh1S165dlZ6e3uhf0qNRNJ3Dk9G/f3917txZw4cP19q1ayMdTpOVl5dLkjp06BCwTbSfw6bMUYrO52JNTY0WL16sw4cPKzMz02+baD9/TZmjFJ3nD8ER6/mFU07zkhP98MMPqqqqavT1M1o4PSazZs1Samqqbr311nCEGXZOjsuyZcuUmZmpqVOnqlOnTjr//PP1+OOPq6amJlxhh5yT45KVlaVNmzZ5P8K2a9cuLV++XNdcc01YYm6OWsLrbTDU1tbq4MGDMfN6ezIKCwu1a9cu5eXlBXW/8UHdG0LiX//6l2pqatSpUyef9Z06ddIXX3zht09paanf9s3x+2KczK9Xr15asGCB+vXrp/Lycs2ZM0dZWVnatm2bzjzzzHCEHXKBzmFFRYV+/PFHtWnTJkKRBUfnzp31/PPP66KLLlJlZaXmz5+vyy67TBs2bNDAgQMjHV6Damtrdc8992jw4ME6//zzA7aLpudhfU2dY7Q9F7du3arMzEwdOXJEp556qpYuXaq+ffv6bRut58/OHKPt/CG4Yj2/cMrJcanvgQceUJcuXSz/4YtWTo7JBx98oJdeeklbtmwJQ4SR4eS47Nq1S6tXr9bYsWO1fPly7dy5U7fffruqqqqC/h+9SHFyXG6++Wb961//0pAhQ2SMUXV1tX71q1/F1MfT7Ir1/wsEy5w5c3To0CGNGTMm0qFE1I4dO/Tggw/qb3/7m+Ljg1vmoWiEqJSZmenzl/OsrCz16dNHL7zwgh599NEIRoam6tWrl3r16uVdzsrK0pdffqm5c+fq//2//xfByBo3depUffrpp/rggw8iHUrINHWO0fZc7NWrl7Zs2aLy8nK98cYbGj9+vN57772ARZVoZGeO0Xb+gGhQUFCgxYsXa82aNS32i+UPHjyoW265RS+++KJOP/30SIfTrNTW1io1NVW/+93v1KpVKw0aNEjffPONZs+eHTNFIyfWrFmjxx9/XM8++6wyMjK0c+dO3X333Xr00Uf18MMPRzo8NFOvvPKKZs6cqTfffLPZfi9qONTU1Ojmm2/WzJkzde655wZ9/xSNosDpp5+uVq1aad++fT7r9+3bp7S0NL990tLSbLWPJCfzqy8hIUEDBgzQzp07QxFiRAQ6h263O2b/snDxxRc3+0LMHXfcobfeekvvv/9+o1diRNPz8ER25lhfc38uJiYmqmfPnpKkQYMGaePGjfrtb3+rF154wdI2Ws+fnTnW19zPH4Ir1vMLp04mL5kzZ44KCgq0cuVK9evXL5RhhpXdY/Lll19qz549uvbaa73ramtrJUnx8fHavn27evToEdqgw8DJY6Vz585KSEhQq1atvOv69Omj0tJSHT16VImJiSGNORycHJeHH35Yt9xyi3JzcyVJF1xwgQ4fPqwpU6boP//zPxUX1/K+VaUl/l/AjsWLFys3N1evv/56zFzV6dTBgwf10UcfafPmzbrjjjskHXvNNcYoPj5e77zzjq644grH+295z74olJiYqEGDBmnVqlXedbW1tVq1alXA76nIzMz0aS9JK1asaPB7LSLFyfzqq6mp0datW9W5c+dQhRl20XQOg2XLli3N9hwaY3THHXdo6dKlWr16tbp3795on2g7h07mWF+0PRdra2tVWVnpd1u0nb9AGppjfdF2/nByYj2/cMppXvLEE0/o0Ucf1dtvv62LLrooHKGGjd1j0rt3b23dulVbtmzx3q677jrvr0Clp6eHM/yQcfJYGTx4sHbu3OktoknS//7v/6pz584xUTCSnB2XH374wVIYqiusHfse4JanJbzeOvXqq69q4sSJevXVVzVy5MhIhxNxbrfb8pr7q1/9ynv1eUZGxskNEJSv00bILV682CQlJZmFCxeazz77zEyZMsW0a9fOlJaWGmOMueWWW8yDDz7obb927VoTHx9v5syZYz7//HOTl5dnEhISzNatWyM1hQbZnd/MmTPNX//6V/Pll1+aTZs2mRtvvNG0bt3abNu2LVJTaNTBgwfN5s2bzebNm40k8+STT5rNmzeb4uJiY4wxDz74oLnlllu87Xft2mXatm1r7rvvPvP555+befPmmVatWpm33347UlNokN35zZ071xQVFZkdO3aYrVu3mrvvvtvExcWZlStXRmoKDfqP//gPk5KSYtasWWP27t3rvf3www/eNtH+PHQyx2h6Lj744IPmvffeM7t37zaffPKJefDBB43L5TLvvPOOMSb6z58x9ucYTecPoRHr+YVTdo9LQUGBSUxMNG+88YbP6+fBgwcjNYWgs3tM6ovVX0+ze1xKSkpMcnKyueOOO8z27dvNW2+9ZVJTU81jjz0WqSmEhN3jkpeXZ5KTk82rr75qdu3aZd555x3To0cPM2bMmEhNIehi/f8CTtk9Li+//LKJj4838+bN83m9LSsri9QUQsLucakvmL+eRtEoijzzzDPmrLPOMomJiebiiy82H374oXfb0KFDzfjx433a//GPfzTnnnuuSUxMNOedd57585//HOaI7bEzv3vuucfbtlOnTuaaa64xH3/8cQSibrq6n5ivf6ub1/jx483QoUMtffr3728SExPN2WefbQoLC8Med1PZnd9//dd/mR49epjWrVubDh06mMsuu8ysXr06MsE3gb+5SfI5J9H+PHQyx2h6Lk6aNMl07drVJCYmmo4dO5phw4Z5iynGRP/5M8b+HKPp/CF0Yj2/cMrOcenatavf18+8vLzwBx5Cdh8rJ4rVopEx9o/LunXrTEZGhklKSjJnn322+b//9/+a6urqMEcdenaOS1VVlfF4PN7cMD093dx+++3mwIED4Q88RGL9/wJO2T0uQ4cObbB9rHDyeDlRMItGLmNa6PV+AAAAAAAACIjvNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFj8f+kt0LM5tX//AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot unique weights\n", + "\n", + "fig, axs = plt.subplots(2, 2, figsize = (14, 14))\n", + "\n", + "axs[0, 0].set_title(\"Unique weights - Class\")\n", + "clrbar = axs[0, 0].imshow(arrays_unique[\"Class\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_unique[\"Class\"], ax = axs[0, 0], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[1, 0].set_title(\"Unique weights - W+\")\n", + "clrbar = axs[1, 0].imshow(arrays_unique[\"W+\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_unique[\"W+\"], ax = axs[1, 0], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[1, 1].set_title(\"Unique weights - S_W+\")\n", + "clrbar = axs[1, 1].imshow(arrays_unique[\"S_W+\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_unique[\"S_W+\"], ax = axs[1, 1], transform = raster_meta[\"transform\"], cmap=colormap_name)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI0AAAYSCAYAAAC1ZxuLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxVdf7H8fcF5OIGggqI4ZKWYu46Im5YoYw5po1amZNbWTO5JU2lpYJaYmnqVC7lKNaYY5M/szIz93LLzKXccwVzRMcFcElQ7vn9ody8HEAuAZfl9Xw87uNyvuf7Pd/P9xzgHj58zzkWwzAMAQAAAAAAALdxc3UAAAAAAAAAKHpIGgEAAAAAAMCEpBEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATEgaAQAAAAAAwISkEQAAAAAAAExIGgEAAAAAAMCEpBEAAAAAAABMSBoBcBATEyOLxVJg2x8wYIBq1apVYNvPrVq1amnAgAF5bvunP/0pfwNysRMnTshisWjBggWuDgUAAABAEUHSCMjk6NGjevbZZ3X33XfLy8tL3t7eatu2rf7xj3/o119/dXp7s2bN4g/xUmr//v2KiYnRiRMnXBrHhg0b9Oc//1mBgYHy9PSUv7+/unXrpqVLl7o0LgAAAABFm4erAwCKki+//FK9e/eW1WpVv3791LBhQ6WlpWnTpk168cUXtW/fPr3//vtObXPWrFmqUqVKnme1FLYxY8Zo1KhRrg6jwB06dEhubgWbN9+/f7/Gjx+vjh07umx2VXR0tCZMmKB77rlHzz77rGrWrKnz589rxYoV6tmzpz766CM98cQTLokNAAAAQNFG0gi45fjx43r88cdVs2ZNrVu3TtWqVbOvGzJkiI4cOaIvv/zShREWrCtXrqh8+fLy8PCQh0fJ/9VgtVpdHUKBW7JkiSZMmKBevXpp0aJFKlOmjH3diy++qK+//lrXr193YYQAAAAAijIuTwNuefPNN3X58mXNmzfPIWGUoW7duhoxYoR9OS4uTg888ID8/f1ltVrVoEEDzZ4926FNrVq1tG/fPn3zzTeyWCyyWCzq2LGjfX1SUpKef/55BQcHy2q1qm7dunrjjTdks9kctnP+/Hk9+eST8vb2VqVKldS/f3/9+OOPWd6DZt26dWrfvr3Kly+vSpUqqXv37jpw4IBDnYz7Fu3fv19PPPGEfH191a5dO4d1mS1cuFCtWrVSuXLl5Ovrqw4dOmjVqlX29Z999pm6du2qoKAgWa1W1alTRxMnTlR6enrOOz4LUVFRqly5sgzDsJcNGzZMFotFb7/9tr3szJkzslgsDvs9NTVV0dHRqlu3rqxWq4KDg/XSSy8pNTXVoY+s7mn0008/KTw8XGXLltVdd92l1157TXFxcbJYLFleYrZp0ya1atVKXl5euvvuu/Xhhx/a1y1YsEC9e/eWJN1///32479hwwZJ0g8//KDIyEhVqVJFZcuWVe3atTVo0CCn91VOxo4dKz8/P82fP98hYZQhMjIyx3sz/fTTTxowYID9Us3AwEANGjRI58+fd6h36dIlPf/886pVq5asVqv8/f3VqVMn7dy5017n8OHD6tmzpwIDA+Xl5aW77rpLjz/+uJKTk/NvwAAAAADyVcmfTgDk0hdffKG7775bbdq0yVX92bNn67777tPDDz8sDw8PffHFF3ruuedks9k0ZMgQSdKMGTM0bNgwVahQQa+++qokKSAgQJJ09epVhYeH69SpU3r22WdVo0YNbdmyRaNHj9bp06c1Y8YMSZLNZlO3bt30/fff629/+5vq16+vzz77TP379zfFtGbNGnXp0kV33323YmJi9Ouvv+qdd95R27ZttXPnTtMlUr1799Y999yjSZMmOSRoMhs/frxiYmLUpk0bTZgwQZ6entq2bZvWrVunzp07S7qZJKlQoYKioqJUoUIFrVu3TuPGjVNKSoqmTJmSq32aoX379po+fbr27dunhg0bSpI2btwoNzc3bdy4UcOHD7eXSVKHDh3s++rhhx/Wpk2b9MwzzygkJER79uzR9OnT9fPPP2vZsmXZ9nnq1Cl7cmf06NEqX768/vnPf2Y7I+nIkSPq1auXnnrqKfXv31/z58/XgAED1KJFC913333q0KGDhg8frrfffluvvPKKQkJCJEkhISE6e/asOnfurKpVq2rUqFGqVKmSTpw4ka/3GDp8+LAOHjyoQYMGqWLFinnaxurVq3Xs2DENHDhQgYGB9ssz9+3bp++++86eXPzrX/+qJUuWaOjQoWrQoIHOnz+vTZs26cCBA2revLnS0tIUGRmp1NRUDRs2TIGBgTp16pSWL1+upKQk+fj45Nu4AQAAAOQjA4CRnJxsSDK6d++e6zZXr141lUVGRhp33323Q9l9991nhIeHm+pOnDjRKF++vPHzzz87lI8aNcpwd3c3EhISDMMwjP/7v/8zJBkzZsyw10lPTzceeOABQ5IRFxdnL2/atKnh7+9vnD9/3l72448/Gm5ubka/fv3sZdHR0YYko0+fPqa4MtZlOHz4sOHm5mY88sgjRnp6ukNdm82W4/549tlnjXLlyhnXrl2zl/Xv39+oWbOmqe7tzp49a0gyZs2aZRiGYSQlJRlubm5G7969jYCAAHu94cOHG35+fvY4/vWvfxlubm7Gxo0bHbY3Z84cQ5KxefNme1nNmjWN/v3725eHDRtmWCwWY9euXfay8+fPG35+foYk4/jx4w5tJRnffvutQ8xWq9V44YUX7GWffPKJIclYv369QzyffvqpIcnYvn17jvvh9/jss88MScb06dNzVf/48eOm76esjum///1v09h9fHyMIUOGZLvtXbt2GZKMTz75JNfxAwAAAHA9Lk8DJKWkpEiSUzMyypYta/86OTlZ586dU3h4uI4dO5arS24++eQTtW/fXr6+vjp37pz9FRERofT0dH377beSpJUrV6pMmTIaPHiwva2bm5t9NlOG06dPa/fu3RowYID8/Pzs5Y0bN1anTp20YsUKUwx//etf7xjnsmXLZLPZNG7cONONo2+/jO32/XHp0iWdO3dO7du319WrV3Xw4ME79nO7qlWrqn79+vZ9sHnzZrm7u+vFF1/UmTNndPjwYUk3Zxq1a9fOHscnn3yikJAQ1a9f32GfPvDAA5Kk9evXZ9vnypUrFRYWpqZNm9rL/Pz81Ldv3yzrN2jQQO3bt3eIuV69ejp27Ngdx1epUiVJ0vLlywvsnkJ5+Z7O7PZjeu3aNZ07d06tW7eWJIdLzypVqqRt27bpv//9b5bbyZhJ9PXXX+vq1at5jgcAAABA4SqVSaNvv/1W3bp1U1BQkCwWS46XrGTHMAxNnTpV9957r6xWq6pXr67XX389/4NFofD29pZ0M9mRW5s3b1ZERIT93kFVq1bVK6+8Ikm5ShodPnxYK1euVNWqVR1eERERkqSzZ89KkuLj41WtWjWVK1fOoX3dunUdluPj4yVJ9erVM/UVEhKic+fO6cqVKw7ltWvXvmOcR48elZubmxo0aJBjvX379umRRx6Rj4+PvL29VbVqVf3lL3+RlLv9kVn79u3tl59t3LhRLVu2VMuWLeXn56eNGzcqJSVFP/74o0Pi5vDhw9q3b59pn957772SftunWYmPjzftU8m8nzPUqFHDVObr66uLFy/ecWzh4eHq2bOnxo8frypVqqh79+6Ki4sz3Xcps+TkZCUmJtpfFy5cyLZuXr6nM7tw4YJGjBihgIAAlS1bVlWrVrV/z9x+TN98803t3btXwcHBatWqlWJiYhySZ7Vr11ZUVJT++c9/qkqVKoqMjNTMmTO5nxEAAABQxJXKexpduXJFTZo00aBBg/TnP/85T9sYMWKEVq1apalTp6pRo0a6cOFCjn/AoWjz9vZWUFCQ9u7dm6v6R48e1YMPPqj69etr2rRpCg4Olqenp1asWKHp06ebbmSdFZvNpk6dOumll17Kcn1GoqMg3T6T5PdISkpSeHi4vL29NWHCBNWpU0deXl7auXOnXn755Vztj8zatWunuXPn6tixY9q4caPat28vi8Widu3aaePGjQoKCpLNZnNIGtlsNjVq1EjTpk3LcpvBwcF5HmNm7u7uWZYbOdwbKoPFYtGSJUv03Xff6YsvvtDXX3+tQYMG6a233tJ3332nChUqZNluxIgR+uCDD+zL4eHh9htrZ1a/fn1J0p49e+4YT3YeffRRbdmyRS+++KKaNm2qChUqyGaz6Y9//KPDMX300UfVvn17ffrpp1q1apWmTJmiN954Q0uXLlWXLl0kSW+99ZYGDBigzz77TKtWrdLw4cMVGxur7777TnfddVeeYwQAAABQcEpl0qhLly72P2SykpqaqldffVX//ve/lZSUpIYNG+qNN96wP/XqwIEDmj17tvbu3Wuf1ZGbGRso2v70pz/p/fff19atWxUWFpZj3S+++EKpqan6/PPPHWacZHX5U1ZPIpOkOnXq6PLly/aZRdmpWbOm1q9fr6tXrzrMNjpy5IipniQdOnTItI2DBw+qSpUqKl++fI59ZRenzWbT/v37HS7dut2GDRt0/vx5LV261H5Takk6fvy40/1lyEgGrV69Wtu3b9eoUaMk3bzp9ezZsxUUFKTy5curRYsWDrH++OOPevDBB7Pd79mpWbOmaZ9K5v3sjDvF0Lp1a7Vu3Vqvv/66Fi1apL59+2rx4sV6+umns6z/0ksv2WdvSTdnNmXn3nvvVb169fTZZ5/pH//4R7aJqOxcvHhRa9eu1fjx4zVu3Dh7ecalgZlVq1ZNzz33nJ577jmdPXtWzZs31+uvv+7wu7ZRo0Zq1KiRxowZoy1btqht27aaM2eOXnvtNadiA0qrb7/9VlOmTNGOHTt0+vRpffrpp+rRo0eObTZs2KCoqCjt27dPwcHBGjNmjOnJkQAAANkplZen3cnQoUO1detWLV68WD/99JN69+6tP/7xj/Y/ljKesrV8+XLVrl1btWrV0tNPP81Mo2LupZdeUvny5fX000/rzJkzpvVHjx7VP/7xD0m/zTK5fVZJcnKy4uLiTO3Kly+vpKQkU/mjjz6qrVu36uuvvzatS0pK0o0bNyTdfCz69evXNXfuXPt6m82mmTNnOrSpVq2amjZtqg8++MChv71792rVqlV66KGHchh99nr06CE3NzdNmDDBNGMoY/xZ7Y+0tDTNmjUrT31KNxOx1atX1/Tp03X9+nW1bdtW0s1k0tGjR7VkyRK1bt1aHh6/5b4fffRRnTp1ymFfZfj1119Nl+fdLjIyUlu3btXu3bvtZRcuXNBHH32U5zFkJOkyH/+LFy+aZiRlJORyukStQYMGioiIsL9uT5hlZfz48Tp//ryefvpp+/fT7VatWqXly5dn2TarYyrJ/lS/DOnp6abLzPz9/RUUFGQfS0pKiqn/Ro0ayc3N7Y6X5AH4TcZM6cy//7Nz/Phxde3aVffff792796t559/Xk8//XSWnzsAAABZKZUzjXKSkJCguLg4JSQkKCgoSJL097//XStXrlRcXJwmTZqkY8eOKT4+Xp988ok+/PBDpaena+TIkerVq5fWrVvn4hEgr+rUqaNFixbpscceU0hIiPr166eGDRsqLS1NW7Zs0SeffGL/72znzp3l6empbt266dlnn9Xly5c1d+5c+fv76/Tp0w7bbdGihWbPnq3XXntNdevWlb+/vx544AG9+OKL+vzzz/WnP/3J/qj2K1euaM+ePVqyZIlOnDihKlWqqEePHmrVqpVeeOEFHTlyRPXr19fnn39uT1LePptlypQp6tKli8LCwvTUU0/p119/1TvvvCMfHx/FxMTkab/UrVtXr776qiZOnKj27dvrz3/+s6xWq7Zv366goCDFxsaqTZs28vX1Vf/+/TV8+HBZLBb961//ytWlWjlp3769Fi9erEaNGtln1TRv3lzly5fXzz//rCeeeMKh/pNPPqn//Oc/+utf/6r169erbdu2Sk9P18GDB/Wf//xHX3/9tVq2bJllXy+99JIWLlyoTp06adiwYSpfvrz++c9/qkaNGrpw4YLTM5ekm4kgd3d3vfHGG0pOTpbVatUDDzygRYsWadasWXrkkUdUp04dXbp0SXPnzpW3t3eek3tZeeyxx7Rnzx69/vrr2rVrl/r06aOaNWvq/PnzWrlypdauXatFixZl2dbb21sdOnTQm2++qevXr6t69epatWqVafbYpUuXdNddd6lXr15q0qSJKlSooDVr1mj79u166623JEnr1q3T0KFD1bt3b9177726ceOG/vWvf8nd3V09e/bMt/ECJd2dZkpnNmfOHNWuXdv+sxgSEqJNmzZp+vTpioyMLKgwAQBACULSKJM9e/YoPT3ddD+Z1NRUVa5cWdLNWR6pqan68MMP7fXmzZunFi1a6NChQ1neiBjFw8MPP6yffvpJU6ZM0WeffabZs2fLarWqcePGeuutt+xPMKtXr56WLFmiMWPG6O9//7sCAwP1t7/9TVWrVtWgQYMctjlu3DjFx8frzTff1KVLlxQeHq4HHnhA5cqV0zfffKNJkybZE5De3t669957NX78ePsTp9zd3fXll1/a72fj5uamRx55RNHR0Wrbtq28vLzsfUVERGjlypWKjo7WuHHjVKZMGYWHh+uNN974XZdQTpgwQbVr19Y777yjV199VeXKlVPjxo315JNPSpIqV66s5cuX64UXXtCYMWPk6+urv/zlL3rwwQd/1x8mGUmjdu3a2cs8PDwUFhamNWvWONzPSLr5VLlly5Zp+vTp+vDDD/Xpp5+qXLlyuvvuuzVixIgc7xMVHBys9evXa/jw4Zo0aZKqVq2qIUOGqHz58ho+fLjDfs6twMBAzZkzR7GxsXrqqaeUnp6u9evXKzw8XN9//70WL16sM2fOyMfHR61atdJHH32U75e6vvbaa3rggQf09ttva/bs2bpw4YJ8fX3VunVrffbZZ3r44Yezbbto0SINGzZMM2fOlGEY6ty5s7766it7Ql2SypUrp+eee06rVq3S0qVLZbPZVLduXc2aNUt/+9vfJElNmjRRZGSkvvjiC506dUrlypVTkyZN9NVXX9mfxgYg/23dutV0CXRkZKSef/75bNukpqY6zAC02Wy6cOGCKleunKfkOQAAKByGYejSpUsKCgoyPfX697AYv3cqQDFnsVgc7gnw8ccfq2/fvtq3b5/pRrcVKlRQYGCgoqOjNWnSJIdHZf/6668qV66cVq1apU6dOhXmEFBKLVu2TI888og2bdpkv3QL+e/555/Xe++9p8uXL2d782sAKGyZz1+ycu+992rgwIEaPXq0vWzFihXq2rWrrl69muXDEGJiYjR+/PiCCBkAABSCkydP5uuDZphplEmzZs2Unp6us2fPmmYxZGjbtq1u3Liho0ePqk6dOpKkn3/+WdJvNyMG8tOvv/7qcHKfnp6ud955R97e3mrevLkLIytZMu/n8+fP61//+pfatWtHwghAqTB69GhFRUXZl5OTk1WjRg2dPHlS3t7eLowMAADkJCUlRcHBwapYsWK+brdUJo0uX77s8ESk48ePa/fu3fLz89O9996rvn37ql+/fnrrrbfUrFkz/e9//9PatWvVuHFjde3aVREREWrevLkGDRqkGTNmyGazaciQIerUqVOhPCYdpc+wYcP066+/KiwsTKmpqVq6dKm2bNmiSZMmZfmfYuRNWFiYOnbsqJCQEJ05c0bz5s1TSkqKxo4d6+rQAMBpgYGBpgc7nDlzRt7e3tl+dlitVlmtVlO5t7c3SSMAAIqB/L6cvFQmjX744Qfdf//99uWM/6j1799fCxYsUFxcnF577TW98MILOnXqlKpUqaLWrVvrT3/6k6Sb90354osvNGzYMHXo0EHly5dXly5d7DeaBPLbAw88oLfeekvLly/XtWvXVLduXb3zzjsaOnSoq0MrUR566CEtWbJE77//viwWi5o3b6558+apQ4cOrg4NAJwWFhamFStWOJStXr1aYWFhLooIAAAUN6X+nkYAAADFwe0zpZs1a6Zp06bp/vvvl5+fn2rUqKHRo0fr1KlT+vDDDyXdnEndsGFDDRkyRIMGDdK6des0fPhwffnll7l+SEFKSop8fHyUnJzMTCMAAIqwgvrMzr9bagMAAKDA/PDDD2rWrJmaNWsm6eZM6WbNmmncuHGSpNOnTyshIcFev3bt2vryyy+1evVqNWnSRG+99Zb++c9//q6nWgIAgNKFmUYAAADIEjONAAAoHgrqM7vU3NPIZrPpv//9rypWrJjvN4YCAAD5xzAMXbp0SUFBQXJzY1I0AACAq5SapNF///tfBQcHuzoMAACQSydPntRdd93l6jAAAABKrVKTNKpYsaKkmyegTK8GAKDoSklJUXBwsP2zGwAAAK5RapJGGZekeXt7kzQCAKAY4HJyAAAA1+JGAQAAAAAAADAhaQQAAAAAAAATkkYAAAAAAAAwIWkEAAAAAAAAE5JGAAAAAAAAMCFpBAAAAAAAABOSRgAAAAAAADAhaQQAAAAAAAATkkYAAAAAAAAw8XCmcq1atRQfH28qf+655zRz5kxT+YIFCzRw4ECHMqvVqmvXrkmSrl+/rjFjxmjFihU6duyYfHx8FBERocmTJysoKCjHfmNjYzVq1Chnwi8UlhBXR+BiB2MKvo/6Bd+HcaDAuwAAAAAAoEhzKmm0fft2paen25f37t2rTp06qXfv3tm28fb21qFDh+zLFovF/vXVq1e1c+dOjR07Vk2aNNHFixc1YsQIPfzww/rhhx8ctjNhwgQNHjzYvlyxYkVnQgcAAAAAAIATnEoaVa1a1WF58uTJqlOnjsLDw7NtY7FYFBgYmOU6Hx8frV692qHs3XffVatWrZSQkKAaNWrYyytWrJjtdgAAAAAAAJC/8nxPo7S0NC1cuFCDBg1ymD2U2eXLl1WzZk0FBwere/fu2rdvX47bTU5OlsViUaVKlRzKJ0+erMqVK6tZs2aaMmWKbty4keN2UlNTlZKS4vACAAAAAABA7jg10+h2y5YtU1JSkgYMGJBtnXr16mn+/Plq3LixkpOTNXXqVLVp00b79u3TXXfdZap/7do1vfzyy+rTp4+8vb3t5cOHD1fz5s3l5+enLVu2aPTo0Tp9+rSmTZuWbd+xsbEaP358XocHAAAAAABQqlkMwzDy0jAyMlKenp764osvct3m+vXrCgkJUZ8+fTRx4kTTup49e+qXX37Rhg0bHJJGmc2fP1/PPvusLl++LKvVmmWd1NRUpaam2pdTUlIUHBys5OTkHLf9e3Ej7JiC74MbYQNAiZaSkiIfH58C/8zGnXEsAAAoHgrqMztPM43i4+O1Zs0aLV261Kl2ZcqUUbNmzXTkyBGH8uvXr+vRRx9VfHy81q1bd8cBhoaG6saNGzpx4oTq1auXZR2r1ZptQgkAAAAAAAA5y9M9jeLi4uTv76+uXbs61S49PV179uxRtWrV7GUZCaPDhw9rzZo1qly58h23s3v3brm5ucnf39/p2AEAAAAAAHBnTs80stlsiouLU//+/eXh4di8X79+ql69umJjYyVJEyZMUOvWrVW3bl0lJSVpypQpio+P19NPPy3pZsKoV69e2rlzp5YvX6709HQlJiZKkvz8/OTp6amtW7dq27Ztuv/++1WxYkVt3bpVI0eO1F/+8hf5+vr+3vEDAAAAAAAgC04njdasWaOEhAQNGjTItC4hIUFubr9NXrp48aIGDx6sxMRE+fr6qkWLFtqyZYsaNGggSTp16pQ+//xzSVLTpk0dtrV+/Xp17NhRVqtVixcvVkxMjFJTU1W7dm2NHDlSUVFRzoYOAAAAAACAXMrzjbCLm8K6kSM3wo4p+D64ETYAlGjcfLno4FgAAFA8FNRndp7uaQQAAAAAAICSLU9PT0MO8jDTZoPxVf7HkUlHS5cC76PQ5GU2k5Ozk0r9jLFCwGwuAAAAACjamGkEAAAAAAAAE5JGAAAAAAAAMCFpBAAAAAAAABOSRgAAAAAAADAhaQQAAAAAAAATkkYAAAAAAAAwIWkEAAAAAAAAE5JGAAAAAAAAMCFpBAAAAAAAABOSRgAAAAAAADAhaQQAAAAAAAATkkYAAAAAAAAw8XB1ACXNBuMrV4eQpbzE1dHSpQAicZGDMc7V3+tkfUnq5XyT0swS4uoIsmYccHUEAAAAAFA0MNMIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABg4uHqAEqajpYurg4B+aFhjPNt9uahTS/nm6BgWUJcHUHWjAOujgAAAABAacNMIwAAAAAAAJiQNAIAAAAAAIAJSSMAAAAAAACYkDQCAAAAAACACUkjAAAAAAAAmJA0AgAAAAAAgAlJIwAAAAAAAJiQNAIAAAAAAIAJSSMAAAAAAACYkDQCAAAAAACACUkjAAAAAAAAmHi4OoASp36M820O5qENip6GMQXfx9489NEr36OAC1hCXB1B1owDro4AAAAAQEFhphEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATEgaAQAAAAAAwISkEQAAAAAAAExIGgEAAAAAAMCEpBEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATEgaAQAAAAAAwISkEQAAAAAAAExIGgEAAAAAAMDEw5nKtWrVUnx8vKn8ueee08yZM03lCxYs0MCBAx3KrFarrl27Jkm6fv26xowZoxUrVujYsWPy8fFRRESEJk+erKCgIHubCxcuaNiwYfriiy/k5uamnj176h//+IcqVKjgTPhA8dcwxvk2e/PQppfzTVA6WUKcb7PhQGj+B5JJuLYVeB8AAABASedU0mj79u1KT0+3L+/du1edOnVS7969s23j7e2tQ4cO2ZctFov966tXr2rnzp0aO3asmjRpoosXL2rEiBF6+OGH9cMPP9jr9e3bV6dPn9bq1at1/fp1DRw4UM8884wWLVrkTPgAAAAAAADIJaeSRlWrVnVYnjx5surUqaPw8PBs21gsFgUGBma5zsfHR6tXr3Yoe/fdd9WqVSslJCSoRo0aOnDggFauXKnt27erZcuWkqR33nlHDz30kKZOneowIwkAAAAAAAD5I8/3NEpLS9PChQs1aNAgh9lDmV2+fFk1a9ZUcHCwunfvrn379uW43eTkZFksFlWqVEmStHXrVlWqVMmeMJKkiIgIubm5adu27C8/SE1NVUpKisMLAACgOJs5c6Zq1aolLy8vhYaG6vvvv8+x/owZM1SvXj2VLVtWwcHBGjlypP02AQAAAHeS56TRsmXLlJSUpAEDBmRbp169epo/f74+++wzLVy4UDabTW3atNEvv/ySZf1r167p5ZdfVp8+feTt7S1JSkxMlL+/v0M9Dw8P+fn5KTExMdu+Y2Nj5ePjY38FBwc7P0gAAIAi4uOPP1ZUVJSio6O1c+dONWnSRJGRkTp79myW9RctWqRRo0YpOjpaBw4c0Lx58/Txxx/rlVdeKeTIAQBAcZXnpNG8efPUpUuXHC8PCwsLU79+/dS0aVOFh4dr6dKlqlq1qt577z1T3evXr+vRRx+VYRiaPXt2XsOyGz16tJKTk+2vkydP/u5tAgAAuMq0adM0ePBgDRw4UA0aNNCcOXNUrlw5zZ8/P8v6W7ZsUdu2bfXEE0+oVq1a6ty5s/r06XPH2UkAAAAZ8pQ0io+P15o1a/T000871a5MmTJq1qyZjhw54lCekTCKj4/X6tWr7bOMJCkwMND0H7QbN27owoUL2d4rSbr5lDZvb2+HFwAAQHGUlpamHTt2KCIiwl7m5uamiIgIbd26Ncs2bdq00Y4dO+xJomPHjmnFihV66KGHsu2Hy/sBAMDt8pQ0iouLk7+/v7p27epUu/T0dO3Zs0fVqlWzl2UkjA4fPqw1a9aocuXKDm3CwsKUlJSkHTt22MvWrVsnm82m0NCCf2wzAACAq507d07p6ekKCAhwKA8ICMj2cv0nnnhCEyZMULt27VSmTBnVqVNHHTt2zPHyNC7vBwAAt3M6aWSz2RQXF6f+/fvLw8Px4Wv9+vXT6NGj7csTJkzQqlWrdOzYMe3cuVN/+ctfFB8fb5+hdP36dfXq1Us//PCDPvroI6WnpysxMVGJiYlKS0uTJIWEhOiPf/yjBg8erO+//16bN2/W0KFD9fjjj/PkNAAAgGxs2LBBkyZN0qxZs7Rz504tXbpUX375pSZOnJhtGy7vBwAAt/O4cxVHa9asUUJCggYNGmRal5CQIDe33/JQFy9e1ODBg5WYmChfX1+1aNFCW7ZsUYMGDSRJp06d0ueffy5Jatq0qcO21q9fr44dO0qSPvroIw0dOlQPPvig3Nzc1LNnT7399tvOhg4AAFAsValSRe7u7jpz5oxD+ZkzZ7K9XH/s2LF68skn7f+sa9Soka5cuaJnnnlGr776qsM5Wwar1Sqr1Zr/AwAAAMWS00mjzp07yzCMLNdt2LDBYXn69OmaPn16ttuqVatWttu6nZ+fnxYtWuRUnAAAACWFp6enWrRoobVr16pHjx6Sbs7+Xrt2rYYOHZplm6tXr5oSQ+7u7pKUq/MvAAAAp5NGAAAAKHxRUVHq37+/WrZsqVatWmnGjBm6cuWKBg4cKOnmbQKqV6+u2NhYSVK3bt00bdo0NWvWTKGhoTpy5IjGjh2rbt262ZNHAAAAOSFpBAAAUAw89thj+t///qdx48YpMTFRTZs21cqVK+03x858m4AxY8bIYrFozJgxOnXqlKpWrapu3brp9ddfd9UQAABAMWMxSsn85JSUFPn4+Cg5OVne3t4F1o/FEuN8o/p5aHMwD21QoDYYXzndpqOlSwFEkg/2xjhXv1eBRIESasOBkvHky44h2wqlH+NAoXRTpBTWZzbujGMBAEDxUFCf2U4/PQ0AAAAAAAAlH0kjAAAAAAAAmJA0AgAAAAAAgAlJIwAAAAAAAJiQNAIAAAAAAIAJSSMAAAAAAACYkDQCAAAAAACACUkjAAAAAAAAmJA0AgAAAAAAgAlJIwAAAAAAAJiQNAIAAAAAAICJh6sDKGk2GF/loZXzbTpaujjXoH6M033oYB7aFIa8jMVZRXXsQAnQMWRbgfex4UBokewjL2O3hDjdpFAYB1wdAQAAAAoaM40AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmHq4OoKTpaOnidJsNxlfOd1Q/xrn6B52sn5c+8tBPtMbnoQ/n24yvbzhVPy/HJC/HvshqGONc/b1O1pekXs43AXKrY8g2p9tsOBBaAJH8/j7yMpbCYAlxrr5xoGDiAAAAQMFhphEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATEgaAQAAAAAAwISkEQAAAAAAAExIGgEAAAAAAMCEpBEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATEgaAQAAAAAAwISkEQAAAAAAAExIGgEAAAAAAMDEw9UBQOpo6ZKHVjHOVa/vZP1CMr6+4XyjgzH5HkdmeTsmAIqzjiHbnKq/4UBoAUUCAAAAFA3MNAIAAAAAAIAJSSMAAAAAAACYkDQCAAAAAACACUkjAAAAAAAAmJA0AgAAAAAAgAlJIwAAAAAAAJiQNAIAAAAAAIAJSSMAAAAAAACYkDQCAAAAAACACUkjAAAAAAAAmJA0AgAAAAAAgImHM5Vr1aql+Ph4U/lzzz2nmTNnmsoXLFiggQMHOpRZrVZdu3bNvrx06VLNmTNHO3bs0IULF7Rr1y41bdrUoU3Hjh31zTffOJQ9++yzmjNnjjPhF476Mc63OZiHNkWVs+MvomPfYHzldJuOli4FEEkJtiQPbXrlexQAAAAAgGw4lTTavn270tPT7ct79+5Vp06d1Lt372zbeHt769ChQ/Zli8XisP7KlStq166dHn30UQ0ePDjb7QwePFgTJkywL5crV86Z0AEAAAAAAOAEp5JGVatWdViePHmy6tSpo/Dw8GzbWCwWBQYGZrv+ySeflCSdOHEix77LlSuX43YAAAAAAACQf/J8T6O0tDQtXLhQgwYNMs0eut3ly5dVs2ZNBQcHq3v37tq3b1+e+vvoo49UpUoVNWzYUKNHj9bVq1dzrJ+amqqUlBSHFwAAAAAAAHLHqZlGt1u2bJmSkpI0YMCAbOvUq1dP8+fPV+PGjZWcnKypU6eqTZs22rdvn+66665c9/XEE0+oZs2aCgoK0k8//aSXX35Zhw4d0tKlS7NtExsbq/HjxzszJAAAAAAAANyS56TRvHnz1KVLFwUFBWVbJywsTGFhYfblNm3aKCQkRO+9954mTpyY676eeeYZ+9eNGjVStWrV9OCDD+ro0aOqU6dOlm1Gjx6tqKgo+3JKSoqCg4Nz3ScAAAAAAEBplqekUXx8vNasWZPjTJ+slClTRs2aNdORI0fy0q1daGioJOnIkSPZJo2sVqusVuvv6gcAAAAAAKC0ytM9jeLi4uTv76+uXbs61S49PV179uxRtWrV8tKt3e7duyXpd28HAAAAAAAAWXN6ppHNZlNcXJz69+8vDw/H5v369VP16tUVGxsrSZowYYJat26tunXrKikpSVOmTFF8fLyefvppe5sLFy4oISFB//3vfyVJhw4dkiQFBgYqMDBQR48e1aJFi/TQQw+pcuXK+umnnzRy5Eh16NBBjRs3zvPAAQAAAAAAkD2nk0Zr1qxRQkKCBg0aZFqXkJAgN7ffJi9dvHhRgwcPVmJionx9fdWiRQtt2bJFDRo0sNf5/PPPNXDgQPvy448/LkmKjo5WTEyMPD09tWbNGs2YMUNXrlxRcHCwevbsqTFjxjgbOgAAAAAAAHLJ6aRR586dZRhGlus2bNjgsDx9+nRNnz49x+0NGDAgxyewBQcH65tvvnE2TAAAAAAAAPwOebqnEQAAAAAAAEo2kkYAAAAAAAAwcfryNNzBwZjC6ad+IfVT0ErKOEq7hjGF089eJ/vJS1x8TwIAAACAJGYaAQAAAAAAIAskjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYOLh6gBKnPoxro6geDkYUyjdbDC+cqp+R0sX5zvJy7EvpPGXGA1jnKu/18n6JU0vVwdQsnUM2eZ0mw0HQgu8TV7iAgAAALLCTCMAAAAAAACYkDQCAAAAAACACUkjAAAAAAAAmJA0AgAAAAAAgAlJIwAAgGJi5syZqlWrlry8vBQaGqrvv/8+x/pJSUkaMmSIqlWrJqvVqnvvvVcrVqwopGgBAEBxx9PTAAAAioGPP/5YUVFRmjNnjkJDQzVjxgxFRkbq0KFD8vf3N9VPS0tTp06d5O/vryVLlqh69eqKj49XpUqVCj94AABQLJE0AgAAKAamTZumwYMHa+DAgZKkOXPm6Msvv9T8+fM1atQoU/358+frwoUL2rJli8qUKSNJqlWrVmGGDAAAijkuTwMAACji0tLStGPHDkVERNjL3NzcFBERoa1bt2bZ5vPPP1dYWJiGDBmigIAANWzYUJMmTVJ6enq2/aSmpiolJcXhBQAASi+SRgAAAEXcuXPnlJ6eroCAAIfygIAAJSYmZtnm2LFjWrJkidLT07VixQqNHTtWb731ll577bVs+4mNjZWPj4/9FRwcnK/jAAAAxQtJIwAAgBLIZrPJ399f77//vlq0aKHHHntMr776qubMmZNtm9GjRys5Odn+OnnyZCFGDAAAihruaQQAAFDEValSRe7u7jpz5oxD+ZkzZxQYGJhlm2rVqqlMmTJyd3e3l4WEhCgxMVFpaWny9PQ0tbFarbJarfkbPAAAKLZIGpUWB2NcHUGWojXe6Tb3G62cbtPR0sXpNk4rovu4VGsY43ybvXloU1QVxvdkXvZXr3yPwiU2HAgtlH46hmwrlH5QtHl6eqpFixZau3atevToIenmTKK1a9dq6NChWbZp27atFi1aJJvNJje3m5PLf/75Z1WrVi3LhBEAAEBmXJ4GAABQDERFRWnu3Ln64IMPdODAAf3tb3/TlStX7E9T69evn0aPHm2v/7e//U0XLlzQiBEj9PPPP+vLL7/UpEmTNGTIEFcNAQAAFDPMNAIAACgGHnvsMf3vf//TuHHjlJiYqKZNm2rlypX2m2MnJCTYZxRJUnBwsL7++muNHDlSjRs3VvXq1TVixAi9/PLLrhoCAAAoZkgaAQAAFBNDhw7N9nK0DRs2mMrCwsL03XffFXBUAACgpOLyNAAAAAAAAJiQNAIAAAAAAIAJSSMAAAAAAACYkDQCAAAAAACACUkjAAAAAAAAmJA0AgAAAAAAgAlJIwAAAAAAAJiQNAIAAAAAAIAJSSMAAAAAAACYeLg6gBLnYIyrI8ha/Rjn2xTCWO43WjndpqOlSwFEkkkR3V8oeNENLU63Gb/XKIBI8sHeGFdHkLUlTtbvVSBRuETHkG2uDgEAAADINWYaAQAAAAAAwISkEQAAAAAAAExIGgEAAAAAAMCEpBEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATEgaAQAAAAAAwISkEQAAAAAAAExIGgEAAAAAAMCEpBEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATDycqVyrVi3Fx8ebyp977jnNnDnTVL5gwQINHDjQocxqteratWv25aVLl2rOnDnasWOHLly4oF27dqlp06YOba5du6YXXnhBixcvVmpqqiIjIzVr1iwFBAQ4E37hqB/jfJuDeWjjbD956aMQdLR0cXUIrpWX7xdnFdFjnydF9fu+oZP97HWyfl71KoQ+lhRCH4XxOzIPOoZsK/A+AAAAAFdyaqbR9u3bdfr0aftr9erVkqTevXtn28bb29uhTeak05UrV9SuXTu98cYb2W5j5MiR+uKLL/TJJ5/om2++0X//+1/9+c9/diZ0AAAAAAAAOMGpmUZVq1Z1WJ48ebLq1Kmj8PDwbNtYLBYFBgZmu/7JJ5+UJJ04cSLL9cnJyZo3b54WLVqkBx54QJIUFxenkJAQfffdd2rdurUzQwAAAAAAAEAu5PmeRmlpaVq4cKEGDRoki8WSbb3Lly+rZs2aCg4OVvfu3bVv3z6n+tmxY4euX7+uiIgIe1n9+vVVo0YNbd26Ndt2qampSklJcXgBAAAAAAAgd/KcNFq2bJmSkpI0YMCAbOvUq1dP8+fP12effaaFCxfKZrOpTZs2+uWXX3LdT2Jiojw9PVWpUiWH8oCAACUmJmbbLjY2Vj4+PvZXcHBwrvsEAAAAAAAo7fKcNJo3b566dOmioKCgbOuEhYWpX79+atq0qcLDw7V06VJVrVpV7733Xl67zbXRo0crOTnZ/jp58mSB9wkAAAAAAFBSOHVPowzx8fFas2aNli5d6lS7MmXKqFmzZjpy5Eiu2wQGBiotLU1JSUkOs43OnDmT472SrFarrFarU/EBAAAAAADgpjzNNIqLi5O/v7+6du3qVLv09HTt2bNH1apVy3WbFi1aqEyZMlq7dq297NChQ0pISFBYWJhT/QMAAAAAACB3nJ5pZLPZFBcXp/79+8vDw7F5v379VL16dcXGxkqSJkyYoNatW6tu3bpKSkrSlClTFB8fr6efftre5sKFC0pISNB///tfSTcTQtLNGUaBgYHy8fHRU089paioKPn5+cnb21vDhg1TWFgYT04DAAAAAAAoIE4njdasWaOEhAQNGjTItC4hIUFubr9NXrp48aIGDx6sxMRE+fr6qkWLFtqyZYsaNGhgr/P5559r4MCB9uXHH39ckhQdHa2YmBhJ0vTp0+Xm5qaePXsqNTVVkZGRmjVrlrOhAwAAAAAAIJecThp17txZhmFkuW7Dhg0Oy9OnT9f06dNz3N6AAQNyfAKbJHl5eWnmzJmaOXOmM6ECAAAAAAAgj/L89DQAAAAAAACUXCSNAAAAAAAAYOL05Wm4g4MxTjeJ1vg89ONcm/GKdr4POKd+jKsjKF4KY3/lpQ8nf7YkSXvz0I+zehV8F0VWXvZvad5fAAAAQD5hphEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATEgaAQAAAAAAwISkEQAAAAAAAExIGgEAAAAAAMCEpBEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATEgaAQAAAAAAwISkEQAAAAAAAEw8XB1ASWO8O97pNpah0QUQiYvUj3Gu/kEn6xeWvMTl7NgLS1GNq4gav9co+E56FXwXeZKX7/teeWizxPkmAAAAAAofM40AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmHq4OoKSxDI12uo3x7vhC6adQHIxxdQT5YoPxldNtOobE5H8gKHy9XB1APiqMn8e89NHQyfp789DHEueblKhjDwAAAOQDZhoBAAAAAADAhKQRAAAAAAAATEgaAQAAAAAAwISkEQAAAAAAAExIGgEAAAAAAMCEpBEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATEgaAQAAAAAAwISkEQAAAAAAAExIGgEAAAAAAMCEpBEAAAAAAABMPFwdQMnT3+kWlqHOt3HeB4XQR+HYYHxV4H10DNlW4H2gEByMcXUEWasfUzT7Kar7q2GM820Kax8DAAAAJRgzjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAoJiYOXOmatWqJS8vL4WGhur777/PVbvFixfLYrGoR48eBRsgAAAoUUgaAQAAFAMff/yxoqKiFB0drZ07d6pJkyaKjIzU2bNnc2x34sQJ/f3vf1f79u0LKVIAAFBSkDQCAAAoBqZNm6bBgwdr4MCBatCggebMmaNy5cpp/vz52bZJT09X3759NX78eN19992FGC0AACgJSBoBAAAUcWlpadqxY4ciIiLsZW5uboqIiNDWrVuzbTdhwgT5+/vrqaeeylU/qampSklJcXgBAIDSi6QRAABAEXfu3Dmlp6crICDAoTwgIECJiYlZttm0aZPmzZunuXPn5rqf2NhY+fj42F/BwcG/K24AAFC8kTQCAAAoYS5duqQnn3xSc+fOVZUqVXLdbvTo0UpOTra/Tp48WYBRAgCAos7Dmcq1atVSfHy8qfy5557TzJkzTeULFizQwIEDHcqsVquuXbtmXzYMQ9HR0Zo7d66SkpLUtm1bzZ49W/fcc0+O/cbGxmrUqFHOhF/K9c9Dmw/yPQqT+jFON+kY4nwboNg7GOPqCIqXvOyvPPw+AgpLlSpV5O7urjNnzjiUnzlzRoGBgab6R48e1YkTJ9StWzd7mc1mkyR5eHjo0KFDqlOnjqmd1WqV1WrN5+gBAEBx5dRMo+3bt+v06dP21+rVqyVJvXv3zraNt7e3Q5vMyZ8333xTb7/9tubMmaNt27apfPnyioyMdEgsSTevyb99O8OGDXMmdAAAgGLL09NTLVq00Nq1a+1lNptNa9euVVhYmKl+/fr1tWfPHu3evdv+evjhh3X//fdr9+7dXHYGAAByxamZRlWrVnVYnjx5surUqaPw8PBs21gsliz/AybdnGU0Y8YMjRkzRt27d5ckffjhhwoICNCyZcv0+OOP2+tWrFgx2+0AAACUdFFRUerfv79atmypVq1aacaMGbpy5Yp9Vne/fv1UvXp1xcbGysvLSw0bNnRoX6lSJUkylQMAAGQnz/c0SktL08KFCzVo0CBZLJZs612+fFk1a9ZUcHCwunfvrn379tnXHT9+XImJiQ5PAvHx8VFoaKjpSSCTJ09W5cqV1axZM02ZMkU3btzIMT6e/gEAAEqSxx57TFOnTtW4cePUtGlT7d69WytXrrTfHDshIUGnT592cZQAAKAkcWqm0e2WLVumpKQkDRgwINs69erV0/z589W4cWMlJydr6tSpatOmjfbt26e77rrL/rSPOz0JZPjw4WrevLn8/Py0ZcsWjR49WqdPn9a0adOy7Ts2Nlbjx4/P6/AAAACKnKFDh2ro0KFZrtuwYUOObRcsWJD/AQEAgBItz0mjefPmqUuXLgoKCsq2TlhYmMN19m3atFFISIjee+89TZw4Mdd9RUVF2b9u3LixPD099eyzzyo2NjbbmzWOHj3aoV1KSgrX7wMAAAAAAORSni5Pi4+P15o1a/T000871a5MmTJq1qyZjhw5Ikn2exTl9kkgGUJDQ3Xjxg2dOHEi2zpWq1Xe3t4OLwAAAAAAAOROnpJGcXFx8vf3V9euXZ1ql56erj179qhatWqSpNq1ayswMNDhSSApKSnatm1blk8CybB79265ubnJ398/L+EDAAAAAADgDpy+PM1msykuLk79+/eXh4dj89uf2iFJEyZMUOvWrVW3bl0lJSVpypQpio+Pt89Qslgsev755/Xaa6/pnnvuUe3atTV27FgFBQWpR48ekqStW7dq27Ztuv/++1WxYkVt3bpVI0eO1F/+8hf5+vr+zuEDAAAAAAAgK04njdasWaOEhAQNGjTItC4hIUFubr9NXrp48aIGDx6sxMRE+fr6qkWLFtqyZYsaNGhgr/PSSy/pypUreuaZZ5SUlKR27dpp5cqV8vLyknTzMrPFixcrJiZGqampql27tkaOHOlwvyIAAAAAAADkL4thGIargygMKSkp8vHxUXJycoHe38hiOV5g2y58HxR8F/VjCr4PlF4HY1wdQdby8n1fVMdSkvD7qEAZB3Jft7A+s3FnHAsAAIqHgvrMztM9jQAAAAAAAFCykTQCAAAAAACAidP3NELODKN2ofRTOJfB9c9DGycvaSusS2647KRkKCmXaJWUcaBQtDrwjVP1vw8JL6BIAAAAUNow0wgAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGDi4eoAkDeGUdvVIWTJYunvZIsPCiSO4iL6oMWp+uPrGwUUiQscjHF1BECx8H1IuKtDAAAAQCnFTCMAAAAAAACYkDQCAAAAAACACUkjAAAAAAAAmJA0AgAAAAAAgAlJIwAAAAAAAJiQNAIAAAAAAIAJSSMAAAAAAACYkDQCAAAAAACACUkjAAAAAAAAmJA0AgAAAAAAgAlJIwAAAAAAAJh4uDoAlCyGUdvJFjEFEYaJJaQQOjkY43ST8YrO/ziKi/oxzrfJwz5GKZWX7y8AAAAADphpBAAAAAAAABOSRgAAAAAAADAhaQQAAAAAAAATkkYAAAAAAAAwIWkEAAAAAAAAE5JGAAAAAAAAMCFpBAAAAAAAABOSRgAAAAAAADAhaQQAAAAAAAATkkYAAAAAAAAwIWkEAAAAAAAAE5JGAAAAAAAAMPFwdQBAYTAOFEYvMU63sFicbwPkVrTGO1V/vKILKJLfqX6MqyMAAAAASiVmGgEAAAAAAMCEpBEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATEgaAQAAAAAAwISkEQAAAAAAAExIGgEAAAAAAMCEpBEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATEgaAQAAAAAAwMSppFGtWrVksVhMryFDhmRZf8GCBaa6Xl5eDnUMw9C4ceNUrVo1lS1bVhERETp8+LBDnQsXLqhv377y9vZWpUqV9NRTT+ny5ctODhUAAAAAAAC55eFM5e3btys9Pd2+vHfvXnXq1Em9e/fOto23t7cOHTpkX7ZYLA7r33zzTb399tv64IMPVLt2bY0dO1aRkZHav3+/PcHUt29fnT59WqtXr9b169c1cOBAPfPMM1q0aJEz4QNFjmHEuDqEfGEJcXUEyMp4RTtVv6R8PwIAAADIH04ljapWreqwPHnyZNWpU0fh4eHZtrFYLAoMDMxynWEYmjFjhsaMGaPu3btLkj788EMFBARo2bJlevzxx3XgwAGtXLlS27dvV8uWLSVJ77zzjh566CFNnTpVQUFBzgwBAAAAAAAAuZDnexqlpaVp4cKFGjRokGn20O0uX76smjVrKjg4WN27d9e+ffvs644fP67ExERFRETYy3x8fBQaGqqtW7dKkrZu3apKlSrZE0aSFBERITc3N23bti3bflNTU5WSkuLwAgAAAAAAQO7kOWm0bNkyJSUlacCAAdnWqVevnubPn6/PPvtMCxculM1mU5s2bfTLL79IkhITEyVJAQEBDu0CAgLs6xITE+Xv7++w3sPDQ35+fvY6WYmNjZWPj4/9FRwcnJdhAgAAAAAAlEp5ThrNmzdPXbp0yfHysLCwMPXr109NmzZVeHi4li5dqqpVq+q9997La7e5Nnr0aCUnJ9tfJ0+eLPA+AQAAAAAASgqn7mmUIT4+XmvWrNHSpUudalemTBk1a9ZMR44ckST7vY7OnDmjatWq2eudOXNGTZs2tdc5e/asw3Zu3LihCxcuZHuvJEmyWq2yWq1OxQcAAAAAAICb8jTTKC4uTv7+/uratatT7dLT07Vnzx57gqh27doKDAzU2rVr7XVSUlK0bds2hYWFSbo5WykpKUk7duyw11m3bp1sNptCQ0PzEj4AAAAAAADuwOmZRjabTXFxcerfv788PByb9+vXT9WrV1dsbKwkacKECWrdurXq1q2rpKQkTZkyRfHx8Xr66acl3Xyy2vPPP6/XXntN99xzj2rXrq2xY8cqKChIPXr0kCSFhIToj3/8owYPHqw5c+bo+vXrGjp0qB5//HGenAYAAAAAAFBAnE4arVmzRgkJCRo0aJBpXUJCgtzcfpu8dPHiRQ0ePFiJiYny9fVVixYttGXLFjVo0MBe56WXXtKVK1f0zDPPKCkpSe3atdPKlSvl5eVlr/PRRx9p6NChevDBB+Xm5qaePXvq7bffdjZ0AAAAAAAA5JLFMAzD1UEUhpSUFPn4+Cg5OVne3t6uDgcoUSwhhdTRwZhC6qh0MowYV4cASOIzuyjhWAAAUDwU1Gd2np+eBgAAAAAAgJKLpBEAAAAAAABMnL6nEQBkZhworJ5iCqsjAAAAACj1mGkEAAAAAAAAE5JGAAAAAAAAMCFpBAAAAAAAABOSRgAAAAAAADAhaQQAAAAAAAATkkYAAAAAAAAwIWkEAAAAAAAAE5JGAAAAAAAAMCFpBAAAUEzMnDlTtWrVkpeXl0JDQ/X9999nW3fu3Llq3769fH195evrq4iIiBzrAwAAZEbSCAAAoBj4+OOPFRUVpejoaO3cuVNNmjRRZGSkzp49m2X9DRs2qE+fPlq/fr22bt2q4OBgde7cWadOnSrkyAEAQHFlMQzDcHUQhSElJUU+Pj5KTk6Wt7e3q8MBAADZ4DM7a6GhofrDH/6gd999V5Jks9kUHBysYcOGadSoUXdsn56eLl9fX7377rvq169frvrkWAAAUDwU1Ge2R75tqYjLyI2lpKS4OBIAAJCTjM/qUvJ/rVxJS0vTjh07NHr0aHuZm5ubIiIitHXr1lxt4+rVq7p+/br8/PyyrZOamqrU1FT7MudNAACUbqUmaXTp0iVJUnBwsIsjAQAAuXHp0iX5+Pi4Oowi4dy5c0pPT1dAQIBDeUBAgA4ePJirbbz88ssKCgpSREREtnViY2M1fvz43xUrAAAoOUpN0igoKEgnT55UxYoVZbFYXB1OoUlJSVFwcLBOnjxZKqeVl+bxM3bGXtrGLpXu8ZeksRuGoUuXLikoKMjVoZQYkydP1uLFi7VhwwZ5eXllW2/06NGKioqyL2d8XwEAgNKp1CSN3NzcdNddd7k6DJfx9vYu9n9E/B6lefyMnbGXRqV5/CVl7MwwclSlShW5u7vrzJkzDuVnzpxRYGBgjm2nTp2qyZMna82aNWrcuHGOda1Wq6xW6++OFwAAlAw8PQ0AAKCI8/T0VIsWLbR27Vp7mc1m09q1axUWFpZtuzfffFMTJ07UypUr1bJly8IIFQAAlCClZqYRAABAcRYVFaX+/furZcuWatWqlWbMmKErV65o4MCBkqR+/fqpevXqio2NlSS98cYbGjdunBYtWqRatWopMTFRklShQgVVqFDBZeMAAADFB0mjEs5qtSo6OrrUTjUvzeNn7Iy9NCrN4y/NYy8tHnvsMf3vf//TuHHjlJiYqKZNm2rlypX2m2MnJCTIze23SeSzZ89WWlqaevXq5bCd6OhoxcTEFGboAACgmLIYPM8WAAAAWUhJSZGPj4+Sk5NLxL2yAAAoqQrqM5t7GgEAAAAAAMCEpBEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATEgaFTGTJ0+WxWLR888/by97//331bFjR3l7e8tisSgpKcnU7sKFC+rbt6+8vb1VqVIlPfXUU7p8+bJDnZ9++knt27eXl5eXgoOD9eabb5q288knn6h+/fry8vJSo0aNtGLFCof1hmFo3LhxqlatmsqWLauIiAgdPnzYpWOvVauWLBaLw2vy5MnFeuwXLlzQsGHDVK9ePZUtW1Y1atTQ8OHDlZyc7NAuISFBXbt2Vbly5eTv768XX3xRN27ccKizYcMGNW/eXFarVXXr1tWCBQtM/c+cOVO1atWSl5eXQkND9f333zusv3btmoYMGaLKlSurQoUK6tmzp86cOZMvY/8948983C0WixYvXlysxp/V9/2zzz6rOnXqqGzZsqpataq6d++ugwcPOrQrCcc+r2Mvqcc9g2EY6tKliywWi5YtW+awriQcdwAAABQjBoqM77//3qhVq5bRuHFjY8SIEfby6dOnG7GxsUZsbKwhybh48aKp7R//+EejSZMmxnfffWds3LjRqFu3rtGnTx/7+uTkZCMgIMDo27evsXfvXuPf//63UbZsWeO9996z19m8ebPh7u5uvPnmm8b+/fuNMWPGGGXKlDH27NljrzN58mTDx8fHWLZsmfHjjz8aDz/8sFG7dm3j119/ddnYa9asaUyYMME4ffq0/XX58uViPfY9e/YYf/7zn43PP//cOHLkiLF27VrjnnvuMXr27Glvd+PGDaNhw4ZGRESEsWvXLmPFihVGlSpVjNGjR9vrHDt2zChXrpwRFRVl7N+/33jnnXcMd3d3Y+XKlfY6ixcvNjw9PY358+cb+/btMwYPHmxUqlTJOHPmjL3OX//6VyM4ONhYu3at8cMPPxitW7c22rRp87vG/XvHbxiGIcmIi4tzOPa3H4+iPv7svu/fe+8945tvvjGOHz9u7Nixw+jWrZsRHBxs3LhxwzCMknHs8zp2wyi5xz3DtGnTjC5duhiSjE8//dReXhKOO4qf5ORkQ5KRnJzs6lAAAEAOCuozm6RREXHp0iXjnnvuMVavXm2Eh4dn+YfE+vXrs0yc7N+/35BkbN++3V721VdfGRaLxTh16pRhGIYxa9Ysw9fX10hNTbXXefnll4169erZlx999FGja9euDtsODQ01nn32WcMwDMNmsxmBgYHGlClT7OuTkpIMq9Vq/Pvf/3bJ2A3jZtJo+vTp2W6/uI89w3/+8x/D09PTuH79umEYhrFixQrDzc3NSExMtNeZPXu24e3tbR/rSy+9ZNx3330O23nssceMyMhI+3KrVq2MIUOG2JfT09ONoKAgIzY21j7OMmXKGJ988om9zoEDBwxJxtatW/M8dsP4feM3DMP0R3VmRXn8zoz9xx9/NCQZR44cMQyj+B/73zN2wyjZx33Xrl1G9erVjdOnT5vGWdyPO4onkkYAABQPBfWZzeVpRcSQIUPUtWtXRUREON1269atqlSpklq2bGkvi4iIkJubm7Zt22av06FDB3l6etrrREZG6tChQ7p48aK9Tub+IyMjtXXrVknS8ePHlZiY6FDHx8dHoaGh9jp58XvGnmHy5MmqXLmymjVrpilTpjhcrlFSxp6cnCxvb295eHjYY27UqJECAgIcYk5JSdG+fftyNa60tDTt2LHDoY6bm5siIiLsdXbs2KHr16871Klfv75q1Kjxu8Yu/b7x376NKlWqqFWrVpo/f74Mw7CvK8rjz+3Yr1y5ori4ONWuXVvBwcH2cRXnY/97xn77Nkracb969aqeeOIJzZw5U4GBgab1xf24AwAAoPjxuHMVFLTFixdr586d2r59e57aJyYmyt/f36HMw8NDfn5+SkxMtNepXbu2Q52MPzwSExPl6+urxMREhz9GMurcvo3b22VVx1m/d+ySNHz4cDVv3lx+fn7asmWLRo8erdOnT2vatGn2uIv72M+dO6eJEyfqmWeesZdlF/Pt8WZXJyUlRb/++qsuXryo9PT0LOtk3EcmMTFRnp6eqlSpkqlOXscu/f7xS9KECRP0wAMPqFy5clq1apWee+45Xb58WcOHD7fHXhTHn5uxz5o1Sy+99JKuXLmievXqafXq1fbEZ3E+9r937FLJPe4jR45UmzZt1L179yzXF+fjDgAAgOKJpJGLnTx5UiNGjNDq1avl5eXl6nAKVX6NPSoqyv5148aN5enpqWeffVaxsbGyWq35EWq+c2bsKSkp6tq1qxo0aKCYmJjCCbCA5df4x44da/+6WbNmunLliqZMmWJPHhRFuR1737591alTJ50+fVpTp07Vo48+qs2bNxfr3xP5NfaSeNw///xzrVu3Trt27XJBdAAAAEDWuDzNxXbs2KGzZ8+qefPm8vDwkIeHh7755hu9/fbb8vDwUHp6+h23ERgYqLNnzzqU3bhxQxcuXLBf4hAYGGh68k3G8p3q3L7+9nZZ1XFGfow9K6Ghobpx44ZOnDhhj7u4jv3SpUv64x//qIoVK+rTTz9VmTJl7Nv4PePy9vZW2bJlVaVKFbm7u99x7GlpaaYn1+V17Pk1/qyEhobql19+UWpqapEdf27H7uPjo3vuuUcdOnTQkiVLdPDgQX366ac5jitjXUkee1ZKwnFfvXq1jh49qkqVKtnXS1LPnj3VsWPHHMeVsa6ojh0AAADFF0kjF3vwwQe1Z88e7d692/5q2bKl+vbtq927d8vd3f2O2wgLC1NSUpJ27NhhL1u3bp1sNptCQ0Ptdb799ltdv37dXmf16tWqV6+efH197XXWrl3rsO3Vq1crLCxMklS7dm0FBgY61ElJSdG2bdvsdQp77FnZvXu33Nzc7JfsFdexp6SkqHPnzvL09NTnn39ump0QFhamPXv2OCQMV69eLW9vbzVo0CBX4/L09FSLFi0c6thsNq1du9Zep0WLFipTpoxDnUOHDikhISFPY8+v8Wdl9+7d8vX1tc8wK4rjz8v3vXHzoQX2pEhxPfb5MfaslITj/uqrr+qnn35yWC9J06dPV1xcnH1cxfG4AwAAoBjL19tqI19kfqLO6dOnjV27dhlz5841JBnffvutsWvXLuP8+fP2On/84x+NZs2aGdu2bTM2bdpk3HPPPUafPn3s65OSkoyAgADjySefNPbu3WssXrzYKFeunOmx8x4eHsbUqVONAwcOGNHR0Vk+dr5SpUrGZ599Zvz0009G9+7d8+Wx83kd+5YtW4zp06cbu3fvNo4ePWosXLjQqFq1qtGvX79iPfbk5GQjNDTUaNSokXHkyBGHR4tnfux6586djd27dxsrV640qlatmuXjt1988UXjwIEDxsyZM7N8/LbVajUWLFhg7N+/33jmmWeMSpUqOTyh6a9//atRo0YNY926dcYPP/xghIWFGWFhYfky7ryO//PPPzfmzp1r7Nmzxzh8+LAxa9Yso1y5csa4ceOK3fhvH/vRo0eNSZMmGT/88IMRHx9vbN682ejWrZvh5+dnfyR6STr2zo69pB73rCjT09NK0nFH8cHT0wAAKB4K6jObpFERlPkPiejoaEOS6RUXF2evc/78eaNPnz5GhQoVDG9vb2PgwIHGpUuXHLb7448/Gu3atTOsVqtRvXp1Y/Lkyaa+//Of/xj33nuv4enpadx3333Gl19+6bDeZrMZY8eONQICAgyr1Wo8+OCDxqFDh1w29h07dhihoaGGj4+P4eXlZYSEhBiTJk0yrl27VqzHvn79+izHLck4fvy4vc2JEyeMLl26GGXLljWqVKlivPDCCw6PpM/YVtOmTQ1PT0/j7rvvdvi+yfDOO+8YNWrUMDw9PY1WrVoZ3333ncP6X3/91XjuuecMX19fo1y5csYjjzxinD59Ot/Gnpfxf/XVV0bTpk2NChUqGOXLlzeaNGlizJkzx0hPTy9247997KdOnTK6dOli+Pv7G2XKlDHuuusu44knnjAOHjzo0KakHHtnx15Sj3tWMieNDKPkHHcUHySNAAAoHgrqM9tiGLc9pxgAAAC4JSUlRT4+PkpOTpa3t7erwwEAANkoqM/sUvX0tGvXriktLc3VYQAAgDvw9PQs1k8LBAAAKAlKTdLo2rVrKlu2qqTLrg4FAADcQWBgoI4fP07iCAAAwIVKTdLo5gyjy5JGSip/qzTj8d0e2bzntL5MLurk1/o7tcn5MeR2GQ8myq5LtxzWuWdTnpf12a0rk0XdnOJ2z8X63G7jTnHntO9+776x17t1pahHusO7xf3GzUWPdLnfKnP3sN16v3Hr/Va52613Zf3ucevdzbT+Vh+y2cvdTXVvOGzD/ba6N+tlXn/nGO5Ux/kYsq+XeazZ9f3bNu9Uz7zPchvnnffZnWO447G99fh69xu3+kg3bi3L4d1ysyvd6sr8nn7rlbnMmeWM9+z6Ss/nbd1pObfbyrwNZ2LLz23dIbbrt9reOtSm5Rvpjk0yniOZeVPZld++Pqd1ud1GbvpIlTQ9MVFpaWkkjQAAAFyo1CSNfmOVlHECml3yJTfL2SWNCmI5t22yYcnlu9utl3J4z5xEyfx+p8RJVjmwOyWzfs/63G7jjgmdXPSRl7YO7zknjSxl0mXJKLO/31zndmvZzc0xceCWKTlhThZln0jJPklypyRK7tfnfx8Z7+459OWWy21YbtVzc2j327sl03Ys9rLffhwsmbapTO/GrXqZyzPeM2I1HOq7y7jta1umvm69p996v3ErzuySRtklK3JKsuSmjbPl+bmtrMrdb1ufeUdntMnu917mbVoyrc/8uzSjflYsmZYz31XQyKY8u9gM6fqtxNKtQ63rlkzLt6reKcGTm+U71b3TNjzusN79tq8BAADgem53rgIAAAAAAIDShqQRAAAAAAAATEgaAQAAAAAAwISkEQAAAAAAAExIGgEAAAAAAMCEpBEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATEgaAQAAAAAAwISkEQAAAAAAAExIGgEAAAAAAMCEpBEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATEgaAQAAAAAAwISkEQAAAAAAAExIGgEAAAAAAMCEpBEAAAAAAABMSBoBAAAAAADAhKQRAAAAAAAATDxcHUDhS9Vvw06/9Z6xfOMOy9dvWy5z6+symepkfs+P9Xdqk7GcDSOX77ZbL2Xxbrn1np5pOeNd2SxnjiG7fm+XuW/3bOqnZ1qfufyGfttF7pnWZS7Pbve7Z3rP6nDldhvZrbfXuzVAj3SHd8P95veh4ZEuI6PMw3br/eY6261yi9utd2X9brPvgMzvN27Vu30n3urL/n7DoY1xq65h3/aNTMtZv2esT1e63G99nfndlmnZzb58w9725rItx3oet9Vzz7Quu75/2+ad6mX08VsMOfWf1TYy6ntkG0P27799bdzahnFrmzff3dNvvd+4tf7Wob717WR/t2Qc8hvZvP/2raBM3wK5X854z66v9Hze1p2Wc7utzNtwJrbcbutO79n9Tr7t/fqtXx23DrVpOXMI1+Vc+e3rc1qX223kpo9UAQAAoCgoNUkjT09PBQYGKjFxuqtDcZ3Mf4ygWMjIlV3Xb39wAUBJFxgYKE9PT1eHAQAAUKqVmqSRl5eXjh8/rrS0NFeHkq2UlBQFBwfr5MmT8vb2dnU4xRr7Mn+wH/MH+zF/sB/zR3HZj56envLy8nJ1GAAAAKVaqUkaSTcTR8XhBNTb27tIn8gXJ+zL/MF+zB/sx/zBfswf7EcAAADcCTfCBgAAAAAAgAlJIwAAAAAAAJiQNCpCrFaroqOjZbVaXR1Ksce+zB/sx/zBfswf7Mf8wX4EAABAblkMwzDuXA0AAAClTUpKinx8fJScnMw9sAAAKMIK6jObmUYAAAAAAAAwIWkEAAAAAAAAE5JGAAAAAAAAMCFpBAAAAAAAABOSRkVAbGys/vCHP6hixYry9/dXjx49dOjQIVeHVexNnjxZFotFzz//vKtDKXZOnTqlv/zlL6pcubLKli2rRo0a6YcffnB1WMVKenq6xo4dq9q1a6ts2bKqU6eOJk6cKJ49cGfffvutunXrpqCgIFksFi1btsxhvWEYGjdunKpVq6ayZcsqIiJChw8fdk2wRVhO+/H69et6+eWX1ahRI5UvX15BQUHq16+f/vvf/7ouYAAAABQ5JI2KgG+++UZDhgzRd999p9WrV+v69evq3Lmzrly54urQiq3t27frvffeU+PGjV0dSrFz8eJFtW3bVmXKlNFXX32l/fv366233pKvr6+rQytW3njjDc2ePVvvvvuuDhw4oDfeeENvvvmm3nnnHVeHVuRduXJFTZo00cyZM7Nc/+abb+rtt9/WnDlztG3bNpUvX16RkZG6du1aIUdatOW0H69evaqdO3dq7Nix2rlzp5YuXapDhw7p4YcfdkGkAAAAKKosBv/2LnL+97//yd/fX9988406dOjg6nCKncuXL6t58+aaNWuWXnvtNTVt2lQzZsxwdVjFxqhRo7R582Zt3LjR1aEUa3/6058UEBCgefPm2ct69uypsmXLauHChS6MrHixWCz69NNP1aNHD0k3ZxkFBQXphRde0N///ndJUnJysgICArRgwQI9/vjjLoy26Mq8H7Oyfft2tWrVSvHx8apRo0bhBYciraAe3wsAAPJXQX1mM9OoCEpOTpYk+fn5uTiS4mnIkCHq2rWrIiIiXB1KsfT555+rZcuW6t27t/z9/dWsWTPNnTvX1WEVO23atNHatWv1888/S5J+/PFHbdq0SV26dHFxZMXb8ePHlZiY6PDz7ePjo9DQUG3dutWFkRV/ycnJslgsqlSpkqtDAQAAQBHh4eoA4Mhms+n5559X27Zt1bBhQ1eHU+wsXrxYO3fu1Pbt210dSrF17NgxzZ49W1FRUXrllVe0fft2DR8+XJ6enurfv7+rwys2Ro0apZSUFNWvX1/u7u5KT0/X66+/rr59+7o6tGItMTFRkhQQEOBQHhAQYF8H5127dk0vv/yy+vTpw2wSAAAA2JE0KmKGDBmivXv3atOmTa4Opdg5efKkRowYodWrV8vLy8vV4RRbNptNLVu21KRJkyRJzZo10969ezVnzhySRk74z3/+o48++kiLFi3Sfffdp927d+v5559XUFAQ+xFFyvXr1/Xoo4/KMAzNnj3b1eEAAACgCOHytCJk6NChWr58udavX6+77rrL1eEUOzt27NDZs2fVvHlzeXh4yMPDQ998843efvtteXh4KD093dUhFgvVqlVTgwYNHMpCQkKUkJDgooiKpxdffFGjRo3S448/rkaNGunJJ5/UyJEjFRsb6+rQirXAwEBJ0pkzZxzKz5w5Y1+H3MtIGMXHx2v16tXMMgIAAIADkkZFgGEYGjp0qD799FOtW7dOtWvXdnVIxdKDDz6oPXv2aPfu3fZXy5Yt1bdvX+3evVvu7u6uDrFYaNu2rQ4dOuRQ9vPPP6tmzZouiqh4unr1qtzcHH/Furu7y2azuSiikqF27doKDAzU2rVr7WUpKSnatm2bwsLCXBhZ8ZORMDp8+LDWrFmjypUruzokAAAAFDFcnlYEDBkyRIsWLdJnn32mihUr2u/L4ePjo7Jly7o4uuKjYsWKpvtAlS9fXpUrV+b+UE4YOXKk2rRpo0mTJunRRx/V999/r/fff1/vv/++q0MrVrp166bXX39dNWrU0H333addu3Zp2rRpGjRokKtDK/IuX76sI0eO2JePHz+u3bt3y8/PTzVq1NDzzz+v1157Tffcc49q166tsWPHKigoKMcng5VGOe3HatWqqVevXtq5c6eWL1+u9PR0+2ePn5+fPD09XRU2AAAAihCLYRiGq4Mo7SwWS5blcXFxGjBgQOEGU8J07NhRTZs21YwZM1wdSrGyfPlyjR49WocPH1bt2rUVFRWlwYMHuzqsYuXSpUsaO3asPv30U509e1ZBQUHq06ePxo0bxx/kd7Bhwwbdf//9pvL+/ftrwYIFMgxD0dHRev/995WUlKR27dpp1qxZuvfee10QbdGV036MiYnJdlbr+vXr1bFjxwKODsVFQT2+FwAA5K+C+swmaQQAAIAskTQCAKB4KKjPbO5pBAAAAAAAABOSRgAAAAAAADAhaQQAAAAAAAATkkYAAAAAAAAwIWkEAAAAAAAAE5JGAAAAAAAAMCFpBAAAAAAAABOSRgAAAAAAADAhaQQAAAAAAAATkkYAAAAAAAAwIWkEAAAAAAAAE5JGAAAAAAAAMCFpBAAAAAAAABOSRgAAAAAAADAhaQQAAAAAAAATkkYAAAAAAAAwIWkEAAAAAAAAE5JGAAAAAAAAMCFpBAAAUEzMnDlTtWrVkpeXl0JDQ/X999/nWP+TTz5R/fr15eXlpUaNGmnFihWFFCkAACgJSBoBAAAUAx9//LGioqIUHR2tnTt3qkmTJoqMjNTZs2ezrL9lyxb16dNHTz31lHbt2qUePXqoR48e2rt3byFHDgAAiiuLYRiGq4MAAABAzkJDQ/WHP/xB7777riTJZrMpODhYw4YN06hRo0z1H3vsMV25ckXLly+3l7Vu3VpNmzbVnDlzctVnSkqKfHx8lJycLG9v7/wZCAAAyHcF9ZntkW9bAgAAQIFIS0vTjh07NHr0aHuZm5ubIiIitHXr1izbbN26VVFRUQ5lkZGRWrZsWbb9pKamKjU11b6cnJws6eaJKAAAKLoyPqvze14QSSMAAIAi7ty5c0pPT1dAQIBDeUBAgA4ePJhlm8TExCzrJyYmZttPbGysxo8fbyoPDg7OQ9QAAKCwnT9/Xj4+Pvm2PZJGAAAAkCSNHj3aYXZSUlKSatasqYSEhHw9AYXzUlJSFBwcrJMnT3KpoAtxHIoOjkXRwbEoGpKTk1WjRg35+fnl63ZJGgEAABRxVapUkbu7u86cOeNQfubMGQUGBmbZJjAw0Kn6kmS1WmW1Wk3lPj4+/CFQRHh7e3MsigCOQ9HBsSg6OBZFg5tb/j7vjKenAQAAFHGenp5q0aKF1q5day+z2Wxau3atwsLCsmwTFhbmUF+SVq9enW19AACAzJhpBAAAUAxERUWpf//+atmypVq1aqUZM2boypUrGjhwoCSpX79+ql69umJjYyVJI0aMUHh4uN566y117dpVixcv1g8//KD333/flcMAAADFCEkjAACAYuCxxx7T//73P40bN06JiYlq2rSpVq5cab/ZdUJCgsOU9DZt2mjRokUaM2aMXnnlFd1zzz1atmyZGjZsmOs+rVaroqOjs7xkDYWLY1E0cByKDo5F0cGxKBoK6jhYjPx+HhsAAAAAAACKPe5pBAAAAAAAABOSRgAAAAAAADAhaQQAAAAAAAATkkYAAAAAAAAwIWkEAABQis2cOVO1atWSl5eXQkND9f333+dY/5NPPlH9+vXl5eWlRo0aacWKFYUUacnnzLGYO3eu2rdvL19fX/n6+ioiIuKOxw654+zPRIbFixfLYrGoR48eBRtgKeLssUhKStKQIUNUrVo1Wa1W3XvvvfyOygfOHocZM2aoXr16Klu2rIKDgzVy5Ehdu3atkKItub799lt169ZNQUFBslgsWrZs2R3bbNiwQc2bN5fValXdunW1YMECp/slaQQAAFBKffzxx4qKilJ0dLR27typJk2aKDIyUmfPns2y/pYtW9SnTx899dRT2rVrl3r06KEePXpo7969hRx5yePssdiwYYP69Omj9evXa+vWrQoODlbnzp116tSpQo68ZHH2OGQ4ceKE/v73v6t9+/aFFGnJ5+yxSEtLU6dOnXTixAktWbJEhw4d0ty5c1W9evVCjrxkcfY4LFq0SKNGjVJ0dLQOHDigefPm6eOPP9Yrr7xSyJGXPFeuXFGTJk00c+bMXNU/fvy4unbtqvvvv1+7d+/W888/r6efflpff/21U/1aDMMw8hIwAAAAirfQ0FD94Q9/0LvvvitJstlsCg4O1rBhwzRq1ChT/ccee0xXrlzR8uXL7WWtW7dW06ZNNWfOnEKLuyRy9lhklp6eLl9fX7377rvq169fQYdbYuXlOKSnp6tDhw4aNGiQNm7cqKSkpFzNAEDOnD0Wc+bM0ZQpU3Tw4EGVKVOmsMMtsZw9DkOHDtWBAwe0du1ae9kLL7ygbdu2adOmTYUWd0lnsVj06aef5jiz8eWXX9aXX37p8I+dxx9/XElJSVq5cmWu+2KmEQAAQCmUlpamHTt2KCIiwl7m5uamiIgIbd26Ncs2W7dudagvSZGRkdnWR+7k5VhkdvXqVV2/fl1+fn4FFWaJl9fjMGHCBPn7++upp54qjDBLhbwci88//1xhYWEaMmSIAgIC1LBhQ02aNEnp6emFFXaJk5fj0KZNG+3YscN+CduxY8e0YsUKPfTQQ4USM36TX5/ZHvkZFAAAAIqHc+fOKT09XQEBAQ7lAQEBOnjwYJZtEhMTs6yfmJhYYHGWBnk5Fpm9/PLLCgoKMv2BgNzLy3HYtGmT5s2bp927dxdChKVHXo7FsWPHtG7dOvXt21crVqzQkSNH9Nxzz+n69euKjo4ujLBLnLwchyeeeELnzp1Tu3btZBiGbty4ob/+9a9cnuYC2X1mp6Sk6Ndff1XZsmVztR1mGgEAAADF2OTJk7V48WJ9+umn8vLycnU4pcalS5f05JNPau7cuapSpYqrwyn1bDab/P399f7776tFixZ67LHH9Oqrr3LpbCHbsGGDJk2apFmzZmnnzp1aunSpvvzyS02cONHVoSGPmGkEAABQClWpUkXu7u46c+aMQ/mZM2cUGBiYZZvAwECn6iN38nIsMkydOlWTJ0/WmjVr1Lhx44IMs8Rz9jgcPXpUJ06cULdu3exlNptNkuTh4aFDhw6pTp06BRt0CZWXn4lq1aqpTJkycnd3t5eFhIQoMTFRaWlp8vT0LNCYS6K8HIexY8fqySef1NNPPy1JatSoka5cuaJnnnlGr776qtzcmLdSWLL7zPb29s71LCOJmUYAAAClkqenp1q0aOFws1Kbzaa1a9cqLCwsyzZhYWEO9SVp9erV2dZH7uTlWEjSm2++qYkTJ2rlypVq2bJlYYRaojl7HOrXr689e/Zo9+7d9tfDDz9sf1JRcHBwYYZfouTlZ6Jt27Y6cuSIPXEnST///LOqVatGwiiP8nIcrl69akoMZSTyeAZX4cq3z2wDAAAApdLixYsNq9VqLFiwwNi/f7/xzDPPGJUqVTISExMNwzCMJ5980hg1apS9/ubNmw0PDw9j6tSpxoEDB4zo6GijTJkyxp49e1w1hBLD2WMxefJkw9PT01iyZIlx+vRp++vSpUuuGkKJ4OxxyKx///5G9+7dCynaks3ZY5GQkGBUrFjRGDp0qHHo0CFj+fLlhr+/v/Haa6+5agglgrPHITo62qhYsaLx73//2zh27JixatUqo06dOsajjz7qqiGUGJcuXTJ27dpl7Nq1y5BkTJs2zdi1a5cRHx9vGIZhjBo1ynjyySft9Y8dO2aUK1fOePHFF40DBw4YM2fONNzd3Y2VK1c61S+XpwEAAJRSjz32mP73v/9p3LhxSkxMVNOmTbVy5Ur7jTMTEhIc/mPcpk0bLVq0SGPGjNErr7yie+65R8uWLVPDhg1dNYQSw9ljMXv2bKWlpalXr14O24mOjlZMTExhhl6iOHscUHCcPRbBwcH6+uuvNXLkSDVu3FjVq1fXiBEj9PLLL7tqCCWCs8dhzJgxslgsGjNmjE6dOqWqVauqW7duev311101hBLjhx9+0P33329fjoqKkiT1799fCxYs0OnTp5WQkGBfX7t2bX355ZcaOXKk/vGPf+iuu+7SP//5T0VGRjrVr8UwmCMGAAAAAAAAR6TJAQAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCAAAAAAAACYkjQAAAAAAAGBC0ggAAAAAAAAmJI0AAAAAAABgQtIIAAAAAAAAJiSNAAAAAAAAYELSCECuxMTEyGKxFNj2BwwYoFq1ahXY9nOrVq1aGjBgQJ7b/ulPf8rfgAAAQJHEuVHu2nJuBBRvJI2AXDp69KieffZZ3X333fLy8pK3t7fatm2rf/zjH/r111+d3t6sWbO0YMGC/A8URd7+/fsVExOjEydOFHrfzz33nNzc3HThwgWH8gsXLsjNzU1Wq1XXrl1zWHfs2DFZLBa98sorhRkqAKCI49wI+cWV50YZvvjiC4WHh8vf31/lypXT3XffrUcffVQrV67M9TYeeugh+fr6yjAMh/Jdu3bJYrGoZs2apjbr1q2TxWLR+++//7vHABQEkkZALnz55Zdq1KiR/vOf/6hbt2565513FBsbqxo1aujFF1/UiBEjnN5mcTsxGjNmTJ5OAIubQ4cOae7cuQXax/79+zV+/HiXnBi1a9dOhmFo8+bNDuVbtmyRm5ubrl+/rh9++MFhXUbddu3aFVqcAICijXMjzo3ykyvPjSRp6tSpevjhh2WxWDR69GhNnz5dPXv21OHDh7V48eJcb6ddu3ZKSkrS3r17Hco3b94sDw8PJSQk6JdffjGty2gLFEUerg4AKOqOHz+uxx9/XDVr1tS6detUrVo1+7ohQ4boyJEj+vLLL10YYcG6cuWKypcvLw8PD3l4lPxfGVar1dUhFKiME5JNmzapW7du9vLNmzercePG+vXXX7Vp0yaHE5dNmzbJzc1Nbdq0yXa7MTExWrBggUv/QwgAKBycG3FuVJLcuHFDEydOVKdOnbRq1SrT+rNnz+Z6W7efZzVq1MhevnnzZj300ENat26dNm3apMcff9y+btOmTapcubJCQkKy3e6AAQN04sQJbdiwIdexAPmFmUbAHbz55pu6fPmy5s2b53BSlKFu3boO/02Li4vTAw88IH9/f1mtVjVo0ECzZ892aFOrVi3t27dP33zzjSwWiywWizp27Ghfn5SUpOeff17BwcGyWq2qW7eu3njjDdlsNoftnD9/Xk8++aS8vb1VqVIl9e/fXz/++KMsFovpP3Xr1q1T+/btVb58eVWqVEndu3fXgQMHHOpkXJu/f/9+PfHEE/L19bV/+GV33f7ChQvVqlUrlStXTr6+vurQoYPDB+5nn32mrl27KigoSFarVXXq1NHEiROVnp6e847PQlRUlCpXruww5XfYsGGyWCx6++237WVnzpyRxWJx2O+pqamKjo5W3bp1ZbVaFRwcrJdeekmpqakOfWR13f5PP/2k8PBwlS1bVnfddZdee+01xcXFyWKxZJkk2bRpk1q1aiUvLy/dfffd+vDDD+3rFixYoN69e0uS7r//fvvxzzgJ+OGHHxQZGakqVaqobNmyql27tgYNGuT0vspOjRo1FBwcbJpptHnzZrVt21Zt2rTJct19992nSpUq5VscAIDii3Mjzo1K0rnRuXPnlJKSorZt22a53t/fP9fbatWqlTw9PbM8l+rQoYNatWrlsM5ms+m7775TmzZtCvT+WMDvUfJT48Dv9MUXX+juu+/OcZbF7WbPnq377rtPDz/8sDw8PPTFF1/oueeek81m05AhQyRJM2bM0LBhw1ShQgW9+uqrkqSAgABJ0tWrVxUeHq5Tp07p2WefVY0aNbRlyxaNHj1ap0+f1owZMyTd/JDp1q2bvv/+e/3tb39T/fr19dlnn6l///6mmNasWaMuXbro7rvvVkxMjH799Ve98847atu2rXbu3Gm6yWLv3r11zz33aNKkSaZrsm83fvx4xcTEqE2bNpowYYI8PT21bds2rVu3Tp07d5Z080SgQoUKioqKUoUKFbRu3TqNGzdOKSkpmjJlSq72aYb27dtr+vTp2rdvnxo2bChJ2rhxo9zc3LRx40YNHz7cXiZJHTp0sO+rhx9+WJs2bdIzzzyjkJAQ7dmzR9OnT9fPP/+sZcuWZdvnqVOn7Ccwo0ePVvny5fXPf/4z2/+6HTlyRL169dJTTz2l/v37a/78+RowYIBatGih++67Tx06dNDw4cP19ttv65VXXrH/VykkJERnz55V586dVbVqVY0aNUqVKlXSiRMntHTpUqf20520a9dOS5cuVWpqqqxWq9LS0rR9+3b97W9/09WrV/XSSy/JMAxZLBZdvHhR+/fv11//+td8jQEAUHxxbsS5UUk6N/L391fZsmX1xRdfaNiwYfLz88vztry8vNSiRQtt2rTJXnby5EmdPHlSbdq0UVJSksMsvD179iglJYVL01C0GQCylZycbEgyunfvnus2V69eNZVFRkYad999t0PZfffdZ4SHh5vqTpw40Shfvrzx888/O5SPGjXKcHd3NxISEgzDMIz/+7//MyQZM2bMsNdJT083HnjgAUOSERcXZy9v2rSp4e/vb5w/f95e9uOPPxpubm5Gv3797GXR0dGGJKNPnz6muDLWZTh8+LDh5uZmPPLII0Z6erpDXZvNluP+ePbZZ41y5coZ165ds5f179/fqFmzpqnu7c6ePWtIMmbNmmUYhmEkJSUZbm5uRu/evY2AgAB7veHDhxt+fn72OP71r38Zbm5uxsaNGx22N2fOHEOSsXnzZntZzZo1jf79+9uXhw0bZlgsFmPXrl32svPnzxt+fn6GJOP48eMObSUZ3377rUPMVqvVeOGFF+xln3zyiSHJWL9+vUM8n376qSHJ2L59e4774feaOXOmIcm+P7Zu3WpIMuLj4439+/cbkox9+/YZhmEYy5cvNyQZH330UY7bjI6OvuPxAwAUf5wbGaZ1GTg3Kr7nRuPGjTMkGeXLlze6dOlivP7668aOHTvytK0XX3zRkGT88ssvhmEYxr///W/Dy8vLSE1NNVasWGG4u7sbKSkphmEYxrvvvmva31np379/lj8bQGHg8jQgBykpKZKkihUr5rpN2bJl7V8nJyfr3LlzCg8P17Fjx5ScnHzH9p988onat28vX19fnTt3zv6KiIhQenq6vv32W0nSypUrVaZMGQ0ePNje1s3Nzf4fuwynT5/W7t27NWDAAIf/nDRu3FidOnXSihUrTDHkZlbJsmXLZLPZNG7cOLm5Of4quX167e3749KlSzp37pzat2+vq1ev6uDBg3fs53ZVq1ZV/fr17ftg8+bNcnd314svvqgzZ87o8OHDkm7+N61du3b2OD755BOFhISofv36Dvv0gQcekCStX78+2z5XrlypsLAwNW3a1F7m5+envn37Zlm/QYMGat++vUPM9erV07Fjx+44vozLv5YvX67r16/fsX5e3X69vXRzP1avXl01atRQ/fr15efnZ586nd3NGW/fj+fOndPVq1dls9lM5ZmnuAMAijfOjbLHuVHxPTcaP368Fi1apGbNmunrr7/Wq6++qhYtWqh58+amSxbvJOOcKWN21+bNm9WiRQt5enoqLCzMfklaxjovLy+1bNnS3j6786nr16+bygtynwAZSmXS6Ntvv1W3bt0UFBQki8WS4/TL7BiGoalTp+ree++V1WpV9erV9frrr+d/sHApb29vSTc/0HNr8+bNioiIsF8fX7VqVfujynNzYnT48GGtXLlSVatWdXhFRERI+u1mfPHx8apWrZrKlSvn0L5u3boOy/Hx8ZKkevXqmfoKCQnRuXPndOXKFYfy2rVr3zHOo0ePys3NTQ0aNMix3r59+/TII4/Ix8dH3t7eqlq1qv7yl79Iyt3+yKx9+/b2D+GNGzeqZcuWatmypfz8/LRx40alpKToxx9/dDg5OXz4sPbt22fap/fee6+knG9wGB8fb9qnknk/Z6hRo4apzNfXVxcvXrzj2MLDw9WzZ0+NHz9eVapUUffu3RUXF3fHxEtycrISExPtrwsXLuRYv2HDhqpUqZJDYijjOn6LxaKwsDCHdcHBwaZxZd6XU6ZM0cmTJ03l//73v+84bgDFA+dPkDg3ygnnRsX33EiS+vTpo40bN+rixYtatWqVnnjiCe3atUvdunXTtWvX7tg+Q9u2bWWxWLI8z6pUqZIaNGjgsO4Pf/iDPD097e0TEhJMx2Xx4sXasmWLqTzzvZOAglAq72l05coVNWnSRIMGDdKf//znPG1jxIgRWrVqlaZOnapGjRrpwoULufplhOLF29tbQUFBpsdmZufo0aN68MEHVb9+fU2bNk3BwcHy9PTUihUrNH36dNPNGrNis9nUqVMnvfTSS1muz/gwL0i3/wfs90hKSlJ4eLi8vb01YcIE1alTR15eXtq5c6defvnlXO2PzNq1a6e5c+fq2LFj2rhxo9q3by+LxaJ27dpp48aNCgoKks1mczgxstlsatSokaZNm5blNoODg/M8xszc3d2zLDdyuP9BBovFoiVLlui7777TF198oa+//lqDBg3SW2+9pe+++04VKlTIst2IESP0wQcf2JfDw8NzfLqGm5ubwsLCtGXLFhmGoc2bN9tP3iWpTZs2mj9/vv1eRz169DBtY/Xq1Q7LH374oVatWqWFCxc6lN933313HDeA4oHzJ0icG/1enBv9piidG93O29tbnTp1UqdOnVSmTBl98MEH2rZtm8LDw3PVvnLlyqpfv742bdqky5cv66efflJ0dLR9fZs2bbRp0yb98ssvSkhIMM3QCgwMNJ1nTfl/9u49Lsoy///4exABDwziAZHEs5mW574qqKuVZmYlHXQrNzXDbLPzluW3g6j7DUvLtlatNHE3K3ftp2RtmZpaidSahzxUlqZQJnZQQDwAwvX7Q5kc7kGYkZlh4PV8PHiMc9/XdV+f674Z5uNn7rnvmTOVlZWl5557zml5165dKxQTcD5qZNFo6NChGjp0aJnr8/Pz9fjjj+utt95Sdna2LrnkEj3zzDOOOzh8/fXXmjdvnnbu3On4hKIinz4gMF1zzTV69dVXlZ6erri4uHO2fffdd5Wfn68VK1Y4fari6hTfsu6Q0LZtW+Xl5Tk+PStLy5YttW7dOh0/ftzpE7U9e/ZY2knS7t27Ldv45ptv1LhxY9WrV++cY5UVZ3Fxsb766iun05PPtn79ev32229atmyZ48KL0ulb9XqqJOFZvXq1Nm3apMcee0zS6Qs7zps3TzExMapXr5569uzpFOuXX36pK664wu07U7Rs2dKyTyXrfnZHeTH06dNHffr00f/93//pzTff1KhRo7RkyRIlJia6bD9p0iTHJ5TS6U/vytOvXz998MEHWrFihX7++WenO4bEx8fr8ccf1/vvv68TJ064vDhj6d/PDRs2KCwsrNzfWwCBi/wJJciNXCM3CuzcyJVLL71U//jHP3Tw4EG3+vXr108LFy7UqlWrVFRU5HTR+Pj4eL311luOIlbpPMtVPrV48WLl5+eTZ8EvauTX08pzzz33KD09XUuWLNH27ds1YsQIXXXVVY7vBJfcMeK9995T69at1apVKyUmJvJJWTU1adIk1atXT4mJiTp06JBl/d69e/W3v/1N0u+fpJz9yUlOTo5SUlIs/erVq6fs7GzL8pEjRyo9PV0ffvihZV12drZOnTolSRoyZIgKCws1f/58x/ri4mLNmTPHqU+zZs3UrVs3/eMf/3Aab+fOnVq1apWuvvrqc8y+bAkJCQoKCtK0adMsn4qVzN/V/igoKNDcuXM9GlM6/R+MCy64QLNnz1ZhYaGj2NG/f3/t3btXb7/9tvr06aPg4N9r4iNHjtSBAwec9lWJEydOWE5BP9uQIUOUnp6ubdu2OZYdPnxYb7zxhsdzKElESx//I0eOWD51K0k6z3UadqdOnTRo0CDHz9lJYVlKEpRnnnlGdevWdUpue/XqpeDgYD377LNObQHgXMifag5yI9fIjQIzNzp+/LjS09Ndrvvggw8kuf4q47n069dPRUVFmjVrltq3b68mTZo41sXHxysvL09z585VUFBQhe9CCPhLjTzT6FwyMzOVkpKizMxMxcTESJIefvhhrVy5UikpKXr66af1/fffKyMjQ0uXLtU///lPFRUV6cEHH9RNN92ktWvX+nkGqGxt27bVm2++qT/+8Y/q2LGjRo8erUsuuUQFBQXauHGjli5dqrFjx0qSrrzySoWEhOjaa6/VhAkTlJeXp/nz5ysqKsryCUXPnj01b948/fWvf1W7du0UFRWlyy+/XI888ohWrFiha665xnE70mPHjmnHjh16++23tX//fjVu3FgJCQnq1auX/vKXv2jPnj266KKLtGLFCkfyffYnNjNnztTQoUMVFxenO+64w3Fb2YiICCUlJXm0X9q1a6fHH39c06dPV//+/XXDDTcoNDRUmzZtUkxMjJKTkxUfH6/IyEiNGTNG9913n2w2m15//fUKnY58Lv3799eSJUvUuXNnxydHPXr0UL169fTtt9/q1ltvdWp/22236d///rfuuusurVu3Tn379lVRUZG++eYb/fvf/9aHH37odAHCs02aNEmLFy/W4MGDde+99zpuK9uiRQsdPnzY7U/npNPJTq1atfTMM88oJydHoaGhuvzyy/Xmm29q7ty5uv7669W2bVsdPXpU8+fPl91u9ziBLUuvXr0UEhKi9PR0DRw40CmRrFu3rrp27ar09HQ1aNDAcQtfACgL+VPNQm7kGrlRYOZGx48fV3x8vPr06aOrrrpKsbGxys7OVmpqqj799FMlJCSoe/fubm2z5AO39PR0x2uhxIUXXqjGjRsrPT1dnTt3dlzsG6iy/HDHtipFklm+fLnjecntpevVq+f0ExwcbEaOHGmMMWb8+PFGktm9e7ej3+bNm40k88033/h6CvCRb7/91owfP960atXKhISEmPDwcNO3b1/z0ksvOd0edcWKFaZLly4mLCzMtGrVyjzzzDNm4cKFlluQZmVlmWHDhpnw8HAjyek2mkePHjWTJ0827dq1MyEhIaZx48YmPj7ezJo1yxQUFDja/fLLL+bWW2814eHhJiIiwowdO9akpaUZSWbJkiVO8a9Zs8b07dvX1KlTx9jtdnPttdear776yqlNya1jf/nlF8v8S99WtsTChQtN9+7dTWhoqImMjDQDBgwwq1evdqxPS0szffr0MXXq1DExMTFm0qRJ5sMPP7TcVrUit5UtUXLL+D//+c9OywcNGmQkmY8++sjSp6CgwDzzzDPm4osvdsTas2dPM3XqVJOTk+NoV/q2ssYYs3XrVtO/f38TGhpqmjdvbpKTk82LL75oJJmsrCynvsOGDbOMPWDAAMttUufPn2/atGljatWq5dgXW7ZsMbfccotp0aKFCQ0NNVFRUeaaa64xX3zxRYX2i7vi4uKMJPO///u/lnX33XefkWSGDh1aoW1NmTKlwscPQOAjf4Ix5EbkRtUjNyosLDTz5883CQkJpmXLliY0NNTUrVvXdO/e3cycOdPk5+d7tN2YmBgjybz66quWddddd53L41WWMWPGWPYX4Cs2Y86zrB3gbDabli9f7rjQ67/+9S+NGjVKu3btsly0rX79+oqOjtaUKVP09NNPO93i8MSJE6pbt65WrVqlwYMH+3IKgJPU1FRdf/312rBhg9N1alC5HnjgAb3yyivKy8sr8wKPAFBdkT8hkJAb+Qa5EVA98fW0Urp3766ioiL9/PPPTncYOFvfvn116tQp7d27V23btpUkffvtt5J+v7Ae4AsnTpxwuptHUVGRXnrpJdntdvXo0cOPkVUvpffzb7/9ptdff139+vUjKQIAkT+h6iA38g1yI6DmqJFFo7y8PKer++/bt0/btm1Tw4YNdeGFF2rUqFEaPXq0nnvuOXXv3l2//PKLPvroI3Xp0kXDhg3ToEGD1KNHD40bN04vvPCCiouLNXHiRA0ePNgnt/wEStx77706ceKE4uLilJ+fr2XLlmnjxo16+umnK+3WsJDi4uI0cOBAdezYUYcOHdJrr72m3NxcPfnkk/4ODQB8hvwJgYDcyDdqYm70yy+/qKioqMz1ISEhatiwoQ8jAnzE39+P84d169YZSZafku/qFhQUmKeeesq0atXK1K5d2zRr1sxcf/31Zvv27Y5tHDhwwNxwww2mfv36pmnTpmbs2LHmt99+89OMUFO98cYbpkePHsZut5uQkBDTqVMn89JLL/k7rGpn8uTJpn379qZOnTqmbt26pl+/fk7XJgCAmoD8CYGA3Mg3amJu1LJlS5d/A0t+uOYQqqsaf00jAAAAAADOJS0tTSdOnChzfWRkpHr27OnDiADfoGgEAAAAAAAAixpzTaPi4mL99NNPCg8Pl81m83c4AACgDMYYHT16VDExMQoKCvJ3ODUa+RMAAIHBW/lTjSka/fTTT4qNjfV3GAAAoIJ++OEHNW/e3N9h1GjkTwAABJbKzp9qTNEoPDxc0ukdaLfb/RwNAAAoS25urmJjYx3v3fAf8icAAAKDt/KnGlM0Kjml2m63k/QAABAA+DqU/5E/AQAQWCo7f+JCAQAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwCHancatWrZSRkWFZfvfdd2vOnDmW5YsWLdLtt9/utCw0NFQnT56UJBUWFuqJJ57Q+++/r++//14REREaNGiQZsyYoZiYmHOOm5ycrMcee8yd8H3CZkvydwj+lZjk/TEWeH8MY7w/BgCgZiB/Kp8tzd8R+FmqD8ZI8P4Qpq/3xwAA+JZbRaNNmzapqKjI8Xznzp0aPHiwRowYUWYfu92u3bt3O57bbDbHv48fP64tW7boySefVNeuXXXkyBHdf//9uu666/TFF184bWfatGkaP36843l4eLg7oQMAAPgF+RMAAAhUbhWNmjRp4vR8xowZatu2rQYMGFBmH5vNpujoaJfrIiIitHr1aqdlf//739WrVy9lZmaqRYsWjuXh4eFlbgcAAKCqIn8CAACByuNrGhUUFGjx4sUaN26c06dfpeXl5ally5aKjY3V8OHDtWvXrnNuNycnRzabTQ0aNHBaPmPGDDVq1Ejdu3fXzJkzderUqXNuJz8/X7m5uU4/AAAA/kT+BAAAAolbZxqdLTU1VdnZ2Ro7dmyZbTp06KCFCxeqS5cuysnJ0axZsxQfH69du3apefPmlvYnT57Uo48+qltuuUV2u92x/L777lOPHj3UsGFDbdy4UZMnT9bBgwf1/PPPlzl2cnKypk6d6un0AAAAKh35EwAACCQ2Y4zxpOOQIUMUEhKid999t8J9CgsL1bFjR91yyy2aPn26Zd2NN96oH3/8UevXr3dKekpbuHChJkyYoLy8PIWGhrpsk5+fr/z8fMfz3NxcxcbGKicn55zbPl9cCDvJ+2NwIWwAqNZyc3MVERHh9fdsfyB/co0LYftgjATvD8GFsAHAf7yVP3l0plFGRobWrFmjZcuWudWvdu3a6t69u/bs2eO0vLCwUCNHjlRGRobWrl1b7gR79+6tU6dOaf/+/erQoYPLNqGhoWUmRAAAAL5G/gQAAAKNR9c0SklJUVRUlIYNG+ZWv6KiIu3YsUPNmjVzLCtJeL777jutWbNGjRo1Knc727ZtU1BQkKKiotyOHQAAwB/InwAAQKBx+0yj4uJipaSkaMyYMQoOdu4+evRoXXDBBUpOTpZ0+javffr0Ubt27ZSdna2ZM2cqIyNDiYmJkk4nPDfddJO2bNmi9957T0VFRcrKypIkNWzYUCEhIUpPT9fnn3+uyy67TOHh4UpPT9eDDz6oP/3pT4qMjDzf+QMAAHgd+RMAAAhEbheN1qxZo8zMTI0bN86yLjMzU0FBv5+8dOTIEY0fP15ZWVmKjIxUz549tXHjRnXq1EmSdODAAa1YsUKS1K1bN6dtrVu3TgMHDlRoaKiWLFmipKQk5efnq3Xr1nrwwQf10EMPuRs6AACAX5A/AQCAQOTxhbADja8uqsmFsJO8PwYXwgaAaq06Xwg70Pgsf+JC2N6X4P0huBA2APiPt96zPbqmEQAAAAAAAKo3j+6ehnPw5EybBT442SvR5v0xfMWjfexenxp/xpgPcDYXAMAh1YM+s5IqOQgXHvbBGL6S6kGfBPea1/gzxnyAs7kA+BpnGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACxsxhjj7yB8ITc3VxEREcrJyZHdbvfaODZbNdqdiTZ/R+A/b3vQJzupsqOAHxiT5O8QgBrPV+/ZKJ/v8qckr23b5x5O8ncEfmMucz93tEVUo9y5BjN9/R0BAG+9Z3OmEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwCLY3wFUO4k2f0eAynCTB33eTnK/T7YHfeBVNluSv0NwyZgkf4cAAN7zcJK/I0AlsK0zbvcxl7mfO9si3B8H3mVL83cErpm+/o4ACHycaQQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAItgfwdQ7SxIcr9Pogd9UPXc5EmnJPeav+3BENlujoEqyWZL8ncILhmT5O8QAFQHCR70Sa3kGOAXtnXG62OYy2xu97FFeD8ueJ8tzd8RuGb6+jsCoOI40wgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGAR7O8AALjhJg/6vJ3kfp9sD/qgRrLZkjzoNaWyw7Awxub1MQAAgcG2zrjdx1zm/vuILcL9cVAz2dI86NQvqbLDsDDG+2Mg8Lh1plGrVq1ks9ksPxMnTnTZftGiRZa2YWFhjvWFhYV69NFH1blzZ9WrV08xMTEaPXq0fvrpJ6ftHD58WKNGjZLdbleDBg10xx13KC8vz4PpAgAA+Bb5EwAACFRunWm0adMmFRUVOZ7v3LlTgwcP1ogRI8rsY7fbtXv3bsdzm+33qv3x48e1ZcsWPfnkk+ratauOHDmi+++/X9ddd52++OILR7tRo0bp4MGDWr16tQoLC3X77bfrzjvv1JtvvulO+AAAAD5H/gQAAAKVW0WjJk2aOD2fMWOG2rZtqwEDBpTZx2azKTo62uW6iIgIrV692mnZ3//+d/Xq1UuZmZlq0aKFvv76a61cuVKbNm3SpZdeKkl66aWXdPXVV2vWrFmKiYlxZwoAAAA+Rf4EAAAClccXwi4oKNDixYs1btw4p0+/SsvLy1PLli0VGxur4cOHa9euXefcbk5Ojmw2mxo0aCBJSk9PV4MGDRwJjyQNGjRIQUFB+vzzz8vcTn5+vnJzc51+AAAA/In8CQAABBKPi0apqanKzs7W2LFjy2zToUMHLVy4UO+8844WL16s4uJixcfH68cff3TZ/uTJk3r00Ud1yy23yG63S5KysrIUFRXl1C44OFgNGzZUVlZWmWMnJycrIiLC8RMbG+v+JAEAACoR+RMAAAgkHheNXnvtNQ0dOvScpzfHxcVp9OjR6tatmwYMGKBly5apSZMmeuWVVyxtCwsLNXLkSBljNG/ePE/Dcpg8ebJycnIcPz/88MN5bxMAAOB8kD8BAIBA4tY1jUpkZGRozZo1WrZsmVv9ateure7du2vPnj1Oy0sSnoyMDK1du9bxKZkkRUdH6+eff3Zqf+rUKR0+fLjM7/pLUmhoqEJDQ92KDwAAwFvInwAAQKDx6EyjlJQURUVFadiwYW71Kyoq0o4dO9SsWTPHspKE57vvvtOaNWvUqFEjpz5xcXHKzs7W5s2bHcvWrl2r4uJi9e7d25PwAQAAfI78CQAABBq3zzQqLi5WSkqKxowZo+Bg5+6jR4/WBRdcoOTkZEnStGnT1KdPH7Vr107Z2dmaOXOmMjIylJiYKOl0wnPTTTdpy5Yteu+991RUVOT4nn3Dhg0VEhKijh076qqrrtL48eP18ssvq7CwUPfcc49uvvlm7vwBAAACAvkTAAAIRG4XjdasWaPMzEyNGzfOsi4zM1NBQb+fvHTkyBGNHz9eWVlZioyMVM+ePbVx40Z16tRJknTgwAGtWLFCktStWzenba1bt04DBw6UJL3xxhu65557dMUVVygoKEg33nijXnzxRXdDBwAA8AvyJwAAEIhsxhjj7yB8ITc3VxEREcrJyXH6zn9ls9mS3O+U6EEfoKLe9qBPdlJlRwGcZYrXRzCm7FuZo+rz1Xs2yuez/CnNg06plR0F8DtzmfvvI7aIGvHfKvhLvySvD2GM98eA93jrPdvju6cBAAAAAACg+vLo7mk4B0/OGlrgQR/OTqp6Fnjw6VKiD86GuMmDPm8nudeeM5NQxdhsvvi0d6oPxuBTP9QQqR70SfDROPCuWUnu93nYgz5usq1z/33E3bOTODMJVY1H35px1wYfjCHJ9PXJMDUCZxoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMAi2N8BVDsLjAedplR6GBYLktzvk+hBH1/wZC7uqqpzB6qFqT4Ywwd/Vz0aw/2522xJHozjfcYk+TsEVCezkjzo48E4D7s5ToIHY6R60McXEnwwRqoPxgBqqg1J3h+jXxUdw4O529LcH8YXTF9/R+A+zjQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABY2Iwxxt9B+EJubq4iIiKUk5Mju93utXFs4z3otMCTQzDVveaJSe4PscCDPu6O49HcPeHm/tIU94dItLnfp7p424M+2UmVHQVwnjx43fuEu3+/qiZjkirc1lfv2Sifz/KnRzzoNCvJ/T4b3OyT6v4QSvCgj7vjeDJ3T7i7v/q52V6SHvagTzVhLnM/d7RF1Ij/uiGQePK69wV3/35VUaZvxdt66z2bM40AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWwf4OAJISbR50SnKv+QI32/vMVPe7JCa532eBu2N4ckwABDZ3/x5N8UoUACro4ST3+6S62T7B/SF8YkOS+31SKzsIFzw5JgACm7t/j/q52R5+x5lGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwCPZ3ANXOgiT3+yR60Keqcnf+VXXuC4z7fRJtlR9HddYgyf0+2R70AQBUfQke9Emt5Bj8KcHN9qleiKEyzEpyv8/DHvSpwUyO+/mmLcKDvBYAznDrTKNWrVrJZrNZfiZOnOiy/aJFiyxtw8LCnNosW7ZMV155pRo1aiSbzaZt27ZZtjNw4EDLdu666y53QgcAAPAL8icAABCo3DrTaNOmTSoqKnI837lzpwYPHqwRI0aU2cdut2v37t2O5zabc3X82LFj6tevn0aOHKnx48eXuZ3x48dr2rRpjud169Z1J3QAAAC/IH8CAACByq2iUZMmTZyez5gxQ23bttWAAQPK7GOz2RQdHV3m+ttuu02StH///nOOXbdu3XNuBwAAoCoifwIAAIHK4wthFxQUaPHixRo3bpzl06+z5eXlqWXLloqNjdXw4cO1a9cuj8Z744031LhxY11yySWaPHmyjh8/fs72+fn5ys3NdfoBAADwJ/InAAAQSDy+EHZqaqqys7M1duzYMtt06NBBCxcuVJcuXZSTk6NZs2YpPj5eu3btUvPmzSs81q233qqWLVsqJiZG27dv16OPPqrdu3dr2bJlZfZJTk7W1KlT3ZkSAACAV5E/AQCAQOJx0ei1117T0KFDFRMTU2abuLg4xcXFOZ7Hx8erY8eOeuWVVzR9+vQKj3XnnXc6/t25c2c1a9ZMV1xxhfbu3au2bdu67DN58mQ99NBDjue5ubmKjY2t8JgAAACVjfwJAAAEEo+KRhkZGVqzZs05P6lypXbt2urevbv27NnjybAOvXv3liTt2bOnzKQnNDRUoaGh5zUOAABAZSF/AgAAgcajaxqlpKQoKipKw4YNc6tfUVGRduzYoWbNmnkyrEPJbWXPdzsAAAC+Qv4EAAACjdtnGhUXFyslJUVjxoxRcLBz99GjR+uCCy5QcnKyJGnatGnq06eP2rVrp+zsbM2cOVMZGRlKTEx09Dl8+LAyMzP1008/SZLj9rLR0dGKjo7W3r179eabb+rqq69Wo0aNtH37dj344IP6wx/+oC5dung8cQAAAF8hfwIAAIHI7aLRmjVrlJmZqXHjxlnWZWZmKijo95OXjhw5ovHjxysrK0uRkZHq2bOnNm7cqE6dOjnarFixQrfffrvj+c033yxJmjJlipKSkhQSEqI1a9bohRde0LFjxxQbG6sbb7xRTzzxhLuhAwAA+AX5EwAACERuF42uvPJKGWNcrlu/fr3T89mzZ2v27Nnn3N7YsWPPeQeR2NhYffzxx+6GCQAAUGWQPwEAgEDk0TWNAAAAAAAAUL15dPc0nENikm/GWeCjcbytusyjprvJR+O8neRee0/i4ncSAHwv1UfjJPhoHG9L8HcAqAy2da7PPqxs5jKbW+09iivB/S4AAgNnGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACxsxhjj7yB8ITc3VxEREcrJyZHdbvfaODZbkte2XS0lJvlmnAVu/pon2jwYI8n9Pr6af031tr8D8LPsJH9HAIspPhhjqg/GcJ8xSRVu66v3bJTPZ/lTmtc2XT2l+micWUnutX/YzfaSlOB+F5/Nv4Yyl3mQB1cjtoga8d/jwNIvyftjbPDBGB4wfSve1lvv2ZxpBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAi2B/BwAfSUzydwSuLTC+GSfR5oMxkrw/Btxzkwd93q70KPzHF7+Tnuyv7KTKjsJPpvhonKk+GgeARaq/AyjDrCTfjPOwD8ZJ9f4QcI9tnfv5ubnMB7m2r6R6fwhP9pctwkf/b/K2fkm+GWeDj8apATjTCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYBHs7wCqncQkf0fg2oIk9/tU1bkk2rw/RnXaX3BPtnG/TwMf/E564m1/B1CGBknutc92s32VNtXfAQBVU6q/AyhDggd9Uis5hsrycJL3x0jwoE9qJccAv7ANm+J2H/OfqvmeaC6rmnmdyXEvLluEBzltVbUhyd8R1GicaQQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALAIdqdxq1atlJGRYVl+9913a86cOZblixYt0u233+60LDQ0VCdPnnQ8X7ZsmV5++WVt3rxZhw8f1tatW9WtWzenPidPntRf/vIXLVmyRPn5+RoyZIjmzp2rpk2buhO+byxIcr9Pogd93B3HkzF8IdHm7wj8y5PfF3dV1WPviar6e3+Tm+3f9koUVtlJ3h+jgQ/G8MXfSI9M9cEYqA7InyogwYM+qT4Yx5MxfOHhJH9H4F8JPhgj1Qdj+EqCm+1TvRCDC7Z1xq325jLf/L/BFuFeXJ4wOT6YS6oHfRIqOQZXNiT5YBBUJrfONNq0aZMOHjzo+Fm9erUkacSIEWX2sdvtTn1KJ03Hjh1Tv3799Mwzz5S5jQcffFDvvvuuli5dqo8//lg//fSTbrjhBndCBwAA8AvyJwAAEKjcOtOoSZMmTs9nzJihtm3basCAAWX2sdlsio6OLnP9bbfdJknav3+/y/U5OTl67bXX9Oabb+ryyy+XJKWkpKhjx4767LPP1KdPH3emAAAA4FPkTwAAIFB5fE2jgoICLV68WOPGjZPNVvbpdXl5eWrZsqViY2M1fPhw7dq1y61xNm/erMLCQg0aNMix7KKLLlKLFi2Unp5eZr/8/Hzl5uY6/QAAAPgT+RMAAAgkHheNUlNTlZ2drbFjx5bZpkOHDlq4cKHeeecdLV68WMXFxYqPj9ePP/5Y4XGysrIUEhKiBg0aOC1v2rSpsrKyyuyXnJysiIgIx09sbGyFxwQAAPAG8icAABBIPC4avfbaaxo6dKhiYmLKbBMXF6fRo0erW7duGjBggJYtW6YmTZrolVde8XTYCps8ebJycnIcPz/88IPXxwQAADgX8icAABBI3LqmUYmMjAytWbNGy5Ytc6tf7dq11b17d+3Zs6fCfaKjo1VQUKDs7GynT8sOHTp0zu/6h4aGKjQ01K34AAAAvIX8CQAABBqPzjRKSUlRVFSUhg0b5la/oqIi7dixQ82aNatwn549e6p27dr66KOPHMt2796tzMxMxcXFuTU+AACAv5A/AQCAQOP2mUbFxcVKSUnRmDFjFBzs3H306NG64IILlJycLEmaNm2a+vTpo3bt2ik7O1szZ85URkaGEhMTHX0OHz6szMxM/fTTT5JOJzTS6U/IoqOjFRERoTvuuEMPPfSQGjZsKLvdrnvvvVdxcXHc+QMAAAQE8icAABCI3C4arVmzRpmZmRo3bpxlXWZmpoKCfj956ciRIxo/fryysrIUGRmpnj17auPGjerUqZOjzYoVK3T77bc7nt98882SpClTpigpKUmSNHv2bAUFBenGG29Ufn6+hgwZorlz57obOgAAgF+QPwEAgEDkdtHoyiuvlDHG5br169c7PZ89e7Zmz559zu2NHTv2nHcQkaSwsDDNmTNHc+bMcSdUAACAKoH8CQAABCKP754GAAAAAACA6ouiEQAAAAAAACzc/noaypGY5H6fBa5PVz+3KR70gVctSPJ3BIHFF/vLozE8eG297cEw7spO8sEgVZQv9i8A/0r1oM+sJA/6uNn+YQ/GgHsS/B1AgEmoomO4+9qSZC6zeTCQe2wRnvw/q3rwZP/aVHP3F8rGmUYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALAI9ncA1c2UBTa3+0xNNF6IxE8WJLnXPtHN9r7iSVzuzt1XqmpcVVUD91/DbstO8v4YnvDV730DD/oAqNamzPIgf3q4GuVPCW62T/VCDJUh1YM+CZUcQ2VJ8HcAgcX8Z6rXx7BFVNHXfKr7XWwJ7s/F5PggRwVc4EwjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACAhc0YY/wdhC/k5uYqIiJCOTk5stvtXhvHNt79PlMW2NzuMzWxRhw2/1ngyf6dWulhAOclMcnfEVSOt300TnaSjwaqmYxJqnBbX71no3w+y58ecb/PlFke5E8Pkz951awk9/ts8KAP4E2p/g6gcpjL3P8b6QlbBH9Xvcn0rXhbb71nc6YRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAwmaMMf4Owhdyc3MVERGhnJwc2e12r41js1XR3Zlo83cElWeBL/bxVB+MAa9LTPJ3BK4tSPJ3BK5V1f3liaq6j2swY5Iq3NZX79kon+/ypySvbfu8PJzk7wgqz6wk74+xwQdjwPtS/R1AGRL8HUAZUv0dQCVK8HcAKM30rXhbb71nc6YRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsgt1p3KpVK2VkZFiW33333ZozZ45l+aJFi3T77bc7LQsNDdXJkycdz40xmjJliubPn6/s7Gz17dtX8+bNU/v27c85bnJysh577DF3wq/ZFhj3+yTaKj+O0hYkeX8MoDpITPJ3BIHFk/3F3yN4CflTAJuV5H6fhz3o464ET/okVXIQQABI9XcAASbVgz4JlRwDqhy3ikabNm1SUVGR4/nOnTs1ePBgjRgxosw+drtdu3fvdjy32ZwLEc8++6xefPFF/eMf/1Dr1q315JNPasiQIfrqq68UFhbmaDdt2jSNHz/e8Tw8PNyd0AEAAPyC/AkAAAQqt4pGTZo0cXo+Y8YMtW3bVgMGDCizj81mU3R0tMt1xhi98MILeuKJJzR8+HBJ0j//+U81bdpUqampuvnmmx1tw8PDy9wOAABAVUX+BAAAApXH1zQqKCjQ4sWLNW7cOMunX2fLy8tTy5YtFRsbq+HDh2vXrl2Odfv27VNWVpYGDRrkWBYREaHevXsrPT3daTszZsxQo0aN1L17d82cOVOnTp06Z3z5+fnKzc11+gEAAPAn8icAABBI3DrT6GypqanKzs7W2LFjy2zToUMHLVy4UF26dFFOTo5mzZql+Ph47dq1S82bN1dWVpYkqWnTpk79mjZt6lgnSffdd5969Oihhg0bauPGjZo8ebIOHjyo559/vsyxk5OTNXXqVE+nBwAAUOnInwAAQCDxuGj02muvaejQoYqJiSmzTVxcnOLi4hzP4+Pj1bFjR73yyiuaPn16hcd66KGHHP/u0qWLQkJCNGHCBCUnJys0NNRln8mTJzv1y83NVWxsbIXHBAAAqGzkTwAAIJB49PW0jIwMrVmzRomJiW71q127trp37649e/ZIkuM79ocOHXJqd+jQoXN+/7537946deqU9u/fX2ab0NBQ2e12px8AAAB/IX8CAACBxqOiUUpKiqKiojRs2DC3+hUVFWnHjh1q1qyZJKl169aKjo7WRx995GiTm5urzz//3OkTttK2bdumoKAgRUVFeRI+AACAz5E/AQCAQOP219OKi4uVkpKiMWPGKDjYufvo0aN1wQUXKDk5WdLp27z26dNH7dq1U3Z2tmbOnKmMjAzHJ2w2m00PPPCA/vrXv6p9+/aOW8bGxMQoISFBkpSenq7PP/9cl112mcLDw5Wenq4HH3xQf/rTnxQZGXme0wcAAPA+8icAABCI3C4arVmzRpmZmRo3bpxlXWZmpoKCfj956ciRIxo/fryysrIUGRmpnj17auPGjerUqZOjzaRJk3Ts2DHdeeedys7OVr9+/bRy5UqFhYVJOn2a9JIlS5SUlKT8/Hy1bt1aDz74oNP37QEAAKoy8icAABCIbMYY4+8gfCE3N1cRERHKycnx6vfzbbZqtDsTy74VcKVZkOT9MVBzJSb5OwLXPPm9r6pzqU74e+RVxiRVuK2v3rNRPt/lT0le27bPPZzk/TESvD8EarBUfwdQhgQP+qRWcgywSvB3ANWb6Vvxtt56z/bomkYAAAAAAACo3igaAQAAAAAAwMLtaxrh3IzxwVe65KOvwS3wYAx3v9Lmq6/c8LWT6qG6fEWruswDPjLFzfZTvRIF4E3ufH3xfPjka3CzPBjD3a+0pbo/hEcSfDQOvCvV3wFUklR/B4CA0i/JvfYb3Gxfg3CmEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwCLY3wHAM8bY/B2CSzabca9DYtWch+9McbP9VK9E4ReJSf6OAAgQ1eh1D/iZMUn+DsElmy3JvQ4Pu9m+uumX5F77DW62r8pS/R0AECCq0+vezzjTCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFsH+DgDVizE2f4fgkm2BDwZJTPL+GL6Yh68sSHK/jy/2MaoHT36/AMBPjEnydwgu2dJ8MEiqB30eTqrkIAJIggd9Uis5BlRfCf4OAFURZxoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsgv0dAOALxiT5OwSXbOP9HQGqtQXGvfaJNu/Ecb4WJPk7AgCokUxfHwziwRi2Ryo/DMBhVpJ77R92s72vJPg7AFQXnGkEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwsBljTEUbt2rVShkZGZbld999t+bMmWNZvmjRIt1+++1Oy0JDQ3Xy5EnHc2OMpkyZovnz5ys7O1t9+/bVvHnz1L59e0ebw4cP695779W7776roKAg3Xjjjfrb3/6m+vXrVzR05ebmKiIiQjk5ObLb7RXuB6B8NluSbwZK9NE4NZSZ7+8IgNOq23s2+RMAV2xpPhoo1Ufj1FBmpr8jAE7z1nu2W2cabdq0SQcPHnT8rF69WpI0YsSIMvvY7XanPqWTpmeffVYvvviiXn75ZX3++eeqV6+ehgwZ4pQYjRo1Srt27dLq1av13nvv6ZNPPtGdd97pTugAAAB+Qf4EAAACVbA7jZs0aeL0fMaMGWrbtq0GDBhQZh+bzabo6GiX64wxeuGFF/TEE09o+PDhkqR//vOfatq0qVJTU3XzzTfr66+/1sqVK7Vp0yZdeumlkqSXXnpJV199tWbNmqWYmBh3pgAAAOBT5E8AACBQeXxNo4KCAi1evFjjxo2TzWYrs11eXp5atmyp2NhYDR8+XLt27XKs27dvn7KysjRo0CDHsoiICPXu3Vvp6emSpPT0dDVo0MCR8EjSoEGDFBQUpM8//7zMcfPz85Wbm+v0AwAA4E/kTwAAIJB4XDRKTU1Vdna2xo4dW2abDh06aOHChXrnnXe0ePFiFRcXKz4+Xj/++KMkKSsrS5LUtGlTp35NmzZ1rMvKylJUVJTT+uDgYDVs2NDRxpXk5GRFREQ4fmJjYz2ZJgAAQKUhfwIAAIHE46LRa6+9pqFDh57z9Oa4uDiNHj1a3bp104ABA7Rs2TI1adJEr7zyiqfDVtjkyZOVk5Pj+Pnhhx+8PiYAAMC5kD8BAIBA4tY1jUpkZGRozZo1WrZsmVv9ateure7du2vPnj2S5Piu/qFDh9SsWTNHu0OHDqlbt26ONj///LPTdk6dOqXDhw+X+V1/6fRdRkJDQ92KDwAAwFvInwAAQKDx6EyjlJQURUVFadiwYW71Kyoq0o4dOxwJTuvWrRUdHa2PPvrI0SY3N1eff/654uLiJJ3+tC07O1ubN292tFm7dq2Ki4vVu3dvT8IHAADwOfInAAAQaNw+06i4uFgpKSkaM2aMgoOdu48ePVoXXHCBkpOTJUnTpk1Tnz591K5dO2VnZ2vmzJnKyMhQYmKipNN3BnnggQf017/+Ve3bt1fr1q315JNPKiYmRgkJCZKkjh076qqrrtL48eP18ssvq7CwUPfcc49uvvlm7vwBAAACAvkTAAAIRG4XjdasWaPMzEyNGzfOsi4zM1NBQb+fvHTkyBGNHz9eWVlZioyMVM+ePbVx40Z16tTJ0WbSpEk6duyY7rzzTmVnZ6tfv35auXKlwsLCHG3eeOMN3XPPPbriiisUFBSkG2+8US+++KK7oQMAAPgF+RMAAAhENmOM8XcQvpCbm6uIiAjl5OTIbrf7OxygWrHZknwzUKKPxqmhzHx/RwCcxnt21cGxALzHluajgVJ9NE4NZWb6OwLgNG+9Z3t89zQAAAAAAABUXx7dPQ0AzmZMkr9DAAAACCimr48G8tU4AKolzjQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIBFsL8D8BVjjCQpNzfXz5EAAIBzKXmvLnnvhv+QPwEAEBi8lT/VmKLR0aNHJUmxsbF+jgQAAFTE0aNHFRER4e8wajTyJwAAAktl5082U0M+xisuLtZPP/2k8PBw2Ww2f4fjM7m5uYqNjdUPP/wgu93u73B8ribPn7kz95o2d6lmz786zd0Yo6NHjyomJkZBQXyT3p/InwL/9eSJmjx/5s7cmXvNUp3m7638qcacaRQUFKTmzZv7Owy/sdvtAf8iOB81ef7MnbnXRDV5/tVl7pxhVDWQP1WP15OnavL8mTtzr2lq8tyl6jN/b+RPfHwHAAAAAAAAC4pGAAAAAAAAsKBoVM2FhoZqypQpCg0N9XcoflGT58/cmXtNVJPnX5PnDlS2mv56qsnzZ+7MvaapyXOXmH9F1JgLYQMAAAAAAKDiONMIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI2qmBkzZshms+mBBx5wLHv11Vc1cOBA2e122Ww2ZWdnW/odPnxYo0aNkt1uV4MGDXTHHXcoLy/Pqc327dvVv39/hYWFKTY2Vs8++6xlO0uXLtVFF12ksLAwde7cWe+//77TemOMnnrqKTVr1kx16tTRoEGD9N133/l17q1atZLNZnP6mTFjRkDP/fDhw7r33nvVoUMH1alTRy1atNB9992nnJwcp36ZmZkaNmyY6tatq6ioKD3yyCM6deqUU5v169erR48eCg0NVbt27bRo0SLL+HPmzFGrVq0UFham3r1767///a/T+pMnT2rixIlq1KiR6tevrxtvvFGHDh2qlLmfz/xLH3ebzaYlS5YE1Pxd/d5PmDBBbdu2VZ06ddSkSRMNHz5c33zzjVO/6nDsPZ17dT3uJYwxGjp0qGw2m1JTU53WVYfjDngD+RP5k1Sz8qeanDu5mr9E/kT+RP7kNQZVxn//+1/TqlUr06VLF3P//fc7ls+ePdskJyeb5ORkI8kcOXLE0veqq64yXbt2NZ999pn59NNPTbt27cwtt9ziWJ+Tk2OaNm1qRo0aZXbu3GneeustU6dOHfPKK6842qSlpZlatWqZZ5991nz11VfmiSeeMLVr1zY7duxwtJkxY4aJiIgwqamp5ssvvzTXXXedad26tTlx4oTf5t6yZUszbdo0c/DgQcdPXl5eQM99x44d5oYbbjArVqwwe/bsMR999JFp3769ufHGGx39Tp06ZS655BIzaNAgs3XrVvP++++bxo0bm8mTJzvafP/996Zu3brmoYceMl999ZV56aWXTK1atczKlSsdbZYsWWJCQkLMwoULza5du8z48eNNgwYNzKFDhxxt7rrrLhMbG2s++ugj88UXX5g+ffqY+Pj485r3+c7fGGMkmZSUFKdjf/bxqOrzL+v3/pVXXjEff/yx2bdvn9m8ebO59tprTWxsrDl16pQxpnoce0/nbkz1Pe4lnn/+eTN06FAjySxfvtyxvDocd8AbyJ/In2pa/lSTc6ey5m8M+RP5E/mTt1A0qiKOHj1q2rdvb1avXm0GDBjg8oWwbt06l2/8X331lZFkNm3a5Fj2wQcfGJvNZg4cOGCMMWbu3LkmMjLS5OfnO9o8+uijpkOHDo7nI0eONMOGDXPadu/evc2ECROMMcYUFxeb6OhoM3PmTMf67OxsExoaat566y2/zN2Y00nP7Nmzy9x+oM+9xL///W8TEhJiCgsLjTHGvP/++yYoKMhkZWU52sybN8/Y7XbHXCdNmmQuvvhip+388Y9/NEOGDHE879Wrl5k4caLjeVFRkYmJiTHJycmOedauXdssXbrU0ebrr782kkx6errHczfm/OZvjLG8KZRWlefvzty//PJLI8ns2bPHGBP4x/585m5M9T7uW7duNRdccIE5ePCgZZ6BftwBbyB/In+qaflTTc6djCF/In8if/IHvp5WRUycOFHDhg3ToEGD3O6bnp6uBg0a6NJLL3UsGzRokIKCgvT555872vzhD39QSEiIo82QIUO0e/duHTlyxNGm9PhDhgxRenq6JGnfvn3KyspyahMREaHevXs72njifOZeYsaMGWrUqJG6d++umTNnOp1uWF3mnpOTI7vdruDgYEfMnTt3VtOmTZ1izs3N1a5duyo0r4KCAm3evNmpTVBQkAYNGuRos3nzZhUWFjq1ueiii9SiRYvzmrt0fvM/exuNGzdWr169tHDhQhljHOuq8vwrOvdjx44pJSVFrVu3VmxsrGNegXzsz2fuZ2+juh3348eP69Zbb9WcOXMUHR1tWR/oxx3wBvIn8qfyVLf8qSbnTiWxkz+RP52N/Mn7gstvAm9bsmSJtmzZok2bNnnUPysrS1FRUU7LgoOD1bBhQ2VlZTnatG7d2qlNyQsnKytLkZGRysrKcnoxlbQ5extn93PVxl3nO3dJuu+++9SjRw81bNhQGzdu1OTJk3Xw4EE9//zzjrgDfe6//vqrpk+frjvvvNOxrKyYz463rDa5ubk6ceKEjhw5oqKiIpdtSr4HnZWVpZCQEDVo0MDSxtO5S+c/f0maNm2aLr/8ctWtW1erVq3S3Xffrby8PN13332O2Kvi/Csy97lz52rSpEk6duyYOnTooNWrVzsS90A+9uc7d6n6HvcHH3xQ8fHxGj58uMv1gXzcAW8gfyJ/Kk91y59qcu4kkT+RP5E/+QtFIz/74YcfdP/992v16tUKCwvzdzg+VVlzf+ihhxz/7tKli0JCQjRhwgQlJycrNDS0MkKtdO7MPTc3V8OGDVOnTp2UlJTkmwC9rLLm/+STTzr+3b17dx07dkwzZ850vPlVRRWd+6hRozR48GAdPHhQs2bN0siRI5WWlhbQfycqa+7V8bivWLFCa9eu1datW/0QHRB4yJ/In2pa/lSTcyeJ/In8ifzJn/h6mp9t3rxZP//8s3r06KHg4GAFBwfr448/1osvvqjg4GAVFRWVu43o6Gj9/PPPTstOnTqlw4cPO07Ri46Otly5veR5eW3OXn92P1dt3FEZc3eld+/eOnXqlPbv3++IO1DnfvToUV111VUKDw/X8uXLVbt2bcc2zmdedrtdderUUePGjVWrVq1y515QUGC584qnc6+s+bvSu3dv/fjjj8rPz6+y86/o3CMiItS+fXv94Q9/0Ntvv61vvvlGy5cvP+e8StZV57m7Uh2O++rVq7V37141aNDAsV6SbrzxRg0cOPCc8ypZV1XnDngD+RP5U03Ln2py7uTO/MmfyJ8k8qfKRtHIz6644grt2LFD27Ztc/xceumlGjVqlLZt26ZatWqVu424uDhlZ2dr8+bNjmVr165VcXGxevfu7WjzySefqLCw0NFm9erV6tChgyIjIx1tPvroI6dtr169WnFxcZKk1q1bKzo62qlNbm6uPv/8c0cbX8/dlW3btikoKMhxynmgzj03N1dXXnmlQkJCtGLFCkt1PS4uTjt27HBKeFevXi273a5OnTpVaF4hISHq2bOnU5vi4mJ99NFHjjY9e/ZU7dq1ndrs3r1bmZmZHs29subvyrZt2xQZGen4hLQqzt+T33tz+qYFjjf1QD32lTF3V6rDcX/88ce1fft2p/WSNHv2bKWkpDjmFYjHHfAG8ifyp5qWP9Xk3Kmi8y+N/In8qWRegXjcqxT/XH8b51L6ivAHDx40W7duNfPnzzeSzCeffGK2bt1qfvvtN0ebq666ynTv3t18/vnnZsOGDaZ9+/ZOt4zNzs42TZs2NbfddpvZuXOnWbJkialbt67ltqnBwcFm1qxZ5uuvvzZTpkxxedvUBg0amHfeecds377dDB8+vFJum+rp3Ddu3Ghmz55ttm3bZvbu3WsWL15smjRpYkaPHh3Qc8/JyTG9e/c2nTt3Nnv27HG6NWbp24ZeeeWVZtu2bWblypWmSZMmLm8f+cgjj5ivv/7azJkzx+XtI0NDQ82iRYvMV199Ze68807ToEEDpzsM3HXXXaZFixZm7dq15osvvjBxcXEmLi6uUubt6fxXrFhh5s+fb3bs2GG+++47M3fuXFO3bl3z1FNPBdz8z5773r17zdNPP22++OILk5GRYdLS0sy1115rGjZs6LilZ3U69u7Ovboed1dUxi1jq8NxB7yB/Knicyd/qh5/S2ty7lR6/uRP5E8lyJ8qH0WjKqj0C2HKlClGkuUnJSXF0ea3334zt9xyi6lfv76x2+3m9ttvN0ePHnXa7pdffmn69etnQkNDzQUXXGBmzJhhGfvf//63ufDCC01ISIi5+OKLzX/+8x+n9cXFxebJJ580TZs2NaGhoeaKK64wu3fv9tvcN2/ebHr37m0iIiJMWFiY6dixo3n66afNyZMnA3ruJbfIdfWzb98+R5/9+/eboUOHmjp16pjGjRubv/zlL063VS3ZVrdu3UxISIhp06aN0+9NiZdeesm0aNHChISEmF69epnPPvvMaf2JEyfM3XffbSIjI03dunXN9ddfbw4ePFhpc/dk/h988IHp1q2bqV+/vqlXr57p2rWrefnll01RUVHAzf/suR84cMAMHTrUREVFmdq1a5vmzZubW2+91XzzzTdOfarLsXd37tX1uLtSOukxpvocd8AbyJ8qPnfyp+rxt7Qm506l50/+RP5Ugvyp8tmMOes+e9XcyZMnVVBQ4O8wAABAOUJCQgL6wqXVCfkTAACBwRv5U425e9rJkydVp04TSXn+DgUAAJQjOjpa+/bto3DkZ+RPAAAEDm/kTzWmaHT6E7I8SQ9KqndmacndBILLeDzX+toVaFNZ68vrc+67IjiUXCOtrCGDzrGuVhnLPVlf1rraLtqeK+5aFVhf0W2UF/e59t357htHuzMn/QUXOT3aap06/TS4SLXOLKsVXHzm8dSZxzPLg848yvVj8JnHIMv6M2Oo2LG8lqXtKadt1Dqr7el2pdeXH0N5bdyPoex2peda1ti/b7O8dtZ9VtE4y99n5cdQ7rE9cyeNWqfOjFFkzjyX06Pt9FA6M5T1sejMT+ll7jwveSxrrKJK3lZ5zyu6rdLbcCe2ytxWObEVnul75lBbnp8qcu5Scknb0psqa/nZ68+1rqLbqMgY+ZJmZ2WpoKCAopGfnX/+VNa6ysyfKtq3EvInV7nTuYY8nxyhon3PJ38qLy+qzPypsnNLV/mTi9xJklfyJ1d5wNmPlZk/lZ2/VV7+VH7uUnn5U+l95o38qezxvZA/efpe70ku4M1crOR5JeYo5cbmzVys9PJSfbyRP3mS97jTztV0zl7nrfypxhSNfhcqqWQHlpU8VOR5WUmPN55XtE8ZbBV8DNLvyU9Zj6WTgNKPFUlsykt6KnN9RbdRbkJSgTE86ev0eO6ika12kWwlyxyPp9cFnXkeFOT8xhdU6s217GTD+gZfdpGkvCJKxddX/hglj7XOMVZQBbdhO9MuyKnf74+2UtuxOZb9/nKwldqmSj2aM+1KLy95LInVOLWvJXPWv4tLjXXmsejM46kzcZaV9JT1ZnuuIktF+ri7vDK35Wp5rbPWl97RJX3K+rtXepu2UutL/y0tae+KrdTz0l8QN2UsLys2IxWeSYzOHGoV2ko9P9O0vASlIs/La1veNoLLWV/rrH+jqvE0fyprXWXmS+c7Rhlc5UuucqeKPHqSP3kzPypZX15uUpn5U2XmXk6PZReNbLVL502Vlz+VXxypvPyp/Jzl/PMnV7mT82Pl5U/Bpdp6I39ylTs5P1Zi/nS+OYo7/byZi5Ueo3Se5I38qSK509l9S3iSPwU5t/FG/uRJblWRdq7yp9KHyZv5U1D5TQAAAAAAAFDTUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWAT7OwDfy9fv0y4681jy/FQ5zwvPel77zL9rl2pT+rEy1pfXp+R5GUwFH4vP/MjFo+3MY1Gp5yWPKuN56RjKGvdspceuVUb7olLrSy8/pd93Ua1S60ovL2v31yr16OpwVXQbZa13tDszweAip0dT6/TvoQkukilZFlx85vH0uuIzy21BZx7l+rHYsQNKP5460+7snXhmLMfjKac+5kxb49j2qVLPXT+WrC9SkWqd+Xfpx+JSz4Mcz085+p5+XnzOdsFntatVal1ZY/++zfLalYzxewznGt/VNkraB5cZQ9mPv//bnNmGObPN04+1is48njqz/syhPvPr5Hi0lRzyU2U8/v6roFK/AhV/XvJY1lhFlbyt8p5XdFult+FObBXdVnmPZf1NPuux8MyfjjOH2vK8dAiFcm/52evPta6i26jIGPlC1eNp/lRYap038qeK9q2E/KmsHMYb+ZMp43ll5k+ucifJO/mTu/mRJ/mTi9zJ+bEy8ydXudPvj5WZP52dO53eNZWfP5Wfu1Re/hTsYvyz+1ZG/lR+LlWJ+ZOneYMnOY83c7GS5+e7LXf2g6fb8iR/KrXMG/mTJ3mPO+3OXu5qnbfypxpTNAoJCVF0dLSysmb7OxT/Kf1iQkAoyfUK9fsfBQCo7qKjoxUSEuLvMGo8Y4zq16+vvDzyJ/KnwHF27nT2IwBUd97In2zGmNKfY1RbJ0+eVEFBgb/D8Irc3FzFxsbqhx9+kN1u93c4la66z09ijtVBdZ+fVP3nWN3nJwXOHENCQhQWFubvMGq83NxcRUREVPnfF18LlNeRr7FfrNgnrrFfXGO/uMZ+sSprn3gjf6oxZxpJUlhYWLVPQO12e7V+IVX3+UnMsTqo7vOTqv8cq/v8pJoxR1Qefl9cY7+4xn6xYp+4xn5xjf3iGvvFyhf7hAthAwAAAAAAwIKiEQAAAAAAACwoGlUToaGhmjJlikJDQ/0dildU9/lJzLE6qO7zk6r/HKv7/KSaMUdUHn5fXGO/uMZ+sWKfuMZ+cY394hr7xcqX+6RGXQgbAAAAAAAAFcOZRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAWTOnDlq1aqVwsLC1Lt3b/33v/89Z/ulS5fqoosuUlhYmDp37qz333/fR5F6xp35LVq0SDabzeknLCzMh9G675NPPtG1116rmJgY2Ww2paamlttn/fr16tGjh0JDQ9WuXTstWrTI63F6yt35rV+/3nIMbTabsrKyfBOwm5KTk/U///M/Cg8PV1RUlBISErR79+5y+wXS69CTOQbSa3HevHnq0qWL7Ha77Ha74uLi9MEHH5yzTyAdP8n9OQbS8YP3VPf8wlPu7Jf58+erf//+ioyMVGRkpAYNGlTufgxE7v6ulFiyZIlsNpsSEhK8G6CfuLtfsrOzNXHiRDVr1kyhoaG68MILq+XryN398sILL6hDhw6qU6eOYmNj9eCDD+rkyZM+itb7qvv/BTzl7n5ZtmyZBg8erCZNmjhynQ8//NA3wfqQJ78vJdLS0hQcHKxu3bpVSiwUjQLEv/71Lz300EOaMmWKtmzZoq5du2rIkCH6+eefXbbfuHGjbrnlFt1xxx3aunWrEhISlJCQoJ07d/o48opxd36SZLfbdfDgQcdPRkaGDyN237Fjx9S1a1fNmTOnQu337dunYcOG6bLLLtO2bdv0wAMPKDExscr+UXR3fiV2797tdByjoqK8FOH5+fjjjzVx4kR99tlnWr16tQoLC3XllVfq2LFjZfYJtNehJ3OUAue12Lx5c82YMUObN2/WF198ocsvv1zDhw/Xrl27XLYPtOMnuT9HKXCOH7yjuucXnnJ3v6xfv1633HKL1q1bp/T0dMXGxurKK6/UgQMHfBy593iSq0nS/v379fDDD6t///4+itS33N0vBQUFGjx4sPbv36+3335bu3fv1vz583XBBRf4OHLvcne/vPnmm3rsscc0ZcoUff3113rttdf0r3/9S//7v//r48i9p7r/X8BT7u6XTz75RIMHD9b777+vzZs367LLLtO1116rrVu3ejlS3/L0/1bZ2dkaPXq0rrjiisoLxiAg9OrVy0ycONHxvKioyMTExJjk5GSX7UeOHGmGDRvmtKx3795mwoQJXo3TU+7OLyUlxURERPgousonySxfvvycbSZNmmQuvvhip2V//OMfzZAhQ7wYWeWoyPzWrVtnJJkjR474JKbK9vPPPxtJ5uOPPy6zTaC9DkuryBwD/bUYGRlpFixY4HJdoB+/EueaY6AfP5y/6p5feMrd/VLaqVOnTHh4uPnHP/7hrRB9zpN9curUKRMfH28WLFhgxowZY4YPH+6DSH3L3f0yb94806ZNG1NQUOCrEP3C3f0yceJEc/nllzste+ihh0zfvn29Gqe/VPf/C3iqIvvFlU6dOpmpU6dWfkBVhDv75Y9//KN54oknzJQpU0zXrl0rZXzONAoABQUF2rx5swYNGuRYFhQUpEGDBik9Pd1ln/T0dKf2kjRkyJAy2/uTJ/OTpLy8PLVs2VKxsbHlfpIeiALpGJ6Pbt26qVmzZho8eLDS0tL8HU6F5eTkSJIaNmxYZptAP4YVmaMUmK/FoqIiLVmyRMeOHVNcXJzLNoF+/CoyRykwjx8qR3XPLzzlaV5ytuPHj6uwsLDcv5+BwtN9Mm3aNEVFRemOO+7wRZg+58l+WbFiheLi4jRx4kQ1bdpUl1xyiZ5++mkVFRX5Kmyv82S/xMfHa/PmzY6vsH3//fd6//33dfXVV/sk5qqoJvy9rQzFxcU6evRotfl7ez5SUlL0/fffa8qUKZW63eBK3Rq84tdff1VRUZGaNm3qtLxp06b65ptvXPbJyspy2b4qXi/Gk/l16NBBCxcuVJcuXZSTk6NZs2YpPj5eu3btUvPmzX0RtteVdQxzc3N14sQJ1alTx0+RVY5mzZrp5Zdf1qWXXqr8/HwtWLBAAwcO1Oeff64ePXr4O7xzKi4u1gMPPKC+ffvqkksuKbNdIL0OS6voHAPttbhjxw7FxcXp5MmTql+/vpYvX65OnTq5bBuox8+dOQba8UPlqu75hac82S+lPfroo4qJibH8hy9QebJPNmzYoNdee03btm3zQYT+4cl++f7777V27VqNGjVK77//vvbs2aO7775bhYWFlf4fPX/xZL/ceuut+vXXX9WvXz8ZY3Tq1Cnddddd1errae6q7v8XqCyzZs1SXl6eRo4c6e9Q/Oq7777TY489pk8//VTBwZVb5qFohIAUFxfn9Ml5fHy8OnbsqFdeeUXTp0/3Y2SoqA4dOqhDhw6O5/Hx8dq7d69mz56t119/3Y+RlW/ixInauXOnNmzY4O9QvKaicwy012KHDh20bds25eTk6O2339aYMWP08ccfl1lUCUTuzDHQjh8QCGbMmKElS5Zo/fr1NfbC8kePHtVtt92m+fPnq3Hjxv4Op0opLi5WVFSUXn31VdWqVUs9e/bUgQMHNHPmzGpTNPLE+vXr9fTTT2vu3Lnq3bu39uzZo/vvv1/Tp0/Xk08+6e/wUEW9+eabmjp1qt55550qe11UXygqKtKtt96qqVOn6sILL6z07VM0CgCNGzdWrVq1dOjQIaflhw4dUnR0tMs+0dHRbrX3J0/mV1rt2rXVvXt37dmzxxsh+kVZx9But1fbTxZ69epV5Qsx99xzj9577z198skn5Z6JEUivw7O5M8fSqvprMSQkRO3atZMk9ezZU5s2bdLf/vY3vfLKK5a2gXr83JljaVX9+KFyVff8wlPnk5fMmjVLM2bM0Jo1a9SlSxdvhulT7u6TvXv3av/+/br22msdy4qLiyVJwcHB2r17t9q2bevdoH3Ak9+VZs2aqXbt2qpVq5ZjWceOHZWVlaWCggKFhIR4NWZf8GS/PPnkk7rtttuUmJgoSercubOOHTumO++8U48//riCgmreVVVq4v8F3LFkyRIlJiZq6dKl1easTk8dPXpUX3zxhbZu3ap77rlH0um/ucYYBQcHa9WqVbr88ss93n7Ne/UFoJCQEPXs2VMfffSRY1lxcbE++uijMq9TERcX59ReklavXn3O61r4iyfzK62oqEg7duxQs2bNvBWmzwXSMaws27Ztq7LH0Bije+65R8uXL9fatWvVunXrcvsE2jH0ZI6lBdprsbi4WPn5+S7XBdrxK8u55lhaoB0/nJ/qnl94ytO85Nlnn9X06dO1cuVKXXrppb4I1Wfc3ScXXXSRduzYoW3btjl+rrvuOsddoGJjY30Zvtd48rvSt29f7dmzx1FEk6Rvv/1WzZo1qxYFI8mz/XL8+HFLYaiksHb6OsA1T034e+upt956S7fffrveeustDRs2zN/h+J3dbrf8zb3rrrscZ5/37t37/AaolMtpw+uWLFliQkNDzaJFi8xXX31l7rzzTtOgQQOTlZVljDHmtttuM4899pijfVpamgkODjazZs0yX3/9tZkyZYqpXbu22bFjh7+mcE7uzm/q1Knmww8/NHv37jWbN282N998swkLCzO7du3y1xTKdfToUbN161azdetWI8k8//zzZuvWrSYjI8MYY8xjjz1mbrvtNkf777//3tStW9c88sgj5uuvvzZz5swxtWrVMitXrvTXFM7J3fnNnj3bpKammu+++87s2LHD3H///SYoKMisWbPGX1M4pz//+c8mIiLCrF+/3hw8eNDxc/z4cUebQH8dejLHQHotPvbYY+bjjz82+/btM9u3bzePPfaYsdlsZtWqVcaYwD9+xrg/x0A6fvCO6p5feMrd/TJjxgwTEhJi3n77bae/n0ePHvXXFCqdu/uktOp69zR390tmZqYJDw8399xzj9m9e7d57733TFRUlPnrX//qryl4hbv7ZcqUKSY8PNy89dZb5vvvvzerVq0ybdu2NSNHjvTXFCpddf+/gKfc3S9vvPGGCQ4ONnPmzHH6e5udne2vKXiFu/ultMq8expFowDy0ksvmRYtWpiQkBDTq1cv89lnnznWDRgwwIwZM8ap/b///W9z4YUXmpCQEHPxxReb//znPz6O2D3uzO+BBx5wtG3atKm5+uqrzZYtW/wQdcWV3GK+9E/JvMaMGWMGDBhg6dOtWzcTEhJi2rRpY1JSUnwed0W5O79nnnnGtG3b1oSFhZmGDRuagQMHmrVr1/on+ApwNTdJTsck0F+HnswxkF6L48aNMy1btjQhISGmSZMm5oorrnAUU4wJ/ONnjPtzDKTjB++p7vmFp9zZLy1btnT593PKlCm+D9yL3P1dOVt1LRoZ4/5+2bhxo+ndu7cJDQ01bdq0Mf/3f/9nTp065eOovc+d/VJYWGiSkpIcuWFsbKy5++67zZEjR3wfuJdU9/8LeMrd/TJgwIBztq8uPPl9OVtlFo1sxtTQ8/0AAAAAAABQJq5pBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAR4SVJSkmw2m9e2P3bsWLVq1cpr26+oVq1aaezYsR73veaaayo3IFSKgQMHauDAgY7n+/fvl81m06JFi3waR1X5PQcAnB/yoor1JS+qmsiLUJNRNILX7N27VxMmTFCbNm0UFhYmu92uvn376m9/+5tOnDjh9vbmzp3r8z/MqBq++uorJSUlaf/+/X6N49NPP9XIkSN1wQUXKCQkRBEREerdu7emTZumQ4cO+TW2muzqq69WZGSkjDFOy7du3SqbzaaWLVta+qxdu1Y2m02vvvqqr8IEUMORF6GykBehPMXFxfrnP/+p3r17q2HDhgoPD9eFF16o0aNH67PPPqvwdjp16qSuXbtali9fvlw2m00DBgywrFu4cKFsNptWrVp1XnNA1RHs7wBQPf3nP//RiBEjFBoaqtGjR+uSSy5RQUGBNmzYoEceeUS7du1y+z9rc+fOVePGjT3+9MbXnnjiCT322GP+DsPrdu/eraAg79afv/rqK02dOlUDBw7026crTz31lKZPn642bdpo7NixatOmjU6ePKnNmzfrueee0z/+8Q/t3bvXL7H5QsuWLXXixAnVrl3b36FY9OvXTx988IF27typzp07O5anpaUpODhYmZmZ+vHHH9W8eXOndSV9AcDbyIvIiyoTeZH/VeW8SJLuu+8+zZkzR8OHD9eoUaMUHBys3bt364MPPlCbNm3Up0+fCm2nX79+eu2115STk6OIiAjH8pIca9OmTSosLHTaD2lpaapVq5bi4uIqfV7wD4pGqHT79u3TzTffrJYtW2rt2rVq1qyZY93EiRO1Z88e/ec///FjhN517Ngx1atXT8HBwQoOrv4vsdDQUH+H4HX/+te/NH36dI0cOVKvv/66QkJCnNbPnj1bs2fP9lN05TPG6OTJk6pTp47H27DZbAoLC6vEqCpPSeFnw4YNlqLR1VdfrbVr12rDhg26+eabHes2bNigRo0aqWPHjmVud+zYsdq/f7/Wr1/vtdgBVH/kReRF1Q15UdXOiw4dOqS5c+dq/PjxlmL0Cy+8oF9++aXC2+rXr5/mz5+vjRs3aujQoY7laWlpGjlypN58801t3rzZqQi1YcMGdenSReHh4WVut6TgydmSgYGvp6HSPfvss8rLy9Nrr73mlBiVaNeune6//37H85SUFF1++eWKiopSaGioOnXqpHnz5jn1adWqlXbt2qWPP/5YNptNNpvN6XvF2dnZeuCBBxQbG6vQ0FC1a9dOzzzzjIqLi52289tvv+m2226T3W5XgwYNNGbMGH355Zcuv5O8du1a9e/fX/Xq1VODBg00fPhwff31105tSr6f/9VXX+nWW29VZGSk4z+wZX13f/HixerVq5fq1q2ryMhI/eEPf3A6ffOdd97RsGHDFBMTo9DQULVt21bTp09XUVHRuXe8Cw899JAaNWrk9LWde++9VzabTS+++KJj2aFDh2Sz2Zz2e35+vqZMmaJ27dopNDRUsbGxmjRpkvLz853GcPXd/e3bt2vAgAGqU6eOmjdvrr/+9a9KSUmRzWZzeSr1hg0b1KtXL4WFhalNmzb65z//6Vi3aNEijRgxQpJ02WWXOY5/yX/kv/jiCw0ZMkSNGzdWnTp11Lp1a40bN87tfXUuTz31lBo3bqzXXnvNkhhJUkREhJKSkizLP/jgA8fvUHh4uIYNG6Zdu3Y5tRk7dqzq16+vAwcOKCEhQfXr11eTJk308MMPW455cXGxXnjhBV188cUKCwtT06ZNNWHCBB05csSpXck1ET788ENdeumlqlOnjl555RVJFXu9uVL6u/vr1693HIvSP6U/9azIfpCk1NRUXXLJJQoLC9Mll1yi5cuXlxuXJPXq1UshISGOs4dKpKWl6Q9/+IN69erltK64uFifffaZ4uPjvXp9DQCQyIvIi8iLSpAXVXw/SJ7nRfv27ZMxRn379rWss9lsioqKqtB2pN8/mDs7jzp58qS2bNmiG264QW3atHFa98svv+jbb7/lTO5qpvqX++Fz7777rtq0aaP4+PgKtZ83b54uvvhiXXfddQoODta7776ru+++W8XFxZo4caKk01Xxe++9V/Xr19fjjz8uSWratKkk6fjx4xowYIAOHDigCRMmqEWLFtq4caMmT56sgwcP6oUXXpB0+o3l2muv1X//+1/9+c9/1kUXXaR33nlHY8aMscS0Zs0aDR06VG3atFFSUpJOnDihl156SX379tWWLVssf/xHjBih9u3b6+mnn7ZcV+VsU6dOVVJSkuLj4zVt2jSFhITo888/19q1a3XllVdKOp0M1K9fXw899JDq16+vtWvX6qmnnlJubq5mzpxZoX1aon///po9e7Z27dqlSy65RNLp758HBQXp008/1X333edYJkl/+MMfHPvquuuu04YNG3TnnXeqY8eO2rFjh2bPnq1vv/1WqampZY554MABRxIzefJk1atXTwsWLCjzk7c9e/bopptu0h133KExY8Zo4cKFGjt2rHr27KmLL75Yf/jDH3TffffpxRdf1P/+7/86zgzp2LGjfv75Z1155ZVq0qSJHnvsMTVo0ED79+/XsmXL3NpP5/Ltt9/q22+/VWJiourXr1/hfq+//rrGjBmjIUOG6JlnntHx48c1b9489evXT1u3bnX6HSoqKtKQIUPUu3dvzZo1S2vWrNFzzz2ntm3b6s9//rOj3YQJE7Ro0SLdfvvtuu+++7Rv3z79/e9/19atW5WWluZ0avDu3bt1yy23aMKECRo/frw6dOggqWKvt4ro2LGjXn/9dadl2dnZeuihh5ySkYruh1WrVunGG29Up06dlJycrN9++023336701fKyhIWFqaePXtqw4YNjmU//PCDfvjhB8XHxys7O9vpU/wdO3YoNzeXhAaAT5AXkReRF5EXubsfzicvKrmW49KlSzVixAjVrVu3wvMorU2bNoqJiXHKsTZt2qSCggLFx8crPj5eaWlp+stf/iJJ2rhxoyS+/l/tGKAS5eTkGElm+PDhFe5z/Phxy7IhQ4aYNm3aOC27+OKLzYABAyxtp0+fburVq2e+/fZbp+WPPfaYqVWrlsnMzDTGGPP//t//M5LMCy+84GhTVFRkLr/8ciPJpKSkOJZ369bNREVFmd9++82x7MsvvzRBQUFm9OjRjmVTpkwxkswtt9xiiatkXYnvvvvOBAUFmeuvv94UFRU5tS0uLj7n/pgwYYKpW7euOXnypGPZmDFjTMuWLS1tz/bzzz8bSWbu3LnGGGOys7NNUFCQGTFihGnatKmj3X333WcaNmzoiOP11183QUFB5tNPP3Xa3ssvv2wkmbS0NMeyli1bmjFjxjie33vvvcZms5mtW7c6lv3222+mYcOGRpLZt2+fU19J5pNPPnGKOTQ01PzlL39xLFu6dKmRZNatW+cUz/Lly40ks2nTpnPuh/PxzjvvWH5vjDl9zH755Renn8LCQmOMMUePHjUNGjQw48ePd+qTlZVlIiIinJaPGTPGSDLTpk1zatu9e3fTs2dPx/NPP/3USDJvvPGGU7uVK1dalpfs15UrV1rmU9HX24ABA5xeb/v27bO8Tkrvj2uuucbUr1/f7Nq1y+390K1bN9OsWTOTnZ3tWLZq1Sojqdzfc2OMeeSRR4wk8+OPPxpjjHnrrbdMWFiYyc/PN++//76pVauWyc3NNcYY8/e//93ye+zKmDFjXP7NAYCKIi8ylnUlyIvIi8iLyt4P55sXjR492kgykZGR5vrrrzezZs0yX3/9dbn9XBkxYoSpU6eOKSgoMMYYk5ycbFq3bm2MMWbu3LkmKirK0fbhhx82ksyBAwfOuc0BAwY4vU5QtfH1NFSq3NxcSTrnd1hLO/v7xDk5Ofr11181YMAAff/998rJySm3/9KlS9W/f39FRkbq119/dfwMGjRIRUVF+uSTTyRJK1euVO3atTV+/HhH36CgIMunCAcPHtS2bds0duxYNWzY0LG8S5cuGjx4sN5//31LDHfddVe5caampqq4uFhPPfWU5QKJZ5+uffb+OHr0qH799Vf1799fx48f1zfffFPuOGdr0qSJLrroIsc+KLkw3SOPPKJDhw7pu+++k3T6E7V+/fo54li6dKk6duyoiy66yGmfXn755ZKkdevWlTnmypUrFRcXp27dujmWNWzYUKNGjXLZvlOnTurfv79TzB06dND3339f7vwaNGggSXrvvfdUWFhYbntPlPxOl/40LScnR02aNHH62bZtmyRp9erVys7O1i233OK0/2rVqqXevXu73H+lf4f69+/vtA+WLl2qiIgIDR482GmbPXv2VP369S3bbN26tYYMGWIZ53xfb2WZPn263nvvPS1atEidOnVyaz+UvObGjBnjdJHFwYMHO7ZVnpJPtEo+HU5LS1PPnj0VEhKiuLg4x1fSStaFhYXp0ksvdfQvLi52ivHXX39Vfn6+CgsLLcu99bsGoPohLyobeRF5EXmR9/KilJQU/f3vf1fr1q21fPlyPfzww+rYsaOuuOIKHThwwK259OvXTydOnNDmzZslnX7dlJw52bdvX/3888+O105aWppat26tmJgYR/+ycqn8/HzL8tJfoUXVUCO/nvbJJ59o5syZ2rx5sw4ePKjly5crISHBrW0YY/Tcc8/p1VdfVUZGhho3bqy7777bcYpwTWW32yWdflOvqLS0NE2ZMkXp6ek6fvy407rSV+p35bvvvtP27dvVpEkTl+t//vlnSVJGRoaaNWtmOUWzXbt2Ts8zMjIkyXHa6tk6duyoDz/80HFRxxKtW7c+Z4zS6VvtBgUFlfvHfteuXXriiSe0du1axxtzCU/evPr37+9I6D799FNdeumluvTSS9WwYUN9+umnatq0qb788kvdeuutjj7fffedvv7663L3qSsZGRku75ZQej+XaNGihWVZZGSk5fvorgwYMEA33nijpk6dqtmzZ2vgwIFKSEjQrbfees4LUebk5Djd3jgkJMQpET5bSaKfl5fntLx+/fpavXq1pNOnEJ99inzJG2dJMllayeukRFhYmGVfl94H3333nXJycsr8HnrpY1LW7+T5vt5cWblypaZOnarJkyfrxhtvdIpZKn8/lLzm2rdvb2nToUMHbdmypdwY+vbtK5vNprS0NN18881KS0vT4MGDJZ1Oojt16uRYlpaWpv/5n/9xug5DZmZmmfus9LFZt26d07VDgJqC/Ml95EVlIy8iLypBXnRaZeZFJQXgiRMn6rffflNaWppefvllffDBB7r55psdH7JVxNnXNerdu7c2btyov/71r5KkSy65RHa7XWlpaYqNjdXmzZv1xz/+0al/WlqaLrvsMst2N27cqCVLljgt27dvn9/uCIiy1cii0bFjx9S1a1eNGzdON9xwg0fbuP/++7Vq1SrNmjVLnTt31uHDh3X48OFKjjTw2O12xcTEaOfOnRVqv3fvXl1xxRW66KKL9Pzzzys2NlYhISF6//33NXv27ApVm4uLizV48GBNmjTJ5foLL7zQrTl44nzuvnC27OxsDRgwQHa7XdOmTVPbtm0VFhamLVu26NFHH/Wo+l5y14Pvv/9en376qfr37y+bzaZ+/frp008/VUxMjIqLi50+1SouLlbnzp31/PPPu9xmbGysx3MsrVatWi6Xm3NcA6GEzWbT22+/rc8++0zvvvuuPvzwQ40bN07PPfecPvvsszK/a3///ffrH//4h+P5gAEDyrxD1kUXXSRJlt/p4OBgDRo0SJL0448/Oq0rOU6vv/66oqOjLdssffeYsvZB6W1GRUXpjTfecLm+dHLl6neyMl5vpe3bt0+jRo3S4MGDHQnE2TFLFd8P56NRo0a66KKLtGHDBuXl5Wn79u2aMmWKY318fLw2bNigH3/8UZmZmZZPeKOjox3JbomZM2cqKytLzz33nNPyrl27VlrcQCAhf3IfedH5IS/6HXmRM/KiimvUqJGuu+46XXfddRo4cKA+/vhjZWRkOK59VJ6uXbsqPDxcGzZs0NVXX63Dhw87zjQKCgpS7969tWHDBrVt21YFBQWW6xl17drVkmP95S9/UXR0tB555BGn5a72C/yvRhaNhg4d6nTLwNLy8/P1+OOP66233lJ2drYuueQSPfPMM45Plr/++mvNmzdPO3fudHzqUpFPVGqKa665Rq+++qrS09NdfrJytnfffVf5+flasWKF0ycrrk5TLesuR23btlVeXp7jjaosLVu21Lp163T8+HGnT9X27NljaSedvmBead98840aN27s9GlaRbVt21bFxcX66quvnE5RPtv69ev122+/admyZY6LL0qn34A8VZL0rF69Wps2bdJjjz0m6fTFHefNm6eYmBjVq1dPPXv2dIr1yy+/1BVXXOH23aVatmxp2aeSdT+7o7wY+vTpoz59+uj//u//9Oabb2rUqFFasmSJEhMTXbafNGmS/vSnPzmeR0ZGlrntDh06qH379kpNTdULL7xQoWPftm1bSVJUVFS5v5cV1bZtW61Zs0Z9+/b1OBl35/VWESdOnNANN9ygBg0a6K233rJ8vaCi+6HkNVfyCdzZXL0Oy9KvXz8tXLhQq1atUlFRkdNFZ+Pj4/XWW285kuDSCU1YWJglxsWLFys/P7/SjiEQ6MifPENe5Bp5EXnR+SAv8syll16qjz/+WAcPHqxw0ahWrVrq06eP0tLStGHDBtntdnXu3NmxPj4+Xv/6178cZ8+VzrEiIyMt842MjFSzZs3IsQIE1zRy4Z577lF6erqWLFmi7du3a8SIEbrqqqscL9ySu2C89957at26tVq1aqXExMRq/UmZOyZNmqR69eopMTFRhw4dsqzfu3ev/va3v0n6/ZOEsz89ycnJUUpKiqVfvXr1lJ2dbVk+cuRIpaen68MPP7Ssy87O1qlTpyRJQ4YMUWFhoebPn+9YX1xcrDlz5jj1adasmbp166Z//OMfTuPt3LlTq1at0tVXX32O2ZctISFBQUFBmjZtmuWTi5L5u9ofBQUFmjt3rkdjSqcT8gsuuECzZ89WYWGh4/ab/fv31969e/X222+rT58+Tp9ujBw5UgcOHHDaVyVOnDihY8eOlTnekCFDlJ6e7vgeuyQdPny4zE+CKqIkISl9/I8cOWL55K0k8Sx9C9yzderUSYMGDXL8nJ0YupKUlKRff/1V48ePd3mNgNIxDBkyRHa7XU8//bTL9r/88ss5x3Nl5MiRKioq0vTp0y3rTp065fK1UZo7r7eKuOuuu/Ttt99q+fLlLhPMiu6Hs19zZ3/VYPXq1frqq68qHE+/fv1UVFSkWbNmqX379k6fMsbHxysvL09z585VUFBQhe9iBKDiyJ9cIy9yjbyIvKgEedFplZUXZWVluWxXUFCgjz76SEFBQWV+PbIs/fr10y+//KKUlBT17t3bqSAWHx+v3bt365133lGjRo0cd/RD9VEjzzQ6l8zMTKWkpCgzM9NxAa+HH35YK1euVEpKip5++ml9//33ysjI0NKlS/XPf/5TRUVFevDBB3XTTTdp7dq1fp6B/7Vt21Zvvvmm/vjHP6pjx44aPXq0LrnkEhUUFGjjxo1aunSpxo4dK0m68sorFRISomuvvVYTJkxQXl6e5s+fr6ioKB08eNBpuz179tS8efP017/+Ve3atVNUVJQuv/xyPfLII1qxYoWuueYaxy1Jjx07ph07dujtt9/W/v371bhxYyUkJKhXr176y1/+oj179uiiiy7SihUrHMnq2Z/azJw5U0OHDlVcXJzuuOMOx61lIyIilJSU5NF+adeunR5//HFNnz5d/fv31w033KDQ0FBt2rRJMTExSk5OVnx8vCIjIzVmzBjdd999stlsev311yt0SvK59O/fX0uWLFHnzp0db2I9evRQvXr19O233zp9b1+SbrvtNv373//WXXfdpXXr1qlv374qKirSN998o3//+9/68MMPnS4ifLZJkyZp8eLFGjx4sO69917HrWVbtGihw4cPu/0JnXQ64alVq5aeeeYZ5eTkKDQ0VJdffrnefPNNzZ07V9dff73atm2ro0ePav78+bLb7R4nsa7ceuut2rlzp5KTk/Xf//5XN998s1q3bq1jx45p586deuuttxQeHu7Yt3a7XfPmzdNtt92mHj166Oabb1aTJk2UmZmp//znP+rbt6/+/ve/uxXDgAEDNGHCBCUnJ2vbtm268sorVbt2bX333XdaunSp/va3v+mmm2465zbceb2V5z//+Y/++c9/6sYbb9T27du1fft2x7r69esrISHBrf2QnJysYcOGqV+/fho3bpwOHz6sl156SRdffLHlugllKflkKz093fE3psSFF16oxo0bKz09XZ07d3ZcLBRA5SB/Kht5kWvkReRF5EXeyYt+/PFH9erVS5dffrmuuOIKRUdH6+eff9Zbb72lL7/8Ug888IAaN27s1vzOzrFKv+b79Okjm82mzz77TNdee61Hv9Oo4nx9u7aqRpJZvny54/l7771nJJl69eo5/QQHB5uRI0caY4wZP368kWR2797t6Ld582YjyXzzzTe+nkKV9e2335rx48ebVq1amZCQEBMeHm769u1rXnrpJadbpK5YscJ06dLFhIWFmVatWplnnnnGLFy40HIb0qysLDNs2DATHh5uJDnd9vLo0aNm8uTJpl27diYkJMQ0btzYxMfHm1mzZjluD2mMMb/88ou59dZbTXh4uImIiDBjx441aWlpRpJZsmSJU/xr1qwxffv2NXXq1DF2u91ce+215quvvnJqU3L72F9++cUy/9K3li2xcOFC0717dxMaGmoiIyPNgAEDzOrVqx3r09LSTJ8+fUydOnVMTEyMmTRpkvnwww8tt1atyK1lS8yZM8dIMn/+85+dlg8aNMhIMh999JGlT0FBgXnmmWfMxRdf7Ii1Z8+eZurUqSYnJ8fRrvStZY0xZuvWraZ///4mNDTUNG/e3CQnJ5sXX3zRSDJZWVlOfYcNG2YZu/RtTY0xZv78+aZNmzamVq1ajn2xZcsWc8stt5gWLVqY0NBQExUVZa655hrzxRdfVGi/uGv9+vXmpptuMs2aNTO1a9c2drvdXHrppWbKlCnm4MGDlvbr1q0zQ4YMMRERESYsLMy0bdvWjB071im+MWPGmHr16ln6lvX78+qrr5qePXuaOnXqmPDwcNO5c2czadIk89NPPznalLVfjan46628W8umpKQYSS5/Sv9eVmQ/GHP69s8dO3Y0oaGhplOnTmbZsmVu/Z4bY0xMTIyRZF599VXLuuuuu87l66AsY8aMcXk7awDkT54gLyIvIi8iL6rofjDG87woNzfX/O1vfzNDhgwxzZs3N7Vr1zbh4eEmLi7OzJ8/3xQXF5+zvyvHjh0zwcHBRpJZtWqVZX2XLl2MJPPMM89UaHsDBgywvE5QddmMOc9SfYCz2WxOd//417/+pVGjRmnXrl2Wi7DVr19f0dHRmjJliuW0whMnTqhu3bpatWqV4449CAypqam6/vrrtWHDBscpyqh8DzzwgF555RXl5eVV6AKHAICqi/yp+iIv8g3yIgCBgq+nldK9e3cVFRXp559/drprwtn69u2rU6dOae/evY4Lmn377beSVOELisE/Tpw44XSxvKKiIr300kuy2+3q0aOHHyOrXkrv599++02vv/66+vXrR2IEANUQ+VNgIi/yDfIiAIGsRhaN8vLynO5YsG/fPm3btk0NGzbUhRdeqFGjRmn06NF67rnn1L17d/3yyy/66KOP1KVLFw0bNkyDBg1Sjx49NG7cOL3wwgsqLi7WxIkTNXjwYJ/cxhSeu/fee3XixAnFxcUpPz9fy5Yt08aNG/X0009X2u1hIcXFxWngwIHq2LGjDh06pNdee025ubl68skn/R0aAMBD5E/VD3mRb5AXoSrKyso65/o6deooIiLCR9GgSvP39+P8Yd26dS6/b1ryvcqCggLz1FNPmVatWpnatWubZs2ameuvv95s377dsY0DBw6YG264wdSvX980bdrUjB071vz2229+mhEq6o033jA9evQwdrvdhISEmE6dOpmXXnrJ32FVO5MnTzbt27c3derUMXXr1jX9+vVzuj4BACDwkD9VP+RFvkFehKrI1d9zV3/bgRp/TSMAAAAAAGqSNWvWnHN9TEyMOnXq5KNoUJVRNAIAAAAAAIBFkL8DAAAAAAAAQNVTYy6EXVxcrJ9++knh4eGy2Wz+DgcAAJTBGKOjR48qJiZGQUF8vuVP5E8AAAQGb+VPNaZo9NNPPyk2NtbfYQAAgAr64Ycf1Lx5c3+HUaORPwEAEFgqO3+qMUWj8PBwSad3oN1u93M0AACgLLm5uYqNjXW8d8N/yJ8AAAgM3sqfakzRqOSUarvdTtIDAEAA4OtQ/kf+BABAYKns/IkLBQAAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAItidxq1atVJGRoZl+d133605c+ZYli9atEi3336707LQ0FCdPHlSklRYWKgnnnhC77//vr7//ntFRERo0KBBmjFjhmJiYs45bnJysh577DF3wvcJm22zv0Pwr5d7en+Mu7y/j43xwTwAADUC+VP5bLbj/g7Bz571wRiTvD6CMXW9PgYAwLfcKhpt2rRJRUVFjuc7d+7U4MGDNWLEiDL72O127d692/HcZrM5/n38+HFt2bJFTz75pLp27aojR47o/vvv13XXXacvvvjCaTvTpk3T+PHjHc/Dw8PdCR0AAMAvyJ8AAECgcqto1KRJE6fnM2bMUNu2bTVgwIAy+9hsNkVHR7tcFxERodWrVzst+/vf/65evXopMzNTLVq0cCwPDw8vczsAAABVFfkTAAAIVB5f06igoECLFy/WuHHjnD79Ki0vL08tW7ZUbGyshg8frl27dp1zuzk5ObLZbGrQoIHT8hkzZqhRo0bq3r27Zs6cqVOnTp1zO/n5+crNzXX6AQAA8CfyJwAAEEjcOtPobKmpqcrOztbYsWPLbNOhQwctXLhQXbp0UU5OjmbNmqX4+Hjt2rVLzZs3t7Q/efKkHn30Ud1yyy2y2+2O5ffdd5969Oihhg0bauPGjZo8ebIOHjyo559/vsyxk5OTNXXqVE+nBwAAUOnInwAAQCCxGWOMJx2HDBmikJAQvfvuuxXuU1hYqI4dO+qWW27R9OnTLetuvPFG/fjjj1q/fr1T0lPawoULNWHCBOXl5Sk0NNRlm/z8fOXn5zue5+bmKjY2Vjk5Oefc9vniQthcCBsAcH5yc3MVERHh9fdsfyB/co0LYXMhbADA+fFW/uTRmUYZGRlas2aNli1b5la/2rVrq3v37tqzZ4/T8sLCQo0cOVIZGRlau3ZtuRPs3bu3Tp06pf3796tDhw4u24SGhpaZEAEAAPga+RMAAAg0Hl3TKCUlRVFRURo2bJhb/YqKirRjxw41a9bMsawk4fnuu++0Zs0aNWrUqNztbNu2TUFBQYqKinI7dgAAAH8gfwIAAIHG7TONiouLlZKSojFjxig42Ln76NGjdcEFFyg5OVnS6du89unTR+3atVN2drZmzpypjIwMJSYmSjqd8Nx0003asmWL3nvvPRUVFSkrK0uS1LBhQ4WEhCg9PV2ff/65LrvsMoWHhys9PV0PPvig/vSnPykyMvJ85w8AAOB15E8AACAQuV00WrNmjTIzMzVu3DjLuszMTAUF/X7y0pEjRzR+/HhlZWUpMjJSPXv21MaNG9WpUydJ0oEDB7RixQpJUrdu3Zy2tW7dOg0cOFChoaFasmSJkpKSlJ+fr9atW+vBBx/UQw895G7oAAAAfkH+BAAAApHHF8IONL66qCYXwuZC2ACA81OdL4QdaHyXP3EhbO/jQtgAUJ156z3bo2saAQAAAAAAoHrz6O5pOAdPzrS5K6nSw7B42Qdj+IpH+9i9s5Nq/BljPsDZXACA37l/ps1e84oX4nDW1jbB62P4jidnM7l3dhJnjHkfZ3MB8DXONAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFjYjDHG30H4Qm5uriIiIpSTkyO73e61cWy2JK9t2+deTvJ3BP5zV5IHna6t7CjgB8b09HcIQI3nq/dslM9Xx+J7NfPatn2trW2Cv0Pwm73mFbf7tLXt9UIk8DVj6vo7BKDG89Z7NmcaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAA4P+3d+/hUdT3Hsc/E3KDIxtASQIYLgaKUkUw1hBqxSqIyEPxlKOlcgRBLingtacopyoRewwHfMSqaKgPhvahSLUPIlbqKZeqrSDFCJWLciRC4oXgaSEJF4FcfucPkpXNZElmsruT3bxfz5NnmJnfb37f38xu9ss3s7sAYEPRCAAAAAAAADYUjQAAAAAAAGAT73UAMacgz+sIEApurmOuiz4a46IPwsmyirwOoVHGZHkdAgCETaY1w+sQEAJurmOxyXQxTrHjPggvyzrhdQiNMqaD1yEAUY87jQAAAAAAAGBD0QgAAAAAAAA2FI0AAAAAAABgQ9EIAAAAAAAANhSNAAAAAAAAYEPRCAAAAAAAADYUjQAAAAAAAGBD0QgAAAAAAAA2FI0AAAAAAABgQ9EIAAAAAAAANhSNAAAAAAAAYGMZY4zXQURCZWWlUlJSVFFRIZ/PF7ZxLKvIeaeCrNAHgtiUm+ei05hQRwH4GcPvL4RepF6z0bTI5U8nXPRaGPI4EJuKzVLHfTKt4jBEApxhTAevQ0AMCtdrNncaAQAAAAAAwIaiEQAAAAAAAGwoGgEAAAAAAMCGohEAAAAAAABsKBoBAAAAAADAhqIRAAAAAAAAbCgaAQAAAAAAwIaiEQAAAAAAAGwoGgEAAAAAAMCGohEAAAAAAABsKBoBAAAAAADAhqIRAAAAAAAAbOKdNO7du7dKSkps22fOnKklS5bYti9fvlyTJ08O2JaUlKSTJ09KkqqqqvTQQw9p3bp1+vTTT5WSkqLhw4drwYIF6t69u7/P4cOHddddd+n1119XXFycxo0bp1/+8pc677zznIQPRL+CPOd9cl300RgXfdAWWVaRi16vhzyOhozJC/sYQHORPwHeyrRmOO5TbDJdjFPsuA/aJss64biPm8ekUxfpYNjHQPRxVDTatm2bampq/Ou7du3SiBEjdMsttwTt4/P5tHfvXv+6ZVn+f584cUIffPCBHn74YV1++eU6cuSI7rnnHv3gBz/Q+++/7283YcIEHTx4UOvXr1dVVZUmT56s6dOna+XKlU7CBwAAiDjyJwAAEK0cFY26du0asL5gwQJlZmZq2LBhQftYlqX09PRG96WkpGj9+vUB25599lldddVVKi0tVc+ePfXRRx/pzTff1LZt23TllVdKkp555hnddNNNeuKJJwL+ogYAANDakD8BAIBo5fozjU6fPq0VK1ZoypQpAX/9aujYsWPq1auXMjIyNHbsWO3evfucx62oqJBlWerUqZMkacuWLerUqZM/4ZGk4cOHKy4uTlu3bg16nFOnTqmysjLgBwAAwEvkTwAAIJq4LhqtWbNG5eXluuOOO4K26d+/v1588UW99tprWrFihWprazV06FB9/vnnjbY/efKkHnjgAf34xz+Wz+eTJJWVlSk1NTWgXXx8vLp06aKysrKgY+fn5yslJcX/k5GR4XySAAAAIUT+BAAAoonrotGyZcs0atSoc97enJOTo4kTJ2rQoEEaNmyYVq9era5du2rp0qW2tlVVVbr11ltljNHzzz/vNiy/uXPnqqKiwv/z2WeftfiYAAAALUH+BAAAoomjzzSqV1JSog0bNmj16tWO+iUkJGjw4MHat29fwPb6hKekpESbNm3y/5VMktLT0/XVV18FtK+urtbhw4eDvtdfOvMtI0lJSY7iAwAACBfyJwAAEG1c3WlUWFio1NRUjR492lG/mpoa7dy5U926dfNvq094PvnkE23YsEHnn39+QJ+cnByVl5erqOibr3XetGmTamtrlZ2d7SZ8AACAiCN/AgAA0cbxnUa1tbUqLCzUpEmTFB8f2H3ixInq0aOH8vPzJUnz58/XkCFD1LdvX5WXl2vRokUqKSnR1KlTJZ1JeP7t3/5NH3zwgf7whz+opqbG/z77Ll26KDExUZdccoluvPFGTZs2TQUFBaqqqtLs2bM1fvx4vvkDAABEBfInAAAQjRwXjTZs2KDS0lJNmTLFtq+0tFRxcd/cvHTkyBFNmzZNZWVl6ty5s7KysrR582YNGDBAkvTFF19o7dq1kqRBgwYFHOvPf/6zrr32WknSb3/7W82ePVvXX3+94uLiNG7cOD399NNOQwcAAPAE+RMAAIhGljHGeB1EJFRWViolJUUVFRUB7/kPNcsqarpRQwVZoQ8EqJeb56LTmFBHAZzl9bCPCbl8LAAAPV9JREFUYExe2MdA+ETqNRtNi1z+dMJFr4UhjwOoV2zsHzzflEyrOAyRAGcUm8ywj3GRDoZ9DIRPuF6zXX97GgAAAAAAAGIXRSMAAAAAAADYOP5MIzTBzVvNcnlLW0xw8zawAhd9IjGG47nwdja0LpaVF4FRIvO4N4bf92gL3LzVbE6ExkE4uXsb2IwwRNLyMZy+fYi3s6G1+VTdmm7UQpF63BvTISLjtAXcaQQAAAAAAAAbikYAAAAAAACwoWgEAAAAAAAAG4pGAAAAAAAAsKFoBAAAAAAAABuKRgAAAAAAALChaAQAAAAAAAAbikYAAAAAAACwoWgEAAAAAAAAG4pGAAAAAAAAsKFoBAAAAAAAAJt4rwOIObl5ERooy1nz3CLnQxQ4HCNS3MzFqdY6dyAmjInAGK+30jGcz92yIvA7zwVj+D2J0Ck2S130ct4n05rhsMccx2NIC130iQQ3c3Gqtc4diH6ZVnHYxyg2ma1yDDdzt6wTjvtEgjEdvA7BMe40AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACADUUjAAAAAAAA2FA0AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACADUUjAAAAAAAA2FjGGON1EJFQWVmplJQUVVRUyOfzhW0ca6mLTrl5LjqNcda8IMv5ELlFzvs4HcfV3N1weL70uvMhCvKc94kVkXgMA2Hn4nkfEbHxXDGm+a8PkXrNRtMilj9ZeY77FBvnSVemVeywx0LHY0hzXPRxNo6bubvh9HwVm0wXY8xw3CdWROYxDISXm+d9JMTKc8WYDs1uG67XbO40AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACADUUjAAAAAAAA2FA0AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACADUUjAAAAAAAA2MR7HQAkFeSFf4zcovCP4coY510Kspz3cTr/SFwTAK2M099Hr4clCgDNk2nNcNFrocP2c1yMEX6ZVrGLXk7n7py7awIgmjn9fVRsMsMUCcKFO40AAAAAAABgQ9EIAAAAAAAANhSNAAAAAAAAYEPRCAAAAAAAADYUjQAAAAAAAGBD0QgAAAAAAAA2FI0AAAAAAABgQ9EIAAAAAAAANhSNAAAAAAAAYEPRCAAAAAAAADYUjQAAAAAAAGAT76Rx7969VVJSYts+c+ZMLVmyxLZ9+fLlmjx5csC2pKQknTx50r++evVqFRQUqKioSIcPH9b27ds1aNCggD7XXnut3n777YBtM2bMUEFBgZPwIyO3yHmfgqzQx+EVp/NvrXPPzXPep8BFnzbtdRd9xoQ8CgAIN/Kn5pjjos/CkEfhHafzb51zLzZLHffJtGaEIZLYVWwyHffJtIrDEAmAtsJR0Wjbtm2qqanxr+/atUsjRozQLbfcErSPz+fT3r17/euWZQXsP378uK6++mrdeuutmjZtWtDjTJs2TfPnz/evd+jQwUnoAAAAniB/AgAA0cpR0ahr164B6wsWLFBmZqaGDRsWtI9lWUpPTw+6//bbb5ckHThw4Jxjd+jQ4ZzHAQAAaI3InwAAQLRy/ZlGp0+f1ooVKzRlyhTbX7/OduzYMfXq1UsZGRkaO3asdu/e7Wq83/72t7rgggt06aWXau7cuTpx4sQ52586dUqVlZUBPwAAAF4ifwIAANHE0Z1GZ1uzZo3Ky8t1xx13BG3Tv39/vfjiixo4cKAqKir0xBNPaOjQodq9e7cuvPDCZo912223qVevXurevbs+/PBDPfDAA9q7d69Wr14dtE9+fr4effRRJ1MCAAAIK/InAAAQTVwXjZYtW6ZRo0ape/fuQdvk5OQoJyfHvz506FBdcsklWrp0qR577LFmjzV9+nT/vy+77DJ169ZN119/vYqLi5WZ2fiHwc2dO1f333+/f72yslIZGRnNHhMAACDUyJ8AAEA0cVU0Kikp0YYNG875l6rGJCQkaPDgwdq3b5+bYf2ys7MlSfv27Qua9CQlJSkpKalF4wAAAIQK+RMAAIg2rj7TqLCwUKmpqRo9erSjfjU1Ndq5c6e6devmZli/HTt2SFKLjwMAABAp5E8AACDaOL7TqLa2VoWFhZo0aZLi4wO7T5w4UT169FB+fr4kaf78+RoyZIj69u2r8vJyLVq0SCUlJZo6daq/z+HDh1VaWqovv/xSkvxfL5uenq709HQVFxdr5cqVuummm3T++efrww8/1H333adrrrlGAwcOdD1xAACASCF/AgAA0chx0WjDhg0qLS3VlClTbPtKS0sVF/fNzUtHjhzRtGnTVFZWps6dOysrK0ubN2/WgAED/G3Wrl2ryZMn+9fHjx8vSZo3b57y8vKUmJioDRs26KmnntLx48eVkZGhcePG6aGHHnIaOgAAgCfInwAAQDSyjDHG6yAiobKyUikpKaqoqJDP5wvbOJZV5LxTQVboA2ko10VckRCJuUsu5v+68zEK8pz3iRW5eREaaEyExgGaw8XvCVdi43FvTPN/30fqNRtNi1z+dMJFr4Uhj8NuTgTGcCMSc5eczr/YNP5ZWeeSac1w3CdWFJulERkn0yqOyDhAc7j5PeFGrDzujenQ7Lbhes129ZlGAAAAAAAAiG0UjQAAAAAAAGDj+DON0IRW+3arVipW5tHWReqteU7fBucmLh6TAOCB1vl2q9YrVubRtkXqrXlO3w7kLi4ek0Cs4k4jAAAAAAAA2FA0AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACADUUjAAAAAAAA2FA0AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACAjWWMMV4HEQmVlZVKSUlRRUWFfD5f2MaxrKKwHTsmFWRFZpzcPGftCxy2l6RcF9c+UvNvq5xe95gzxusAYPN6BMZondfdmOb/vovUazaaFrn86UTYjh2bFkZklGKz1FH7TGuGi1HmuOgTmfm3VU6ve6zJtIq9DgENFJvMsI/RWq+7MR2a3TZcr9ncaQQAAAAAAAAbikYAAAAAAACwoWgEAAAAAAAAG4pGAAAAAAAAsKFoBAAAAAAAABuKRgAAAAAAALChaAQAAAAAAAAbikYAAAAAAACwoWgEAAAAAAAAG4pGAAAAAAAAsKFoBAAAAAAAAJt4rwNAhBRkeR1B43LzIjNOQQTGaa3nuC1zc90j9ZiMhEg8Jl2drzGhjsIjr0donFg5X0A0Wuh1AI0qNksjMk6mNSMCo7TOc9yWubnukXpMRkb4H5NuzlemVRyGSCKv2GRGZJxYOV+tAXcaAQAAAAAAwIaiEQAAAAAAAGwoGgEAAAAAAMCGohEAAAAAAABsKBoBAAAAAADAhqIRAAAAAAAAbCgaAQAAAAAAwIaiEQAAAAAAAGwoGgEAAAAAAMCGohEAAAAAAABsKBoBAAAAAADAhqIRAAAAAAAAbOK9DiDmFGR5HUHjcouc92mtcynIC/8YsXS+0Hbl5nkdQRCvO2w/JixReCOW5gKE0kKvAwhijos+rXMumdaMCIwSO+cLbVexWep1CI0qNpmO2mdaxWGKJPJiaS7RiDuNAAAAAAAAYEPRCAAAAAAAADYUjQAAAAAAAGBD0QgAAAAAAAA2FI0AAAAAAABgQ9EIAAAAAAAANhSNAAAAAAAAYEPRCAAAAAAAADYUjQAAAAAAAGBD0QgAAAAAAAA2FI0AAAAAAABgQ9EIAAAAAAAANvFOGvfu3VslJSW27TNnztSSJUts25cvX67JkycHbEtKStLJkyf966tXr1ZBQYGKiop0+PBhbd++XYMGDQroc/LkSf30pz/VqlWrdOrUKY0cOVLPPfec0tLSnIQfGblFzvsUZIV/HDdjREJBntcReMvN48Wp1nrt3Witj3unj+Nch+1dGxOBMV4P/xCR+B3pSiTOL2IB+VNzzHHRZ2EExnEzRvhlWjO8DsFjbh4vTrXOa+9O63zcO30cF5ulYYokUKZVHPYxik1m2MeIzO9I5yJxfhFaju402rZtmw4ePOj/Wb9+vSTplltuCdrH5/MF9GmYNB0/flxXX321/vu//zvoMe677z69/vrreuWVV/T222/ryy+/1A9/+EMnoQMAAHiC/AkAAEQrR3cade3aNWB9wYIFyszM1LBhw4L2sSxL6enpQffffvvtkqQDBw40ur+iokLLli3TypUrdd1110mSCgsLdckll+i9997TkCFDnEwBAAAgosifAABAtHL9mUanT5/WihUrNGXKFFmWFbTdsWPH1KtXL2VkZGjs2LHavXu3o3GKiopUVVWl4cOH+7ddfPHF6tmzp7Zs2RK036lTp1RZWRnwAwAA4CXyJwAAEE1cF43WrFmj8vJy3XHHHUHb9O/fXy+++KJee+01rVixQrW1tRo6dKg+//zzZo9TVlamxMREderUKWB7WlqaysrKgvbLz89XSkqK/ycjI6PZYwIAAIQD+RMAAIgmrotGy5Yt06hRo9S9e/egbXJycjRx4kQNGjRIw4YN0+rVq9W1a1ctXRr+DzGbO3euKioq/D+fffZZ2McEAAA4F/InAAAQTRx9plG9kpISbdiwQatXr3bULyEhQYMHD9a+ffua3Sc9PV2nT59WeXl5wF/LDh06dM73+iclJSkpKclRfAAAAOFC/gQAAKKNqzuNCgsLlZqaqtGjRzvqV1NTo507d6pbt27N7pOVlaWEhARt3LjRv23v3r0qLS1VTk6Oo/EBAAC8Qv4EAACijeM7jWpra1VYWKhJkyYpPj6w+8SJE9WjRw/l5+dLkubPn68hQ4aob9++Ki8v16JFi1RSUqKpU6f6+xw+fFilpaX68ssvJZ1JaKQzfyFLT09XSkqK7rzzTt1///3q0qWLfD6f7rrrLuXk5PDNHwAAICqQPwEAgGjkuGi0YcMGlZaWasqUKbZ9paWliov75ualI0eOaNq0aSorK1Pnzp2VlZWlzZs3a8CAAf42a9eu1eTJk/3r48ePlyTNmzdPeXl5kqTFixcrLi5O48aN06lTpzRy5Eg999xzTkMHAADwBPkTAACIRo6LRjfccIOMMY3ue+uttwLWFy9erMWLF5/zeHfcccc5v0FEkpKTk7VkyRItWbLESagAAACtAvkTAACIRq6/PQ0AAAAAAACxi6IRAAAAAAAAbBy/PQ1NKMhy3ic3L+Rh2LmIC87kFnkdQXSJxPmK1DWJyHN4TATGaKVcnd82fL6AqLTQcY9is9TFOM76ZFozXIwBZ+Z4HUCUicT5cjOG8+eju+ewM5lWcdjHaK3cnN9Mi+cj7LjTCAAAAAAAADYUjQAAAAAAAGBD0QgAAAAAAAA2FI0AAAAAAABgQ9EIAAAAAAAANhSNAAAAAAAAYEPRCAAAAAAAADYUjQAAAAAAAGBD0QgAAAAAAAA2FI0AAAAAAABgQ9EIAAAAAAAANvFeBxBr5uVajvs8WmDCEIlHcouctS/ICk8cLeUmLqdzj5TWGlebNsbrABrn6nHvZqDX3XQCEMPm6VHHfTKteWGIxCtzHLZfGJYoWs5NXE7nHimtNa62K9Mq9jqEIJw/7t3MpdhkOu4DhAJ3GgEAAAAAAMCGohEAAAAAAABsKBoBAAAAAADAhqIRAAAAAAAAbCgaAQAAAAAAwIaiEQAAAAAAAGwoGgEAAAAAAMCGohEAAAAAAABsKBoBAAAAAADAhqIRAAAAAAAAbCgaAQAAAAAAwIaiEQAAAAAAAGwsY4zxOohIqKysVEpKiioqKuTz+cI2jrXUeZ95uZbjPo8WtInL5p3cPBedxoQ6CqBlCrK8jiA0XD0f3eA5HE7GNP/xGKnXbDQtYvmTlee4zzw96rjPo5rnuA+ar9g4T4QzreIwRAK0xEKvAwgJN89HN3gOh5cxHZrdNlyv2dxpBAAAAAAAABuKRgAAAAAAALChaAQAAAAAAAAbikYAAAAAAACwoWgEAAAAAAAAG4pGAAAAAAAAsKFoBAAAAAAAABuKRgAAAAAAALChaAQAAAAAAAAbikYAAAAAAACwoWgEAAAAAAAAG4pGAAAAAAAAsLGMMcbrICKhsrJSKSkpqqiokM/nC9s4lpUXtmO3SEGe1xGETm5eBAYZE4ExEHYFWV5H0LjcIq8jaFxrPV9utNZz3IYZ0/zHV6Res9G0SF2LT9UtbMduiUxrhtchhEyxWRr2MTKt4rCPgUhY6HUAQczxOoAgWuv5cqO1nuO2y5gOzW4brtds7jQCAAAAAACADUUjAAAAAAAA2FA0AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACADUUjAAAAAAAA2FA0AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIBNvJPGvXv3VklJiW37zJkztWTJEtv25cuXa/LkyQHbkpKSdPLkSf+6MUbz5s3TCy+8oPLycn33u9/V888/r379+p1z3Pz8fD344INOwm/bcvOc9ylw0cep3CIXncaEPAyg1SvI8jqC6OLmfLn6fQQ0jfwpehWbpY77ZFozwhBJQ3Mc98i0nPcBot9CrwOIMm7OF79bYp2jotG2bdtUU1PjX9+1a5dGjBihW265JWgfn8+nvXv3+tctywrYv3DhQj399NP69a9/rT59+ujhhx/WyJEjtWfPHiUnJ/vbzZ8/X9OmTfOvd+zY0UnoAAAAniB/AgAA0cpR0ahr164B6wsWLFBmZqaGDRsWtI9lWUpPT290nzFGTz31lB566CGNHTtWkvSb3/xGaWlpWrNmjcaPH+9v27Fjx6DHAQAAaK3InwAAQLRy/ZlGp0+f1ooVKzRlyhTbX7/OduzYMfXq1UsZGRkaO3asdu/e7d+3f/9+lZWVafjw4f5tKSkpys7O1pYtWwKOs2DBAp1//vkaPHiwFi1apOrq6nPGd+rUKVVWVgb8AAAAeIn8CQAARBNHdxqdbc2aNSovL9cdd9wRtE3//v314osvauDAgaqoqNATTzyhoUOHavfu3brwwgtVVlYmSUpLSwvol5aW5t8nSXfffbeuuOIKdenSRZs3b9bcuXN18OBBPfnkk0HHzs/P16OPPup2egAAACFH/gQAAKKJ66LRsmXLNGrUKHXv3j1om5ycHOXk5PjXhw4dqksuuURLly7VY4891uyx7r//fv+/Bw4cqMTERM2YMUP5+flKSkpqtM/cuXMD+lVWViojI6PZYwIAAIQa+RMAAIgmrt6eVlJSog0bNmjq1KmO+iUkJGjw4MHat2+fJPnfY3/o0KGAdocOHTrn+++zs7NVXV2tAwcOBG2TlJQkn88X8AMAAOAV8icAABBtXBWNCgsLlZqaqtGjRzvqV1NTo507d6pbt26SpD59+ig9PV0bN270t6msrNTWrVsD/sLW0I4dOxQXF6fU1FQ34QMAAEQc+RMAAIg2jt+eVltbq8LCQk2aNEnx8YHdJ06cqB49eig/P1/Sma95HTJkiPr27avy8nItWrRIJSUl/r+wWZale++9V7/4xS/Ur18//1fGdu/eXTfffLMkacuWLdq6dau+//3vq2PHjtqyZYvuu+8+/fu//7s6d+7cwukDAACEH/kTAACIRo6LRhs2bFBpaammTJli21daWqq4uG9uXjpy5IimTZumsrIyde7cWVlZWdq8ebMGDBjgbzNnzhwdP35c06dPV3l5ua6++mq9+eabSk5OlnTmNulVq1YpLy9Pp06dUp8+fXTfffcFvN8eAACgNSN/AgAA0cgyxhivg4iEyspKpaSkqKKiIqzvz7esvLAdO+IK8sI/Rm5R+MdA21WQ5XUEjXPzuG+tc4kl/D4KK2Oa/xiO1Gs2mhapa/GpuoXt2JGWac2IwChzIjAG2q6FXgcQhJvHfWudSyzh91E4GdOh2W3D9Zrt6jONAAAAAAAAENsoGgEAAAAAAMCGt6dFqVb7NrhIvKXNDd52Eht4ixbCqdX+nnjdYfsxYYmipXh7WnSKtWvRWt8GF5m3tLnB205iA2/RQji1zt8TxSbTUftMqzhMkbQMb08DAAAAAABAq0TRCAAAAAAAADYUjQAAAAAAAGBD0QgAAAAAAAA2FI0AAAAAAABgQ9EIAAAAAAAANhSNAAAAAAAAYEPRCAAAAAAAADYUjQAAAAAAAGBD0QgAAAAAAAA2FI0AAAAAAABgQ9EIAAAAAAAANvFeBwB3jMnzOoRGWVaesw4FDtvHnNcdth8Tlig8UZDldQRAlIih5z3gsYt00OsQGlVsujlqn2nNCFMk0aHYZDpqn2kVhykSLyz0OgAgKsTW895b3GkEAAAAAAAAG4pGAAAAAAAAsKFoBAAAAAAAABuKRgAAAAAAALChaAQAAAAAAAAbikYAAAAAAACwoWgEAAAAAAAAG4pGAAAAAAAAsKFoBAAAAAAAABuKRgAAAAAAALChaAQAAAAAAACbeK8DQGwxJs/rEBpl5UZgkIIsF50c9sktcjFGK+VmLq7OMdqkWHquAIh5F+mgo/bGhCmQBizrRARGWei4R6Y1IwxxRIs5Lvo4P8doq9w8vhDruNMIAAAAAAAANhSNAAAAAAAAYEPRCAAAAAAAADYUjQAAAAAAAGBD0QgAAAAAAAA2FI0AAAAAAABgQ9EIAAAAAAAANhSNAAAAAAAAYEPRCAAAAAAAADYUjQAAAAAAAGBD0QgAAAAAAAA2FI0AAAAAAABgE+91AEAkGJPldQiNspZ6HQFiWm6es/YFDttHSm6R1xEAQJtkTIcIjJLnuIdlOe8DNFexcZagZ1ozwhRJS83xOgDECO40AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACADUUjAAAAAAAA2FA0AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACAjaOiUe/evWVZlu1n1qxZjbZfvny5rW1ycnJAG2OMHnnkEXXr1k3t27fX8OHD9cknnwS0OXz4sCZMmCCfz6dOnTrpzjvv1LFjxxxOFQAAIPLInwAAQLSKd9J427Ztqqmp8a/v2rVLI0aM0C233BK0j8/n0969e/3rlmUF7F+4cKGefvpp/frXv1afPn308MMPa+TIkdqzZ48/QZowYYIOHjyo9evXq6qqSpMnT9b06dO1cuVKJ+EDrY6Z4bDDjKywxNFSllXkdQhoTEGeo+aOH4+R0kof90BzkT8BoWVMntchhIRlnfA6BDQi03KWEMXK4xEIxlHRqGvXrgHrCxYsUGZmpoYNGxa0j2VZSk9Pb3SfMUZPPfWUHnroIY0dO1aS9Jvf/EZpaWlas2aNxo8fr48++khvvvmmtm3bpiuvvFKS9Mwzz+imm27SE088oe7duzuZAgAAQESRPwEAgGjl+jONTp8+rRUrVmjKlCm2v36d7dixY+rVq5cyMjI0duxY7d69279v//79Kisr0/Dhw/3bUlJSlJ2drS1btkiStmzZok6dOvkTHkkaPny44uLitHXr1qDjnjp1SpWVlQE/AAAAXiJ/AgAA0cR10WjNmjUqLy/XHXfcEbRN//799eKLL+q1117TihUrVFtbq6FDh+rzzz+XJJWVlUmS0tLSAvqlpaX595WVlSk1NTVgf3x8vLp06eJv05j8/HylpKT4fzIyMtxMEwAAIGTInwAAQDRxXTRatmyZRo0adc7bm3NycjRx4kQNGjRIw4YN0+rVq9W1a1ctXbrU7bDNNnfuXFVUVPh/Pvvss7CPCQAAcC7kTwAAIJo4+kyjeiUlJdqwYYNWr17tqF9CQoIGDx6sffv2SZL/vfqHDh1St27d/O0OHTqkQYMG+dt89dVXAceprq7W4cOHg77XX5KSkpKUlJTkKD4AAIBwIX8CAADRxtWdRoWFhUpNTdXo0aMd9aupqdHOnTv9CU6fPn2Unp6ujRs3+ttUVlZq69atysnJkXTmr23l5eUqKvrm25k2bdqk2tpaZWdnuwkfAAAg4sifAABAtHF8p1Ftba0KCws1adIkxccHdp84caJ69Oih/Px8SdL8+fM1ZMgQ9e3bV+Xl5Vq0aJFKSko0depUSWe+GeTee+/VL37xC/Xr18//lbHdu3fXzTffLEm65JJLdOONN2ratGkqKChQVVWVZs+erfHjx/PNHwAAICqQPwEAgGjkuGi0YcMGlZaWasqUKbZ9paWliov75ualI0eOaNq0aSorK1Pnzp2VlZWlzZs3a8CAAf42c+bM0fHjxzV9+nSVl5fr6quv1ptvvqnk5GR/m9/+9reaPXu2rr/+esXFxWncuHF6+umnnYYOAADgCfInAAAQjSxjjPE6iEiorKxUSkqKKioq5PP5vA4HiCmWVdR0o1AoyIrMOG2UmeF1BMAZvGa3HlwLIHws60SERloYoXHaJmPyvA4BkBS+12zX354GAAAAAACA2EXRCAAAAAAAADaOP9MIABoyhreNAQAAOGFMhwiNlBehcQDEIu40AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACADUUjAAAAAAAA2FA0AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACATbzXAUSKMUaSVFlZ6XEkAADgXOpfq+tfu+Ed8icAAKJDuPKnNlM0Onr0qCQpIyPD40gAAEBzHD16VCkpKV6H0aaRPwEAEF1CnT9Zpo38Ga+2tlZffvmlOnbsKMuyvA4nYiorK5WRkaHPPvtMPp/P63Airi3Pn7kz97Y2d6ltzz+W5m6M0dGjR9W9e3fFxfFOei+RP0X/88mNtjx/5s7cmXvbEkvzD1f+1GbuNIqLi9OFF17odRie8fl8Uf8kaIm2PH/mztzborY8/1iZO3cYtQ7kT7HxfHKrLc+fuTP3tqYtz12KnfmHI3/iz3cAAAAAAACwoWgEAAAAAAAAG4pGMS4pKUnz5s1TUlKS16F4oi3Pn7kz97aoLc+/Lc8dCLW2/nxqy/Nn7sy9rWnLc5eYf3O0mQ/CBgAAAAAAQPNxpxEAAAAAAABsKBoBAAAAAADAhqIRAAAAAAAAbCgaAQAAAAAAwIaiUSuzYMECWZale++917/tV7/6la699lr5fD5ZlqXy8nJbv8OHD2vChAny+Xzq1KmT7rzzTh07diygzYcffqjvfe97Sk5OVkZGhhYuXGg7ziuvvKKLL75YycnJuuyyy7Ru3bqA/cYYPfLII+rWrZvat2+v4cOH65NPPvF07r1795ZlWQE/CxYsiOq5Hz58WHfddZf69++v9u3bq2fPnrr77rtVUVER0K+0tFSjR49Whw4dlJqaqp/97Geqrq4OaPPWW2/piiuuUFJSkvr27avly5fbxl+yZIl69+6t5ORkZWdn629/+1vA/pMnT2rWrFk6//zzdd5552ncuHE6dOhQSObekvk3vO6WZWnVqlVRNf/GHvczZsxQZmam2rdvr65du2rs2LH6+OOPA/rFwrV3O/dYve71jDEaNWqULMvSmjVrAvbFwnUHwoH8ifxJalv5U1vOnRqbv0T+RP5E/hQ2Bq3G3/72N9O7d28zcOBAc8899/i3L1682OTn55v8/HwjyRw5csTW98YbbzSXX365ee+998xf/vIX07dvX/PjH//Yv7+iosKkpaWZCRMmmF27dpmXXnrJtG/f3ixdutTf5t133zXt2rUzCxcuNHv27DEPPfSQSUhIMDt37vS3WbBggUlJSTFr1qwxf//7380PfvAD06dPH/P11197NvdevXqZ+fPnm4MHD/p/jh07FtVz37lzp/nhD39o1q5da/bt22c2btxo+vXrZ8aNG+fvV11dbS699FIzfPhws337drNu3TpzwQUXmLlz5/rbfPrpp6ZDhw7m/vvvN3v27DHPPPOMadeunXnzzTf9bVatWmUSExPNiy++aHbv3m2mTZtmOnXqZA4dOuRvk5ubazIyMszGjRvN+++/b4YMGWKGDh3aonm3dP7GGCPJFBYWBlz7s69Ha59/sMf90qVLzdtvv232799vioqKzJgxY0xGRoaprq42xsTGtXc7d2Ni97rXe/LJJ82oUaOMJPPqq6/6t8fCdQfCgfyJ/Kmt5U9tOXcKNn9jyJ/In8ifwoWiUStx9OhR069fP7N+/XozbNiwRp8If/7znxt94d+zZ4+RZLZt2+bf9sc//tFYlmW++OILY4wxzz33nOncubM5deqUv80DDzxg+vfv71+/9dZbzejRowOOnZ2dbWbMmGGMMaa2ttakp6ebRYsW+feXl5ebpKQk89JLL3kyd2POJD2LFy8Oevxon3u9l19+2SQmJpqqqipjjDHr1q0zcXFxpqyszN/m+eefNz6fzz/XOXPmmG9/+9sBx/nRj35kRo4c6V+/6qqrzKxZs/zrNTU1pnv37iY/P98/z4SEBPPKK6/423z00UdGktmyZYvruRvTsvkbY2wvCg215vk7mfvf//53I8ns27fPGBP9174lczcmtq/79u3bTY8ePczBgwdt84z26w6EA/kT+VNby5/acu5kDPkT+RP5kxd4e1orMWvWLI0ePVrDhw933HfLli3q1KmTrrzySv+24cOHKy4uTlu3bvW3ueaaa5SYmOhvM3LkSO3du1dHjhzxt2k4/siRI7VlyxZJ0v79+1VWVhbQJiUlRdnZ2f42brRk7vUWLFig888/X4MHD9aiRYsCbjeMlblXVFTI5/MpPj7eH/Nll12mtLS0gJgrKyu1e/fuZs3r9OnTKioqCmgTFxen4cOH+9sUFRWpqqoqoM3FF1+snj17tmjuUsvmf/YxLrjgAl111VV68cUXZYzx72vN82/u3I8fP67CwkL16dNHGRkZ/nlF87VvydzPPkasXfcTJ07otttu05IlS5Senm7bH+3XHQgH8ifyp6bEWv7UlnOn+tjJn8ifzkb+FH7xTTdBuK1atUoffPCBtm3b5qp/WVmZUlNTA7bFx8erS5cuKisr87fp06dPQJv6J05ZWZk6d+6ssrKygCdTfZuzj3F2v8baONXSuUvS3XffrSuuuEJdunTR5s2bNXfuXB08eFBPPvmkP+5on/s//vEPPfbYY5o+fbp/W7CYz443WJvKykp9/fXXOnLkiGpqahptU/8+6LKyMiUmJqpTp062Nm7nLrV8/pI0f/58XXfdderQoYP+9Kc/aebMmTp27Jjuvvtuf+ytcf7Nmftzzz2nOXPm6Pjx4+rfv7/Wr1/vT9yj+dq3dO5S7F73++67T0OHDtXYsWMb3R/N1x0IB/In8qemxFr+1JZzJ4n8ifyJ/MkrFI089tlnn+mee+7R+vXrlZyc7HU4ERWqud9///3+fw8cOFCJiYmaMWOG8vPzlZSUFIpQQ87J3CsrKzV69GgNGDBAeXl5kQkwzEI1/4cfftj/78GDB+v48eNatGiR/8WvNWru3CdMmKARI0bo4MGDeuKJJ3Trrbfq3XffjerfE6Gaeyxe97Vr12rTpk3avn27B9EB0Yf8ifypreVPbTl3ksifyJ/In7zE29M8VlRUpK+++kpXXHGF4uPjFR8fr7fffltPP/204uPjVVNT0+Qx0tPT9dVXXwVsq66u1uHDh/236KWnp9s+ub1+vak2Z+8/u19jbZwIxdwbk52drerqah04cMAfd7TO/ejRo7rxxhvVsWNHvfrqq0pISPAfoyXz8vl8at++vS644AK1a9euybmfPn3a9s0rbuceqvk3Jjs7W59//rlOnTrVauff3LmnpKSoX79+uuaaa/T73/9eH3/8sV599dVzzqt+XyzPvTGxcN3Xr1+v4uJiderUyb9fksaNG6drr732nPOq39da5w6EA/kT+VNby5/acu7kZP7kT+RPEvlTqFE08tj111+vnTt3aseOHf6fK6+8UhMmTNCOHTvUrl27Jo+Rk5Oj8vJyFRUV+bdt2rRJtbW1ys7O9rd55513VFVV5W+zfv169e/fX507d/a32bhxY8Cx169fr5ycHElSnz59lJ6eHtCmsrJSW7du9beJ9Nwbs2PHDsXFxflvOY/WuVdWVuqGG25QYmKi1q5da6uu5+TkaOfOnQEJ7/r16+Xz+TRgwIBmzSsxMVFZWVkBbWpra7Vx40Z/m6ysLCUkJAS02bt3r0pLS13NPVTzb8yOHTvUuXNn/19IW+P83TzuzZkvLfC/qEfrtQ/F3BsTC9f95z//uT788MOA/ZK0ePFiFRYW+ucVjdcdCAfyJ/KntpY/teXcqbnzb4j8ifypfl7ReN1bFW8+fxvn0vAT4Q8ePGi2b99uXnjhBSPJvPPOO2b79u3mn//8p7/NjTfeaAYPHmy2bt1q/vrXv5p+/foFfGVseXm5SUtLM7fffrvZtWuXWbVqlenQoYPta1Pj4+PNE088YT766CMzb968Rr82tVOnTua1114zH374oRk7dmxIvjbV7dw3b95sFi9ebHbs2GGKi4vNihUrTNeuXc3EiROjeu4VFRUmOzvbXHbZZWbfvn0BX43Z8GtDb7jhBrNjxw7z5ptvmq5duzb69ZE/+9nPzEcffWSWLFnS6NdHJiUlmeXLl5s9e/aY6dOnm06dOgV8w0Bubq7p2bOn2bRpk3n//fdNTk6OycnJCcm83c5/7dq15oUXXjA7d+40n3zyiXnuuedMhw4dzCOPPBJ18z977sXFxebxxx8377//vikpKTHvvvuuGTNmjOnSpYv/Kz1j6do7nXusXvfGKMhXxsbCdQfCgfyp+XMnf4qN36VtOXdqOH/yJ/KneuRPoUfRqBVq+ESYN2+ekWT7KSws9Lf55z//aX784x+b8847z/h8PjN58mRz9OjRgOP+/e9/N1dffbVJSkoyPXr0MAsWLLCN/fLLL5tvfetbJjEx0Xz72982b7zxRsD+2tpa8/DDD5u0tDSTlJRkrr/+erN3717P5l5UVGSys7NNSkqKSU5ONpdccol5/PHHzcmTJ6N67vVfkdvYz/79+/19Dhw4YEaNGmXat29vLrjgAvPTn/404GtV6481aNAgk5iYaC666KKAx029Z555xvTs2dMkJiaaq666yrz33nsB+7/++mszc+ZM07lzZ9OhQwfzr//6r+bgwYMhm7ub+f/xj380gwYNMuedd575l3/5F3P55ZebgoICU1NTE3XzP3vuX3zxhRk1apRJTU01CQkJ5sILLzS33Xab+fjjjwP6xMq1dzr3WL3ujWmY9BgTO9cdCAfyp+bPnfwpNn6XtuXcqeH8yZ/In+qRP4WeZcxZ37MHAAAAAAAAqI19e9rJkyd1+vRpr8MAAABNSExMjOpvu4kl5E8AAESHcORPbaZodPLkSbVv31XSMa9DAQAATUhPT9f+/fspHHmM/AkAgOgRjvypzRSNzvyF7Jik+yT9S93W+q+gjA+yPNf+hGa0CdX+pvqc+6s0/eo/WD/YkHHn2NcuyHY3+4PtS2ik7bnibteM/c09RlNxn+vctfTc+NvVvVM0viZgabWrPrMaX6N2ddvaxdfWLavrlnXb4+qWanwZX7eMs+2vG0O1/u3tbG2rA47R7qy2Z9o13N90DE21cR5D8HYN5xps7G+O2VQ7+zlrbpxNn7OmY2jy2tZ9/Wq76roxakzdugKW1pmhVDeUfVlT99Nwm5P1+mWwsWpCfKym1pt7rIbHcBJbKI/VRGxVdX3rLrVtvbomsEv99yA1PFSw7WfvP9e+5h6jOWOckrS4rEynT5+maOSxludPwfaFMn9qbt8Q5E+N5U7nGrIlOUJz+7Ykf2oqLwpl/hTq3LKx/KmR3ElSWPKnxvKAs5ehzJ+C52+hy5+azl1Clz81PGfhyJ+Cjx+G/Mnta72bXCCcuVj9eghzlCZjC2cu1nB7gz7hyJ/c5D1O2jU2nbP3hSt/ajNFo28kSao/gcGSh+asB0t6wrHe3D5BWM1cxumb5CfYsmES0HDZnMSmqaQnlPube4wmE5JmjOGmb8Dy3EUjK6FGVv02//LMvri69bi4wBe+uAYvrsGTDfsLfPAiSVNFlObvD/0Y9ct25xgrrpnHsOraxQX0+2ZpNTiO5d/2zdPBanBMNViaunYNt9cv62M1Ae3byZz179oGY9Uta+qW1XVxBkt6gr3YnqvI0pw+TreH8liNbW931v6GJ7q+T7Dfew2PaTXY3/B3aX37xlgN1ht+qqAJsj1YbEaqqkuM6i61qqwG63VNm0pQmrPeVNumjhHfxP52Z/0brY3b/CnYvlDmSy0dI4jG8qXGcqfmLN3kT+HMj+r3N5WbhDJ/CmXuFbAMXjSyEhrmTaHLn5oujoQuf2o6Z2l5/tRY7hS4DF3+FN+gbTjyp8Zyp8BlCPOnluYoTvqFMxdrOEbDPCkc+VNzcqez+9Zzkz/FBbYJR/7kJrdqTrvG8qeGlymc+VNc000AAAAAAADQ1lA0AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACADUUjAAAAAAAA2FA0AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACADUUjAAAAAAAA2FA0AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACADUUjAAAAAAAA2FA0AgAAAAAAgE281wFE3il9M+2aumX9enUT61VnrSfU/TuhQZuGy1Dsb6pP/XoQppnL2rofNbK06pY1Ddbrlwqy3jCGYOOereHY7YK0r2mwv+H2an1zito12Ndwe7DT367BsrHL1dxjBNvvb1c3wfiagKVpd+ZxaOJrZOq3xdfWLc/sq63bbsXVLdX4stZ/Ahouq+vanX0S68byL6sD+pi6tsZ/7OoG640v6/fXqEbt6v7dcFnbYD3Ov17t73tmvfac7eLPateuwb5gY39zzKba1Y/xTQznGr+xY9S3jw8aQ/DlN/82dccwdcc8s2xXU7esrttfd6nrHk7+pVV/yauDLL95KKjBQ6D56/XLYGPVhPhYTa0391gNj+EktuYeq6llsN/JZy2r6n511F1q23rDEKrkbPvZ+8+1r7nHaM4Yp4TWx23+VNVgXzjyp+b2DUH+FCyHCUf+ZIKshzJ/aix3ksKTPznNj9zkT43kToHLUOZPjeVO3yxDmT+dnTudOTWhz5+azl1Clz/FNzL+2X1DkT81nUuFMH9ymze4yXnCmYvVr7f0WE7Og9tjucmfGmwLR/7kJu9x0u7s7Y3tC1f+1GaKRomJiUpPT1dZ2WKvQ/FOwycTokJ9rlelb34pAECsS09PV2JiotdhtHnkTyJ/ikJn505nLwEg1oUjf7KMMQ3/jhGzTp48qdOnT3sdRsyorKxURkaGPvvsM/l8Pq/DQRBcp9aPaxQduE6RlZiYqOTkZK/DgCKbP/E8iyzOd2RxviOHcx1ZnO/IOtf5Dkf+1GbuNJKk5ORkEtAw8Pl8/HKIAlyn1o9rFB24TmhrvMifeJ5FFuc7sjjfkcO5jizOd2RF6nzzQdgAAAAAAACwoWgEAAAAAAAAG4pGcC0pKUnz5s1TUlKS16HgHLhOrR/XKDpwnYDw43kWWZzvyOJ8Rw7nOrI435EV6fPdpj4IGwAAAAAAAM3DnUYAAAAAAACwoWgEAAAAAAAAG4pGAAAAAAAAsKFoBAAAAAAAABuKRnBtyZIl6t27t5KTk5Wdna2//e1vXoeEs7zzzjsaM2aMunfvLsuytGbNGq9DQgP5+fn6zne+o44dOyo1NVU333yz9u7d63VYaOD555/XwIED5fP55PP5lJOToz/+8Y9ehwVELbf5w6pVq2RZlm6++ebwBhhjnJ7v8vJyzZo1S926dVNSUpK+9a1vad26dRGKNro5PddPPfWU+vfvr/bt2ysjI0P33XefTp48GaFoo5ubPPett97SFVdcoaSkJPXt21fLly8Pe5yxwun5Xr16tUaMGKGuXbv6c6f/+Z//iUywUa4l/4d79913FR8fr0GDBoU0JopGcOV3v/ud7r//fs2bN08ffPCBLr/8co0cOVJfffWV16GhzvHjx3X55ZdryZIlXoeCIN5++23NmjVL7733ntavX6+qqirdcMMNOn78uNeh4SwXXnihFixYoKKiIr3//vu67rrrNHbsWO3evdvr0ICo4zZ/OHDggP7jP/5D3/ve9yIUaWxwer5Pnz6tESNG6MCBA/r973+vvXv36oUXXlCPHj0iHHn0cXquV65cqQcffFDz5s3TRx99pGXLlul3v/ud/vM//zPCkUcnp3nu/v37NXr0aH3/+9/Xjh07dO+992rq1KkUMprJ6fl+5513NGLECK1bt05FRUX6/ve/rzFjxmj79u1hjjT6uf0/XHl5uSZOnKjrr78+5DFZxhgT8qMi5mVnZ+s73/mOnn32WUlSbW2tMjIydNddd+nBBx/0ODo0ZFmWXn31Vf4628r93//9n1JTU/X222/rmmuu8TocnEOXLl20aNEi3XnnnV6HAkQVN/lDTU2NrrnmGk2ZMkV/+ctfVF5ezt2zzeT0fBcUFGjRokX6+OOPlZCQEOlwo5rTcz179mx99NFH2rhxo3/bT3/6U23dulV//etfIxZ3LGhOnvvAAw/ojTfe0K5du/zbxo8fr/Lycr355psRiDJ2uP1/xbe//W396Ec/0iOPPBKewGKQk3M9fvx49evXT+3atdOaNWu0Y8eOkMXBnUZw7PTp0yoqKtLw4cP92+Li4jR8+HBt2bLFw8iA6FZRUSHpTEECrVNNTY1WrVql48ePKycnx+twgKjiNn+YP3++UlNTKdI65OZ8r127Vjk5OZo1a5bS0tJ06aWX6vHHH1dNTU2kwo5Kbs710KFDVVRU5H8L26effqp169bppptuikjMbc2WLVsCro8kjRw5kv+7REhtba2OHj1KjhsmhYWF+vTTTzVv3rywHD8+LEdFTPvHP/6hmpoapaWlBWxPS0vTxx9/7FFUQHSrra3Vvffeq+9+97u69NJLvQ4HDezcuVM5OTk6efKkzjvvPL366qsaMGCA12EBUcVN/vDXv/5Vy5YtC+lfTNsKN+f7008/1aZNmzRhwgStW7dO+/bt08yZM1VVVRW2/4zEAjfn+rbbbtM//vEPXX311TLGqLq6Wrm5ubw9LUzKysoavT6VlZX6+uuv1b59e48iaxueeOIJHTt2TLfeeqvXocScTz75RA8++KD+8pe/KD4+POUd7jQCgFZg1qxZ2rVrl1atWuV1KGhE//79tWPHDm3dulU/+clPNGnSJO3Zs8frsICYdvToUd1+++164YUXdMEFF3gdTptQW1ur1NRU/epXv1JWVpZ+9KMf6ec//7kKCgq8Di3mvPXWW3r88cf13HPP6YMPPtDq1av1xhtv6LHHHvM6NCCkVq5cqUcffVQvv/yyUlNTvQ4nptTU1Oi2227To48+qm9961thG4c7jeDYBRdcoHbt2unQoUMB2w8dOqT09HSPogKi1+zZs/WHP/xB77zzji688EKvw0EjEhMT1bdvX0lSVlaWtm3bpl/+8pdaunSpx5EB0cNp/lBcXKwDBw5ozJgx/m21tbWSpPj4eO3du1eZmZnhDTqKucnXunXrpoSEBLVr186/7ZJLLlFZWZlOnz6txMTEsMYcrdyc64cffli33367pk6dKkm67LLLdPz4cU2fPl0///nPFRfH3/ZDKT09vdHr4/P5uMsojFatWqWpU6fqlVdesb09EC139OhRvf/++9q+fbtmz54t6czrpDFG8fHx+tOf/qTrrruuxePw2wiOJSYmKisrK+CD+2pra7Vx40Y+4wNwwBij2bNn69VXX9WmTZvUp08fr0NCM9XW1urUqVNehwFEFaf5w8UXX6ydO3dqx44d/p8f/OAH/m8/ysjIiGT4UcdNvvbd735X+/bt8xfnJOl///d/1a1bNwpG5+DmXJ84ccJWGKov1vE9RaGXk5MTcH0kaf369fzfJYxeeuklTZ48WS+99JJGjx7tdTgxyefz2V4nc3Nz/XfIZ2dnh2Qc7jSCK/fff78mTZqkK6+8UldddZWeeuopHT9+XJMnT/Y6NNQ5duyY9u3b51/fv3+/duzYoS5duqhnz54eRoZ6s2bN0sqVK/Xaa6+pY8eOKisrkySlpKTwV69WZO7cuRo1apR69uypo0ePauXKlXrrrbf4ml7Ahabyh4kTJ6pHjx7Kz89XcnKy7TPeOnXqJEl89lszOTnfkvSTn/xEzz77rO655x7ddddd+uSTT/T444/r7rvv9nIaUcHpuR4zZoyefPJJDR48WNnZ2dq3b58efvhhjRkzJuBOLzSuqTx37ty5+uKLL/Sb3/xGkpSbm6tnn31Wc+bM0ZQpU7Rp0ya9/PLLeuONN7yaQlRxer5XrlypSZMm6Ze//KWys7P9OW779u2VkpLiyRyihZNzHRcXZ3s9TE1NbfT1s0UM4NIzzzxjevbsaRITE81VV11l3nvvPa9Dwln+/Oc/G0m2n0mTJnkdGuo0dn0kmcLCQq9Dw1mmTJlievXqZRITE03Xrl3N9ddfb/70pz95HRYQtc6VPwwbNuycr1OTJk0yY8eODX+QMcTp+d68ebPJzs42SUlJ5qKLLjL/9V//ZaqrqyMcdXRycq6rqqpMXl6eyczMNMnJySYjI8PMnDnTHDlyJPKBR6Gm8txJkyaZYcOG2foMGjTIJCYmmosuuoh8ywGn53vYsGH8P8QlN4/ts82bN89cfvnlIY3JMob7HwEAAAAAABCIzzQCAAAAAACADUUjAAAAAAAA2FA0AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADYUDQCAAAAAACADUUjAAAAAAAA2FA0AgAAAAAAgA1FIwAAAAAAANhQNAIAAAAAAIANRSMAAAAAAADY/D/nCu9emYa4CQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot categorical weights\n", + "\n", + "fig, axs = plt.subplots(3, 2, figsize = (14, 20))\n", + "\n", + "axs[0, 0].set_title(\"Categorical weights - Class\")\n", + "clrbar = axs[0, 0].imshow(arrays_categorical[\"Class\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_categorical[\"Class\"], ax = axs[0, 0], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[1, 0].set_title(\"Categorical weights - W+\")\n", + "clrbar = axs[1, 0].imshow(arrays_categorical[\"W+\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_categorical[\"W+\"], ax = axs[1, 0], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[1, 1].set_title(\"Categorical weights - S_W+\")\n", + "clrbar = axs[1, 1].imshow(arrays_categorical[\"S_W+\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_categorical[\"S_W+\"], ax = axs[1, 1], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[2, 0].set_title(\"Categorical weights - Generalized W+\")\n", + "clrbar = axs[2, 0].imshow(arrays_categorical[\"Generalized W+\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_categorical[\"Generalized W+\"], ax = axs[2, 0], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[2, 1].set_title(\"Categorical weights - Generalized S_W+\")\n", + "clrbar = axs[2, 1].imshow(arrays_categorical[\"Generalized S_W+\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_categorical[\"Generalized S_W+\"], ax = axs[2, 1], transform = raster_meta[\"transform\"], cmap=colormap_name)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI4AAAYSCAYAAABeUKCIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1xVVf7/8fcB5KApiMpFFMXUvOQ1NcRLapLkOJalpU7lrbT5qWXazJSTCloTVqZO5aX6JjaTptmoWamFluVtzGupqWUqmImXUcArCKzfH8rJIxvlIHC4vJ6Px3kc99pr7fVZex85mw9r720zxhgBAAAAAAAA1/BwdwAAAAAAAAAonkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBZVRMTIxsNptTWVhYmAYNGuSegArRoUOHZLPZNHfu3Hy3nTJlSsEH5kZz586VzWbToUOH3B0KAAAAgGKMxBGQBzNnzpTNZlN4eLi7Q0Extnz5csXExLg1hszMTMXFxalz586qUqWK7Ha7wsLCNHjwYG3ZssWtsQEAAAAoebzcHQBQEsybN09hYWH67rvvtH//ftWrV8/dIRWKffv2ycOj9OWTa9eurQsXLqhcuXKF2s/y5cs1Y8YMtyWPLly4oAcffFArV67UXXfdpb///e+qUqWKDh06pI8++kjvv/++EhMTVbNmTbfEBwAAAKDkIXEE3MDBgwe1YcMGLV68WE8++aTmzZun6Ohod4dVKOx2u7tDKBQ2m00+Pj7uDqPQ/fWvf9XKlSs1bdo0PfPMM07roqOjNW3aNPcEBgAAAKDEKn1TC4ACNm/ePPn7+6tHjx7q06eP5s2bZ1lvwYIFatWqlSpVqiRfX181bdpU//znP53qJCcna/To0QoLC5PdblfNmjU1YMAAnTx50lEnLS1N0dHRqlevnux2u0JDQ/W3v/1NaWlpTtuy2WwaOXKkli5dqiZNmshut+v222/XypUrc8S2bt06tWnTRj4+Pqpbt67efvttyzFce4+j7PvgrF+/XmPGjFFAQIBuueUWPfDAAzpx4oRT26ysLMXExCgkJEQVKlRQly5d9OOPP+bpvkl33HGHHnzwQaeypk2bymaz6YcffnCULVy4UDabTXv27HGUHTlyREOGDFFQUJBjH8yZM8dpW7nd42jRokVq3LixfHx81KRJEy1ZskSDBg1SWFiYZZzvvPOO6tatK7vdrjZt2mjz5s2OdYMGDdKMGTMkXT422a9sefl83Ixff/1Vb7/9tu65554cSSNJ8vT01F/+8pfrzjb65JNP1KNHD4WEhMhut6tu3bp68cUXlZmZ6VTv559/Vu/evRUcHCwfHx/VrFlT/fr1U0pKiqNOfHy8OnTooMqVK6tixYpq0KCB/v73vxfYeAEAAAAUDWYcATcwb948Pfjgg/L29lb//v01a9Ysbd68WW3atHHUiY+PV//+/dW1a1e98sorkqQ9e/Zo/fr1GjVqlCTp7Nmz6tixo/bs2aMhQ4bojjvu0MmTJ7Vs2TL9+uuvqlatmrKysnTfffdp3bp1GjZsmBo1aqSdO3dq2rRp+umnn7R06VKn2NatW6fFixdr+PDhqlSpkt544w317t1biYmJqlq1qiRp586d6tatmwICAhQTE6OMjAxFR0crKCgoz/vgqaeekr+/v6Kjo3Xo0CFNnz5dI0eO1MKFCx11xo4dq1dffVU9e/ZUVFSUvv/+e0VFRenixYs33H7Hjh314YcfOpZPnTql3bt3y8PDQ2vXrlWzZs0kSWvXrlVAQIAaNWokSTp27Jjatm3rSKIFBARoxYoVevzxx5WammqZQMn2+eefq2/fvmratKliY2N1+vRpPf7446pRo4Zl/fnz5+vMmTN68sknZbPZ9Oqrr+rBBx/UgQMHVK5cOT355JP67bffFB8fr3//+99ObfPy+bhZK1asUEZGhh577LF8b2Pu3LmqWLGixowZo4oVK+qrr77ShAkTlJqaqtdee02SlJ6erqioKKWlpempp55ScHCwjhw5os8++0zJycny8/PT7t279cc//lHNmjXTpEmTZLfbtX//fq1fv75AxgoAAACgCBkAudqyZYuRZOLj440xxmRlZZmaNWuaUaNGOdUbNWqU8fX1NRkZGblua8KECUaSWbx4cY51WVlZxhhj/v3vfxsPDw+zdu1ap/WzZ882ksz69esdZZKMt7e32b9/v6Ps+++/N5LMm2++6Sjr1auX8fHxMQkJCY6yH3/80Xh6epprfwTUrl3bDBw40LEcFxdnJJnIyEhHjMYYM3r0aOPp6WmSk5ONMcYkJSUZLy8v06tXL6ftxcTEGElO27SyaNEiI8n8+OOPxhhjli1bZux2u7nvvvtM3759HfWaNWtmHnjgAcfy448/bqpXr25OnjzptL1+/foZPz8/c/78eWOMMQcPHjSSTFxcnKNO06ZNTc2aNc2ZM2ccZWvWrDGSTO3atR1l2W2rVq1qTp065Sj/5JNPjCTz6aefOspGjBiRY58ak7fPx80aPXq0kWS2b9+ep/rZx/bgwYOOsuz9dbUnn3zSVKhQwVy8eNEYY8z27duNJLNo0aJctz1t2jQjyZw4ccKlMQAAAAAofrhUDbiOefPmKSgoSF26dJF0+RKkvn37asGCBU6X71SuXFnnzp1TfHx8rtv6z3/+o+bNm+uBBx7IsS77kqZFixapUaNGatiwoU6ePOl43X333ZKkr7/+2qldZGSk6tat61hu1qyZfH19deDAAUmXn7D1xRdfqFevXqpVq5ajXqNGjRQVFZXn/TBs2DCny646duyozMxMJSQkSJJWr16tjIwMDR8+3KndU089laftd+zYUZL07bffSro8s6hNmza65557tHbtWkmXL/PbtWuXo64xRv/5z3/Us2dPGWOc9ldUVJRSUlK0bds2y/5+++037dy5UwMGDFDFihUd5Z06dVLTpk0t2/Tt21f+/v45Ys7e19eTl8/HzUpNTZUkVapUKd/bKF++vOPfZ86c0cmTJ9WxY0edP39ee/fulST5+flJkr744gudP3/ecjuVK1eWdPnSt6ysrHzHAwAAAMD9ymTi6Ntvv1XPnj0VEhIim82W4/KfvDDGaMqUKbrttttkt9tVo0YN/eMf/yj4YOE2mZmZWrBggbp06aKDBw9q//792r9/v8LDw3Xs2DGtXr3aUXf48OG67bbb1L17d9WsWVNDhgzJca+hX375RU2aNLlunz///LN2796tgIAAp9dtt90mSTp+/LhT/auTQdn8/f11+vRpSdKJEyd04cIF1a9fP0e9Bg0a5G1HWPSTnUDJ7ic7gXTt0+aqVKnilGzJTVBQkOrXr+9IEq1du1YdO3bUXXfdpd9++00HDhzQ+vXrlZWV5UjYnDhxQsnJyXrnnXdy7K/BgwdLyrm/suUWb25ledkH15OXz4eVEydOKCkpyfE6e/ZsrnV9fX0lXU745Nfu3bv1wAMPyM/PT76+vgoICNCjjz4qSY77F9WpU0djxozR//3f/6latWqKiorSjBkznO5v1LdvX7Vv315PPPGEgoKC1K9fP3300UckkQAAAIASqEze4+jcuXNq3ry5hgwZkuOGvHk1atQoffnll5oyZYqaNm2qU6dO6dSpUwUcKdzpq6++0tGjR7VgwQItWLAgx/p58+apW7dukqTAwEDt2LFDX3zxhVasWKEVK1YoLi5OAwYM0Pvvv5/nPrOystS0aVNNnTrVcn1oaKjTsqenp2U9Y0ye+8yLouinQ4cOWr16tS5cuKCtW7dqwoQJatKkiSpXrqy1a9dqz549qlixolq2bClJjiTEo48+qoEDB1puM/veSAXhZvZBfj8fbdq0cSS5pMtPRouJibGs27BhQ0mX72nVokWLG8Z0reTkZHXq1Em+vr6aNGmS6tatKx8fH23btk3PPfecU9Ln9ddf16BBg/TJJ5/oyy+/1NNPP63Y2Fj997//Vc2aNVW+fHl9++23+vrrr/X5559r5cqVWrhwoe6++259+eWXue5LAAAAAMVPmUwcde/eXd27d891fVpaml544QV9+OGHSk5OVpMmTfTKK6+oc+fOki7f1HbWrFnatWuXY9ZGnTp1iiJ0FKF58+YpMDDQ8aSsqy1evFhLlizR7NmzHZf3eHt7q2fPnurZs6eysrI0fPhwvf322xo/frzq1aununXrateuXdfts27duvr+++/VtWtXp0vD8isgIEDly5fXzz//nGPdvn37bnr72WrXri1J2r9/v9P/hf/97395mpEjXb70Ky4uznEZYLt27eTh4aEOHTo4Ekft2rVzJB0CAgJUqVIlZWZmKjIyMt/xXsuqLK+ud8xu9PmwMm/ePF24cMGxfOutt+a6/e7du8vT01MffPBBvm6QvWbNGv3vf//T4sWLdddddznKDx48aFm/adOmatq0qcaNG6cNGzaoffv2mj17tl566SVJkoeHh7p27aquXbtq6tSpevnll/XCCy/o66+/dvl4Abjs22+/1WuvvaatW7fq6NGjWrJkiXr16nXdNmvWrNGYMWO0e/duhYaGaty4cTd80iUAAMDVyuSlajcycuRIbdy4UQsWLNAPP/yghx56SPfee6/jl+9PP/1Ut956qz777DPVqVNHYWFheuKJJ5hxVIpcuHBBixcv1h//+Ef16dMnx2vkyJE6c+aMli1bJulyguRqHh4ejtkuaWlpkqTevXvr+++/15IlS3L0lz1r5eGHH9aRI0f07rvvWsZ07tw5l8bh6empqKgoLV26VImJiY7yPXv26IsvvnBpW9fTtWtXeXl5adasWU7lb731Vp63kX0J2iuvvKJmzZo57qXTsWNHrV69Wlu2bHHUkS6PrXfv3vrPf/5jmZA7ceJErn2FhISoSZMm+te//uV0+dc333yjnTt35jnma91yyy2SLs/euVpePh9W2rdvr8jISMfreomj0NBQDR06VF9++aXefPPNHOuzsrL0+uuv69dff7Vsn52Qu3oGVXp6umbOnOlULzU1VRkZGU5lTZs2lYeHh2MsVj8Ls2dBXW+8AK4ve8a01R80rBw8eFA9evRQly5dtGPHDj3zzDN64oknCvTnPwAAKP3K5Iyj60lMTFRcXJwSExMVEhIiSfrLX/6ilStXKi4uTi+//LIOHDighIQELVq0SP/617+UmZmp0aNHq0+fPvrqq6/cPAIUhGXLlunMmTO67777LNe3bdtWAQEBmjdvnvr27etIHN59992qWbOmEhIS9Oabb6pFixaOR8f/9a9/1ccff6yHHnpIQ4YMUatWrXTq1CktW7ZMs2fPVvPmzfXYY4/po48+0p///Gd9/fXXat++vTIzM7V371599NFH+uKLL9S6dWuXxjJx4kStXLlSHTt21PDhw5WRkaE333xTt99+u3744Yeb3lfS5XsUjRo1Sq+//rruu+8+3Xvvvfr++++1YsUKVatWLU+zp+rVq6fg4GDt27fP6abad911l5577jlJckocSdLkyZP19ddfKzw8XEOHDlXjxo116tQpbdu2TatWrbpuMvfll1/W/fffr/bt22vw4ME6ffq03nrrLTVp0uS69xK6nlatWkmSnn76aUVFRcnT01P9+vXL0+ejILz++uv65Zdf9PTTTzsSn/7+/kpMTNSiRYu0d+9e9evXz7Jtu3bt5O/vr4EDB+rpp5+WzWbTv//97xyX4n311VcaOXKkHnroId12223KyMjQv//9b0ciT5ImTZqkb7/9Vj169FDt2rV1/PhxzZw5UzVr1lSHDh0KbLxAWXOjGdPXmj17turUqaPXX39d0uUHI6xbt07Tpk1z6QEJAACgbCNxdI2dO3cqMzPTcTPibGlpaapataqky3+5T0tL07/+9S9Hvffee0+tWrXSvn37XLrpMIqnefPmycfHR/fcc4/leg8PD/Xo0UPz5s3T//73Pz366KN65513NHPmTCUnJys4OFh9+/ZVTEyMPDwuT+yrWLGi1q5dq+joaC1ZskTvv/++AgMD1bVrV9WsWdOx3aVLl2ratGn617/+pSVLlqhChQq69dZbNWrUqByfy7xo1qyZvvjiC40ZM0YTJkxQzZo1NXHiRB09erTAEkfS5ZlCFSpU0LvvvqtVq1YpIiJCX375pTp06CAfH588baNjx45atGiRU3KhVatWqlChgjIyMhQeHu5UPygoSN99950mTZqkxYsXa+bMmapatapuv/12vfLKK9ftq2fPnvrwww8VExOj559/XvXr19fcuXP1/vvva/fu3a7vAEkPPvignnrqKS1YsEAffPCBjDHq169fnj4fBaFChQpasWKFYxwvvviizp8/r5CQEN19992aN2+eatSoYdm2atWq+uyzz/Tss89q3Lhx8vf316OPPqquXbs6/YLZvHlzRUVF6dNPP9WRI0dUoUIFNW/eXCtWrFDbtm0lSffdd58OHTqkOXPm6OTJk6pWrZo6deqkiRMnOmaSASh8GzduzHFpaFRUlJ555plc26SlpTnNDMzKytKpU6dUtWrVArmEGgAAFA5jjM6cOaOQkJAC/R1DkmymoO+iW8LYbDanewQsXLhQjzzyiHbv3p3jBq4VK1ZUcHCwoqOj9fLLL+vSpUuOdRcuXFCFChX05Zdf5ppsAMqa5ORk+fv766WXXtILL7zg7nDypEWLFgoICFB8fLy7QwGAXF17/mLltttu0+DBgzV27FhH2fLly9WjRw+dP3/ecY++q8XExGjixImFETIAACgChw8fdkxMKCjMOLpGy5YtlZmZqePHj+e4LCZb+/btlZGRoV9++UV169aVJP3000+Sfr/pLlDWXLhwIccvIdOnT5ckx43li5NLly7JZrPJy+v3H4Nr1qzR999/77jBMwCUNWPHjtWYMWMcyykpKapVq5YOHz4sX19fN0YGAACuJzU1VaGhoapUqVKBb7tMJo7Onj3r9OSkgwcPaseOHapSpYpuu+02PfLIIxowYIBef/11tWzZUidOnNDq1avVrFkz9ejRQ5GRkbrjjjs0ZMgQTZ8+XVlZWRoxYoTuueeefF1KBJQGCxcu1Ny5c/WHP/xBFStW1Lp16/Thhx+qW7duat++vbvDy+HIkSOKjIzUo48+qpCQEO3du1ezZ89WcHCw/vznP7s7PAC4acHBwTp27JhT2bFjx+Tr62s520iS7Ha77HZ7jnJfX18SRwAAlACFcWl5mUwcbdmyRV26dHEsZ/9lbeDAgZo7d67i4uL00ksv6dlnn9WRI0dUrVo1tW3bVn/84x8lXb4PzaeffqqnnnpKd911l2655RZ1797dcfNJoCxq1qyZvLy89Oqrryo1NdVxw+ziOnvH399frVq10v/93//pxIkTuuWWW9SjRw9NnjzZcT8zACjJIiIitHz5cqey+Ph4RUREuCkiAABQEpX5exwBAACUBFfPmG7ZsqWmTp2qLl26qEqVKqpVq5bGjh2rI0eO6F//+pekyzOqmzRpohEjRmjIkCH66quv9PTTT+vzzz/P81PVUlNT5efnp5SUFGYcAQBQjBXmd3bB3mobAAAAhWLLli1q2bKlWrZsKenyjOmWLVtqwoQJkqSjR48qMTHRUb9OnTr6/PPPFR8fr+bNm+v111/X//3f/+U5aQQAACAx4wgAAAC5YMYRAAAlQ2F+Z5eZexxlZWXpt99+U6VKlQrlZlEAAKBgGGN05swZhYSEyMODydEAAADuVGYSR7/99ptCQ0PdHQYAAMijw4cPq2bNmu4OAwAAoEwrM4mjSpUqSbp8EspUawAAiq/U1FSFhoY6vrsBAADgPmUmcZR9eZqvry+JIwAASgAuLQcAAHA/bhwAAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLXq5UDgsLU0JCQo7y4cOHa8aMGTnK586dq8GDBzuV2e12Xbx4UZJ06dIljRs3TsuXL9eBAwfk5+enyMhITZ48WSEhIdftNzY2Vs8//7wr4RcJWyN3R+Bme2MKv4+Ghd+H2VPoXQAAAAAAUOy5lDjavHmzMjMzHcu7du3SPffco4ceeijXNr6+vtq3b59j2WazOf59/vx5bdu2TePHj1fz5s11+vRpjRo1Svfdd5+2bNnitJ1JkyZp6NChjuVKlSq5EjoAAAAAAABc5FLiKCAgwGl58uTJqlu3rjp16pRrG5vNpuDgYMt1fn5+io+Pdyp76623dOeddyoxMVG1atVylFeqVCnX7QAAAAAAAKDg5fseR+np6frggw80ZMgQp1lE1zp79qxq166t0NBQ3X///dq9e/d1t5uSkiKbzabKlSs7lU+ePFlVq1ZVy5Yt9dprrykjI+O620lLS1NqaqrTCwAAAAAAAHnn0oyjqy1dulTJyckaNGhQrnUaNGigOXPmqFmzZkpJSdGUKVPUrl077d69WzVr1sxR/+LFi3ruuefUv39/+fr6Osqffvpp3XHHHapSpYo2bNigsWPH6ujRo5o6dWqufcfGxmrixIn5HR4AAAAAAECZZzPGmPw0jIqKkre3tz799NM8t7l06ZIaNWqk/v3768UXX8yxrnfv3vr111+1Zs0ap8TRtebMmaMnn3xSZ8+eld1ut6yTlpamtLQ0x3JqaqpCQ0OVkpJy3W3fLG6OHVP4fXBzbAAo1VJTU+Xn51fo39m4MY4FAAAlQ2F+Z+drxlFCQoJWrVqlxYsXu9SuXLlyatmypfbv3+9UfunSJT388MNKSEjQV199dcNBhoeHKyMjQ4cOHVKDBg0s69jt9lyTSgAAAAAAALixfN3jKC4uToGBgerRo4dL7TIzM7Vz505Vr17dUZadNPr555+1atUqVa1a9Ybb2bFjhzw8PBQYGOhy7AAAAAAAAMgbl2ccZWVlKS4uTgMHDpSXl3PzAQMGqEaNGoqNjZUkTZo0SW3btlW9evWUnJys1157TQkJCXriiSckXU4a9enTR9u2bdNnn32mzMxMJSUlSZKqVKkib29vbdy4UZs2bVKXLl1UqVIlbdy4UaNHj9ajjz4qf3//mx0/AAAAAAAAcuFy4mjVqlVKTEzUkCFDcqxLTEyUh8fvk5hOnz6toUOHKikpSf7+/mrVqpU2bNigxo0bS5KOHDmiZcuWSZJatGjhtK2vv/5anTt3lt1u14IFCxQTE6O0tDTVqVNHo0eP1pgxY1wNHQAAAAAAAC7I982xS5qiurkjN8eOKfw+uDk2AJRq3JC5+OBYAABQMhTmd3a+7nEEAAAAAACA0i9fT1XDdeRjxs0as6Lg47hGZ1v3Qu+jyORnVpOLs5TK/MyxIsCsLgAAAAAo/phxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlL3cHUNqsMSvcHYKl/MTV2da9ECJxk70xrtXf5WJ9SerjepOyzNbI3RFYM3vcHQEAAAAAFB/MOAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAkpe7AyhtOtu6uzsEFIQmMa632ZWPNn1cb4LCZWvk7gismT3ujgAAAABAWcSMIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGDJy90BlDoNY1xvszcfbVD8NIkp/D525aOPPgUeBdzA1sjdEVgze9wdAQAAAIDCxIwjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACx5uVI5LCxMCQkJOcqHDx+uGTNm5CifO3euBg8e7FRmt9t18eJFSdKlS5c0btw4LV++XAcOHJCfn58iIyM1efJkhYSEONqcOnVKTz31lD799FN5eHiod+/e+uc//6mKFSu6Ej5Q8jWJcb3Nrny06eN6E5RNtkaut1mzJ7zgA7lGJ20q9D4AAACAssClxNHmzZuVmZnpWN61a5fuuecePfTQQ7m28fX11b59+xzLNpvN8e/z589r27ZtGj9+vJo3b67Tp09r1KhRuu+++7RlyxZHvUceeURHjx5VfHy8Ll26pMGDB2vYsGGaP3++K+EDAAAAAADABS4ljgICApyWJ0+erLp166pTp065trHZbAoODrZc5+fnp/j4eKeyt956S3feeacSExNVq1Yt7dmzRytXrtTmzZvVunVrSdKbb76pP/zhD5oyZYrTzCQAAAAAAAAUnHzf4yg9PV0ffPCBhgwZ4jSL6Fpnz55V7dq1FRoaqvvvv1+7d+++7nZTUlJks9lUuXJlSdLGjRtVuXJlR9JIkiIjI+Xh4aFNm3K/FCEtLU2pqalOLwAAgJJsxowZCgsLk4+Pj8LDw/Xdd99dt/706dPVoEEDlS9fXqGhoRo9erTjlgEAAAB5ke/E0dKlS5WcnKxBgwblWqdBgwaaM2eOPvnkE33wwQfKyspSu3bt9Ouvv1rWv3jxop577jn1799fvr6+kqSkpCQFBgY61fPy8lKVKlWUlJSUa9+xsbHy8/NzvEJDQ10fJAAAQDGxcOFCjRkzRtHR0dq2bZuaN2+uqKgoHT9+3LL+/Pnz9fzzzys6Olp79uzRe++9p4ULF+rvf/97EUcOAABKsnwnjt577z117979upeKRUREaMCAAWrRooU6deqkxYsXKyAgQG+//XaOupcuXdLDDz8sY4xmzZqV37Acxo4dq5SUFMfr8OHDN71NAAAAd5k6daqGDh2qwYMHq3Hjxpo9e7YqVKigOXPmWNbfsGGD2rdvrz/96U8KCwtTt27d1L9//xvOUgIAALhavhJHCQkJWrVqlZ544gmX2pUrV04tW7bU/v37ncqzk0YJCQmKj493zDaSpODg4Bx/ScvIyNCpU6dyvXeSdPnpbb6+vk4vAACAkig9PV1bt25VZGSko8zDw0ORkZHauHGjZZt27dpp69atjkTRgQMHtHz5cv3hD3/ItR8u9QcAANfKV+IoLi5OgYGB6tGjh0vtMjMztXPnTlWvXt1Rlp00+vnnn7Vq1SpVrVrVqU1ERISSk5O1detWR9lXX32lrKwshYcX/iOdAQAA3O3kyZPKzMxUUFCQU3lQUFCul+7/6U9/0qRJk9ShQweVK1dOdevWVefOna97qRqX+gMAgGu5nDjKyspSXFycBg4cKC8v54eyDRgwQGPHjnUsT5o0SV9++aUOHDigbdu26dFHH1VCQoJjptKlS5fUp08fbdmyRfPmzVNmZqaSkpKUlJSk9PR0SVKjRo107733aujQofruu++0fv16jRw5Uv369eOJagAAALlYs2aNXn75Zc2cOVPbtm3T4sWL9fnnn+vFF1/MtQ2X+gMAgGt53biKs1WrVikxMVFDhgzJsS4xMVEeHr/nok6fPq2hQ4cqKSlJ/v7+atWqlTZs2KDGjRtLko4cOaJly5ZJklq0aOG0ra+//lqdO3eWJM2bN08jR45U165d5eHhod69e+uNN95wNXQAAIASqVq1avL09NSxY8ecyo8dO5brpfvjx4/XY4895viDXdOmTXXu3DkNGzZML7zwgtM5Wza73S673V7wAwAAACWWy4mjbt26yRhjuW7NmjVOy9OmTdO0adNy3VZYWFiu27palSpVNH/+fJfiBAAAKC28vb3VqlUrrV69Wr169ZJ0eRb46tWrNXLkSMs258+fz5Ec8vT0lKQ8nX8BAABI+UgcAQAAoOiNGTNGAwcOVOvWrXXnnXdq+vTpOnfunAYPHizp8i0DatSoodjYWElSz549NXXqVLVs2VLh4eHav3+/xo8fr549ezoSSAAAADdC4ggAAKAE6Nu3r06cOKEJEyYoKSlJLVq00MqVKx03zL72lgHjxo2TzWbTuHHjdOTIEQUEBKhnz576xz/+4a4hAACAEshmyshc5dTUVPn5+SklJUW+vr6F1o/NFuN6o4b5aLM3H21QqNaYFS636WzrXgiRFIBdMa7V71MoUaCUWrOndDwRs3OjTUXSj9lTJN0UK0X1nY0b41gAAFAyFOZ3tstPVQMAAAAAAEDZQOIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAkpe7Ayht1pgV+WjlepvOtu6uNWgY43If2puPNkUhP2NxVXEdO1AKdG60qdD7WLMnvFj2kZ+x2xq53KRImD3ujgAAAABFgRlHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFjycncApU1nW3eX26wxK1zvqGGMa/X3ulg/P33ko59oTcxHH663mdjQuFQ/P8ckP8e+2GoS41r9XS7Wl6Q+rjcB8qpzo00ut1mzJ7wQIrn5PvIzlqJga+RafbOncOIAAABA4WLGEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWvNwdAKTOtu75aBXjWvWGLtYvIhMbGtcb7Y0p8Diulb9jAqAk69xok0v11+wJL6RIAAAAgOKDGUcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAkpcrlcPCwpSQkJCjfPjw4ZoxY0aO8rlz52rw4MFOZXa7XRcvXnQsL168WLNnz9bWrVt16tQpbd++XS1atHBq07lzZ33zzTdOZU8++aRmz57tSvhFo2GM62325qNNceXq+Ivp2NeYFS636WzrXgiRlGIf56NNnwKPAgAAAABwHS4ljjZv3qzMzEzH8q5du3TPPffooYceyrWNr6+v9u3b51i22WxO68+dO6cOHTro4Ycf1tChQ3PdztChQzVp0iTHcoUKFVwJHQAAAAAAAC5yKXEUEBDgtDx58mTVrVtXnTp1yrWNzWZTcHBwrusfe+wxSdKhQ4eu23eFChWuux0AAAAAAAAUrHzf4yg9PV0ffPCBhgwZkmMW0dXOnj2r2rVrKzQ0VPfff792796dr/7mzZunatWqqUmTJho7dqzOnz9/3fppaWlKTU11egEAAAAAACDvXJpxdLWlS5cqOTlZgwYNyrVOgwYNNGfOHDVr1kwpKSmaMmWK2rVrp927d6tmzZp57utPf/qTateurZCQEP3www967rnntG/fPi1evDjXNrGxsZo4caIrQwIAAAAAAMBV8p04eu+999S9e3eFhITkWiciIkIRERGO5Xbt2qlRo0Z6++239eKLL+a5r2HDhjn+3bRpU1WvXl1du3bVL7/8orp161q2GTt2rMaMGeNYTk1NVWhoaJ77BAAAAAAAKOvylThKSEjQqlWrrjvjx0q5cuXUsmVL7d+/Pz/dOoSHh0uS9u/fn2viyG63y26331Q/AAAAAAAAZVm+7nEUFxenwMBA9ejRw6V2mZmZ2rlzp6pXr56fbh127NghSTe9HQAAAAAAAOTO5RlHWVlZiouL08CBA+Xl5dx8wIABqlGjhmJjYyVJkyZNUtu2bVWvXj0lJyfrtddeU0JCgp544glHm1OnTikxMVG//fabJGnfvn2SpODgYAUHB+uXX37R/Pnz9Yc//EFVq1bVDz/8oNGjR+uuu+5Ss2bN8j1wAAAAAAAAXJ/LiaNVq1YpMTFRQ4YMybEuMTFRHh6/T2I6ffq0hg4dqqSkJPn7+6tVq1basGGDGjdu7KizbNkyDR482LHcr18/SVJ0dLRiYmLk7e2tVatWafr06Tp37pxCQ0PVu3dvjRs3ztXQAQAAAAAA4AKXE0fdunWTMcZy3Zo1a5yWp02bpmnTpl13e4MGDbruk9lCQ0P1zTffuBomAAAAAAAAblK+7nEEAAAAAACA0o/EEQAAAAAAACy5fKkabmBvTNH007CI+ilspWUcZV2TmKLpZ5eL/eQnLj6TAAAAAODAjCMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALHm5O4BSp2GMuyMoWfbGFEk3a8wKl+p3tnV3vZP8HPsiGn+p0STGtfq7XKxf2vRxdwClW+dGm1xus2ZPeKG3yU9cAAAAQG6YcQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAACXEjBkzFBYWJh8fH4WHh+u77767bv3k5GSNGDFC1atXl91u12233ably5cXUbQAAKA04KlqAAAAJcDChQs1ZswYzZ49W+Hh4Zo+fbqioqK0b98+BQYG5qifnp6ue+65R4GBgfr4449Vo0YNJSQkqHLlykUfPAAAKLFIHAEAAJQAU6dO1dChQzV48GBJ0uzZs/X5559rzpw5ev7553PUnzNnjk6dOqUNGzaoXLlykqSwsLCiDBkAAJQCXKoGAABQzKWnp2vr1q2KjIx0lHl4eCgyMlIbN260bLNs2TJFRERoxIgRCgoKUpMmTfTyyy8rMzMz137S0tKUmprq9AIAAGUbiSMAAIBi7uTJk8rMzFRQUJBTeVBQkJKSkizbHDhwQB9//LEyMzO1fPlyjR8/Xq+//rpeeumlXPuJjY2Vn5+f4xUaGlqg4wAAACUPiSMAAIBSKCsrS4GBgXrnnXfUqlUr9e3bVy+88IJmz56da5uxY8cqJSXF8Tp8+HARRgwAAIoj7nEEAABQzFWrVk2enp46duyYU/mxY8cUHBxs2aZ69eoqV66cPD09HWWNGjVSUlKS0tPT5e3tnaON3W6X3W4v2OABAECJRuKorNgb4+4ILEVrosttupg7XW7T2dbd5TYuK6b7uExrEuN6m135aFNcFcVnMj/7q0+BR+EWa/aEF0k/nRttKpJ+ULx5e3urVatWWr16tXr16iXp8oyi1atXa+TIkZZt2rdvr/nz5ysrK0seHpcnmf/000+qXr26ZdIIAADACpeqAQAAlABjxozRu+++q/fff1979uzR//t//0/nzp1zPGVtwIABGjt2rKP+//t//0+nTp3SqFGj9NNPP+nzzz/Xyy+/rBEjRrhrCAAAoARixhEAAEAJ0LdvX504cUITJkxQUlKSWrRooZUrVzpumJ2YmOiYWSRJoaGh+uKLLzR69Gg1a9ZMNWrU0KhRo/Tcc8+5awgAAKAEInEEAABQQowcOTLXS9PWrFmToywiIkL//e9/CzkqAABQmnGpGgAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALHm5O4BSZ2+MuyOw1jDG9TZFMJYu5k6X23S2dS+ESK5RTPcXCl90E5vLbSbuMoUQSQHYFePuCKx97GL9PoUShVt0brTJ3SEAAAAALmHGEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWvFypHBYWpoSEhBzlw4cP14wZM3KUz507V4MHD3Yqs9vtunjxomN58eLFmj17trZu3apTp05p+/btatGihVObixcv6tlnn9WCBQuUlpamqKgozZw5U0FBQa6EXzQaxrjeZm8+2rjaT376KAKdbd3dHYJ75efz4qpieuzzpbh+7pu42M8uF+vnV58i6OPjIuijKH5G5kPnRpsKvQ8AAADA3VyacbR582YdPXrU8YqPj5ckPfTQQ7m28fX1dWpzbeLp3Llz6tChg1555ZVctzF69Gh9+umnWrRokb755hv99ttvevDBB10JHQAAAAAAAC5yacZRQECA0/LkyZNVt25dderUKdc2NptNwcHBua5/7LHHJEmHDh2yXJ+SkqL33ntP8+fP19133y1JiouLU6NGjfTf//5Xbdu2dWUIAAAAAAAAyKN83+MoPT1dH3zwgYYMGSKbzZZrvbNnz6p27doKDQ3V/fffr927d7vUz9atW3Xp0iVFRkY6yho2bKhatWpp48aNubZLS0tTamqq0wsAAAAAAAB5l+/E0dKlS5WcnKxBgwblWqdBgwaaM2eOPvnkE33wwQfKyspSu3bt9Ouvv+a5n6SkJHl7e6ty5cpO5UFBQUpKSsq1XWxsrPz8/Byv0NDQPPcJAAAAAACAm0gcvffee+revbtCQkJyrRMREaEBAwaoRYsW6tSpkxYvXqyAgAC9/fbb+e02z8aOHauUlBTH6/Dhw4XeJwAAAAAAQGni0j2OsiUkJGjVqlVavHixS+3KlSunli1bav/+/XluExwcrPT0dCUnJzvNOjp27Nh1751kt9tlt9tdig8AAAAAAAC/y9eMo7i4OAUGBqpHjx4utcvMzNTOnTtVvXr1PLdp1aqVypUrp9WrVzvK9u3bp8TEREVERLjUPwAAAAAAAPLO5RlHWVlZiouL08CBA+Xl5dx8wIABqlGjhmJjYyVJkyZNUtu2bVWvXj0lJyfrtddeU0JCgp544glHm1OnTikxMVG//fabpMtJIenyTKPg4GD5+fnp8ccf15gxY1SlShX5+vrqqaeeUkREBE9UAwAAAAAAKEQuJ45WrVqlxMREDRkyJMe6xMREeXj8Ponp9OnTGjp0qJKSkuTv769WrVppw4YNaty4saPOsmXLNHjwYMdyv379JEnR0dGKiYmRJE2bNk0eHh7q3bu30tLSFBUVpZkzZ7oaOgAAAAAAAFzgcuKoW7duMsZYrluzZo3T8rRp0zRt2rTrbm/QoEHXfTKbJPn4+GjGjBmaMWOGK6ECAAAAAADgJuT7qWoAAAAAAAAo3UgcAQAAAAAAwJLLl6rhBvbGuNwkWhPz0Y9rbSYq2vU+4JqGMe6OoGQpiv2Vnz5c/L8lSdqVj35c1afwuyi28rN/y/L+AgAAAAoQM44AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJS93B1DamLcmutzGNjK6ECJxk4YxrtXf62L9opKfuFwde1EprnEVUxN3mcLvpE/hd5Ev+fnc98lHm49dbwIAAADAPZhxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlL3cHUNrYRka73Ma8NbFI+ikSe2PcHUGBWGNWuNymc6OYgg8ERa+PuwMoQEXx/zE/fTRxsf6ufPTxsetNStWxBwAAAAoIM44AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsOTl7gBKn4Eut7CNdL2N694vgj6KxhqzotD76NxoU6H3gSKwN8bdEVhrGFM8+ymu+6tJjOttimofAwAAAKUcM44AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAACUEDNmzFBYWJh8fHwUHh6u7777Lk/tFixYIJvNpl69ehVugAAAoNQhcQQAAFACLFy4UGPGjFF0dLS2bdum5s2bKyoqSsePH79uu0OHDukvf/mLOnbsWESRAgCA0oTEEQAAQAkwdepUDR06VIMHD1bjxo01e/ZsVahQQXPmzMm1TWZmph555BFNnDhRt956axFGCwAASgsSRwAAAMVcenq6tm7dqsjISEeZh4eHIiMjtXHjxlzbTZo0SYGBgXr88cfz1E9aWppSU1OdXgAAoGwjcQQAAFDMnTx5UpmZmQoKCnIqDwoKUlJSkmWbdevW6b333tO7776b535iY2Pl5+fneIWGht5U3AAAoOQjcQQAAFDKnDlzRo899pjeffddVatWLc/txo4dq5SUFMfr8OHDhRglAAAoCbxcqRwWFqaEhIQc5cOHD9eMGTNylM+dO1eDBw92KrPb7bp48aJj2Rij6Ohovfvuu0pOTlb79u01a9Ys1a9f/7r9xsbG6vnnn3cl/DJuYD7avF/gUeTQMMblJp0bud4GKPH2xrg7gpIlP/srHz+PgKJSrVo1eXp66tixY07lx44dU3BwcI76v/zyiw4dOqSePXs6yrKysiRJXl5e2rdvn+rWrZujnd1ul91uL+DoAQBASebSjKPNmzfr6NGjjld8fLwk6aGHHsq1ja+vr1ObaxNAr776qt544w3Nnj1bmzZt0i233KKoqCin5JJ0+Rr9q7fz1FNPuRI6AABAieXt7a1WrVpp9erVjrKsrCytXr1aEREROeo3bNhQO3fu1I4dOxyv++67T126dNGOHTu4BA0AAOSZSzOOAgICnJYnT56sunXrqlOnTrm2sdlsln8Jky7PNpo+fbrGjRun+++/X5L0r3/9S0FBQVq6dKn69evnqFupUqVctwMAAFDajRkzRgMHDlTr1q115513avr06Tp37pxjdveAAQNUo0YNxcbGysfHR02aNHFqX7lyZUnKUQ4AAHA9+b7HUXp6uj744AMNGTJENpst13pnz55V7dq1FRoaqvvvv1+7d+92rDt48KCSkpKcnhDi5+en8PDwHE8ImTx5sqpWraqWLVvqtddeU0ZGxnXj46kgAACgNOnbt6+mTJmiCRMmqEWLFtqxY4dWrlzpuGF2YmKijh496uYoAQBAaePSjKOrLV26VMnJyRo0aFCudRo0aKA5c+aoWbNmSklJ0ZQpU9SuXTvt3r1bNWvWdDwF5EZPCHn66ad1xx13qEqVKtqwYYPGjh2ro0ePaurUqbn2HRsbq4kTJ+Z3eAAAAMXOyJEjNXLkSMt1a9asuW7buXPnFnxAAACg1Mt34ui9995T9+7dFRISkmudiIgIp+vu27Vrp0aNGuntt9/Wiy++mOe+xowZ4/h3s2bN5O3trSeffFKxsbG53sBx7NixTu1SU1O5nh8AAAAAAMAF+bpULSEhQatWrdITTzzhUrty5cqpZcuW2r9/vyQ57lmU1yeEZAsPD1dGRoYOHTqUax273S5fX1+nFwAAAAAAAPIuX4mjuLg4BQYGqkePHi61y8zM1M6dO1W9enVJUp06dRQcHOz0hJDU1FRt2rTJ8gkh2Xbs2CEPDw8FBgbmJ3wAAAAAAADkgcuXqmVlZSkuLk4DBw6Ul5dz86uf5iFJkyZNUtu2bVWvXj0lJyfrtddeU0JCgmOmks1m0zPPPKOXXnpJ9evXV506dTR+/HiFhISoV69ekqSNGzdq06ZN6tKliypVqqSNGzdq9OjRevTRR+Xv73+TwwcAAAAAAEBuXE4crVq1SomJiRoyZEiOdYmJifLw+H0S0+nTpzV06FAlJSXJ399frVq10oYNG9S4cWNHnb/97W86d+6chg0bpuTkZHXo0EErV66Uj4+PpMuXnC1YsEAxMTFKS0tTnTp1NHr0aKf7FwEAAAAAAKDg2Ywxxt1BFIXU1FT5+fkpJSWlUO93ZLMdLLRtF733C7+LhjGF3wfKrr0x7o7AWn4+98V1LKUJP48KldmT97pF9Z2NG+NYAABQMhTmd3a+7nEEAAAAAACA0o/EEQAAAAAAACy5fI8jXJ8xdYqkn6K5JG5gPtq4eHlbUV1+wyUopUNpuVyrtIwDReLOPd+4VP+7Rp0KKRIAAACURcw4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMCSl7sDQP4YU8fdIViy2Qa62OL9QomjpIjea3Op/sSGppAicYO9Me6OACgRvmvUyd0hAAAAoAxjxhEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACw5OXuAFC6GFPHxRYxhRFGDrZGRdDJ3hiXm0xUdMHHUVI0jHG9TT72Mcqo/Hy+AAAAAOTAjCMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALHm5OwCgKJg9RdFLjMstbDbX2wB5Fa2JLtWfqOhCiuQmNYxxdwQAAABAmcWMIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGDJpcRRWFiYbDZbjteIESMs68+dOzdHXR8fH6c6xhhNmDBB1atXV/ny5RUZGamff/7Zqc6pU6f0yCOPyNfXV5UrV9bjjz+us2fPujhUAAAAAAAAuMLLlcqbN29WZmamY3nXrl2655579NBDD+XaxtfXV/v27XMs22w2p/Wvvvqq3njjDb3//vuqU6eOxo8fr6ioKP3444+OJNMjjzyio0ePKj4+XpcuXdLgwYM1bNgwzZ8/35XwgWLHmBh3h1AgbI3cHQGsTFS0S/VLy+cRAAAAQMFxKXEUEBDgtDx58mTVrVtXnTp1yrWNzWZTcHCw5TpjjKZPn65x48bp/vvvlyT961//UlBQkJYuXap+/fppz549WrlypTZv3qzWrVtLkt5880394Q9/0JQpUxQSEuLKEAAAAAAAAJBH+b7HUXp6uj744AMNGTIkxyyiq509e1a1a9dWaGio7r//fu3evdux7uDBg0pKSlJkZKSjzM/PT+Hh4dq4caMkaePGjapcubIjaSRJkZGR8vDw0KZNm3LtNy0tTampqU4vAAAAAAAA5F2+E0dLly5VcnKyBg0alGudBg0aaM6cOfrkk0/0wQcfKCsrS+3atdOvv/4qSUpKSpIkBQUFObULCgpyrEtKSlJgYKDTei8vL1WpUsVRx0psbKz8/Pwcr9DQ0PwMEwAAAAAAoMzKd+LovffeU/fu3a97qVhERIQGDBigFi1aqFOnTlq8eLECAgL09ttv57fbPBs7dqxSUlIcr8OHDxd6nwAAAAAAAKWJS/c4ypaQkKBVq1Zp8eLFLrUrV66cWrZsqf3790uS495Hx44dU/Xq1R31jh07phYtWjjqHD9+3Gk7GRkZOnXqVK73TpIku90uu93uUnwAAAAAAAD4Xb5mHMXFxSkwMFA9evRwqV1mZqZ27tzpSBLVqVNHwcHBWr16taNOamqqNm3apIiICEmXZy0lJydr69atjjpfffWVsrKyFB4enp/wAQAAAAAAkAcuzzjKyspSXFycBg4cKC8v5+YDBgxQjRo1FBsbK0maNGmS2rZtq3r16ik5OVmvvfaaEhIS9MQTT0i6/MS1Z555Ri+99JLq16+vOnXqaPz48QoJCVGvXr0kSY0aNdK9996roUOHavbs2bp06ZJGjhypfv368UQ1AAAAAACAQuRy4mjVqlVKTEzUkCFDcqxLTEyUh8fvk5hOnz6toUOHKikpSf7+/mrVqpU2bNigxo0bO+r87W9/07lz5zRs2DAlJyerQ4cOWrlypXx8fBx15s2bp5EjR6pr167y8PBQ79699cYbb7gaOgAAAAAAAFxgM8YYdwdRFFJTU+Xn56eUlBT5+vq6OxygVLE1KqKO9sYUUUdlkzEx7g4BkMR3dnHCsQAAoGQozO/sfD9VDQAAAAAAAKUbiSMAAAAAAABYcvkeRwBwLbOnqHqKKaqOAAAAAABixhEAAAAAAAByQeIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAACXEjBkzFBYWJh8fH4WHh+u7777Lte67776rjh07yt/fX/7+/oqMjLxufQAAACskjgAAAEqAhQsXasyYMYqOjta2bdvUvHlzRUVF6fjx45b116xZo/79++vrr7/Wxo0bFRoaqm7duunIkSNFHDkAACjJbMYY4+4gikJqaqr8/PyUkpIiX19fd4cDAABywXe2tfDwcLVp00ZvvfWWJCkrK0uhoaF66qmn9Pzzz9+wfWZmpvz9/fXWW29pwIABeeqTYwEAQMlQmN/ZXgW6tWIsOz+Wmprq5kgAAMD1ZH9Xl5G/beVJenq6tm7dqrFjxzrKPDw8FBkZqY0bN+ZpG+fPn9elS5dUpUqVXOukpaUpLS3Nscx5EwAAKDOJozNnzkiSQkND3RwJAADIizNnzsjPz8/dYRQLJ0+eVGZmpoKCgpzKg4KCtHfv3jxt47nnnlNISIgiIyNzrRMbG6uJEyfeVKwAAKB0KTOJo5CQEB0+fFiVKlWSzWZzdzhFJjU1VaGhoTp8+HCZnGJelsfP2Bl7WRu7VLbHX5rGbozRmTNnFBIS4u5QSo3JkydrwYIFWrNmjXx8fHKtN3bsWI0ZM8axnP25AgAAZVeZSRx5eHioZs2a7g7DbXx9fUv8LxI3oyyPn7Ez9rKoLI+/tIydmUbOqlWrJk9PTx07dsyp/NixYwoODr5u2ylTpmjy5MlatWqVmjVrdt26drtddrv9puMFAAClB09VAwAAKOa8vb3VqlUrrV692lGWlZWl1atXKyIiItd2r776ql588UWtXLlSrVu3LopQAQBAKVNmZhwBAACUZGPGjNHAgQPVunVr3XnnnZo+fbrOnTunwYMHS5IGDBigGjVqKDY2VpL0yiuvaMKECZo/f77CwsKUlJQkSapYsaIqVqzotnEAAICShcRRKWe32xUdHV1mp52X5fEzdsZeFpXl8ZflsZcVffv21YkTJzRhwgQlJSWpRYsWWrlypeOG2YmJifLw+H0y+axZs5Senq4+ffo4bSc6OloxMTFFGToAACjBbIZn3QIAAMBCamqq/Pz8lJKSUirunQUAQGlVmN/Z3OMIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI6KmcmTJ8tms+mZZ55xlL3zzjvq3LmzfH19ZbPZlJycnKPdqVOn9Mgjj8jX11eVK1fW448/rrNnzzrV+eGHH9SxY0f5+PgoNDRUr776ao7tLFq0SA0bNpSPj4+aNm2q5cuXO603xmjChAmqXr26ypcvr8jISP38889uHXtYWJhsNpvTa/LkySV67KdOndJTTz2lBg0aqHz58qpVq5aefvpppaSkOLVLTExUjx49VKFCBQUGBuqvf/2rMjIynOqsWbNGd9xxh+x2u+rVq6e5c+fm6H/GjBkKCwuTj4+PwsPD9d133zmtv3jxokaMGKGqVauqYsWK6t27t44dO1YgY7+Z8V973G02mxYsWFCixm/1uX/yySdVt25dlS9fXgEBAbr//vu1d+9ep3al4djnd+yl9bhnM8aoe/fustlsWrp0qdO60nDcAQAAUMIYFBvfffedCQsLM82aNTOjRo1ylE+bNs3Exsaa2NhYI8mcPn06R9t7773XNG/e3Pz3v/81a9euNfXq1TP9+/d3rE9JSTFBQUHmkUceMbt27TIffvihKV++vHn77bcdddavX288PT3Nq6++an788Uczbtw4U65cObNz505HncmTJxs/Pz+zdOlS8/3335v77rvP1KlTx1y4cMFtY69du7aZNGmSOXr0qON19uzZEj32nTt3mgcffNAsW7bM7N+/36xevdrUr1/f9O7d29EuIyPDNGnSxERGRprt27eb5cuXm2rVqpmxY8c66hw4cMBUqFDBjBkzxvz444/mzTffNJ6enmblypWOOgsWLDDe3t5mzpw5Zvfu3Wbo0KGmcuXK5tixY446f/7zn01oaKhZvXq12bJli2nbtq1p167dTY37ZsdvjDGSTFxcnNOxv/p4FPfx5/a5f/vtt80333xjDh48aLZu3Wp69uxpQkNDTUZGhjGmdBz7/I7dmNJ73LNNnTrVdO/e3UgyS5YscZSXhuOOkiclJcVIMikpKe4OBQAAXEdhfmeTOComzpw5Y+rXr2/i4+NNp06dLH+Z+Prrry2TJz/++KORZDZv3uwoW7FihbHZbObIkSPGGGNmzpxp/P39TVpamqPOc889Zxo0aOBYfvjhh02PHj2cth0eHm6efPJJY4wxWVlZJjg42Lz22muO9cnJycZut5sPP/zQLWM35nLiaNq0abluv6SPPdtHH31kvL29zaVLl4wxxixfvtx4eHiYpKQkR51Zs2YZX19fx1j/9re/mdtvv91pO3379jVRUVGO5TvvvNOMGDHCsZyZmWlCQkJMbGysY5zlypUzixYtctTZs2ePkWQ2btyY77Ebc3PjN8bk+MX6WsV5/K6M/fvvvzeSzP79+40xJf/Y38zYjSndx3379u2mRo0a5ujRoznGWdKPO0omEkcAAJQMhfmdzaVqxcSIESPUo0cPRUZGutx248aNqly5slq3bu0oi4yMlIeHhzZt2uSoc9ddd8nb29tRJyoqSvv27dPp06cdda7tPyoqShs3bpQkHTx4UElJSU51/Pz8FB4e7qiTHzcz9myTJ09W1apV1bJlS7322mtOl26UlrGnpKTI19dXXl5ejpibNm2qoKAgp5hTU1O1e/fuPI0rPT1dW7dudarj4eGhyMhIR52tW7fq0qVLTnUaNmyoWrVq3dTYpZsb/9XbqFatmu68807NmTNHxhjHuuI8/ryO/dy5c4qLi1OdOnUUGhrqGFdJPvY3M/art1Hajvv58+f1pz/9STNmzFBwcHCO9SX9uAMAAKBk8rpxFRS2BQsWaNu2bdq8eXO+2iclJSkwMNCpzMvLS1WqVFFSUpKjTp06dZzqZP/ykZSUJH9/fyUlJTn9QpJd5+ptXN3Oqo6rbnbskvT000/rjjvuUJUqVbRhwwaNHTtWR48e1dSpUx1xl/Sxnzx5Ui+++KKGDRvmKMst5qvjza1OamqqLly4oNOnTyszM9OyTvZ9ZZKSkuTt7a3KlSvnqJPfsUs3P35JmjRpku6++25VqFBBX375pYYPH66zZ8/q6aefdsReHMefl7HPnDlTf/vb33Tu3Dk1aNBA8fHxjuRnST72Nzt2qfQe99GjR6tdu3a6//77LdeX5OMOAACAkovEkZsdPnxYo0aNUnx8vHx8fNwdTpEqqLGPGTPG8e9mzZrJ29tbTz75pGJjY2W32wsi1ALnythTU1PVo0cPNW7cWDExMUUTYCErqPGPHz/e8e+WLVvq3Llzeu211xwJhOIor2N/5JFHdM899+jo0aOaMmWKHn74Ya1fv75E/5woqLGXxuO+bNkyffXVV9q+fbsbogMAAAByx6VqbrZ161YdP35cd9xxh7y8vOTl5aVvvvlGb7zxhry8vJSZmXnDbQQHB+v48eNOZRkZGTp16pTjcofg4OAcT8TJXr5RnavXX93Oqo4rCmLsVsLDw5WRkaFDhw454i6pYz9z5ozuvfdeVapUSUuWLFG5cuUc27iZcfn6+qp8+fKqVq2aPD09bzj29PT0HE+0y+/YC2r8VsLDw/Xrr78qLS2t2I4/r2P38/NT/fr1ddddd+njjz/W3r17tWTJkuuOK3tdaR67ldJw3OPj4/XLL7+ocuXKjvWS1Lt3b3Xu3Pm648peV1zHDgAAgJKNxJGbde3aVTt37tSOHTscr9atW+uRRx7Rjh075OnpecNtREREKDk5WVu3bnWUffXVV8rKylJ4eLijzrfffqtLly456sTHx6tBgwby9/d31Fm9erXTtuPj4xURESFJqlOnjoKDg53qpKamatOmTY46RT12Kzt27JCHh4fj8r2SOvbU1FR169ZN3t7eWrZsWY5ZChEREdq5c6dT0jA+Pl6+vr5q3Lhxnsbl7e2tVq1aOdXJysrS6tWrHXVatWqlcuXKOdXZt2+fEhMT8zX2ghq/lR07dsjf398x06w4jj8/n3tz+UEGjsRIST32BTF2K6XhuL/wwgv64YcfnNZL0rRp0xQXF+cYV0k87gAAACjhCvx227hp1z5p5+jRo2b79u3m3XffNZLMt99+a7Zv327+97//Oerce++9pmXLlmbTpk1m3bp1pn79+qZ///6O9cnJySYoKMg89thjZteuXWbBggWmQoUKOR5J7+XlZaZMmWL27NljoqOjLR9JX7lyZfPJJ5+YH374wdx///0F8kj6/I59w4YNZtq0aWbHjh3ml19+MR988IEJCAgwAwYMKNFjT0lJMeHh4aZp06Zm//79To8dv/aR7N26dTM7duwwK1euNAEBAZaP5v7rX/9q9uzZY2bMmGH5aG673W7mzp1rfvzxRzNs2DBTuXJlpyc3/fnPfza1atUyX331ldmyZYuJiIgwERERBTLu/I5/2bJl5t133zU7d+40P//8s5k5c6apUKGCmTBhQokb/9Vj/+WXX8zLL79stmzZYhISEsz69etNz549TZUqVRyPSy9Nx97VsZfW425F1zxVrTQdd5QcPFUNAICSoTC/s0kcFUPX/jIRHR1tJOV4xcXFOer873//M/379zcVK1Y0vr6+ZvDgwebMmTNO2/3+++9Nhw4djN1uNzVq1DCTJ0/O0fdHH31kbrvtNuPt7W1uv/128/nnnzutz8rKMuPHjzdBQUHGbrebrl27mn379rlt7Fu3bjXh4eHGz8/P+Pj4mEaNGpmXX37ZXLx4sUSP/euvv7YctyRz8OBBR5tDhw6Z7t27m/Lly5tq1aqZZ5991ulx9dnbatGihfH29ja33nqr0+cm25tvvmlq1aplvL29zZ133mn++9//Oq2/cOGCGT58uPH39zcVKlQwDzzwgDl69GiBjT0/41+xYoVp0aKFqVixornllltM8+bNzezZs01mZmaJG//VYz9y5Ijp3r27CQwMNOXKlTM1a9Y0f/rTn8zevXud2pSWY+/q2EvrcbdybeLImNJz3FFykDgCAKBkKMzvbJsxVz3DGAAAALgiNTVVfn5+SklJka+vr7vDAQAAuSjM7+wy9VS1ixcvKj093d1hAACAG/D29i7RTxEEAAAoLcpM4ujixYsqXz5A0ll3hwIAAG4gODhYBw8eJHkEAADgZmUmcXR5ptFZSaMl3XKlNPvR3l65vF9vfbk81Cmo9Tdqc/1HlDtkP7Aoty49rrPOM5fy/KzPbV05i7rXi9szD+vzuo0bxX29fXez+8ZR78pVo16ZTu82z4zLi16Z8rxS5umVdeU948r7lXKPK++yfve68u6RY/2VPpTlKPfMUTfDaRueV9W9XO/a9TeO4UZ1XI8h93rXjjW3vn/f5o3q5dxneY3zxvvsxjHc8NheebS9Z8aVPjLNlWU5vdsud6UrXeV8z7zyurbMleXs99z6yizgbd1oOa/bunYbrsRWkNu6QWyXrrS9cqhzLGdkOjfJfr7ktZvKrfzq9ddbl9dt5KWPNEnTkpKUnp5O4ggAAMDNykzi6Hd2SdknobklYPKynFviqDCW89omF7Y8vntceek679cmUq59v1HyxCoPdqOE1s2sz+s2bpjUyUMf+Wnr9H79xJGtXKZs2WWO98vrPK4se3g4Jw88rklQ5EwY5Z5MyT1RcqNESt7XF3wf2e+e1+nLI4/bsF2p5+HU7vd32zXbsTnKfv/vYLtmm7rm3Vypd2159nt2rMapvqfMVf/OuqavK++ZV94zrsSZW+Iot4TF9RIteWnjanlBbsuq3POq9dfu6Ow2uf3cu3abtmvWX/uzNLu+Fds1y9feZdDkUp5bbEa6dCW5dOVQ65LtmuUrVW+U5MnL8o3q3mgbXjdY73nVvwEAAFA8eNy4CgAAAAAAAMoiEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMCSl7sDKHpp+n3YmVfes5czbrB86arlclf+Xe6aOte+F8T6G7XJXs6FyeN71pWXLN5tV94zr1nOflcuy9fGkFu/V7u2b89c6mdes/7a8gz9vos8r1l3bXluu9/zmnerw5XXbeS23lHvygC9Mp3ejeflz6HxypTJLvPKuvJ+eV3WlXKbx5V3Wb9nOXbAte8ZV+pdvROv9OV4z3BqY67UNY5tZ1yzbP2evT5TmfK88u9r37OuWfZwLGc42l5ezrpuPa+r6nlesy63vn/f5o3qZffxewzX699qG9n1vXKNIff33/9trmzDXNnm5XfPzCvvGVfWXznUVz5Ojndb9iHPyOX994+CrvkI5H05+z23vjILeFs3Ws7rtq7dhiux5XVbN3rP7WfyVe+XrvzouHKocyxfG8IluVZ+9frrrcvrNvLSR5oAAABQXJSZxJG3t7eCg4OVlDTN3aG4z7W/kKBEyM6XXdLvv3QBQGkXHBwsb29vd4cBAABQ5pWZxJGPj48OHjyo9PR0d4eSq9TUVIWGhurw4cPy9fV1dzglGvuyYLAfCwb7sWCwHwtGSdmP3t7e8vHxcXcYAAAAZV6ZSRxJl5NHJeEk1NfXt1ifzJck7MuCwX4sGOzHgsF+LBjsRwAAAOQFN8cGAAAAAACAJRJHAAAAAAAAsETiqBix2+2Kjo6W3W53dyglHvuyYLAfCwb7sWCwHwsG+xEAAACusBljzI2rAQAAoKxJTU2Vn5+fUlJSuCcWAADFWGF+ZzPjCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOioHY2Fi1adNGlSpVUmBgoHr16qV9+/a5O6wSb/LkybLZbHrmmWfcHUqJc+TIET366KOqWrWqypcvr6ZNm2rLli3uDqtEyczM1Pjx41WnTh2VL19edevW1YsvviieR3Bj3377rXr27KmQkBDZbDYtXbrUab0xRhMmTFD16tVVvnx5RUZG6ueff3ZPsMXY9fbjpUuX9Nxzz6lp06a65ZZbFBISogEDBui3335zX8AAAAAolkgcFQPffPONRowYof/+97+Kj4/XpUuX1K1bN507d87doZVYmzdv1ttvv61mzZq5O5QS5/Tp02rfvr3KlSunFStW6Mcff9Trr78uf39/d4dWorzyyiuaNWuW3nrrLe3Zs0evvPKKXn31Vb355pvuDq3YO3funJo3b64ZM2ZYrn/11Vf1xhtvaPbs2dq0aZNuueUWRUVF6eLFi0UcafF2vf14/vx5bdu2TePHj9e2bdu0ePFi7du3T/fdd58bIgUAAEBxZjP8+bvYOXHihAIDA/XNN9/orrvucnc4Jc7Zs2d1xx13aObMmXrppZfUokULTZ8+3d1hlRjPP/+81q9fr7Vr17o7lBLtj3/8o4KCgvTee+85ynr37q3y5cvrgw8+cGNkJYvNZtOSJUvUq1cvSZdnG4WEhOjZZ5/VX/7yF0lSSkqKgoKCNHfuXPXr18+N0RZf1+5HK5s3b9add96phIQE1apVq+iCQ7FWmI/2BQAABacwv7OZcVQMpaSkSJKqVKni5khKphEjRqhHjx6KjIx0dygl0rJly9S6dWs99NBDCgwMVMuWLfXuu++6O6wSp127dlq9erV++uknSdL333+vdevWqXv37m6OrGQ7ePCgkpKSnP5/+/n5KTw8XBs3bnRjZCVfSkqKbDabKleu7O5QAAAAUIx4uTsAOMvKytIzzzyj9u3bq0mTJu4Op8RZsGCBtm3bps2bN7s7lBLrwIEDmjVrlsaMGaO///3v2rx5s55++ml5e3tr4MCB7g6vxHj++eeVmpqqhg0bytPTU5mZmfrHP/6hRx55xN2hlWhJSUmSpKCgIKfyoKAgxzq47uLFi3ruuefUv39/ZpUAAADACYmjYmbEiBHatWuX1q1b5+5QSpzDhw9r1KhRio+Pl4+Pj7vDKbGysrLUunVrvfzyy5Kkli1bateuXZo9ezaJIxd89NFHmjdvnubPn6/bb79dO3bs0DPPPKOQkBD2I4qVS5cu6eGHH5YxRrNmzXJ3OAAAAChmuFStGBk5cqQ+++wzff3116pZs6a7wylxtm7dquPHj+uOO+6Ql5eXvLy89M033+iNN96Ql5eXMjMz3R1iiVC9enU1btzYqaxRo0ZKTEx0U0Ql01//+lc9//zz6tevn5o2barHHntMo0ePVmxsrLtDK9GCg4MlSceOHXMqP3bsmGMd8i47aZSQkKD4+HhmGwEAACAHEkfFgDFGI0eO1JIlS/TVV1+pTp067g6pROratat27typHTt2OF6tW7fWI488oh07dsjT09PdIZYI7du31759+5zKfvrpJ9WuXdtNEZVM58+fl4eH849YT09PZWVluSmi0qFOnToKDg7W6tWrHWWpqanatGmTIiIi3BhZyZOdNPr555+1atUqVa1a1d0hAQAAoBjiUrViYMSIEZo/f74++eQTVapUyXGfDj8/P5UvX97N0ZUclSpVynFfqFtuuUVVq1blflEuGD16tNq1a6eXX35ZDz/8sL777ju98847euedd9wdWonSs2dP/eMf/1CtWrV0++23a/v27Zo6daqGDBni7tCKvbNnz2r//v2O5YMHD2rHjh2qUqWKatWqpWeeeUYvvfSS6tevrzp16mj8+PEKCQm57hPDyqLr7cfq1aurT58+2rZtmz777DNlZmY6vnuqVKkib29vd4UNAACAYsZmjDHuDqKss9lsluVxcXEaNGhQ0QZTynTu3FktWrTQ9OnT3R1KifLZZ59p7Nix+vnnn1WnTh2NGTNGQ4cOdXdYJcqZM2c0fvx4LVmyRMePH1dISIj69++vCRMm8Ev5DaxZs0ZdunTJUT5w4EDNnTtXxhhFR0frnXfeUXJysjp06KCZM2fqtttuc0O0xdf19mNMTEyus1u//vprde7cuZCjQ0lRmI/2BQAABacwv7NJHAEAAMASiSMAAEqGwvzO5h5HAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAACUEDNmzFBYWJh8fHwUHh6u77777rr1Fy1apIYNG8rHx0dNmzbV8uXLiyhSAABQWpA4AgAAKAEWLlyoMWPGKDo6Wtu2bVPz5s0VFRWl48ePW9bfsGGD+vfvr8cff1zbt29Xr1691KtXL+3atauIIwcAACWZzRhj3B0EAAAAri88PFxt2rTRW2+9JUnKyspSaGionnrqKT3//PM56vft21fnzp3TZ5995ihr27atWrRoodmzZ+epz9TUVPn5+SklJUW+vr4FMxAAAFDgCvM726tAtwYAAIACl56erq1bt2rs2LGOMg8PD0VGRmrjxo2WbTZu3KgxY8Y4lUVFRWnp0qW59pOWlqa0tDTHckpKiqTLJ6MAAKD4yv6uLoy5QSSOAAAAirmTJ08qMzNTQUFBTuVBQUHau3evZZukpCTL+klJSbn2Exsbq4kTJ+YoDw0NzUfUAACgqP3vf/+Tn59fgW6TxBEAAAAkSWPHjnWapZScnKzatWsrMTGxwE9C4ZrU1FSFhobq8OHDXDboRhyH4oNjUXxwLIqHlJQU1apVS1WqVCnwbZM4AgAAKOaqVasmT09PHTt2zKn82LFjCg4OtmwTHBzsUn1JstvtstvtOcr9/Pz4ZaCY8PX15VgUAxyH4oNjUXxwLIoHD4+CfwYaT1UDAAAo5ry9vdWqVSutXr3aUZaVlaXVq1crIiLCsk1ERIRTfUmKj4/PtT4AAIAVZhwBAACUAGPGjNHAgQPVunVr3XnnnZo+fbrOnTunwYMHS5IGDBigGjVqKDY2VpI0atQoderUSa+//rp69OihBQsWaMuWLXrnnXfcOQwAAFDCkDgCAAAoAfr27asTJ05owoQJSkpKUosWLbRy5UrHDbATExOdpqe3a9dO8+fP17hx4/T3v/9d9evX19KlS9WkSZM892m32xUdHW15+RqKFseieOA4FB8ci+KDY1E8FOZxsJnCeFYbAAAAAAAASjzucQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAGXYjBkzFBYWJh8fH4WHh+u77767bv1FixapYcOG8vHxUdOmTbV8+fIiirT0c+VYvPvuu+rYsaP8/f3l7++vyMjIGx475I2r/yeyLViwQDabTb169SrcAMsQV49FcnKyRowYoerVq8tut+u2227jZ1QBcPU4TJ8+XQ0aNFD58uUVGhqq0aNH6+LFi0UUben17bffqmfPngoJCZHNZtPSpUtv2GbNmjW64447ZLfbVa9ePc2dOzdffZM4AgAAKKMWLlyoMWPGKDo6Wtu2bVPz5s0VFRWl48ePW9bfsGGD+vfvr8cff1zbt29Xr1691KtXL+3atauIIy99XD0Wa9asUf/+/fX1119r48aNCg0NVbdu3XTkyJEijrx0cfU4ZDt06JD+8pe/qGPHjkUUaenn6rFIT0/XPffco0OHDunjjz/Wvn379O6776pGjRpFHHnp4upxmD9/vp5//nlFR0drz549eu+997Rw4UL9/e9/L+LIS59z586pefPmmjFjRp7qHzx4UD169FCXLl20Y8cOPfPMM3riiSf0xRdfuNy3zRhjXG4FAACAEi88PFxt2rTRW2+9JUnKyspSaGionnrqKT3//PM56vft21fnzp3TZ5995ihr27atWrRoodmzZxdZ3KWRq8fiWpmZmfL399dbb72lAQMGFHa4pVZ+jkNmZqbuuusuDRkyRGvXrlVycnKeZgLg+lw9FrNnz9Zrr72mvXv3qly5ckUdbqnl6nEYOXKk9uzZo9WrVzvKnn32WW3atEnr1q0rsrhLO5vNpiVLllx3huNzzz2nzz//3OmPO/369VNycrJWrlzpUn/MOAIAACiD0tPTtXXrVkVGRjrKPDw8FBkZqY0bN1q22bhxo1N9SYqKisq1PvImP8fiWufPn9elS5dUpUqVwgqz1MvvcZg0aZICAwP1+OOPF0WYZUJ+jsWyZcsUERGhESNGKCgoSE2aNNHLL7+szMzMogq71MnPcWjXrp22bt3quJztwIEDWr58uf7whz8UScz4XUF+Z3sVVFAAAAAoOU6ePKnMzEwFBQU5lQcFBWnv3r2WbZKSkizrJyUlFVqcZUF+jsW1nnvuOYWEhOT4JQF5l5/jsG7dOr333nvasWNHEURYduTnWBw4cEBfffWVHnnkES1fvlz79+/X8OHDdenSJUVHRxdF2KVOfo7Dn/70J508eVIdOnSQMUYZGRn685//zKVqbpDbd3ZqaqouXLig8uXL53lbzDgCAAAASrDJkydrwYIFWrJkiXx8fNwdTplx5swZPfbYY3r33XdVrVo1d4dT5mVlZSkwMFDvvPOOWrVqpb59++qFF17gMtoitmbNGr388suaOXOmtm3bpsWLF+vzzz/Xiy++6O7QcBOYcQQAAFAGVatWTZ6enjp27JhT+bFjxxQcHGzZJjg42KX6yJv8HItsU6ZM0eTJk7Vq1So1a9asMMMs9Vw9Dr/88osOHTqknj17OsqysrIkSV5eXtq3b5/q1q1buEGXUvn5P1G9enWVK1dOnp6ejrJGjRopKSlJ6enp8vb2LtSYS6P8HIfx48frscce0xNPPCFJatq0qc6dO6dhw4bphRdekIcHc1eKSm7f2b6+vi7NNpKYcQQAAFAmeXt7q1WrVk43MM3KytLq1asVERFh2SYiIsKpviTFx8fnWh95k59jIUmvvvqqXnzxRa1cuVKtW7cuilBLNVePQ8OGDbVz507t2LHD8brvvvscTzAKDQ0tyvBLlfz8n2jfvr3279/vSN5J0k8//aTq1auTNMqn/ByH8+fP50gOZSfzeC5X0SrQ72wDAACAMmnBggXGbrebuXPnmh9//NEMGzbMVK5c2SQlJRljjHnsscfM888/76i/fv164+XlZaZMmWL27NljoqOjTbly5czOnTvdNYRSw9VjMXnyZOPt7W0+/vhjc/ToUcfrzJkz7hpCqeDqcbjWwIEDzf33319E0ZZurh6LxMREU6lSJTNy5Eizb98+89lnn5nAwEDz0ksvuWsIpYKrxyE6OtpUqlTJfPjhh+bAgQPmyy+/NHXr1jUPP/ywu4ZQapw5c8Zs377dbN++3UgyU6dONdu3bzcJCQnGGGOef/5589hjjznqHzhwwFSoUMH89a9/NXv27DEzZswwnp6eZuXKlS73zaVqAAAAZVTfvn114sQJTZgwQUlJSWrRooVWrlzpuJlmYmKi01+O27Vrp/nz52vcuHH6+9//rvr162vp0qVq0qSJu4ZQarh6LGbNmqX09HT16dPHaTvR0dGKiYkpytBLFVePAwqPq8ciNDRUX3zxhUaPHq1mzZqpRo0aGjVqlJ577jl3DaFUcPU4jBs3TjabTePGjdORI0cUEBCgnj176h//+Ie7hlBqbNmyRV26dHEsjxkzRpI0cOBAzZ07V0ePHlViYqJjfZ06dfT5559r9OjR+uc//6maNWvq//7v/xQVFeVy3zZjmC8GAAAAAACAnEiXAwAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4giAk5iYGNlsNqeysLAwDRo0yD0BFaJDhw7JZrNp7ty5+W47ZcqUgg8MAAAUG5wbudaWcyOg9CFxBNyEmTNnymazKTw83N2hoBhbvny5YmJi3NJ348aN1bx58xzlS5Yskc1mU6dOnXKsmzNnjmw2m7788suiCBEAUIpwboS8cOe5kSSlp6frn//8p1q2bClfX19VrlxZt99+u4YNG6a9e/fmaRuZmZny9fXV/fffn2PdtGnTZLPZNHDgwBzrJkyYIJvNpp9++ummxwEUFS93BwCUZPPmzVNYWJi+++477d+/X/Xq1XN3SIVi37598vAofXnm2rVr68KFCypXrlyh9rN8+XLNmDHDLSdIHTp00HvvvaeUlBT5+fk5ytevXy8vLy9t3rxZly5dctoH69evl6enpyIiIoo8XgBAyca5UclWFs6NJKl3795asWKF+vfvr6FDh+rSpUvau3evPvvsM7Vr104NGza84TY8PT3Vtm1bbdiwIce67POs9evXW64LDAzUbbfdViBjAYpC6ftpBxSRgwcPasOGDZo6daoCAgI0b948d4dUaOx2e6GfQLiDzWaTj4+PPD093R1KoenQoYOysrJynNSsX79eDz/8sC5cuKCtW7c6rVu3bp2aNWumSpUq5brdzp07l8op+gCA/OPcqOQrC+dGmzdv1meffaZJkybp3//+t4YPH65Ro0Zp1qxZOnTokHr27JnnbXXo0EEnT57Unj17nMqzz7N++eUXJSUlOcozMjK0adMmtW/f/rrbDQsLc+uMLOBaJI6AfJo3b578/f3Vo0cP9enTJ9eTowULFqhVq1aqVKmSfH191bRpU/3zn/90qpOcnKzRo0crLCxMdrtdNWvW1IABA3Ty5ElHnbS0NEVHR6tevXqy2+0KDQ3V3/72N6WlpTlty2azaeTIkVq6dKmaNGkiu92u22+/XStXrswR27p169SmTRv5+Piobt26evvtty3HcO11/HPnzpXNZtP69es1ZswYBQQE6JZbbtEDDzygEydOOLXNyspSTEyMQkJCVKFCBXXp0kU//vhjnu4NcMcdd+jBBx90KmvatKlsNpt++OEHR9nChQtls9mcvrSPHDmiIUOGKCgoyLEP5syZ47St3K7jX7RokRo3biwfHx81adJES5Ys0aBBgxQWFmYZ5zvvvKO6devKbrerTZs22rx5s2PdoEGDNGPGDEmXj032K1tePh83o0OHDpLk9Bevixcvatu2bXrwwQd16623Oq07ceKEfvrpJ0c7AADyinMjzo2yFedzo19++UWSLJM3np6eqlq1ap63ZXWedeDAASUlJWnkyJHy8fFxWrdjxw6dO3eO8yyUOFyqBuTTvHnz9OCDD8rb21v9+/fXrFmztHnzZrVp08ZRJz4+Xv3791fXrl31yiuvSJL27Nmj9evXa9SoUZKks2fPqmPHjtqzZ4+GDBmiO+64QydPntSyZcv066+/qlq1asrKytJ9992ndevWadiwYWrUqJF27typadOm6aefftLSpUudYlu3bp0WL16s4cOHq1KlSnrjjTfUu3dvJSYmOr4Md+7cqW7duikgIEAxMTHKyMhQdHS0goKC8rwPnnrqKfn7+ys6OlqHDh3S9OnTNXLkSC1cuNBRZ+zYsXr11VfVs2dPRUVF6fvvv1dUVJQuXrx4w+137NhRH374oWP51KlT2r17tzw8PLR27Vo1a9ZMkrR27VoFBASoUaNGkqRjx46pbdu2jhPFgIAArVixQo8//rhSU1P1zDPP5Nrn559/rr59+6pp06aKjY3V6dOn9fjjj6tGjRqW9efPn68zZ87oySeflM1m06uvvqoHH3xQBw4cULly5fTkk0/qt99+U3x8vP797387tc3L5+Nm3XrrrQoJCdG6descZZs3b1Z6erratWundu3aaf369Xr22WclyTEziRMaAICrODfi3Egq/udGtWvXlnT589q+fXt5eeX/V+K2bdvKy8tL69at0xNPPCHpchLplltuUZs2bdS6dWutX79evXv3dqyTOM9CCWQAuGzLli1GkomPjzfGGJOVlWVq1qxpRo0a5VRv1KhRxtfX12RkZOS6rQkTJhhJZvHixTnWZWVlGWOM+fe//208PDzM2rVrndbPnj3bSDLr1693lEky3t7eZv/+/Y6y77//3kgyb775pqOsV69exsfHxyQkJDjKfvzxR+Pp6Wmu/dFQu3ZtM3DgQMdyXFyckWQiIyMdMRpjzOjRo42np6dJTk42xhiTlJRkvLy8TK9evZy2FxMTYyQ5bdPKokWLjCTz448/GmOMWbZsmbHb7ea+++4zffv2ddRr1qyZeeCBBxzLjz/+uKlevbo5efKk0/b69etn/Pz8zPnz540xxhw8eNBIMnFxcY46TZs2NTVr1jRnzpxxlK1Zs8ZIMrVr13aUZbetWrWqOXXqlKP8k08+MZLMp59+6igbMWJEjn1qTN4+HwXhoYceMuXLlzfp6enGGGNiY2NNnTp1jDHGzJw50wQGBjrq/uUvfzGSzJEjR667zU6dOt3w+AEAyg7OjTg3KinnRllZWaZTp05GkgkKCjL9+/c3M2bMcDrurmjTpo2pW7euY/nJJ580Xbp0McYY87e//c20adPGsa5Pnz6mQoUK5tKlS9fdZu3atU10dHS+4gEKA5eqAfkwb948BQUFqUuXLpIuT7Pt27evFixYoMzMTEe9ypUr69y5c4qPj891W//5z3/UvHlzPfDAAznWZU/bXbRokRo1aqSGDRvq5MmTjtfdd98tSfr666+d2kVGRqpu3bqO5WbNmsnX11cHDhyQdPkpEF988YV69eqlWrVqOeo1atRIUVFRed4Pw4YNc5pa3LFjR2VmZiohIUGStHr1amVkZGj48OFO7Z566qk8bb9jx46SpG+//VbS5b+etWnTRvfcc4/Wrl0r6fJU9l27djnqGmP0n//8Rz179pQxxml/RUVFKSUlRdu2bbPs77ffftPOnTs1YMAAVaxY0VHeqVMnNW3a1LJN37595e/vnyPm7H19PXn5fBSEDh06ON3LaP369WrXrp2ky9O0jx8/rp9//tmxrk6dOgoJCXG0v3TpktN+PHnypC5duqS0tLQc5VlZWYU6FgBA8cS50WWcGxX/cyObzaYvvvhCL730kvz9/fXhhx9qxIgRql27tvr27avk5GSXttehQwenexlde561fft2nT9/3rEuPDzcaZZTbudT58+fz1EOuEuZTBx9++236tmzp0JCQmSz2XJMZc0LY4ymTJmi2267TXa7XTVq1NA//vGPgg8WxU5mZqYWLFigLl266ODBg9q/f7/279+v8PBwHTt2TKtXr3bUHT58uG677TZ1795dNWvW1JAhQ3JcT//LL7+oSZMm1+3z559/1u7duxUQEOD0yn4aw/Hjx53qX33Ck83f31+nT5+WdPk+NhcuXFD9+vVz1GvQoEHedoRFP9knCdn9ZJ8kXftElSpVqjidUOQmKChI9evXd5wIrV27Vh07dtRdd92l3377TQcOHND69euVlZXlOCk5ceKEkpOT9c477+TYX4MHD5aUc39lyy3e3Mrysg+uJy+fDysnTpxQUlKS43X27Nnr1r/6+ntjjDZs2OC4rr9Jkyby9fXV+vXrdfHiRW3dujXH9On169fn2JcbNmzQggULcpQnJibeMH4AJRPnT8gN50a598O5UfE8N7Lb7XrhhRe0Z88e/fbbb/rwww/Vtm1bffTRRxo5cuQN+7va1edZycnJ2r17t+M8q127dsrIyNB3332ngwcP6ujRoznOsz788MMcx+Xw4cN67bXXcpQD7lIm73F07tw5NW/eXEOGDMlxc7m8GjVqlL788ktNmTJFTZs21alTp3Tq1KkCjhTF0VdffaWjR49qwYIFWrBgQY718+bNU7du3SRJgYGB2rFjh7744gutWLFCK1asUFxcnAYMGKD3338/z31mZWWpadOmmjp1quX60NBQp+XcnoRhjMlzn3lRFP106NBBq1evdsyYmTBhgpo0aaLKlStr7dq12rNnjypWrKiWLVtKkmPGy6OPPqqBAwdabjP7+v+CcDP7IL+fjzZt2jhO5CQpOjr6uk/eaN68uSpVqqR169bpD3/4g06dOuX4S5iHh4fCw8O1bt061a1bV+np6TlOaJo3b57jL3/PPvusgoOD9de//tWpPDg4+IbjBlAycf6E3HBuVLT9cG6Uk6vnRlerXr26+vXrp969e+v222/XRx99pLlz5+b53kfZ503r1q1ThQoVJEkRERGSpGrVqql+/fpat26dDh8+7FQ/W1RUVI7zrEcffVTdunXTgAED8hQDUNjKZOKoe/fu6t69e67r09LS9MILL+jDDz9UcnKymjRpoldeeUWdO3eWdPkGbbNmzdKuXbscf4GoU6dOUYSOYmDevHkKDAx0PA3iaosXL9aSJUs0e/ZslS9fXpLk7e2tnj17qmfPnsrKytLw4cP19ttva/z48apXr57q1q2rXbt2XbfPunXr6vvvv1fXrl2dpj/nV0BAgMqXL++4POlq+/btu+ntZ8u++eD+/fud/o/873//y9NfnaTL05vj4uIcU93btWsnDw8PdejQwXFy1K5dO8dJSkBAgCpVqqTMzExFRkbmO95rWZXl1fWO2Y0+H1bmzZunCxcuOJZvvfXW6/bv6emptm3bav369Vq3bp3jCSXZ2rVrp4ULFzr6u/aExt/fP8e+9Pf3V/Xq1V3exwBKLs6fkBvOjfKOc6PL3H1uZKVcuXJq1qyZfv75Z508eTLPfwwLDAx0JIduueUWNW7cWJUrV3asz34Qya+//ipPT09HUilb9erVVb16dacyHx8f3XrrrZxnodgok5eq3cjIkSO1ceNGLViwQD/88IMeeugh3XvvvY4vkk8//VS33nqrPvvsM9WpU0dhYWF64okn+ItZGXDhwgUtXrxYf/zjH9WnT58cr5EjR+rMmTNatmyZpMsnAVfz8PBw/EUn+1GxvXv31vfff68lS5bk6C/7LzMPP/ywjhw5onfffdcypnPnzrk0Dk9PT0VFRWnp0qVOlxbt2bNHX3zxhUvbup6uXbvKy8tLs2bNcip/66238ryN7GnWr7zyipo1ayY/Pz9H+erVq7VlyxZHHeny2Hr37q3//Oc/lied1z4S92oh/5+9Ow+Pokr7Pv7r7GwJARJCICwCgyIgiBoIICoBREZQEdRR2RRwQGVwRh2eUZOor4nCKDOIog4EfUBxeRDRUZTNhUVEBGQTWRMVggskIUBClvP+AWnppLJ0J92dTr6f6+qrqapz6pxT1Z26ubuW6Gh16dJFr732msMpzp999pm2b99e6T6X1KBBA0kqdc18ZT4fVvr06aP4+Hj7qzLBUd++ffXLL78oNTVVsbGx8vP7/c9/XFyc9uzZo/fee09Nmza1P4EFAJxB/FQ3ERs5h9joLG/GRnv37rW8tD4zM1MbNmxQeHi405eF9e3bV1u3btUnn3xiP6u7WFxcnDZs2GB/6l2jRo2cWjdQE9TJM47Kk56ertTUVKWnp9tvDvu3v/1Ny5cvV2pqqp566ikdOHBAaWlpevvtt/Xaa6+psLBQ06ZN080336zVq1d7eQRwp2XLlunEiRMaNmyY5fJevXopIiJCixYt0i233GIPiK+55hq1atVKaWlpmj17trp3727/z/mDDz6od955RyNHjtT48ePVs2dPHTt2TMuWLdPcuXN1ySWX6M4779Rbb72le+65R2vWrFGfPn1UWFio7777Tm+99ZY+/vhjXXbZZU6NJSkpScuXL1e/fv00efJkFRQUaPbs2br44ov17bffVnlbSWevw586dar++c9/atiwYbr22mu1bds2ffTRR2rWrFmlfiHs0KGDoqKitGfPHocbR1555ZV6+OGHJckhOJKklJQUrVmzRrGxsZowYYI6d+6sY8eO6ZtvvtHKlSvL/U/KU089peHDh6tPnz4aN26cjh8/rueff15dunSp8Hr5svTs2VOSdP/992vw4MHy9/fXrbfeWqnPR3UpPotow4YNpU7dLn4875dffqnrr7++Wn65BVC3ED/VXcRGziE2OsubsdG2bdv0pz/9SUOGDFG/fv3UpEkT/fTTT3r11Vd1+PBhzZo1q8zL7crSt29fpaamatOmTZoyZYrDsri4OGVlZSkrK6vSN0EHahwvPMmtRpFk3n33Xfv0Bx98YCSZBg0aOLwCAgLMqFGjjDHGTJgwwUgye/bssdfbvHmzkWS+++47Tw8BHnT99debkJAQc/LkyTLLjB071gQGBppff/3VvPPOO2bQoEEmMjLSBAUFmdatW5tJkyaZI0eOONT57bffzL333mtatmxpgoKCTKtWrcyYMWMcHpl65swZ8/TTT5uLL77YBAcHm/DwcNOzZ0+TlJRksrKy7OUkmSlTppTqV8nHxhpjzGeffWZ69uxpgoKCzAUXXGDmzp1rEhISKv3I2U2bNjmUW7NmjZFk1qxZY59XUFBgHn30URMVFWXq1atnrrnmGrN7927TtGlTc88995S5Hc83cuRII8m8+eabDtujfv36JigoyJw+fbpUnaNHj5opU6aYmJgYExgYaKKiosyAAQPMyy+/bC9j9chZY4xZvHixufDCC01wcLDp0qWLWbZsmRkxYoS58MILS9WdMWNGqbYlOTxCtaCgwNx3330mIiLC2Gw2+/at7OejOpw8edIEBAQYSeaTTz4ptbxbt25Gknn66acrtb7+/ftX+MhgALUX8ROKERudRWzkO7HR0aNHTUpKiunfv79p0aKFCQgIMOHh4eaaa64x77zzjkvr3LNnj5FkJJnvv//eYVlRUZFp3Lhxqf1VnjZt2jhsL8DbbMZU8x3hfIzNZtO7776rG264QZL05ptv6vbbb9fOnTtLZZobNmyoqKgoJSQk6KmnnlJ+fr592enTp1W/fn198sknGjhwoCeHAPiczMxMhYeH68knn9Q//vEPb3enUrp3766IiAi3Ph4WAHwF8RNQvYiNANRkXKpWQo8ePVRYWKiff/651Cmexfr06aOCggLt379f7du3lyR9//33kn6/gRyAs06fPm2/GWaxWbNmSZL9hqk1SX5+vmw2m8OTND799FNt27ZNTz75pBd7BgA1F/ETUHnERgB8TZ084ygnJ8f+FIAePXro2Wef1dVXX60mTZqodevWuuOOO7Ru3Tr985//VI8ePfTLL79o1apV6tatm4YOHaqioiJdfvnlatiwoWbNmqWioiJNmTJFoaGh+uSTT7w8OqBmWbBggRYsWKDrrrtODRs21Nq1a/XGG29o0KBB1Xqzyepy6NAhxcfH64477lB0dLS+++47zZ07V2FhYdqxY4eaNm3q7S4CgFcQPwHVg9io5issLCz3puHS2bMpGzZs6KEeAV7m3SvlvKP4WuOSr+LrlM+cOWMee+wx07ZtWxMYGGhatGhhbrzxRvPtt9/a1/HTTz+Zm266yTRs2NA0b97cjB071vz2229eGhFQc23evNkMGDDANG3a1AQGBppWrVqZqVOnmhMnTni7a5YyMzPNqFGj7PdUCA8PNzfffLPZt2+ft7sGAF5F/ARUD2Kjmq/4fk3lvbgHEeqSOnnGEQAAAAAAVnJzc7V27dpyy1xwwQW64IILPNQjwLtIHAEAAAAAAMBSnbk5dlFRkQ4fPqxGjRrJZrN5uzsAAKAMxhidOHFC0dHR8vPz83Z36jTiJwAAfIM746c6kzg6fPiwYmJivN0NAABQST/88INatWrl7W7UacRPAAD4FnfET3UmcdSoUSNJZzdiaGiol3sDAADKkp2drZiYGPuxG95D/AQAgG9wZ/xUZxJHxadXh4aGEvgAAOADuDTK+4ifAADwLe6In7hxAAAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALAU4U7ht27ZKS0srNX/y5MmaM2dOqfkLFizQuHHjHOYFBwcrNzdXkpSfn69HHnlEH374oQ4cOKCwsDDFx8crJSVF0dHR5babnJysv//978503yNsNm/3wLsS5P4NkCTj9jaM+5sAANQRxE8VI34ifgIA1FxOJY42bdqkwsJC+/SOHTs0cOBAjRw5ssw6oaGh2rNnj33adl5kcOrUKX3zzTd69NFHdckll+j48eOaOnWqhg0bpq+//tphPY8//rgmTJhgn27UqJEzXQcAAPAK4icAAODLnEocRUREOEynpKSoffv26t+/f5l1bDaboqKiLJeFhYVpxYoVDvOef/55XXHFFUpPT1fr1q3t8xs1alTmegAAAGoq4icAAODLXL7H0ZkzZ7Rw4UKNHz/e4VewknJyctSmTRvFxMRo+PDh2rlzZ7nrzcrKks1mU+PGjR3mp6SkqGnTpurRo4dmzJihgoKCcteTl5en7OxshxcAAIA3ET8BAABf49QZR+dbunSpMjMzNXbs2DLLdOrUSfPnz1e3bt2UlZWlmTNnKi4uTjt37lSrVq1Klc/NzdXDDz+s2267TaGhofb5999/vy699FI1adJE69ev1/Tp03XkyBE9++yzZbadnJyspKQkV4cHAABQ7YifAACAr7EZ49pt7AYPHqygoCC9//77la6Tn5+viy66SLfddpueeOKJUstGjBihH3/8UZ9++qlD4FPS/PnzNWnSJOXk5Cg4ONiyTF5envLy8uzT2dnZiomJUVZWVrnrripu7sjNHQEAVZOdna2wsDC3H7O9gfjJGvET8RMAoGrcGT+5dMZRWlqaVq5cqSVLljhVLzAwUD169NC+ffsc5ufn52vUqFFKS0vT6tWrKxxkbGysCgoKdOjQIXXq1MmyTHBwcJlBEQAAgKcRPwEAAF/k0j2OUlNTFRkZqaFDhzpVr7CwUNu3b1eLFi3s84qDnr1792rlypVq2rRphevZunWr/Pz8FBkZ6XTfAQAAvIH4CQAA+CKnzzgqKipSamqqxowZo4AAx+qjR49Wy5YtlZycLOnsI2B79eqlDh06KDMzUzNmzFBaWpruvvtuSWeDnptvvlnffPONPvjgAxUWFiojI0OS1KRJEwUFBWnDhg3auHGjrr76ajVq1EgbNmzQtGnTdMcddyg8PLyq4wcAAHA74icAAOCrnE4crVy5Uunp6Ro/fnypZenp6fLz+/0kpuPHj2vChAnKyMhQeHi4evbsqfXr16tz586SpJ9++knLli2TJHXv3t1hXWvWrNFVV12l4OBgLV68WImJicrLy1O7du00bdo0PfDAA852HQAAwCuInwAAgK9y+ebYvsZTN9rk5o7c3BEAUDW1+ebYvob4yTOInwAAVeXOY7ZL9zgCAAAAAABA7efSU9VQNld+MUrSC27oiaMETXZ7G57i2jZ27iewuv7LpyfwqyQAoJhrx/YEN/TEUYKS3N6GpxA/1Q7ETwC8gTOOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBkM8YYb3fCE7KzsxUWFqasrCyFhoa6rR2b7UW3rdvTEjTZ213wmqQQF74WudXfD3he3fiLCNRsnjpmo2Kei58S3bZuT0tQkre74DVJSnChVmJ1dwNeQPwEeJ87j9mccQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACApQBvd6C2SdBkb3cB1SAh1+Z0naQQ43xDuc5XgXvZnN/1HmFc+HgBgK9IUJK3u4Bq4Mp+dG3PJ7pUC+5D/ATUbpxxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACzZjDHG253whOzsbIWFhSkrK0uhoaFua8dmc75OglyohDopKcSFr2tu9fcDKFY3jiDwNE8ds1Ex4ifUBklKcKFWYnV3A7AjfoI7uPOYzRlHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgK8HYHAFReQq7N6TpJIcb5hnKdr4K6yeb8R1LSi9XdjVKM+bPb2wAA+IYEJTldx/kakpToUi3UPa7FT4nV3IvSjHF/G/BNTp1x1LZtW9lstlKvKVOmWJZfsGBBqbIhISH25fn5+Xr44YfVtWtXNWjQQNHR0Ro9erQOHz7ssJ5jx47p9ttvV2hoqBo3bqy77rpLOTk5LgwXAADAs4ifAACAL3PqjKNNmzapsLDQPr1jxw4NHDhQI0eOLLNOaGio9uzZY5+2nZdePXXqlL755hs9+uijuuSSS3T8+HFNnTpVw4YN09dff20vd/vtt+vIkSNasWKF8vPzNW7cOE2cOFGvv/66M90HAADwOOInAADgy5xKHEVERDhMp6SkqH379urfv3+ZdWw2m6KioiyXhYWFacWKFQ7znn/+eV1xxRVKT09X69attXv3bi1fvlybNm3SZZddJkmaPXu2rrvuOs2cOVPR0dHODAEAAMCjiJ8AAIAvc/nm2GfOnNHChQs1fvx4h1/BSsrJyVGbNm0UExOj4cOHa+fOneWuNysrSzabTY0bN5YkbdiwQY0bN7YHPZIUHx8vPz8/bdy4scz15OXlKTs72+EFAADgTcRPAADA17icOFq6dKkyMzM1duzYMst06tRJ8+fP13vvvaeFCxeqqKhIcXFx+vHHHy3L5+bm6uGHH9Ztt92m0NBQSVJGRoYiIyMdygUEBKhJkybKyMgos+3k5GSFhYXZXzExMc4PEgAAoBoRPwEAAF/jcuJo3rx5GjJkSLmnOvfu3VujR49W9+7d1b9/fy1ZskQRERF66aWXSpXNz8/XqFGjZIzRiy9W/Yk706dPV1ZWlv31ww8/VHmdAAAAVUH8BAAAfI1T9zgqlpaWppUrV2rJkiVO1QsMDFSPHj20b98+h/nFQU9aWppWr15t/7VMkqKiovTzzz87lC8oKNCxY8fKvPZfkoKDgxUcHOxU/wAAANyF+AkAAPgil844Sk1NVWRkpIYOHepUvcLCQm3fvl0tWrSwzysOevbu3auVK1eqadOmDnV69+6tzMxMbd682T5v9erVKioqUmxsrCvdBwAA8DjiJwAA4IucPuOoqKhIqampGjNmjAICHKuPHj1aLVu2VHJysiTp8ccfV69evdShQwdlZmZqxowZSktL09133y3pbNBz880365tvvtEHH3ygwsJC+3X3TZo0UVBQkC666CJde+21mjBhgubOnav8/Hzde++9uvXWW3kiCAAA8AnETwAAwFc5nThauXKl0tPTNX78+FLL0tPT5ef3+0lMx48f14QJE5SRkaHw8HD17NlT69evV+fOnSVJP/30k5YtWyZJ6t69u8O61qxZo6uuukqStGjRIt17770aMGCA/Pz8NGLECP373/92tusAAABeQfwEAAB8lc0YY7zdCU/Izs5WWFiYsrKyHO4BUN3KebJumRLkQiWgkpJCXPiK51Z/P4DfVf0GvhUx5s9ubwPu46ljNipG/IS6KkkJLtRKrO5uAOdJdHsLxri/DbiPO4/ZLj9VDQAAAAAAALWbS09VQ9lc+fUrSc6fEcKvbDVPkl5wuk6CJruhJyXayHXhM+nsWUqcoYQaxmZz/1lNkmfOaqob5wWjriN+qrtcObMnQUlu6EnV23C+RqLTNQB3stkSPdCKJ9ogfqpunHEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALAV4uwO1TZJecKHWi9Xej5KSZJyukyCbG3pSda6MxVk1dexA7fBnD7Th/r+rrrXh/NhtNfTPkXH/n2LUIUlKcKFWYnV3oxTiJ+fU1LEDtUNiHW7D+TrET9WLM44AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsGQzxhhvd8ITsrOzFRYWpqysLIWGhrqtnUSbzek6SXrBhZb+7FTpBLnSL+c/Gs62k6QEp9twTaKT5V90uoUETXa6Tm2RFOLCn5Hc6u8HUDXOf+89w7m/9zWVM9GGp47ZqFjNjp9ciSESnSpN/JTo5vJSgpKcrlNbeOIzDLhforc7UIZEb3egWtSU+IkzjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwFODtDkBK0GQXajlXJ0nGhTY8IdHpGgmyOV0nycl2XNsnAHzbn50s/6JbegGgchKU5EIt5+oQPznXjmv7BIBvS3RzedQEnHEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALAV4uwO1TZKM03USZHNDT7zD2fHX1LEn6QWn6yRosht6UouFuFAnt9p7AQCoAYifakv8lOB0nQQluaEntVmih+oAwO+cOuOobdu2stlspV5TpkyxLL9gwYJSZUNCHP+3uGTJEg0aNEhNmzaVzWbT1q1bS63nqquuKrWee+65x5muAwAAeAXxEwAA8GVOnXG0adMmFRYW2qd37NihgQMHauTIkWXWCQ0N1Z49e+zTNpvjLyQnT55U3759NWrUKE2YMKHM9UyYMEGPP/64fbp+/frOdB0AAMAriJ8AAIAvcypxFBER4TCdkpKi9u3bq3///mXWsdlsioqKKnP5nXfeKUk6dOhQuW3Xr1+/3PUAAADURMRPAADAl7l8c+wzZ85o4cKFGj9+fKlfwc6Xk5OjNm3aKCYmRsOHD9fOnTtdam/RokVq1qyZunTpounTp+vUqVPlls/Ly1N2drbDCwAAwJuInwAAgK9x+ebYS5cuVWZmpsaOHVtmmU6dOmn+/Pnq1q2bsrKyNHPmTMXFxWnnzp1q1apVpdv605/+pDZt2ig6OlrffvutHn74Ye3Zs0dLliwps05ycrKSkrjZHgAAqDmInwAAgK9xOXE0b948DRkyRNHR0WWW6d27t3r37m2fjouL00UXXaSXXnpJTzzxRKXbmjhxov3fXbt2VYsWLTRgwADt379f7du3t6wzffp0PfDAA/bp7OxsxcTEVLpNAACA6kb8BAAAfI1LiaO0tDStXLmy3F+srAQGBqpHjx7at2+fK83axcbGSpL27dtXZuATHBys4ODgKrUDAABQXYifAACAL3LpHkepqamKjIzU0KFDnapXWFio7du3q0WLFq40a1f8yNmqrgcAAMBTiJ8AAIAvcvqMo6KiIqWmpmrMmDEKCHCsPnr0aLVs2VLJycmSpMcff1y9evVShw4dlJmZqRkzZigtLU133323vc6xY8eUnp6uw4cPS5L90bNRUVGKiorS/v379frrr+u6665T06ZN9e2332ratGm68sor1a1bN5cHDgAA4CnETwAAwFc5nThauXKl0tPTNX78+FLL0tPT5ef3+0lMx48f14QJE5SRkaHw8HD17NlT69evV+fOne1lli1bpnHjxtmnb731VklSQkKCEhMTFRQUpJUrV2rWrFk6efKkYmJiNGLECD3yyCPOdh0AAMAriJ8AAICvshljjLc74QnZ2dkKCwtTVlaWQkND3dZOOU/WLVOCXKjkpCTVzN3sibFLroz/RafbSNBkp+vUFkkhHvp85XqmGaBynP874Zo/e6gd93Im2vDUMRsVI34ifnJOotNtJKjuPsUvSQkeainRQ+0AlZFYy9pxr5oSP7l0jyMAAAAAAADUfi49VQ1lq7m/ANVMtWUcdV1Croc+906e2eRKv/hMAoDnET85p7aMo67z1NlWzrbiSr/4TAK1G2ccAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGDJZowx3u6EJ2RnZyssLExZWVkKDQ11Wzs2m9tWXSslyDMbLEkvOFU+QZNdaMP5r5Knxl9XJYXUiT9vZcv1dgdQ2oseaOPPHmjDec5EG546ZqNixE81k+fipwSnyicoyYU2iJ9qGmf3e+2T6O0OoJTEWtKG82pK/MQZRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMBSgLc7AM9IkM3bXbCUpAQXajV3ukaCJrvQjrNt1MxtXJcl5Dq/T5JCjBt64h2e+Ey6tL1yq78f3vGih9r5s4faAVBSTT22uxY/OS9BSR5oo2Zu47rMlf3uqc+kJ3gkfnJpeyVWdze8JLGWtVM3cMYRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJYCvN2B2iZBNm93wVKSjNN1PDOW5k7XSNBkN/TDUc3dXnC73ETn64S4UMcDkkKc/xx7RIiT5XPd0gsv+bO3OwDUSDX1GFqb4oEEJbm9jdq0vVB3JSnB210oQ6Kby9dkid7uQJ3HGUcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWApwpnDbtm2VlpZWav7kyZM1Z86cUvMXLFigcePGOcwLDg5Wbm6ufXrJkiWaO3euNm/erGPHjmnLli3q3r27Q53c3Fz99a9/1eLFi5WXl6fBgwfrhRdeUPPmzZ3pvkckyThdJ0E2t7fjShuekKDJ3u6CV7nyeXFWTd33rqipn/uEXOfaSQpx/36XJOVWXKTKQtzfhCf+Rrrmzx5oA7UB8VPFiJ+ck6Akb3fBq4ifnFNTP/fOfo6TlOCmnpSUWCvaqLnxU6IH2kB1c+qMo02bNunIkSP214oVKyRJI0eOLLNOaGioQ52SgdPJkyfVt29fPf3002WuY9q0aXr//ff19ttv67PPPtPhw4d10003OdN1AAAAryB+AgAAvsypM44iIiIcplNSUtS+fXv179+/zDo2m01RUVFlLr/zzjslSYcOHbJcnpWVpXnz5un111/XNddcI0lKTU3VRRddpC+//FK9evVyZggAAAAeRfwEAAB8mcv3ODpz5owWLlyo8ePHy2Yr+zS4nJwctWnTRjExMRo+fLh27tzpVDubN29Wfn6+4uPj7fMuvPBCtW7dWhs2bCizXl5enrKzsx1eAAAA3kT8BAAAfI3LiaOlS5cqMzNTY8eOLbNMp06dNH/+fL333ntauHChioqKFBcXpx9//LHS7WRkZCgoKEiNGzd2mN+8eXNlZGSUWS85OVlhYWH2V0xMTKXbBAAAcAfiJwAA4GtcThzNmzdPQ4YMUXR0dJllevfurdGjR6t79+7q37+/lixZooiICL300kuuNltp06dPV1ZWlv31ww8/uL1NAACA8hA/AQAAX+PUPY6KpaWlaeXKlVqyZIlT9QIDA9WjRw/t27ev0nWioqJ05swZZWZmOvxqdvTo0XKv/Q8ODlZwcLBT/QMAAHAX4icAAOCLXDrjKDU1VZGRkRo6dKhT9QoLC7V9+3a1aNGi0nV69uypwMBArVq1yj5vz549Sk9PV+/evZ1qHwAAwFuInwAAgC9y+oyjoqIipaamasyYMQoIcKw+evRotWzZUsnJyZKkxx9/XL169VKHDh2UmZmpGTNmKC0tTXfffbe9zrFjx5Senq7Dhw9LOhvUSGd/KYuKilJYWJjuuusuPfDAA2rSpIlCQ0N13333qXfv3jwRBAAA+ATiJwAA4KucThytXLlS6enpGj9+fKll6enp8vP7/SSm48ePa8KECcrIyFB4eLh69uyp9evXq3PnzvYyy5Yt07hx4+zTt956qyQpISFBiYmJkqTnnntOfn5+GjFihPLy8jR48GC98MILznYdAADAK4ifAACAr3I6cTRo0CAZYyyXffrppw7Tzz33nJ577rly1zd27NhynywiSSEhIZozZ47mzJnjTFcBAABqBOInAADgq1x+qhoAAAAAAABqNxJHAAAAAAAAsOT0pWooX4JsTtdJUoILLSW6UAfulCTrSxBgzRPby7U2Ep1vJ8QD+z7X/U3UVC5t3zq8vQBfRPxUdxE/OadWxU8ufYedleiBNmomz2xf1BWccQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAsBXi7A7VNkl5wuk6CJruhJ96RJONU+QTZ3NSTqnGlX86O3VNqar9qrJBE97eR6/4mXOHS5z7Xhc9XiPNVANRuSUpwuk6CktzQE+8gfqp5amq/6rZEb3fAkuc+94ku1AGqB2ccAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGDJZowx3u6EJ2RnZyssLExZWVkKDQ11WzuJNpvTdZL0gtN1EjTZ6TqoPFf2ifTnau8HUBUJcv7vUU2UFOKhw1SuZ5qpq5yJNjx1zEbFanb8lOB0nQQlOV0HlefKPpESq7sbQJXUmvjJpe+jKxI91E7dVFPiJ844AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMCSzRhjvN0JT8jOzlZYWJiysrIUGhrqtnZ22WxuW3dVvOXtDlSjJL3ggVb+7IE24G4JqpnfxyTVzD+7NXV7uaKmbuO6zJlow1PHbFTMU/sisYbGT7VJkhI80EqiB9qAu9XUeKCmHttr6vZyRU3dxnVZTYmfOOMIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWApwpnDbtm2VlpZWav7kyZM1Z86cUvMXLFigcePGOcwLDg5Wbm6ufdoYo4SEBL3yyivKzMxUnz599OKLL6pjx47ltpucnKy///3vznS/ThvlQp23qr0XpSXJeKAVwPclyObtLvgUV7YXf4/gLsRPqG78vQIqh/jJOcRPKItTiaNNmzapsLDQPr1jxw4NHDhQI0eOLLNOaGio9uzZY5+22Rw/jM8884z+/e9/69VXX1W7du306KOPavDgwdq1a5dCQkLs5R5//HFNmDDBPt2oUSNnug4AAOAVxE8AAMCXOZU4ioiIcJhOSUlR+/bt1b9//zLr2Gw2RUVFWS4zxmjWrFl65JFHNHz4cEnSa6+9pubNm2vp0qW69dZb7WUbNWpU5noAAABqKuInAADgy1y+x9GZM2e0cOFCjR8/vtSvYOfLyclRmzZtFBMTo+HDh2vnzp32ZQcPHlRGRobi4+Pt88LCwhQbG6sNGzY4rCclJUVNmzZVjx49NGPGDBUUFJTbv7y8PGVnZzu8AAAAvIn4CQAA+Bqnzjg639KlS5WZmamxY8eWWaZTp06aP3++unXrpqysLM2cOVNxcXHauXOnWrVqpYyMDElS8+bNHeo1b97cvkyS7r//fl166aVq0qSJ1q9fr+nTp+vIkSN69tlny2w7OTlZSUlJrg4PAACg2hE/AQAAX+Ny4mjevHkaMmSIoqOjyyzTu3dv9e7d2z4dFxeniy66SC+99JKeeOKJSrf1wAMP2P/drVs3BQUFadKkSUpOTlZwcLBlnenTpzvUy87OVkxMTKXbBAAAqG7ETwAAwNe4dKlaWlqaVq5cqbvvvtupeoGBgerRo4f27dsnSfZr7o8ePepQ7ujRo+Vejx8bG6uCggIdOnSozDLBwcEKDQ11eAEAAHgL8RMAAPBFLiWOUlNTFRkZqaFDhzpVr7CwUNu3b1eLFi0kSe3atVNUVJRWrVplL5Odna2NGzc6/NJW0tatW+Xn56fIyEhXug8AAOBxxE8AAMAXOX2pWlFRkVJTUzVmzBgFBDhWHz16tFq2bKnk5GRJZx8B26tXL3Xo0EGZmZmaMWOG0tLS7L+02Ww2/eUvf9GTTz6pjh072h8nGx0drRtuuEGStGHDBm3cuFFXX321GjVqpA0bNmjatGm64447FB4eXsXhAwAAuB/xEwAA8FVOJ45Wrlyp9PR0jR8/vtSy9PR0+fn9fhLT8ePHNWHCBGVkZCg8PFw9e/bU+vXr1blzZ3uZhx56SCdPntTEiROVmZmpvn37avny5QoJCZF09pTpxYsXKzExUXl5eWrXrp2mTZvmcP09AABATUb8BAAAfJXNGGO83QlPyM7OVlhYmLKystx6vf6uch6t62ve8kAbSaoTHz94SYJq5vfRlc99TR1LbcLfI/dyJtrw1DEbFfPUvkisRfGTJ/D3Cu5UU2MO4qeaib9H7lVT4ieX7nEEAAAAAACA2o/EEQAAAAAAACw5fY8jlK+zh67888QlcaNcqOPs5W2eOn2UUyhrh9pyunFtGQc8xNkjdYFbegG4VaKH4qfackkc8ROcUVvijtoyDnhKopvL1y2ccQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACApQBvdwCu6WyMt7tgaZTN5lT5t9zUD9+R6ObyNVeCnPusAHVWgbc7ANQeiTU0fkp0Mn5CopvL11zET0BlJXq7A7UKZxwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASzZjjPF2JzwhOztbYWFhysrKUmhoqLe7Aw+z2dzfRoLc30iS6sTXtUye2MaoHer6d6Umciba4Jhdc7Av6jbip9qB+AmVVde/KzVRTYmfOOMIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEsB3u4A4AnGeKQVp2sk2mxu6AdwVpISnCqfoCQ39aRqklz4bgEAqo74CXUR8RNQGmccAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGDJZowxlS3ctm1bpaWllZo/efJkzZkzp9T8BQsWaNy4cQ7zgoODlZuba582xighIUGvvPKKMjMz1adPH7344ovq2LGjvcyxY8d033336f3335efn59GjBihf/3rX2rYsGFlu67s7GyFhYUpKytLoaGhla4HoGI2m2faSZCHGqqjEit/OADcqrYds4mfAFghfqodiJ9QU7jzmO3UGUebNm3SkSNH7K8VK1ZIkkaOHFlmndDQUIc6JQOnZ555Rv/+9781d+5cbdy4UQ0aNNDgwYMdgqPbb79dO3fu1IoVK/TBBx/o888/18SJE53pOgAAgFcQPwEAAF8W4EzhiIgIh+mUlBS1b99e/fv3L7OOzWZTVFSU5TJjjGbNmqVHHnlEw4cPlyS99tprat68uZYuXapbb71Vu3fv1vLly7Vp0yZddtllkqTZs2fruuuu08yZMxUdHe3MEAAAADyK+AkAAPgyl+9xdObMGS1cuFDjx4+XrZzzLHNyctSmTRvFxMRo+PDh2rlzp33ZwYMHlZGRofj4ePu8sLAwxcbGasOGDZKkDRs2qHHjxvagR5Li4+Pl5+enjRs3ltluXl6esrOzHV4AAADeRPwEAAB8jcuJo6VLlyozM1Njx44ts0ynTp00f/58vffee1q4cKGKiooUFxenH3/8UZKUkZEhSWrevLlDvebNm9uXZWRkKDIy0mF5QECAmjRpYi9jJTk5WWFhYfZXTEyMK8MEAACoNsRPAADA17icOJo3b56GDBlS7qnOvXv31ujRo9W9e3f1799fS5YsUUREhF566SVXm6206dOnKysry/764Ycf3N4mAABAeYifAACAr3HqHkfF0tLStHLlSi1ZssSpeoGBgerRo4f27dsnSfZr948ePaoWLVrYyx09elTdu3e3l/n5558d1lNQUKBjx46Vee2/dPbpI8HBwU71DwAAwF2InwAAgC9y6Yyj1NRURUZGaujQoU7VKyws1Pbt2+1BTrt27RQVFaVVq1bZy2RnZ2vjxo3q3bu3pLO/umVmZmrz5s32MqtXr1ZRUZFiY2Nd6T4AAIDHET8BAABf5PQZR0VFRUpNTdWYMWMUEOBYffTo0WrZsqWSk5MlSY8//rh69eqlDh06KDMzUzNmzFBaWpruvvtuSWefGPKXv/xFTz75pDp27Kh27drp0UcfVXR0tG644QZJ0kUXXaRrr71WEyZM0Ny5c5Wfn697771Xt956K08EAQAAPoH4CQAA+CqnE0crV65Uenq6xo8fX2pZenq6/Px+P4np+PHjmjBhgjIyMhQeHq6ePXtq/fr16ty5s73MQw89pJMnT2rixInKzMxU3759tXz5coWEhNjLLFq0SPfee68GDBggPz8/jRgxQv/+97+d7ToAAIBXED8BAABfZTPGGG93whOys7MVFhamrKwshYaGers7QK1SzhOlq1WCPNRQHZVYNw4H8AEcs2sO9gXgPsRPtQPxE2oKdx6zXX6qGgAAAAAAAGo3l56qBgDn89wPLfyiAwAAagfiJwC+gjOOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgKUAb3fAU4wxkqTs7Gwv9wQAAJSn+FhdfOyG9xA/AQDgG9wZP9WZxNGJEyckSTExMV7uCQAAqIwTJ04oLCzM292o04ifAADwLe6In2ymjvycV1RUpMOHD6tRo0ay2Wze7o7HZGdnKyYmRj/88INCQ0O93R2Pq8vjZ+yMva6NXarb469NYzfG6MSJE4qOjpafH1fVexPxk+9/n1xRl8fP2Bk7Y69batP43Rk/1Zkzjvz8/NSqVStvd8NrQkNDff6LUBV1efyMnbHXRXV5/LVl7JxpVDMQP9WO75Or6vL4GTtjr2vq8til2jN+d8VP/IwHAAAAAAAASySOAAAAAAAAYInEUS0XHByshIQEBQcHe7srXlGXx8/YGXtdVJfHX5fHDlS3uv59qsvjZ+yMva6py2OXGH9l1ZmbYwMAAAAAAMA5nHEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROKohklJSZHNZtNf/vIX+7yXX35ZV111lUJDQ2Wz2ZSZmVmq3rFjx3T77bcrNDRUjRs31l133aWcnByHMt9++6369eunkJAQxcTE6Jlnnim1nrffflsXXnihQkJC1LVrV3344YcOy40xeuyxx9SiRQvVq1dP8fHx2rt3r1fH3rZtW9lsNodXSkqKT4/92LFjuu+++9SpUyfVq1dPrVu31v3336+srCyHeunp6Ro6dKjq16+vyMhIPfjggyooKHAo8+mnn+rSSy9VcHCwOnTooAULFpRqf86cOWrbtq1CQkIUGxurr776ymF5bm6upkyZoqZNm6phw4YaMWKEjh49Wi1jr8r4S+53m82mxYsX+9T4rT73kyZNUvv27VWvXj1FRERo+PDh+u677xzq1YZ97+rYa+t+L2aM0ZAhQ2Sz2bR06VKHZbVhvwPuQPxE/CTVrfipLsdOVuOXiJ+In4if3Mqgxvjqq69M27ZtTbdu3czUqVPt85977jmTnJxskpOTjSRz/PjxUnWvvfZac8kll5gvv/zSfPHFF6ZDhw7mtttusy/PysoyzZs3N7fffrvZsWOHeeONN0y9evXMSy+9ZC+zbt064+/vb5555hmza9cu88gjj5jAwECzfft2e5mUlBQTFhZmli5darZt22aGDRtm2rVrZ06fPu21sbdp08Y8/vjj5siRI/ZXTk6OT499+/bt5qabbjLLli0z+/btM6tWrTIdO3Y0I0aMsNcrKCgwXbp0MfHx8WbLli3mww8/NM2aNTPTp0+3lzlw4ICpX7++eeCBB8yuXbvM7Nmzjb+/v1m+fLm9zOLFi01QUJCZP3++2blzp5kwYYJp3LixOXr0qL3MPffcY2JiYsyqVavM119/bXr16mXi4uKqNO6qjt8YYySZ1NRUh31//v6o6eMv63P/0ksvmc8++8wcPHjQbN682Vx//fUmJibGFBQUGGNqx753dezG1N79XuzZZ581Q4YMMZLMu+++a59fG/Y74A7ET8RPdS1+qsuxU1njN4b4ifiJ+MmdSBzVECdOnDAdO3Y0K1asMP3797f8MqxZs8by4L9r1y4jyWzatMk+76OPPjI2m8389NNPxhhjXnjhBRMeHm7y8vLsZR5++GHTqVMn+/SoUaPM0KFDHdYdGxtrJk2aZIwxpqioyERFRZkZM2bYl2dmZprg4GDzxhtveGXsxpwNfJ577rky1+/rYy/21ltvmaCgIJOfn2+MMebDDz80fn5+JiMjw17mxRdfNKGhofaxPvTQQ+biiy92WM8tt9xiBg8ebJ++4oorzJQpU+zThYWFJjo62iQnJ9vHGRgYaN5++217md27dxtJZsOGDS6P3Ziqjd8YU+rAUFJNHr8zY9+2bZuRZPbt22eM8f19X5WxG1O79/uWLVtMy5YtzZEjR0qN09f3O+AOxE/ET3UtfqrLsZMxxE/ET8RP3sKlajXElClTNHToUMXHxztdd8OGDWrcuLEuu+wy+7z4+Hj5+flp48aN9jJXXnmlgoKC7GUGDx6sPXv26Pjx4/YyJdsfPHiwNmzYIEk6ePCgMjIyHMqEhYUpNjbWXsYVVRl7sZSUFDVt2lQ9evTQjBkzHE49rC1jz8rKUmhoqAICAux97tq1q5o3b+7Q5+zsbO3cubNS4zpz5ow2b97sUMbPz0/x8fH2Mps3b1Z+fr5DmQsvvFCtW7eu0tilqo3//HU0a9ZMV1xxhebPny9jjH1ZTR5/Zcd+8uRJpaamql27doqJibGPy5f3fVXGfv46att+P3XqlP70pz9pzpw5ioqKKrXc1/c74A7ET8RPFalt8VNdjp2K+078RPx0PuInzwiouAjcbfHixfrmm2+0adMml+pnZGQoMjLSYV5AQICaNGmijIwMe5l27do5lCn+8mRkZCg8PFwZGRkOX6jiMuev4/x6VmWcVdWxS9L999+vSy+9VE2aNNH69es1ffp0HTlyRM8++6y9374+9l9//VVPPPGEJk6caJ9XVp/P729ZZbKzs3X69GkdP35chYWFlmWKr4vOyMhQUFCQGjduXKqMq2OXqj5+SXr88cd1zTXXqH79+vrkk080efJk5eTk6P7777f3vSaOvzJjf+GFF/TQQw/p5MmT6tSpk1asWGEP3n1531d17FLt3e/Tpk1TXFychg8fbrncl/c74A7ET8RPFalt8VNdjp0k4ifiJ+InbyJx5GU//PCDpk6dqhUrVigkJMTb3fGo6hr7Aw88YP93t27dFBQUpEmTJik5OVnBwcHV0dVq58zYs7OzNXToUHXu3FmJiYme6aCbVdf4H330Ufu/e/TooZMnT2rGjBn2A2BNVNmx33777Ro4cKCOHDmimTNnatSoUVq3bp1P/52orrHXxv2+bNkyrV69Wlu2bPFC7wDfQ/xE/FTX4qe6HDtJxE/ET8RP3salal62efNm/fzzz7r00ksVEBCggIAAffbZZ/r3v/+tgIAAFRYWVriOqKgo/fzzzw7zCgoKdOzYMfvpelFRUaXu6F48XVGZ85efX8+qjDOqY+xWYmNjVVBQoEOHDtn77atjP3HihK699lo1atRI7777rgIDA+3rqMq4QkNDVa9ePTVr1kz+/v4Vjv3MmTOlnsji6tira/xWYmNj9eOPPyovL6/Gjr+yYw8LC1PHjh115ZVX6p133tF3332nd999t9xxFS+rzWO3Uhv2+4oVK7R//341btzYvlySRowYoauuuqrccRUvq6ljB9yB+In4qa7FT3U5dnJm/MRPxE8S8ZM7kDjysgEDBmj79u3aunWr/XXZZZfp9ttv19atW+Xv71/hOnr37q3MzExt3rzZPm/16tUqKipSbGysvcznn3+u/Px8e5kVK1aoU6dOCg8Pt5dZtWqVw7pXrFih3r17S5LatWunqKgohzLZ2dnauHGjvYynx25l69at8vPzs59+7qtjz87O1qBBgxQUFKRly5aVyrL37t1b27dvdwh6V6xYodDQUHXu3LlS4woKClLPnj0dyhQVFWnVqlX2Mj179lRgYKBDmT179ig9Pd2lsVfX+K1s3bpV4eHh9l9Ka+L4Xfncm7MPMrAf2H1131fH2K3Uhv3+j3/8Q99++63Dckl67rnnlJqaah+XL+53wB2In4if6lr8VJdjp8qOvyTiJ+Kn4nH54n6vcbxzT26Up+Sd4o8cOWK2bNliXnnlFSPJfP7552bLli3mt99+s5e59tprTY8ePczGjRvN2rVrTceOHR0eJ5uZmWmaN29u7rzzTrNjxw6zePFiU79+/VKPVA0ICDAzZ840u3fvNgkJCZaPVG3cuLF57733zLfffmuGDx9eLY9UdXXs69evN88995zZunWr2b9/v1m4cKGJiIgwo0eP9umxZ2VlmdjYWNO1a1ezb98+h8dmlnyk6KBBg8zWrVvN8uXLTUREhOWjJR988EGze/duM2fOHMtHSwYHB5sFCxaYXbt2mYkTJ5rGjRs7PHngnnvuMa1btzarV682X3/9tendu7fp3bt3tYzb1fEvW7bMvPLKK2b79u1m79695oUXXjD169c3jz32mM+N//yx79+/3zz11FPm66+/NmlpaWbdunXm+uuvN02aNLE/7rM27Xtnx15b97sVlfE42dqw3wF3IH6q/NiJn2rH39K6HDuVHD/xE/FTMeIn9yBxVAOV/DIkJCQYSaVeqamp9jK//fabue2220zDhg1NaGioGTdunDlx4oTDerdt22b69u1rgoODTcuWLU1KSkqptt966y3zhz/8wQQFBZmLL77Y/Pe//3VYXlRUZB599FHTvHlzExwcbAYMGGD27NnjtbFv3rzZxMbGmrCwMBMSEmIuuugi89RTT5nc3FyfHnvx43OtXgcPHrTXOXTokBkyZIipV6+eadasmfnrX//q8MjV4nV1797dBAUFmQsuuMDhc1Ns9uzZpnXr1iYoKMhcccUV5ssvv3RYfvr0aTN58mQTHh5u6tevb2688UZz5MiRahu7K+P/6KOPTPfu3U3Dhg1NgwYNzCWXXGLmzp1rCgsLfW7854/9p59+MkOGDDGRkZEmMDDQtGrVyvzpT38y3333nUOd2rLvnR17bd3vVkoGPsbUnv0OuAPxU+XHTvxUO/6W1uXYqeT4iZ+In4oRP7mHzZjznsFXy+Xm5urMmTPe7gYAAKhAUFCQT9/MtDYhfgIAwDe4K36qM09Vy83NVb16EZJyvN0VAABQgaioKB08eJDkkZcRPwEA4DvcFT/VmcTR2V/KciRNk9Tg3NzipwwElPFe3vLASpSpruUV1Sn/aQl2xfdNK6tJv3KW+Zcx35XlZS0LtChbXr/9K7G8suuoqN/lbbuqbht7uXMn/wUUOrzb/AvOTgYUyv/cPP+AonPvBefez833O/cu6/eAc+9+pZafa0NF9vn+pcoWOKzD/7yyZ8uVXF5xHyoq43wfyi5Xcqxltf37OisqV3qbVbafFW+zivtQ4b4994QN/4JzbRSac9NyeLedbUrnmir9XnjuVXKeM9PF72W1VVjN66pourLrKrkOZ/pWneuqoG/55+qe29WlpgsKHasU3+a25KrKmn/+8vKWVXYdlWkjT9JzGRk6c+YMiSMvq3r8VNay6oyfKlu3GuInq9ipvCarEiNUtm5V4qeK4qLqjJ+qO7a0ip8sYidJbomfrOKA89+rM34qO36rvvip4til+uKnktvMHfFT2e27IX5y9VjvSizgzliseLoaY5QK++bOWKzk/BJ13BE/uRL3OFPOajjnL3Nn/FRnEke/C5ZUvBHLCiAqM11W4OOO6crWKYOtku9++j0AKuu9ZCBQ8r0ywU1FgU91Lq/sOioMSirRhit1Hd7LTxzZAgtlK55nfz+7zO/ctJ+f48HPr8QBtuyAo/RBvuxESUWJlMovr/42it/9y2nLr5LrsJ0r5+dQ7/d3W4n12Ozzfv862EqsUyXezblyJecXvxf31TiU95c5799FJdo691547r3gXD/LCnzKOuCWl2ipTB1n51fnuqzm+5+3vOSGLq5T1t+9kuu0lVhe8m9pcXkrthLTJS8WN2XML6tvRso/Fxyd29XKt5WYPle0oiClMtMVla1oHQEVLPc/79+oaVyNn8paVp3xUlXbKINVvGQVO1Xm3ZX4yZ3xUfHyimKT6oyfqjP2cngvO3FkCywZN1Vf/FRxgqT64qeKY5aqx09WsZPje/XFTwElyrojfrKKnRzfqzF+qmqM4kw9d8ZiJdsoGSe5I36qTOx0ft1irsRPfo5l3BE/uRJbVaacVfxUcje5O37yq7gIAAAAAAAA6iISRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgK8HYHPC9Pvw+78Nx78XRBBdP5500Hnvt3YIkyJd+rY3lFdYqny2Aq+V507iWLd9u598IS08XvKmO6ZB/Kavd8Jdv2L6N8YYnlJecX6PdN5F9iWcn5ZW1+/xLvVrursusoa7m93LkBBhQ6vBv/s59DE1AoUzwvoOjc+9llRefm2/zOvcv6vci+AUq+F5wrd/5GPNeW/b3AoY45V9bY111QYtr6vXh5oQrlf+7fJd+LSkz72acL7HXPTheVWy7gvHL+JZaV1fbv66yoXHEbv/ehvPat1lFcPqDMPpT9/vu/zbl1mHPrPPvuX3juveDc8nO7+tzHyf5uK97lBWW8//5RUImPQOWni9/LaquwmtdV0XRl11VyHc70rbLrqui9rL/J573nn/vTcW5Xl5ou2YV8OTf//OXlLavsOirTRp5Q87gaP+WXWOaO+KmydashfiorhnFH/GTKmK7O+MkqdpLcEz85Gx+5Ej9ZxE6O79UZP1nFTr+/V2f8dH7sdHbTVH/8VHHsUn3xU4BF++fXrY74qeJYqhrjJ1fjBldiHnfGYsXTVV2XM9vB1XW5Ej+VmOeO+MmVuMeZcufPt1rmzvipziSOgoKCFBUVpYyM57zdFe8p+YWCTyiO9/L1+x8GAKjtoqKiFBQU5O1u1HnETyJ+8kHnx07nvwNAbeeu+MlmjCn5e0atlZubqzNnzni7G26TnZ2tmJgY/fDDDwoNDfV2d2o1trVnsJ09h23tOWzrygkKClJISIi3uwHV/vipWF3+bjJ2xs7Y6w7GXrvH7q74qc6ccSRJISEhdSIIDQ0NrbVfhJqGbe0ZbGfPYVt7DtsavqKuxE/F6vJ3k7Ez9rqGsTN2VA43xwYAAAAAAIAlEkcAAAAAAACwROKoFgkODlZCQoKCg4O93ZVaj23tGWxnz2Fbew7bGqiZ6vJ3k7Ez9rqGsTN2OKdO3RwbAAAAAAAAlccZRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJx5GPmzJmjtm3bKiQkRLGxsfrqq6/KLf/222/rwgsvVEhIiLp27aoPP/zQQz31fc5s6507d2rEiBFq27atbDabZs2a5bmO+jhntvMrr7yifv36KTw8XOHh4YqPj6/wO4DfObOtlyxZossuu0yNGzdWgwYN1L17d/3v//6vB3vr25z9W11s8eLFstlsuuGGG9zbQaCOqO5jjM1ms3zNmDHD3UNxWnWPPScnR/fee69atWqlevXqqXPnzpo7d667h+GS6h770aNHNXbsWEVHR6t+/fq69tprtXfvXncPwyXVfaw3xuixxx5TixYtVK9ePcXHx9eZsS9ZskSDBg1S06ZNZbPZtHXrVjePwHXVOfb8/Hw9/PDD6tq1qxo0aKDo6GiNHj1ahw8f9sRQnFbd+z0xMVEXXnihGjRoYP+bsHHjRncPo+Yz8BmLFy82QUFBZv78+Wbnzp1mwoQJpnHjxubo0aOW5detW2f8/f3NM888Y3bt2mUeeeQRExgYaLZv3+7hnvseZ7f1V199Zf72t7+ZN954w0RFRZnnnnvOsx32Uc5u5z/96U9mzpw5ZsuWLWb37t1m7NixJiwszPz4448e7rnvcXZbr1mzxixZssTs2rXL7Nu3z8yaNcv4+/ub5cuXe7jnvsfZbV3s4MGDpmXLlqZfv35m+PDhnuksUIu54xhz5MgRh9f8+fONzWYz+/fv99SwKsUdY58wYYJp3769WbNmjTl48KB56aWXjL+/v3nvvfc8NaxKqe6xFxUVmV69epl+/fqZr776ynz33Xdm4sSJpnXr1iYnJ8eTQ6uQO471KSkpJiwszCxdutRs27bNDBs2zLRr186cPn3aU8OqFHeM/bXXXjNJSUnmlVdeMZLMli1bPDQa51T32DMzM018fLx58803zXfffWc2bNhgrrjiCtOzZ09PDqtS3LHfFy1aZFasWGH2799vduzYYe666y4TGhpqfv75Z08Nq0YiceRDrrjiCjNlyhT7dGFhoYmOjjbJycmW5UeNGmWGDh3qMC82NtZMmjTJrf2sDZzd1udr06YNiaNKqsp2NsaYgoIC06hRI/Pqq6+6q4u1RlW3tTHG9OjRwzzyyCPu6F6t4sq2LigoMHFxceY///mPGTNmDIkjoBp44hgzfPhwc80111S5r9XNHWO/+OKLzeOPP+5Q7tJLLzX/+Mc/qqfT1aS6x75nzx4jyezYscNhnREREeaVV16p3s5XUXUf64uKikxUVJSZMWOGfXlmZqYJDg42b7zxRvV1vBq4M845ePBgjU4ceSLG++qrr4wkk5aWVqW+VjdPjD0rK8tIMitXrqxSX30dl6r5iDNnzmjz5s2Kj4+3z/Pz81N8fLw2bNhgWWfDhg0O5SVp8ODBZZbHWa5sazivOrbzqVOnlJ+fryZNmrirm7VCVbe1MUarVq3Snj17dOWVV7qzqz7P1W39+OOPKzIyUnfddZcnugnUep44xhw9elT//e9/a9z31l1jj4uL07Jly/TTTz/JGKM1a9bo+++/16BBg6p9DK5yx9jz8vIkSSEhIQ7rDA4O1tq1a6ux91XjjmP9wYMHlZGR4bDOsLAwxcbG1qiYuC7HOZ4ae1ZWlmw2mxo3blwd3a4Wnhj7mTNn9PLLLyssLEyXXHJJtfXdFwV4uwOonF9//VWFhYVq3ry5w/zmzZvru+++s6yTkZFhWT4jI8Nt/awNXNnWcF51bOeHH35Y0dHRpRKkcOTqts7KylLLli2Vl5cnf39/vfDCCxo4cKC7u+vTXNnWa9eu1bx582r0vRMAX+OJY8yrr76qRo0a6aabbqpyf6uTu8Y+e/ZsTZw4Ua1atVJAQID8/Pz0yiuv1Kj/aLtj7BdeeKFat26t6dOn66WXXlKDBg303HPP6ccff9SRI0eqfQyucsexvvj/DDX9/xN1Oc7xxNhzc3P18MMP67bbblNoaGi19r8q3Dn2Dz74QLfeeqtOnTqlFi1aaMWKFWrWrJlbxuErSBwB8EkpKSlavHixPv30U4dfAVF9GjVqpK1btyonJ0erVq3SAw88oAsuuEBXXXWVt7tWa5w4cUJ33nmnXnnllTofkAA1SWWOMfPnz9ftt99e645BZY199uzZ+vLLL7Vs2TK1adNGn3/+uaZMmVKrfsCxGntgYKCWLFmiu+66S02aNJG/v7/i4+M1ZMgQGWO83OOqq8vHesZe8djz8/M1atQoGWP04osveqez1awyY7/66qu1detW/frrr3rllVc0atQobdy4UZGRkd7ruJeROPIRzZo1k7+/v44ePeow/+jRo4qKirKsExUV5VR5nOXKtobzqrKdZ86cqZSUFK1cuVLdunVzZzdrBVe3tZ+fnzp06CBJ6t69u3bv3q3k5OQ6EVC5ytltvX//fh06dEjXX3+9fV5RUZEkKSAgQHv27FH79u3d22mgFnL3MeaLL77Qnj179Oabb1Zbn6uLO8Z++vRp/c///I/effddDR06VJLUrVs3bd26VTNnzqwxiSN37feePXtq69atysrK0pkzZxQREaHY2Fhddtll1T4GV7njWF9c7+jRo2rRooXDOrt37179g3BRXY5z3Dn24qRRWlqaVq9eXaPONpLcO/YGDRqoQ4cO6tChg3r16qWOHTtq3rx5mj59ulvG4gu4x5GPCAoKUs+ePbVq1Sr7vKKiIq1atUq9e/e2rNO7d2+H8pK0YsWKMsvjLFe2NZzn6nZ+5pln9MQTT2j58uU1KmCryarrM11UVGS/1wOsObutL7zwQm3fvl1bt261v4YNG2b/pSsmJsaT3QdqDXcfY+bNm6eePXvWyHteuGPs+fn5ys/Pl5+f438d/P397cnumsDd+z0sLEwRERHau3evvv76aw0fPrxa+18V7jjWt2vXTlFRUQ7rzM7O1saNG2tUTFyX4xx3jb04abR3716tXLlSTZs2rdZ+VwdP7ndf/GxUO+/dlxvOWrx4sQkODjYLFiwwu3btMhMnTjSNGzc2GRkZxhhj7rzzTvP3v//dXn7dunUmICDAzJw50+zevdskJCSYwMBAs337dm8NwWc4u63z8vLMli1bzJYtW0yLFi3M3/72N7Nlyxazd+9ebw3BJzi7nVNSUkxQUJB55513HB6HfOLECW8NwWc4u62feuop88knn5j9+/ebXbt2mZkzZ5qAgIAa9wSZmsjZbV0ST1UDqoe7jjFZWVmmfv365sUXX/ToeJzhjrH379/fXHzxxWbNmjXmwIEDJjU11YSEhJgXXnjB4+MrjzvG/tZbb5k1a9aY/fv3m6VLl5o2bdqYm266yeNjq4g7jvUpKSmmcePG5r333jPffvutGT58uGnXrp05ffq0x8dXHneM/bfffjNbtmwx//3vf40ks3jxYrNlyxZz5MgRj4+vPNU99jNnzphhw4aZVq1ama1btzp8L/Ly8rwyxrJU99hzcnLM9OnTzYYNG8yhQ4fM119/bcaNG2eCg4MdnqxYF5E48jGzZ882rVu3NkFBQeaKK64wX375pX1Z//79zZgxYxzKv/XWW+YPf/iDCQoKMhdffLH573//6+Ee+y5ntnXxYzpLvvr37+/5jvsYZ7ZzmzZtLLdzQkKC5zvug5zZ1v/4xz9Mhw4dTEhIiAkPDze9e/c2ixcv9kKvfZOzf6vPR+IIqD7uOMa89NJLpl69eiYzM9NDo3BNdY/9yJEjZuzYsSY6OtqEhISYTp06mX/+85+mqKjIg6OqnOoe+7/+9S/TqlUrExgYaFq3bm0eeeSRGvcf6GLVfawvKioyjz76qGnevLkJDg42AwYMMHv27PHUcJxS3WNPTU31mbizOsde1v9rJJk1a9Z4cFSVU51jP336tLnxxhtNdHS0CQoKMi1atDDDhg0zX331lSeHVCPZjKkFd3UDAAAAAABAteMeRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACyROAIAAAAAAIAlEkcAAAAAAACwROIIAAAAAAAAlkgcAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBVZSYmCibzeYwr23btho7dqx3OuRGhw4dks1m04IFC1yuO3PmzOrvGKrMZrMpMTHRPr1gwQLZbDYdOnTIo/2ord8dAKgriIucq0tcVDMRFwGOSBzBo1544QXZbDbFxsZ6uyuowT788EOHg7U3FBUV6bXXXtPAgQPVrFkzBQYGKjIyUoMGDdLLL7+svLw8r/avriosLFRoaKiGDx9eatlzzz0nm82mMWPGlFr22GOPyWaz6fvvv/dENwGgUoiLUBnERahITk6OEhIS1KVLFzVo0EBNmzZV9+7dNXXqVB0+fLhS6/j5559ls9k0derUUsumTp0qm82mhISEUstGjx6twMBAnTp1qsrjQM0V4O0OoG5ZtGiR2rZtq6+++kr79u1Thw4dvN0lt9izZ4/8/GpfXrZNmzY6ffq0AgMD3drOhx9+qDlz5ngtSDp9+rRuvPFGffzxx4qLi9Pf/vY3NW/eXMeOHdNnn32myZMna+PGjZo3b55X+ucJd955p2699VYFBwd7uysO/P391atXL61fv77UsnXr1ikgIEDr1q2zXBYZGak//OEPnugmAFQKcZFvIy4iLqoJ8vPzdeWVV+q7777TmDFjdN999yknJ0c7d+7U66+/rhtvvFHR0dEVricyMlIdO3bU2rVrSy2rKMbq0aOH6tevXy3jQc1E4ggec/DgQa1fv15LlizRpEmTtGjRIsusdW1QEw8q1cFmsykkJMTb3XC7adOm6eOPP9asWbNK/ery17/+VXv37tWKFSu81LuKFRQUqKioSEFBQS6vw9/fX/7+/tXYq+rTt29frVixQrt379ZFF11kn79u3TqNGjVKr7/+ujIyMhQVFSXp7PbYuHGjBg0aVO56i08H9/avugDqBuIi30dcRFxUEyxdulRbtmzRokWL9Kc//clhWW5urs6cOVPpdfXt21evvfaacnJy1LBhQ0nSyZMntW3bNo0aNUrLli1TYWGhfVscOXJEBw4csDwT/Hw2m02pqalcdufDal/qHzXWokWLFB4erqFDh+rmm2/WokWLLMstXrxYPXv2VKNGjRQaGqquXbvqX//6l0OZzMxMTZs2TW3btlVwcLBatWql0aNH69dff7WXycvLU0JCgjp06KDg4GDFxMTooYceKnUqrc1m07333qulS5eqS5cuCg4O1sUXX6zly5eX6tvatWt1+eWXKyQkRO3bt9dLL71kOYaS1yMXXxe9bt06PfDAA4qIiFCDBg1044036pdffnGoW1RUpMTEREVHR6t+/fq6+uqrtWvXrkpd43zppZfqpptucpjXtWtX2Ww2ffvtt/Z5b775pmw2m3bv3m2f99NPP2n8+PFq3ry5fRvMnz/fYV1lXcv/9ttvq3PnzgoJCVGXLl307rvvauzYsWrbtq1lP19++WW1b99ewcHBuvzyy7Vp0yb7srFjx2rOnDmSzu6b4lexynw+quKHH37Qf/7zH1177bWWp+pKUseOHTV58mSHeUVFRZo1a5YuvvhihYSEqHnz5po0aZKOHz/uUK5t27b64x//qLVr1+qKK65QSEiILrjgAr322mul2snMzNRf/vIXxcTEKDg4WB06dNDTTz+toqIie5nz75Ewa9Ys+3bdtWuXzpw5o8cee0w9e/ZUWFiYGjRooH79+mnNmjUVboeS1/IX37PC6nX+57Ky28EYoyeffFKtWrWyf8537txZYb+ks0GNJIdfvQ4cOKCMjAzde++9CgkJcVi2detWnTx50l4PAGoC4iLiomLERcRFVYmL9u/fL0nq06dPqWUhISEKDQ2t1HqkszFWYWGhvvzyS/u8jRs3qqCgQH/729+Uk5OjrVu32pcVx1vEWLUfZxzBYxYtWqSbbrpJQUFBuu222/Tiiy9q06ZNuvzyy+1lVqxYodtuu00DBgzQ008/LUnavXu31q1bZz9Y5eTkqF+/ftq9e7fGjx+vSy+9VL/++quWLVumH3/8Uc2aNVNRUZGGDRumtWvXauLEibrooou0fft2Pffcc/r++++1dOlSh76tXbtWS5Ys0eTJk9WoUSP9+9//1ogRI5Senq6mTZtKkrZv365BgwYpIiJCiYmJKigoUEJCgpo3b17pbXDfffcpPDxcCQkJOnTokGbNmqV7771Xb775pr3M9OnT9cwzz+j666/X4MGDtW3bNg0ePFi5ubkVrr9fv35644037NPHjh3Tzp075efnpy+++ELdunWTJH3xxReKiIiwn61x9OhR9erVyx4sRkRE6KOPPtJdd92l7Oxs/eUvfymzzf/+97+65ZZb1LVrVyUnJ+v48eO666671LJlS8vyr7/+uk6cOKFJkybJZrPpmWee0U033aQDBw4oMDBQkyZN0uHDh7VixQr97//+r0Pdynw+quqjjz5SYWGh7rjjDqfqTZo0SQsWLNC4ceN0//336+DBg3r++ee1ZcsWrVu3zuE09n379unmm2/WXXfdpTFjxmj+/PkaO3asevbsqYsvvliSdOrUKfXv318//fSTJk2apNatW2v9+vWaPn26jhw5olmzZjm0n5qaqtzcXE2cOFHBwcFq0qSJsrOz9Z///Ee33XabJkyYoBMnTmjevHkaPHiwvvrqK3Xv3r3S47vppptKXUKxefNmzZo1S5GRkU5vh8cee0xPPvmkrrvuOl133XX65ptvNGjQoEr9KtarVy8FBARo7dq1uvvuuyWdDVwaNGigyy+/XJdddpnWrVunESNG2JdJBDUAahbiIuIiibhIIi6SqhYXtWnTRpL02muv6ZFHHil1c3pnFMdKa9euVXx8vKSzcdQf/vAH9ejRQ61atdK6devUs2dP+7Lz66EWM4AHfP3110aSWbFihTHGmKKiItOqVSszdepUh3JTp041oaGhpqCgoMx1PfbYY0aSWbJkSallRUVFxhhj/vd//9f4+fmZL774wmH53LlzjSSzbt06+zxJJigoyOzbt88+b9u2bUaSmT17tn3eDTfcYEJCQkxaWpp93q5du4y/v78p+VVq06aNGTNmjH06NTXVSDLx8fH2PhpjzLRp04y/v7/JzMw0xhiTkZFhAgICzA033OCwvsTERCPJYZ1W3n77bSPJ7Nq1yxhjzLJly0xwcLAZNmyYueWWW+zlunXrZm688Ub79F133WVatGhhfv31V4f13XrrrSYsLMycOnXKGGPMwYMHjSSTmppqL9O1a1fTqlUrc+LECfu8Tz/91Egybdq0sc8rrtu0aVNz7Ngx+/z33nvPSDLvv/++fd6UKVNKbVNjKvf5qKpp06YZSWbr1q0O8/Py8swvv/xif52/rb744gsjySxatMihzvLly0vNb9OmjZFkPv/8c/u8n3/+2QQHB5u//vWv9nlPPPGEadCggfn+++8d1vn3v//d+Pv7m/T0dGPM79s1NDTU/Pzzzw5lCwoKTF5ensO848ePm+bNm5vx48c7zJdkEhIS7NPFn9mDBw9abqdffvnFtG7d2nTt2tXk5OQ4tR1+/vlnExQUZIYOHerwffif//mfSn3OjTHm8ssvN+3bt7dPT5o0yVx99dXGGGMeeughc/nll9uX3XzzzaZ+/fomPz+/3HW2adPGYRsAgLsQFxEXERedRVxU9bjo1KlTplOnTvbP2NixY828efPM0aNHy61XlsjISDNgwAD79ODBg824ceOMMcaMGjXKjBw50r7ssssuMx07dqxwnSW/J/A9XKoGj1i0aJGaN2+uq6++WtLZU21vueUWLV68WIWFhfZyjRs31smTJ8u9Tvr//u//dMkll+jGG28staw4w/7222/roosu0oUXXqhff/3V/rrmmmskqdQpqfHx8Wrfvr19ulu3bgoNDdWBAwcknX2S08cff6wbbrhBrVu3tpe76KKLNHjw4Epvh4kTJzr8CtCvXz8VFhYqLS1NkrRq1SoVFBSUOt33vvvuq9T6+/XrJ0n6/PPPJZ39Be3yyy/XwIED9cUXX0g6e5rvjh077GWNMfq///s/XX/99TLGOGyvwYMHKysrS998841le4cPH9b27ds1evRo+3XQktS/f3917drVss4tt9yi8PDwUn0u3tblqczno6qys7MlyWE80tkbU0ZERNhfxb/uSGc/b2FhYRo4cKDD9uvZs6caNmxY6vPWuXNn+7glKSIiQp06dXLYBm+//bb69eun8PBwh3XGx8ersLDQvo+LjRgxQhEREQ7z/P397dfzFxUV6dixYyooKNBll11W5j6tjMLCQt122206ceKE3n33XTVo0MCp7bBy5UqdOXNG9913n8P3obxfcEvq27ev9u/fr4yMDElnf/GKi4uTdPZU7S1bttif7rFu3TrFxsYqIOD3k2zz8vIc+vjrr7+qqKhIp06dKjUfAKobcdFZxEXERRJxUVXjonr16mnjxo168MEHJZ29rO6uu+5SixYtdN999zn9xLs+ffpo48aNKiwsVFFRkb788kuHGKv4LKNTp05p69atpc42KiuWysnJcZhX8nI91Gx1MnH0+eef6/rrr1d0dLRsNlup03MrwxijmTNn6g9/+IOCg4PVsmVL/b//9/+qv7O1QGFhoRYvXqyrr75aBw8e1L59+7Rv3z7Fxsbq6NGjWrVqlb3s5MmT9Yc//EFDhgxRq1atNH78+FLX1O/fv19dunQpt829e/dq586dDge0iIgI+xOVfv75Z4fy5wc9xcLDw+1/0H755RedPn1aHTt2LFWuU6dOldsQFu0UBwrF7RQHSiVPfW3SpIlDUFGW5s2bq2PHjvZg6IsvvlC/fv105ZVX6vDhwzpw4IDWrVunoqIi+wH6l19+UWZmpl5++eVS22vcuHGSSm+vYmX1t6x5ldkG5anM58PKL7/8ooyMDPsrJyenzLKNGjWSpFJl+vTpoxUrVmjFihWlbrK8d+9eZWVlKTIystQ2zMnJcfrzVrzO5cuXl1pf8WnDJdfZrl07y/G8+uqr6tatm0JCQtS0aVNFRETov//9r7KyssrcBhV55JFHtHr1ar3++usO/7Go7HYo/tyU/D5FRERU6nMuOd7nKDMzUzt37rRf2x8XF6eCggJ99dVXOnjwoI4cOVIqqHnjjTdK9fGHH37QjBkzSs0HcBbxU/UgLiq7HeIi4qJixEXOxUVhYWF65plndOjQIR06dEjz5s1Tp06d9Pzzz+uJJ55wajx9+/a138tox44dysrKcoixDh8+rEOHDtnvfVQyxnrmmWcsY6n77rvPYV6PHj2c6he8q07e4+jkyZO65JJLNH78+FI3zKusqVOn6pNPPtHMmTPVtWtXHTt2TMeOHavmntYOq1ev1pEjR7R48WItXry41PJFixbZDziRkZHaunWrPv74Y3300Uf66KOPlJqaqtGjR+vVV1+tdJtFRUXq2rWrnn32WcvlMTExDtNlPSXBGFPpNivDE+307dtXq1at0unTp7V582Y99thj6tKlixo3bqwvvvhCu3fvVsOGDe1/rItvKHjHHXdozJgxlussvgdAdajKNnD183H55ZfbD8qSlJCQUOaTsy688EJJ0o4dO3TJJZfY558fnCxcuNChTlFRkSIjI8u8sanVL15Wzt8GRUVFGjhwoB566CHLsiUfK1+vXr1SZRYuXKixY8fqhhtu0IMPPqjIyEj5+/srOTnZfiNFZy1dulRPP/20nnjiCV177bUOy5zdDlVx/jX4xY9/7d27tySpWbNm9sfJ/vDDDw7liw0ePLjUL7R33HGHBg0apNGjR1dbP4HahPipehAXebYd4qLSiItqX1x0vjZt2mj8+PG68cYbdcEFF2jRokV68sknK13//BgrKChITZo0sX8Ounfvrvr162vt2rU6ePCgQ/lio0ePLjVv4MCBevDBBx2SjFb7CDVXnUwcDRkyREOGDClzeV5env7xj3/ojTfeUGZmprp06aKnn35aV111laSzN5178cUXtWPHDvuvKmVltXE2AIqMjLQ/EeJ8S5Ys0bvvvqu5c+fa/3gEBQXp+uuv1/XXX6+ioiJNnjxZL730kh599FF16NBB7du3144dO8pts3379tq2bZsGDBhQpRvEFYuIiFC9evW0d+/eUsv27NlT5fUXKz7Nd9++fQ6fqd9++63Sp3P269dPqamp9tPd4+Li5Ofnp759+9oDpLi4OPtBOiIiQo0aNVJhYaE9AHClvyVZzaus8vZZRZ8PK4sWLdLp06ft0xdccEGZ6x8yZIj8/f21aNEi3X777ZXqb/v27bVy5Ur16dOn2g6C7du3V05OjtP75HzvvPOOLrjgAi1ZssRhm7r6uOfvv/9eY8aM0Q033KD/+Z//sexzZbZD8edm7969Dvvil19+qfTnPDIy0p4catCggTp37qzGjRvbl8fFxWndunX68ccf5e/vb08qFWvRooVatGjhMK/4SS5V2eZAbUb8VD2IiyqPuOgs4iLiIleEh4dX6u9DSZdeeqk9ORQcHKzevXvbt1dAQIAuv/xyrVu3TgcPHlRkZGSppN0FF1xg+Znq3LkzMZYPq5OXqlXk3nvv1YYNG7R48WJ9++23GjlypK699lr7wfH999/XBRdcoA8++EDt2rVT27Ztdffdd9e5X8wq4/Tp01qyZIn++Mc/6uabby71uvfee3XixAktW7ZM0tlA4Hx+fn72X3WKr88dMWKEtm3bpnfffbdUe8W/TIwaNUo//fSTXnnlFcs+nTx50qlx+Pv7a/DgwVq6dKnS09Pt83fv3q2PP/7YqXWVZ8CAAQoICNCLL77oMP/555+v9DqKT7V++umn1a1bN4WFhdnnr1q1Sl9//bXDdeT+/v4aMWKE/u///s/ywFLysbjni46OVpcuXfTaa685nML82Wefafv27ZXuc0nF14ZnZmY6zK/M58NKnz59FB8fb3+VFyC1bt1a48eP10cffVTmdi/5K+CoUaNUWFhoeSpwQUFBqXFUxqhRo7RhwwbLz1dmZqYKCgoqXEdxEHx+fzdu3KgNGzY43Z+cnBzdeOONatmypV599VXLILay2yE+Pl6BgYGaPXu2Q99KPhGlIn379tXWrVv1ySef2K+9LxYXF6cNGzbYn5pTfKo9APchfqoYcZFziIvOIi4iLirPtm3bLO/JmJaWpl27djl1+ah0NjkUGxurdevWOdxDslhcXJw+//xzffnll/ZL2FD71ckzjsqTnp6u1NRUpaenKzo6WpL0t7/9TcuXL1dqaqqeeuopHThwQGlpaXr77bf12muvqbCwUNOmTdPNN9+s1atXe3kENcuyZct04sQJDRs2zHJ5r169FBERoUWLFumWW26xB5DXXHONWrVqpbS0NM2ePVvdu3e3PyL1wQcf1DvvvKORI0dq/Pjx6tmzp44dO6Zly5Zp7ty5uuSSS3TnnXfqrbfe0j333KM1a9aoT58+Kiws1Hfffae33npLH3/8sS677DKnxpKUlKTly5erX79+mjx5sgoKCjR79mxdfPHF+vbbb6u8raSz1+JPnTpV//znPzVs2DBde+212rZtmz766CM1a9asUr8SdujQQVFRUdqzZ4/DzSOvvPJKPfzww5LkECBJUkpKitasWaPY2FhNmDBBnTt31rFjx/TNN99o5cqV5Qb1Tz31lIYPH64+ffpo3LhxOn78uJ5//nl16dKl3Gvmy1P8iM/7779fgwcPlr+/v2699dZKfT6qw6xZs3Tw4EHdd999Wrx4sa6//npFRkbq119/1bp16/T+++87HIT79++vSZMmKTk5WVu3btWgQYMUGBiovXv36u2339a//vUv3XzzzU714cEHH9SyZcv0xz/+0f5I2pMnT2r79u165513dOjQITVr1qzcdfzxj3/UkiVLdOONN2ro0KE6ePCg5s6dq86dOzu9b5KSkrRr1y498sgjeu+99xyWtW/fXr179670doiIiNDf/vY3JScn649//KOuu+46bdmyxf45r6y+ffsqNTVVmzZt0pQpUxyWxcXFKSsrS1lZWZW+iSoA1xE/VQ5xkXOIi84iLiIuKs+KFSuUkJCgYcOGqVevXmrYsKEOHDig+fPnKy8vr8zLEMvTt29f+827SyaH4uLilJycbC+HOsKTj3CriSSZd9991z79wQcfGEmmQYMGDq+AgAAzatQoY4wxEyZMMJLMnj177PU2b95sJJnvvvvO00Oo0a6//noTEhJiTp48WWaZsWPHmsDAQPPrr7+ad955xwwaNMhERkaaoKAg07p1azNp0iRz5MgRhzq//fabuffee03Lli1NUFCQadWqlRkzZozDo0DPnDljnn76aXPxxReb4OBgEx4ebnr27GmSkpJMVlaWvZwkM2XKlFL9KvnoWGOM+eyzz0zPnj1NUFCQueCCC8zcuXNNQkJCpR87u2nTJodya9asMZLMmjVr7PMKCgrMo48+aqKioky9evXMNddcY3bv3m2aNm1q7rnnnjK34/lGjhxpJJk333zTYXvUr1/fBAUFmdOnT5eqc/ToUTNlyhQTExNjAgMDTVRUlBkwYIB5+eWX7WWsHjtrjDGLFy82F154oQkODjZdunQxy5YtMyNGjDAXXnhhqbozZswo1bZKPPK0oKDA3HfffSYiIsLYbDb79q3s56M6FBQUmNTUVHPNNdeYJk2amICAANOsWTMzYMAAM3fuXMtt+PLLL5uePXuaevXqmUaNGpmuXbuahx56yBw+fNhepk2bNmbo0KGl6vbv39/079/fYd6JEyfM9OnTTYcOHUxQUJBp1qyZiYuLMzNnzjRnzpwxxpS/XYuKisxTTz1l2rRpY4KDg02PHj3MBx98YMaMGePwSGBjKn7s7JgxY4wky1fJ70lltkNhYaFJSkoyLVq0MPXq1TNXXXWV2bFjh+X3rix79uyx96Hk43mLiopM48aNS30PytOmTRuHbQCgbMRPriEuOou4iLioGHHRWVWJiw4cOGAee+wx06tXLxMZGWkCAgJMRESEGTp0qFm9enW5dcvy8ccfG0kmICCg1N+r3377zf453LhxY6XWZ/U9gW+xGVPNd7nzMTabTe+++65uuOEGSdKbb76p22+/XTt37ix1o7aGDRsqKipKCQkJeuqpp5Sfn29fdvr0adWvX1+ffPKJBg4c6MkhoA7IzMxUeHi4nnzySf3jH//wdncqpXv37oqIiHDrI2IBAN5B/ARvIi4CAM/iUrUSevToocLCQv3888+lTlst1qdPHxUUFGj//v32Ry5+//33kn6/uRngqtOnT5e6gV7xNc7FNxitSfLz82Wz2RQQ8Pufk08//VTbtm1z6gkOAADfRfwEdyEuAgDvq5NnHOXk5NifbNCjRw89++yzuvrqq9WkSRO1bt1ad9xxh9atW6d//vOf6tGjh3755RetWrVK3bp109ChQ1VUVKTLL79cDRs21KxZs1RUVKQpU6YoNDRUn3zyiZdHB1+3YMECLViwQNddd50aNmyotWvX6o033tCgQYOq9YaT1eXQoUOKj4/XHXfcoejoaH333XeaO3euwsLCtGPHDjVt2tTbXQQAVAPiJ3gDcRFQdWfOnKnwQQRhYWHV9hQ81ELevVLOO4qvny75Kr5+9MyZM+axxx4zbdu2NYGBgaZFixbmxhtvNN9++619HT/99JO56aabTMOGDU3z5s3N2LFjzW+//ealEaE22bx5sxkwYIBp2rSpCQwMNK1atTJTp041J06c8HbXLGVmZppRo0bZ76sQHh5ubr75ZrNv3z5vdw0AUI2In+ANxEVA1ZX19/v8F/cgQnnq5BlHAAAAAADUBcePH9fmzZvLLXPxxRerRYsWHuoRfA2JIwAAAAAAAFjy83YHAAAAAAAAUDPVmaeqFRUV6fDhw2rUqJFsNpu3uwMAAMpgjNGJEycUHR0tPz9+4/Im4icAAHyDO+OnOpM4Onz4sGJiYrzdDQAAUEk//PCDWrVq5e1u1GnETwAA+BZ3xE91JnHUqFEjSWc3YmhoqJd7AwAAypKdna2YmBj7sRveQ/wEAIBvcGf8VGcSR8WnV4eGhhL4AADgA7g0yvuInwAA8C3uiJ+4cQAAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYInEEQAAAAAAACwFOFO4bdu2SktLKzV/8uTJmjNnTqn5CxYs0Lhx4xzmBQcHKzc3V5KUn5+vRx55RB9++KEOHDigsLAwxcfHKyUlRdHR0eW2m5ycrL///e/OdN8jbLZEb3fBqxKU5PY2kpTg9jaMSXR7GwCAuoH4qWKJNpu3u+BVnohtPBGjJRrj9jYAAJ7nVOJo06ZNKiwstE/v2LFDAwcO1MiRI8usExoaqj179tinbecFBqdOndI333yjRx99VJdccomOHz+uqVOnatiwYfr6668d1vP4449rwoQJ9ulGjRo503UAAACvIH4CAAC+zKnEUUREhMN0SkqK2rdvr/79+5dZx2azKSoqynJZWFiYVqxY4TDv+eef1xVXXKH09HS1bt3aPr9Ro0ZlrgcAAKCmIn4CAAC+zOV7HJ05c0YLFy7U+PHjHX4FKyknJ0dt2rRRTEyMhg8frp07d5a73qysLNlsNjVu3NhhfkpKipo2baoePXpoxowZKigoKHc9eXl5ys7OdngBAAB4E/ETAADwNU6dcXS+pUuXKjMzU2PHji2zTKdOnTR//nx169ZNWVlZmjlzpuLi4rRz5061atWqVPnc3Fw9/PDDuu222xQaGmqff//99+vSSy9VkyZNtH79ek2fPl1HjhzRs88+W2bbycnJSkpy/7XcAAAAlUX8BAAAfI3NGNfuYjd48GAFBQXp/fffr3Sd/Px8XXTRRbrtttv0xBNPlFo2YsQI/fjjj/r0008dAp+S5s+fr0mTJiknJ0fBwcGWZfLy8pSXl2efzs7OVkxMjLKysspdd1Vxc2xujg0AqJrs7GyFhYW5/ZjtDcRP1rg5NjfHBgBUjTvjJ5fOOEpLS9PKlSu1ZMkSp+oFBgaqR48e2rdvn8P8/Px8jRo1SmlpaVq9enWFg4yNjVVBQYEOHTqkTp06WZYJDg4uMygCAADwNOInAADgi1y6x1FqaqoiIyM1dOhQp+oVFhZq+/btatGihX1ecdCzd+9erVy5Uk2bNq1wPVu3bpWfn58iIyOd7jsAAIA3ED8BAABf5PQZR0VFRUpNTdWYMWMUEOBYffTo0WrZsqWSk5MlnX0EbK9evdShQwdlZmZqxowZSktL09133y3pbNBz880365tvvtEHH3ygwsJCZWRkSJKaNGmioKAgbdiwQRs3btTVV1+tRo0aacOGDZo2bZruuOMOhYeHV3X8AAAAbkf8BAAAfJXTiaOVK1cqPT1d48ePL7UsPT1dfn6/n8R0/PhxTZgwQRkZGQoPD1fPnj21fv16de7cWZL0008/admyZZKk7t27O6xrzZo1uuqqqxQcHKzFixcrMTFReXl5ateunaZNm6YHHnjA2a4DAAB4BfETAADwVS7fHNvXeOpGm9wcm5tjAwCqpjbfHNvXeGpfcHNsbo4NAKgadx6zXbrHEQAAAAAAAGo/zjiqZq78YlZbfmWqyTyxjeEczuoCUBbOOKo5avIZ27XlLOearK7HjzURZ3UBKAtnHAEAAAAAAMDjSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASzZjjPF2JzwhOztbYWFhysrKUmhoqNvasdkS3bZuT0tQkre74DVJSvB2F+AlxiR6uwtAneepYzYq5ql9kWizuW3dnlaXY4i6HDvWdYl147+UQI3mzmM2ZxwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYInEEAAAAAAAASySOAAAAAAAAYMlmjDHe7oQnZGdnKywsTFlZWQoNDXVbO4k2m9vWjZotSQne7gJqMWMSvd0FwGM8dcxGxTy1L2y2RLetGzVbgpK83QXUYol147+6gCT3HrM54wgAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGCJxBEAAAAAAAAskTgCAAAAAACAJRJHAAAAAAAAsETiCAAAAAAAAJZIHAEAAAAAAMASiSMAAAAAAABYshljjLc74QnZ2dkKCwtTVlaWQkND3daOzZbodJ0EJVV/R1ArJSnB210AHBiT6O0uoBby1DEbFfPUvki02ZyuwzERlUWsjZomsW78Fxwe5s5jNmccAQAAAAAAwBKJIwAAAAAAAFgicQQAAAAAAABLJI4AAAAAAABgicQRAAAAAAAALJE4AgAAAAAAgCUSRwAAAAAAALBE4ggAAAAAAACWSBwBAAAAAADAEokjAAAAAAAAWCJxBAAAAAAAAEskjgAAAAAAAGApwJnCbdu2VVpaWqn5kydP1pw5c0rNX7BggcaNG+cwLzg4WLm5uZKk/Px8PfLII/rwww914MABhYWFKT4+XikpKYqOjrbXOXbsmO677z69//778vPz04gRI/Svf/1LDRs2dKb7gM9LUJLTdZKU4IaeAGfZbIne7oIlYxK93QXAjvgJ8C5XYiFXYi6gshJtNm93wVKiMd7uAmoopxJHmzZtUmFhoX16x44dGjhwoEaOHFlmndDQUO3Zs8c+bTvvS3Lq1Cl98803evTRR3XJJZfo+PHjmjp1qoYNG6avv/7aXu7222/XkSNHtGLFCuXn52vcuHGaOHGiXn/9dWe6DwAA4HHETwAAwJc5lTiKiIhwmE5JSVH79u3Vv3//MuvYbDZFRUVZLgsLC9OKFSsc5j3//PO64oorlJ6ertatW2v37t1avny5Nm3apMsuu0ySNHv2bF133XWaOXOmwy9rAAAANQ3xEwAA8GUu3+PozJkzWrhwocaPH+/wK1hJOTk5atOmjWJiYjR8+HDt3Lmz3PVmZWXJZrOpcePGkqQNGzaocePG9qBHkuLj4+Xn56eNGzeWuZ68vDxlZ2c7vAAAALyJ+AkAAPgalxNHS5cuVWZmpsaOHVtmmU6dOmn+/Pl67733tHDhQhUVFSkuLk4//vijZfnc3Fw9/PDDuu222xQaGipJysjIUGRkpEO5gIAANWnSRBkZGWW2nZycrLCwMPsrJibG+UECAABUI+InAADga1xOHM2bN09Dhgwp91Tn3r17a/To0erevbv69++vJUuWKCIiQi+99FKpsvn5+Ro1apSMMXrxxRdd7Zbd9OnTlZWVZX/98MMPVV4nAABAVRA/AQAAX+PUPY6KpaWlaeXKlVqyZIlT9QIDA9WjRw/t27fPYX5x0JOWlqbVq1fbfy2TpKioKP38888O5QsKCnTs2LEyr/2Xzj59JDg42Kn+AQAAuAvxEwAA8EUunXGUmpqqyMhIDR061Kl6hYWF2r59u1q0aGGfVxz07N27VytXrlTTpk0d6vTu3VuZmZnavHmzfd7q1atVVFSk2NhYV7oPAADgccRPAADAFzl9xlFRUZFSU1M1ZswYBQQ4Vh89erRatmyp5ORkSdLjjz+uXr16qUOHDsrMzNSMGTOUlpamu+++W9LZoOfmm2/WN9988//bu/foqMp7/+OfyWUSUHJBLiEQLgLlYkEu1hB+VmyJAmVZWllalHLVgEcsrVi1tNok2GWicMSjCwrlQLAHW452IXKOllNAvEFESIkgIDUUiGiCq0ISQIFcnt8fJGMm2UlmJnOf92utWZu997P3fr7zzJ795Zs9M/rf//1f1dbWOj5337lzZ9ntdg0ZMkQTJ05UVlaWVq1aperqaj344IOaNm0avwgCAABCAvkTAAAIVW4XjrZv367S0lLNnTu32brS0lJFRX1zE9PZs2eVlZWl8vJyJScna/To0dq9e7eGDh0qSfrss8+0ZcsWSdKIESOc9rVz507dcsstkqSXXnpJDz74oMaPH6+oqChNnTpVzz//vLtdBwAACAjyJwAAEKpsxhgT6E74Q1VVlRITE1VZWen0HQDeZrPluL1NtnK93xGgXq6yA90FwO+MyQl0F9AO/rpmo23+Goscm83tbbi+wZfIzxGJciKjNBC2fHnN9vhX1QAAAAAAABDeKBwBAAAAAADAEh9V8zJ/3WrN7bPBJ5zGkdv/geARiR+746NqwSPcPurP9S34hNM4BmteB0SiSPzYHR9VAwAAAAAAgN9ROAIAAAAAAIAlCkcAAAAAAACwROEIAAAAAAAAligcAQAAAAAAwBKFIwAAAAAAAFiicAQAAAAAAABLFI4AAAAAAABgicIRAAAAAAAALFE4AgAAAAAAgCUKRwAAAAAAALAUE+gOhJtcZQe6C5Y86Ve2cn3Qk/bzx3McrLEDiDw2W06gu2DJmJxAdwFhJFivu570K1hzQX88x8EaO4DIk2OzBboLlnKMCXQXPMIdRwAAAAAAALBE4QgAAAAAAACWKBwBAAAAAADAEoUjAAAAAAAAWKJwBAAAAAAAAEsUjgAAAAAAAGCJwhEAAAAAAAAsUTgCAAAAAACAJQpHAAAAAAAAsEThCAAAAAAAAJYoHAEAAAAAAMAShSMAAAAAAABYshljTKA74Q9VVVVKTExUZWWlEhISfHacHJvN7W1yle2DnjjLVq7b23jSL3eP44/Y/cWT5zhchNM4AvANY3Jcbuuvazba5q+xsNly3N7GH9ddf+RCnhwnnHKOSM4hwmkcAfhGjhvlGl9es7njCAAAAAAAAJYoHAEAAAAAAMAShSMAAAAAAABYonAEAAAAAAAASxSOAAAAAAAAYInCEQAAAAAAACxROAIAAAAAAIAlCkcAAAAAAACwROEIAAAAAAAAligcAQAAAAAAwBKFIwAAAAAAAFiicAQAAAAAAABLMYHuAKRs5fr8GLnK9vkx/MWT58vd+P0xJgAAwHP+yG3CKR/w5PlyN/5wyjcBAN/gjiMAAAAAAABYonAEAAAAAAAASxSOAAAAAAAAYInCEQAAAAAAACxROAIAAAAAAIAlCkcAAAAAAACwROEIAAAAAAAAligcAQAAAAAAwBKFIwAAAAAAAFiicAQAAAAAAABLFI4AAAAAAABgKcadxn379tXJkyebLX/ggQe0YsWKZsvXr1+vOXPmOC2Li4vTxYsXHfObNm3SqlWrVFRUpDNnzmj//v0aMWKE0za33HKL3n77badl8+fP16pVq9zpvl/kKtvtbbKV64OeBIa78Qdr7JE+jgAA7yF/apsn11BPrtXByt34gzX2SB9HAAhXbhWO9u7dq9raWsf8Rx99pFtvvVV33nlni9skJCTo6NGjjnmbzea0/sKFC7rpppt01113KSsrq8X9ZGVlacmSJY75jh07utN1AACAgCB/AgAAocytwlHXrl2d5vPz89W/f3+NGzeuxW1sNptSUlJaXD9jxgxJ0okTJ1o9dseOHVvdDwAAQDAifwIAAKHM4+84unz5sjZs2KC5c+c2+ytYY+fPn1efPn2UlpamKVOm6NChQx4d76WXXlKXLl307W9/W4sXL9ZXX33VavtLly6pqqrK6QEAABBI5E8AACDUuHXHUWObN29WRUWFZs+e3WKbQYMGad26dRo+fLgqKyu1bNkyjR07VocOHVKvXr1cPtY999yjPn36KDU1VQcOHNBjjz2mo0ePatOmTS1uk5eXp9xcvnMGAAAED/InAAAQajwuHK1du1aTJk1Sampqi20yMjKUkZHhmB87dqyGDBmi1atX68knn3T5WPPmzXP8e9iwYerRo4fGjx+vY8eOqX///pbbLF68WIsWLXLMV1VVKS0tzeVjAgAAeBv5EwAACDUeFY5Onjyp7du3t/oXKyuxsbEaOXKkSkpKPDmsQ3p6uiSppKSkxcQnLi5OcXFx7ToOAACAt5A/AQCAUOTRdxwVFBSoW7dumjx5slvb1dbW6uDBg+rRo4cnh3UoLi6WpHbvBwAAwF/InwAAQChy+46juro6FRQUaNasWYqJcd585syZ6tmzp/Ly8iRJS5Ys0ZgxYzRgwABVVFRo6dKlOnnypO677z7HNmfOnFFpaak+//xzSXL89GxKSopSUlJ07Ngx/elPf9IPfvADXXPNNTpw4IAeeugh3XzzzRo+fLjHgQMAAPgL+RMAAAhVbheOtm/frtLSUs2dO7fZutLSUkVFfXMT09mzZ5WVlaXy8nIlJydr9OjR2r17t4YOHepos2XLFs2ZM8cxP23aNElSdna2cnJyZLfbtX37dj333HO6cOGC0tLSNHXqVD3++OPudh0AACAgyJ8AAECocrtwdNttt8kYY7nurbfecppfvny5li9f3ur+Zs+e3eovi6Slpentt992t5sAAABBg/wJAACEKo++4wgAAAAAAADhj8IRAAAAAAAALLn9UTW0Llu5fjlOrrL9chxfC5c4Il2wvu496RevSQDwP3+99/rreuVr4RJHpAvW170n/eI1CYQ37jgCAAAAAACAJQpHAAAAAAAAsEThCAAAAAAAAJYoHAEAAAAAAhPJCQAAOt5JREFUAMAShSMAAAAAAABYonAEAAAAAAAASxSOAAAAAAAAYInCEQAAAAAAACxROAIAAAAAAIAlCkcAAAAAAACwROEIAAAAAAAAligcAQAAAAAAwFJMoDsQbnKVHeguhJRs5frlOO6Oiyf98mTs/RV/uHD3+eJ8BIDQwPXQPf66vvnjuuuvnCuS+SMPBhDeuOMIAAAAAAAAligcAQAAAAAAwBKFIwAAAAAAAFiicAQAAAAAAABLFI4AAAAAAABgicIRAAAAAAAALFE4AgAAAAAAgCUKRwAAAAAAALBE4QgAAAAAAACWKBwBAAAAAADAEoUjAAAAAAAAWIoJdAfgH9nKDXQXLOUq2y/H8Uf8wfocRzJPxsRfr0l/8MdrMpyeLwBoKljf4/yVc/gj/mB9jiOZJ2MSTnmwP16T4fR8ITJwxxEAAAAAAAAsUTgCAAAAAACAJQpHAAAAAAAAsEThCAAAAAAAAJYoHAEAAAAAAMAShSMAAAAAAABYonAEAAAAAAAASxSOAAAAAAAAYInCEQAAAAAAACxROAIAAAAAAIAlCkcAAAAAAACwROEIAAAAAAAAlmIC3YFwk63cQHfBUq6y3d4mWGPxR7/C6flC5PLkdQwAgRCs71eeXNuDNRZ/9Cucni9ELnJ6oDnuOAIAAAAAAIAlCkcAAAAAAACwROEIAAAAAAAAligcAQAAAAAAwBKFIwAAAAAAAFiicAQAAAAAAABLFI4AAAAAAABgicIRAAAAAAAALFE4AgAAAAAAgCUKRwAAAAAAALBE4QgAAAAAAACWKBwBAAAAAADAUow7jfv27auTJ082W/7AAw9oxYoVzZavX79ec+bMcVoWFxenixcvOuY3bdqkVatWqaioSGfOnNH+/fs1YsQIp20uXryohx9+WBs3btSlS5c0YcIErVy5Ut27d3en+36Rq2y3t8lWrs+P48kx/CFY++Uvnrxe3BVOz3Gwvu7dPY4/xj2c+OM9EvAl8qe2+es8D5f362Dtl7/44/oeTs9xsL7ugzWvCxf++n8pIoNbdxzt3btXZWVljse2bdskSXfeeWeL2yQkJDht0zRxunDhgm666SY9/fTTLe7joYce0v/8z//olVde0dtvv63PP/9cd9xxhztdBwAACAjyJwAAEMrcuuOoa9euTvP5+fnq37+/xo0b1+I2NptNKSkpLa6fMWOGJOnEiROW6ysrK7V27Vr96U9/0ve//31JUkFBgYYMGaL3339fY8aMcScEAAAAvyJ/AgAAoczj7zi6fPmyNmzYoLlz58pms7XY7vz58+rTp4/S0tI0ZcoUHTp0yK3jFBUVqbq6WpmZmY5lgwcPVu/evVVYWNjidpcuXVJVVZXTAwAAIJDInwAAQKjxuHC0efNmVVRUaPbs2S22GTRokNatW6fXXntNGzZsUF1dncaOHatTp065fJzy8nLZ7XYlJSU5Le/evbvKy8tb3C4vL0+JiYmOR1pamsvHBAAA8AXyJwAAEGo8LhytXbtWkyZNUmpqaottMjIyNHPmTI0YMULjxo3Tpk2b1LVrV61evdrTw7ps8eLFqqysdDw+/fRTnx8TAACgNeRPAAAg1Lj1HUcNTp48qe3bt2vTpk1ubRcbG6uRI0eqpKTE5W1SUlJ0+fJlVVRUOP3V7PTp061+9j8uLk5xcXFu9Q8AAMBXyJ8AAEAo8uiOo4KCAnXr1k2TJ092a7va2lodPHhQPXr0cHmb0aNHKzY2Vjt27HAsO3r0qEpLS5WRkeHW8QEAAAKF/AkAAIQit+84qqurU0FBgWbNmqWYGOfNZ86cqZ49eyovL0+StGTJEo0ZM0YDBgxQRUWFli5dqpMnT+q+++5zbHPmzBmVlpbq888/l3QlqZGu/KUsJSVFiYmJuvfee7Vo0SJ17txZCQkJ+tnPfqaMjAx+EQQAAIQE8icAABCq3C4cbd++XaWlpZo7d26zdaWlpYqK+uYmprNnzyorK0vl5eVKTk7W6NGjtXv3bg0dOtTRZsuWLZozZ45jftq0aZKk7Oxs5eTkSJKWL1+uqKgoTZ06VZcuXdKECRO0cuVKd7sOAAAQEORPAAAgVLldOLrttttkjLFc99ZbbznNL1++XMuXL291f7Nnz271l0UkKT4+XitWrNCKFSvc6SoAAEBQIH8CAAChyuNfVQMAAAAAAEB4o3AEAAAAAAAAS25/VA2ty1au29vkKtsHPYG/MY7u8cfz5a8xYex9i+cXCH+enOee5FwIPoyje/zxfPlrTBh73+L5hTdxxxEAAAAAAAAsUTgCAAAAAACAJQpHAAAAAAAAsEThCAAAAAAAAJYoHAEAAAAAAMAShSMAAAAAAABYonAEAAAAAAAASxSOAAAAAAAAYInCEQAAAAAAACxROAIAAAAAAIAlCkcAAAAAAACwZDPGmEB3wh+qqqqUmJioyspKJSQk+Ow4NluO29tkK9f7HQmQXGW71T6SYweCjSfnI697uMqYHJfb+uuajbb5ayxybDa3twmn9x93338jOXYg2HhyPvK6h6ty3CjX+PKazR1HAAAAAAAAsEThCAAAAAAAAJYoHAEAAAAAAMAShSMAAAAAAABYonAEAAAAAAAASxSOAAAAAAAAYInCEQAAAAAAACxROAIAAAAAAIAlCkcAAAAAAACwROEIAAAAAAAAligcAQAAAAAAwBKFIwAAAAAAAFiyGWNMoDvhD1VVVUpMTFRlZaUSEhJ8dpwcm83tbXKV7fY22cp1exu4zpMxAYJNuLxPcD6GB2NyXG7rr2s22uavsbDZctzexpP3ON5PfCtcrjuIbOHyPsH5GB5y3CjX+PKazR1HAAAAAAAAsEThCAAAAAAAAJYoHAEAAAAAAMAShSMAAAAAAABYonAEAAAAAAAASxSOAAAAAAAAYInCEQAAAAAAACxROAIAAAAAAIAlCkcAAAAAAACwROEIAAAAAAAAligcAQAAAAAAwBKFIwAAAAAAAFiyGWNMoDvhD1VVVUpMTFRlZaUSEhJ8dhybLcdn+26PbOUGugtek6vsQHcBISJYX/fB+hoO1ufLE8H6HEcyY3Jcbuuvazba5q+xyLHZfLbv9gin95Jweo+HbwXr6z5YX8PB+nx5Ilif40iW40a5xpfXbO44AgAAAAAAgCUKRwAAAAAAALBE4QgAAAAAAACWKBwBAAAAAADAEoUjAAAAAAAAWKJwBAAAAAAAAEsUjgAAAAAAAGCJwhEAAAAAAAAsUTgCAAAAAACAJQpHAAAAAAAAsEThCAAAAAAAAJZi3Gnct29fnTx5stnyBx54QCtWrGi2fP369ZozZ47Tsri4OF28eNExb4xRdna21qxZo4qKCv2///f/9Pvf/14DBw5s9bh5eXn61a9+5U73I1qust3eJlu5PuiJM0/6BUQif5yP4cST54v3I/gK+VPoCtb3Eq4JgGu4trsnWP/PiMBzq3C0d+9e1dbWOuY/+ugj3Xrrrbrzzjtb3CYhIUFHjx51zNtsNqf1zzzzjJ5//nm9+OKL6tevn5544glNmDBBhw8fVnx8vKPdkiVLlJWV5Zjv1KmTO10HAAAICPInAAAQytwqHHXt2tVpPj8/X/3799e4ceNa3MZmsyklJcVynTFGzz33nB5//HFNmTJFkvTHP/5R3bt31+bNmzVt2jRH206dOrW4HwAAgGBF/gQAAEKZx99xdPnyZW3YsEFz585t9lewxs6fP68+ffooLS1NU6ZM0aFDhxzrjh8/rvLycmVmZjqWJSYmKj09XYWFhU77yc/P1zXXXKORI0dq6dKlqqmpabV/ly5dUlVVldMDAAAgkMifAABAqHHrjqPGNm/erIqKCs2ePbvFNoMGDdK6des0fPhwVVZWatmyZRo7dqwOHTqkXr16qby8XJLUvXt3p+26d+/uWCdJCxcu1KhRo9S5c2ft3r1bixcvVllZmZ599tkWj52Xl6fcXD5vCQAAggf5EwAACDUeF47Wrl2rSZMmKTU1tcU2GRkZysjIcMyPHTtWQ4YM0erVq/Xkk0+6fKxFixY5/j18+HDZ7XbNnz9feXl5iouLs9xm8eLFTttVVVUpLS3N5WMCAAB4G/kTAAAINR59VO3kyZPavn277rvvPre2i42N1ciRI1VSUiJJjs/cnz592qnd6dOnW/08fnp6umpqanTixIkW28TFxSkhIcHpAQAAECjkTwAAIBR5VDgqKChQt27dNHnyZLe2q62t1cGDB9WjRw9JUr9+/ZSSkqIdO3Y42lRVVWnPnj1Of2lrqri4WFFRUerWrZsn3QcAAPA78icAABCK3P6oWl1dnQoKCjRr1izFxDhvPnPmTPXs2VN5eXmSrvwE7JgxYzRgwABVVFRo6dKlOnnypOMvbTabTb/4xS/0u9/9TgMHDnT8nGxqaqp+9KMfSZIKCwu1Z88efe9731OnTp1UWFiohx56SD/96U+VnJzczvABAAB8j/wJAACEKrcLR9u3b1dpaanmzp3bbF1paamior65iens2bPKyspSeXm5kpOTNXr0aO3evVtDhw51tHn00Ud14cIFzZs3TxUVFbrpppu0detWxcfHS7pyy/TGjRuVk5OjS5cuqV+/fnrooYecPn8PAAAQzMifAABAqLIZY0ygO+EPVVVVSkxMVGVlpU8/r2+z5fhs3/6WLd//qkqusn1+DEQuf7yGPeHJ6z5YYwknvB/5ljE5Lrf11zUbbfPXWOTYbD7bt7/5472EawJ8KVivh5687oM1lnDC+5Fv5bhRrvHlNduj7zgCAAAAAABA+KNwBAAAAAAAAEt8VC1EBetH4oL1VkVuUw0Pwfr6QnjgfcK3+KhaaAq3sQjWj8QF6/sP193wEKyvL4QH3id8i4+qAQAAAAAAIKhROAIAAAAAAIAlCkcAAAAAAACwROEIAAAAAAAAligcAQAAAAAAwBKFIwAAAAAAAFiicAQAAAAAAABLFI4AAAAAAABgicIRAAAAAAAALFE4AgAAAAAAgCUKRwAAAAAAALBE4QgAAAAAAACWYgLdAXjGmJxAd8GSzeZe+2zl+qYjCHqMPQDA33KMCXQXrLmZQOUq20cdQbBj7AEEAnccAQAAAAAAwBKFIwAAAAAAAFiicAQAAAAAAABLFI4AAAAAAABgicIRAAAAAAAALFE4AgAAAAAAgCUKRwAAAAAAALBE4QgAAAAAAACWKBwBAAAAAADAEoUjAAAAAAAAWKJwBAAAAAAAAEs2Y4wJdCf8oaqqSomJiaqsrFRCQkKguwM/s9lyfH6MbOX6/Bi5yvb5MYKZP55jhIdIP1eCkTE5Lrflmh08GIvIlmOz+fwY/ni/jvT8gWsiXBXp50owynGjXOPLazZ3HAEAAAAAAMAShSMAAAAAAABYonAEAAAAAAAASxSOAAAAAAAAYInCEQAAAAAAACxROAIAAAAAAIAlCkcAAAAAAACwROEIAAAAAAAAligcAQAAAAAAwBKFIwAAAAAAAFiicAQAAAAAAABLFI4AAAAAAABgKSbQHQD8wZgcPxzF/WPk2Gze7wZQL1fZbrXPVq6PetI+7sYBAPCOHGN8fwwPtrHZPNkKcI27+VCw5inBmtchNHHHEQAAAAAAACxROAIAAAAAAIAlCkcAAAAAAACwROEIAAAAAAAAligcAQAAAAAAwBKFIwAAAAAAAFiicAQAAAAAAABLFI4AAAAAAABgicIRAAAAAAAALFE4AgAAAAAAgCUKRwAAAAAAALDkVuGob9++stlszR4LFiywbL9+/fpmbePj453aGGP029/+Vj169FCHDh2UmZmpTz75xKnNmTNnNH36dCUkJCgpKUn33nuvzp8/72aoAAAA/kf+BAAAQlmMO4337t2r2tpax/xHH32kW2+9VXfeeWeL2yQkJOjo0aOOeZvN5rT+mWee0fPPP68XX3xR/fr10xNPPKEJEybo8OHDjiRp+vTpKisr07Zt21RdXa05c+Zo3rx5+tOf/uRO94Ggk2OMe+190412s9lyAt0FWMhWrlvt3X09+ktOoDsAtBP5E+BdxuS4uYW77f0jp8l5jeCQq2y32rv/evSXnEB3AGHErcJR165dnebz8/PVv39/jRs3rsVtbDabUlJSLNcZY/Tcc8/p8ccf15QpUyRJf/zjH9W9e3dt3rxZ06ZN05EjR7R161bt3btXN9xwgyTphRde0A9+8AMtW7ZMqamp7oQAAADgV+RPAAAglHn8HUeXL1/Whg0bNHfu3GZ/BWvs/Pnz6tOnj9LS0jRlyhQdOnTIse748eMqLy9XZmamY1liYqLS09NVWFgoSSosLFRSUpIj6ZGkzMxMRUVFac+ePS0e99KlS6qqqnJ6AAAABBL5EwAACDUeF442b96siooKzZ49u8U2gwYN0rp16/Taa69pw4YNqqur09ixY3Xq1ClJUnl5uSSpe/fuTtt1797dsa68vFzdunVzWh8TE6POnTs72ljJy8tTYmKi45GWluZJmAAAAF5D/gQAAEKNx4WjtWvXatKkSa3e6pyRkaGZM2dqxIgRGjdunDZt2qSuXbtq9erVnh7WZYsXL1ZlZaXj8emnn/r8mAAAAK0hfwIAAKHGre84anDy5Elt375dmzZtcmu72NhYjRw5UiUlJZLk+Oz+6dOn1aNHD0e706dPa8SIEY42X3zxhdN+ampqdObMmRY/+y9JcXFxiouLc6t/AAAAvkL+BAAAQpFHdxwVFBSoW7dumjx5slvb1dbW6uDBg44kp1+/fkpJSdGOHTscbaqqqrRnzx5lZGRIuvJXt4qKChUVFTnavPnmm6qrq1N6eron3QcAAPA78icAABCK3L7jqK6uTgUFBZo1a5ZiYpw3nzlzpnr27Km8vDxJ0pIlSzRmzBgNGDBAFRUVWrp0qU6ePKn77rtP0pVfDPnFL36h3/3udxo4cKDj52RTU1P1ox/9SJI0ZMgQTZw4UVlZWVq1apWqq6v14IMPatq0afwiCAAACAnkTwAAIFS5XTjavn27SktLNXfu3GbrSktLFRX1zU1MZ8+eVVZWlsrLy5WcnKzRo0dr9+7dGjp0qKPNo48+qgsXLmjevHmqqKjQTTfdpK1btyo+Pt7R5qWXXtKDDz6o8ePHKyoqSlOnTtXzzz/vbtcBAAACgvwJAACEKpsxxgS6E/5QVVWlxMREVVZWKiEhIdDdAcKKzZbjl+NkK9cvx4lUOZFxOUAI4JodPBgLwHdybDa/HCdX2X45TqQyJifQXQAk+faa7fGvqgEAAAAAACC8UTgCAAAAAACAJbe/4wgAmvLfLbr+Og4AAIBv+esj4jl+OQqAcMYdRwAAAAAAALBE4QgAAAAAAACWKBwBAAAAAADAEoUjAAAAAAAAWKJwBAAAAAAAAEsUjgAAAAAAAGCJwhEAAAAAAAAsUTgCAAAAAACAJQpHAAAAAAAAsEThCAAAAAAAAJYoHAEAAAAAAMBSTKA74C/GGElSVVVVgHsCAABa03Ctbrh2I3DInwAACA2+zJ8ipnB07tw5SVJaWlqAewIAAFxx7tw5JSYmBrobEY38CQCA0OKL/MlmIuTPeXV1dfr888/VqVMn2Wy2QHfHb6qqqpSWlqZPP/1UCQkJge6O30Vy/MRO7JEWuxTZ8YdT7MYYnTt3TqmpqYqK4lP1gUT+FPrnkyciOX5iJ3ZijyzhFL8v86eIueMoKipKvXr1CnQ3AiYhISHkT4T2iOT4iZ3YI1Ekxx8usXOnUXAgfwqP88lTkRw/sRN7pInk2KXwid9X+RN/xgMAAAAAAIAlCkcAAAAAAACwROEozMXFxSk7O1txcXGB7kpARHL8xE7skSiS44/k2AFvi/TzKZLjJ3ZijzSRHLtE/K6KmC/HBgAAAAAAgHu44wgAAAAAAACWKBwBAAAAAADAEoUjAAAAAAAAWKJwBAAAAAAAAEsUjoJMfn6+bDabfvGLXziW/eEPf9Att9yihIQE2Ww2VVRUNNvuzJkzmj59uhISEpSUlKR7771X58+fd2pz4MABffe731V8fLzS0tL0zDPPNNvPK6+8osGDBys+Pl7Dhg3TG2+84bTeGKPf/va36tGjhzp06KDMzEx98sknAY29b9++stlsTo/8/PyQjv3MmTP62c9+pkGDBqlDhw7q3bu3Fi5cqMrKSqftSktLNXnyZHXs2FHdunXTI488opqaGqc2b731lkaNGqW4uDgNGDBA69evb3b8FStWqG/fvoqPj1d6ero++OADp/UXL17UggULdM011+jqq6/W1KlTdfr0aa/E3p74m467zWbTxo0bQyp+q9f9/Pnz1b9/f3Xo0EFdu3bVlClT9PHHHzttFw5j72ns4TruDYwxmjRpkmw2mzZv3uy0LhzGHfAF8ifyJymy8qdIzp2s4pfIn8ifyJ98yiBofPDBB6Zv375m+PDh5uc//7lj+fLly01eXp7Jy8szkszZs2ebbTtx4kRz/fXXm/fff9+8++67ZsCAAebuu+92rK+srDTdu3c306dPNx999JH585//bDp06GBWr17taLNr1y4THR1tnnnmGXP48GHz+OOPm9jYWHPw4EFHm/z8fJOYmGg2b95sPvzwQ/PDH/7Q9OvXz3z99dcBi71Pnz5myZIlpqyszPE4f/58SMd+8OBBc8cdd5gtW7aYkpISs2PHDjNw4EAzdepUx3Y1NTXm29/+tsnMzDT79+83b7zxhunSpYtZvHixo80///lP07FjR7No0SJz+PBh88ILL5jo6GizdetWR5uNGzcau91u1q1bZw4dOmSysrJMUlKSOX36tKPN/fffb9LS0syOHTvMvn37zJgxY8zYsWPbFXd74zfGGEmmoKDAaewbj0ewx9/S63716tXm7bffNsePHzdFRUXm9ttvN2lpaaampsYYEx5j72nsxoTvuDd49tlnzaRJk4wk8+qrrzqWh8O4A75A/kT+FGn5UyTnTi3Fbwz5E/kT+ZMvUTgKEufOnTMDBw4027ZtM+PGjbM8GXbu3Gl58T98+LCRZPbu3etY9te//tXYbDbz2WefGWOMWblypUlOTjaXLl1ytHnsscfMoEGDHPN33XWXmTx5stO+09PTzfz5840xxtTV1ZmUlBSzdOlSx/qKigoTFxdn/vznPwckdmOuJD7Lly9vcf+hHnuDl19+2djtdlNdXW2MMeaNN94wUVFRpry83NHm97//vUlISHDE+uijj5rrrrvOaT8/+clPzIQJExzzN954o1mwYIFjvra21qSmppq8vDxHnLGxseaVV15xtDly5IiRZAoLCz2O3Zj2xW+MaXZhaCqY43cn9g8//NBIMiUlJcaY0B/79sRuTHiP+/79+03Pnj1NWVlZszhDfdwBXyB/In+KtPwpknMnY8ifyJ/InwKFj6oFiQULFmjy5MnKzMx0e9vCwkIlJSXphhtucCzLzMxUVFSU9uzZ42hz8803y263O9pMmDBBR48e1dmzZx1tmh5/woQJKiwslCQdP35c5eXlTm0SExOVnp7uaOOJ9sTeID8/X9dcc41GjhyppUuXOt16GC6xV1ZWKiEhQTExMY4+Dxs2TN27d3fqc1VVlQ4dOuRSXJcvX1ZRUZFTm6ioKGVmZjraFBUVqbq62qnN4MGD1bt373bFLrUv/sb76NKli2688UatW7dOxhjHumCO39XYL1y4oIKCAvXr109paWmOuEJ57NsTe+N9hNu4f/XVV7rnnnu0YsUKpaSkNFsf6uMO+AL5E/lTW8Itf4rk3Kmh7+RP5E+NkT/5R0zbTeBrGzdu1N///nft3bvXo+3Ly8vVrVs3p2UxMTHq3LmzysvLHW369evn1Kbh5CkvL1dycrLKy8udTqiGNo330Xg7qzbuam/skrRw4UKNGjVKnTt31u7du7V48WKVlZXp2WefdfQ71GP/17/+pSeffFLz5s1zLGupz43721Kbqqoqff311zp79qxqa2st2zR8Lrq8vFx2u11JSUnN2ngau9T++CVpyZIl+v73v6+OHTvqb3/7mx544AGdP39eCxcudPQ9GON3JfaVK1fq0Ucf1YULFzRo0CBt27bNkbyH8ti3N3YpfMf9oYce0tixYzVlyhTL9aE87oAvkD+RP7Ul3PKnSM6dJPIn8ifyp0CicBRgn376qX7+859r27Ztio+PD3R3/MpbsS9atMjx7+HDh8tut2v+/PnKy8tTXFycN7rqde7EXlVVpcmTJ2vo0KHKycnxTwd9zFvxP/HEE45/jxw5UhcuXNDSpUsdF8Bg5Grs06dP16233qqysjItW7ZMd911l3bt2hXS7xPeij0cx33Lli168803tX///gD0Dgg95E/kT5GWP0Vy7iSRP5E/kT8FGh9VC7CioiJ98cUXGjVqlGJiYhQTE6O3335bzz//vGJiYlRbW9vmPlJSUvTFF184LaupqdGZM2cct+ulpKQ0+0b3hvm22jRe33g7qzbu8EbsVtLT01VTU6MTJ044+h2qsZ87d04TJ05Up06d9Oqrryo2Ntaxj/bElZCQoA4dOqhLly6Kjo5uM/bLly83+0UWT2P3VvxW0tPTderUKV26dClo43c19sTERA0cOFA333yz/vKXv+jjjz/Wq6++2mpcDevCOXYr4TDu27Zt07Fjx5SUlORYL0lTp07VLbfc0mpcDeuCNXbAF8ifyJ8iLX+K5NzJnfjJn8ifJPInX6BwFGDjx4/XwYMHVVxc7HjccMMNmj59uoqLixUdHd3mPjIyMlRRUaGioiLHsjfffFN1dXVKT093tHnnnXdUXV3taLNt2zYNGjRIycnJjjY7duxw2ve2bduUkZEhSerXr59SUlKc2lRVVWnPnj2ONv6O3UpxcbGioqIct5+HauxVVVW67bbbZLfbtWXLlmZV9oyMDB08eNAp6d22bZsSEhI0dOhQl+Ky2+0aPXq0U5u6ujrt2LHD0Wb06NGKjY11anP06FGVlpZ6FLu34rdSXFys5ORkx19KgzF+T1735soPGTgu7KE69t6I3Uo4jPtvfvMbHThwwGm9JC1fvlwFBQWOuEJx3AFfIH8if4q0/CmScydX42+K/In8qSGuUBz3oBOY7+RGa5p+U3xZWZnZv3+/WbNmjZFk3nnnHbN//37z5ZdfOtpMnDjRjBw50uzZs8e89957ZuDAgU4/J1tRUWG6d+9uZsyYYT766COzceNG07Fjx2Y/qRoTE2OWLVtmjhw5YrKzsy1/UjUpKcm89tpr5sCBA2bKlCle+UlVT2PfvXu3Wb58uSkuLjbHjh0zGzZsMF27djUzZ84M6dgrKytNenq6GTZsmCkpKXH62cymPyl62223meLiYrN161bTtWtXy5+WfOSRR8yRI0fMihUrLH9aMi4uzqxfv94cPnzYzJs3zyQlJTn98sD9999vevfubd58802zb98+k5GRYTIyMrwSt6fxb9myxaxZs8YcPHjQfPLJJ2blypWmY8eO5re//W3Ixd849mPHjpmnnnrK7Nu3z5w8edLs2rXL3H777aZz586On/sMp7F3N/ZwHXcrauHnZMNh3AFfIH9yPXbyp/B4L43k3Klp/ORP5E8NyJ98g8JREGp6MmRnZxtJzR4FBQWONl9++aW5++67zdVXX20SEhLMnDlzzLlz55z2++GHH5qbbrrJxMXFmZ49e5r8/Pxmx3755ZfNt771LWO32811111nXn/9daf1dXV15oknnjDdu3c3cXFxZvz48ebo0aMBi72oqMikp6ebxMREEx8fb4YMGWKeeuopc/HixZCOveHnc60ex48fd2xz4sQJM2nSJNOhQwfTpUsX8/DDDzv95GrDvkaMGGHsdru59tprnV43DV544QXTu3dvY7fbzY033mjef/99p/Vff/21eeCBB0xycrLp2LGj+fGPf2zKysq8Frsn8f/1r381I0aMMFdffbW56qqrzPXXX29WrVplamtrQy7+xrF/9tlnZtKkSaZbt24mNjbW9OrVy9xzzz3m448/dtomXMbe3djDddytNE18jAmfcQd8gfzJ9djJn8LjvTSSc6em8ZM/kT81IH/yDZsxjX6DDwAAAAAAAKgXUb+qdvHiRV2+fDnQ3QAAAG2w2+0h/Ss44YT8CQCA0OCr/CliCkcXL15Uhw5dJZ0PdFcAAEAbUlJSdPz4cYpHAUb+BABA6PBV/hQxhaMrfyk7L+khSVfVL234ecqYFqatrY91oY231re1Tes/s+nQ8IX7LR0yqpV10S0s92R9S+tiLdq21u9oF9a7uo+2+t3ac9fe58bRrv5TozG1TlNbdM2V2ZhaRdcvi46pq5/W1E/rl0fVT2U9jamfRjVbX38M1TmWRzdrW+O0j+hGba+0a7q+7T601cb9PrTcrmmsLR37m3221a75c+ZqP9t+ztruQ5tjW//TrNE19ceoNfXzcprarhxK9YdqPq2tfzRd5s58w7SlY9V6eV9tzbu6r6b7cKdv3txXG32rrt+2fqibzdfUOm/S8PtITXfV0vLG61tb5+o+XDnGJUnLy8t1+fJlCkcB1v78qaV13syfXN3WC/mTVe7U2iHbkyO4um178qe28iJv5k/ezi2t8ieL3EmST/Inqzyg8dSb+VPL+Zv38qe2cxfv5U9NnzNf5E8tH98H+ZOn13pPcgFf5mIN817MUdrsmy9zsabLm2zji/zJk7zHnXZW4TRe58v8KWIKR9+Ik9TwJLaUQLgy31Li44t5V7dpgc3FaZS+SYBamjZNBJpOXUlu2kp8vLne1X20mZS4cAxPtnWatl44ssXWytawzDG9si6qfj4qyvniF9XkAttywtH8It9yoaStQorr671/jIZpdCvHinJxH7b6dlFO230ztTXZj82x7JvTwdZkn2oyNfXtmi5vmDb01Ti1j5Zp9O+6Jseqn9bWT2vq+9lS4tPSBbe1Qosr27i73Jv7sloe3Wh90ye6YZuW3vea7tPWZH3T99KG9lZsTeabfsugaWF5S30zUnV9clQ/1Kq2NZmvb9pWkuLKfFtt29pHTBvroxv9G8HG0/yppXXezJfae4wWWOVLVrmTK1NP8idf5kcN69vKTbyZP3kz93Katlw4ssU2zZu8lz+1XSDxXv7Uds7S/vzJKndynnovf4pp0tYX+ZNV7uQ89WL+1N4cxZ3tfJmLNT1G0zzJF/mTK7lT420beJI/RTm38UX+5Elu5Uo7q/yp6TD5On+KarsJAAAAAAAAIhGFIwAAAAAAAFiicAQAAAAAAABLFI4AAAAAAABgicIRAAAAAAAALFE4AgAAAAAAgCUKRwAAAAAAALBE4QgAAAAAAACWKBwBAAAAAADAEoUjAAAAAAAAWKJwBAAAAAAAAEsUjgAAAAAAAGCJwhEAAAAAAAAsUTgCAAAAAACAJQpHAAAAAAAAsEThCAAAAAAAAJYoHAEAAAAAAMAShSMAAAAAAABYonAEAAAAAAAASxSOAAAAAAAAYCkm0B3wv0v6Juza+mnDfE0b89WN5mPr/x3bpE3TqTfWt7VNw3wLjIvTuvqHLKa2+mltk/mGqVqYb9qHlo7bWNNjR7fQvrbJ+qbLa/TNUxTdZF3T5S09/dFNplbD5eo+WlrvaFcfYEyt09REX3kdmphamYZlMXX10yvr6uqX26Lqp7Ke1jmegKbTmvp2jZ/E+mM5pjVO25j6tsax75om89bThvW1qlV0/b+bTuuazEc55msc216Zr2u1XUyjdtFN1rV07G/22Va7hmN804fWjm+1j4b2MS32oeXpN/829fsw9fu8Mo2urZ/W1K+vH+r6l5NjamsY8poWpt+8FNTkJeD6fMO0pWPVenlfbc27uq+m+3Cnb67uq61pS+/JjabV9W8d9UPdbL5pF6rl3vLG61tb5+o+XDnGJSH4eJo/VTdZ54v8ydVtvZA/tZTD+CJ/Mi3MezN/ssqdJN/kT+7mR57kTxa5k/PUm/mTVe70zdSb+VPj3OnKU+P9/Knt3MV7+VOMxfEbb+uN/KntXMqL+ZOneYMnOY8vc7GG+fbuy53nwdN9eZI/NVnmi/zJk7zHnXaNl1ut82X+FDGFI7vdrpSUFJWXLw90VwKn6QmFkNCQ71XrmzcGAAh3KSkpstvtge5GxCN/EvlTCGqcOzWeAkC481X+ZDPGNP17Rti6ePGiLl++HOhu+ERVVZXS0tL06aefKiEhIdDd8TriC23EF9qIL7SFanx2u13x8fGB7gbkfv4Uqq85TxBreIqkWKXIipdYwxOxfsNX+VPE3HEkSfHx8WGfhCYkJIT1yUJ8oY34QhvxhbZwjw++42n+FEmvOWINT5EUqxRZ8RJreCJW3+HLsQEAAAAAAGCJwhEAAAAAAAAsUTgKE3FxccrOzlZcXFygu+ITxBfaiC+0EV9oC/f4EHwi6TVHrOEpkmKVIiteYg1PxOp7EfXl2AAAAAAAAHAddxwBAAAAAADAEoUjAAAAAAAAWKJwBAAAAAAAAEsUjgAAAAAAAGCJwlEIO3PmjKZPn66EhAQlJSXp3nvv1fnz51vdZv78+erfv786dOigrl27asqUKfr444/91GP3uBvfmTNn9LOf/UyDBg1Shw4d1Lt3by1cuFCVlZV+7LXrPBm/P/zhD7rllluUkJAgm82miooK/3TWBStWrFDfvn0VHx+v9PR0ffDBB622f+WVVzR48GDFx8dr2LBheuONN/zUU8+4E9+hQ4c0depU9e3bVzabTc8995z/Ouohd+Jbs2aNvvvd7yo5OVnJycnKzMxsc7wDzZ34Nm3apBtuuEFJSUm66qqrNGLECP3Xf/2XH3vrPnfPvwYbN26UzWbTj370I992ECHFl+fL/fffb/m+6Mk10RsCEWvDtaHxIz8/31shtcrb8c6ePbtZLBMnTnRqEy5j60qsgRpbX7yOjxw5oh/+8IdKTEzUVVddpe985zsqLS11rL948aIWLFiga665RldffbWmTp2q06dP+yS+xgIR6y233NJsXO+//36fxNeYt2NtGkPDY+nSpY424XK+uhJruJyv58+f14MPPqhevXqpQ4cOGjp0qFatWuXUxivnq0HImjhxorn++uvN+++/b959910zYMAAc/fdd7e6zerVq83bb79tjh8/boqKisztt99u0tLSTE1NjZ967Tp34zt48KC54447zJYtW0xJSYnZsWOHGThwoJk6daofe+06T8Zv+fLlJi8vz+Tl5RlJ5uzZs/7pbBs2btxo7Ha7WbdunTl06JDJysoySUlJ5vTp05btd+3aZaKjo80zzzxjDh8+bB5//HETGxtrDh486Oeeu8bd+D744APzy1/+0vz5z382KSkpZvny5f7tsJvcje+ee+4xK1asMPv37zdHjhwxs2fPNomJiebUqVN+7rlr3I1v586dZtOmTebw4cOmpKTEPPfccyY6Otps3brVzz13jbvxNTh+/Ljp2bOn+e53v2umTJnin84i6PnyfNm0aZO5/vrrTWpqarP3RU+uie0VqFj79OljlixZYsrKyhyP8+fP+yJEJ76Id9asWWbixIlOsZw5c8ZpP+Eytq7EGoix9UWsJSUlpnPnzuaRRx4xf//7301JSYl57bXXnPZ5//33m7S0NLNjxw6zb98+M2bMGDN27NiwjHXcuHEmKyvLaVwrKytDLtbG/S8rKzPr1q0zNpvNHDt2zNEmXM5XV2INl/M1KyvL9O/f3+zcudMcP37crF692kRHR5vXXnvN0cYb5yuFoxB1+PBhI8ns3bvXseyvf/2rsdls5rPPPnN5Px9++KGRZEpKSnzRTY95K76XX37Z2O12U11d7Ytueqy98e3cuTOoCkc33nijWbBggWO+trbWpKammry8PMv2d911l5k8ebLTsvT0dDN//nyf9tNT7sbXWJ8+fYK+cNSe+IwxpqamxnTq1Mm8+OKLvupiu7Q3PmOMGTlypHn88cd90b128yS+mpoaM3bsWPOf//mfZtasWRSO4OCr8+XUqVOmZ8+e5qOPPmr2vuita767AhGrMYG7Lvgi3rbeP8JpbF15rwzE2Poi1p/85Cfmpz/9aYvtKyoqTGxsrHnllVccy44cOWIkmcLCQjcjcF0gYjXmSuHo5z//udv9bQ9/5C5Tpkwx3//+9x3z4XS+NtU0VmPC53y97rrrzJIlS5zajBo1yvzmN78xxnjvfOWjaiGqsLBQSUlJuuGGGxzLMjMzFRUVpT179ri0jwsXLqigoED9+vVTWlqar7rqEW/EJ0mVlZVKSEhQTEyML7rpMW/FFwwuX76soqIiZWZmOpZFRUUpMzNThYWFltsUFhY6tZekCRMmtNg+kDyJL5R4I76vvvpK1dXV6ty5s6+66bH2xmeM0Y4dO3T06FHdfPPNvuyqRzyNb8mSJerWrZvuvfdef3QTIcJX50tdXZ1mzJihRx55RNddd12z7QJxTQxUrA3y8/N1zTXXaOTIkVq6dKlqamraF1AbfPle+NZbb6lbt24aNGiQ/u3f/k1ffvmlY104ja3UeqwN/Dm2voi1rq5Or7/+ur71rW9pwoQJ6tatm9LT07V582bHdkVFRaqurnY67uDBg9W7d2+f5UaBirXBSy+9pC5duujb3/62Fi9erK+++sprsTXlj9zl9OnTev31153ygHA7XxtYxdog1M9XSRo7dqy2bNmizz77TMYY7dy5U//4xz902223SfLe+Rpc/5uGy8rLy9WtWzenZTExMercubPKy8tb3XblypV69NFHdeHCBQ0aNEjbtm2T3W73ZXfd1p74GvzrX//Sk08+qXnz5vmii+3ijfiCxb/+9S/V1taqe/fuTsu7d+/e4vdnlZeXW7YPxtg9iS+UeCO+xx57TKmpqc2KgcHA0/gqKyvVs2dPXbp0SdHR0Vq5cqVuvfVWX3fXbZ7E995772nt2rUqLi72Qw8RSnx1vjz99NOKiYnRwoULLbcPxDUxULFK0sKFCzVq1Ch17txZu3fv1uLFi1VWVqZnn322/YG1wFfxTpw4UXfccYf69eunY8eO6de//rUmTZqkwsJCRUdHh9XYthWr5P+x9UWsX3zxhc6fP6/8/Hz97ne/09NPP62tW7fqjjvu0M6dOzVu3DiVl5fLbrcrKSmp2XFDaVxdiVWS7rnnHvXp00epqak6cOCAHnvsMR09elSbNm0KmVibevHFF9WpUyfdcccdjmXhdL42ZhWrFB7nqyS98MILmjdvnnr16qWYmBhFRUVpzZo1juKSt85XCkdB5le/+pWefvrpVtscOXKkXceYPn26br31VpWVlWnZsmW66667tGvXLsXHx7drv67wR3ySVFVVpcmTJ2vo0KHKyclp9/5c5a/4gGCRn5+vjRs36q233vLLe4i/dOrUScXFxTp//rx27NihRYsW6dprr9Utt9wS6K61y7lz5zRjxgytWbNGXbp0CXR3ECZaO1+Kior0H//xH/r73/8um80W6K62mzdiXbRokePfw4cPl91u1/z585WXl6e4uDh/hOGytt4Lp02b5mg7bNgwDR8+XP3799dbb72l8ePHB6jXnvFGrKEytq3FWldXJ0maMmWKHnroIUnSiBEjtHv3bq1atcpRTAkV3oi18R+hhw0bph49emj8+PE6duyY+vfv7/+gWuBO7rJu3TpNnz49ZHM3b8QaDuerdKVw9P7772vLli3q06eP3nnnHS1YsMDrf9SlcBRkHn74Yc2ePbvVNtdee61SUlL0xRdfOC2vqanRmTNnlJKS0ur2iYmJSkxM1MCBAzVmzBglJyfr1Vdf1d13393e7rfJH/GdO3dOEydOVKdOnfTqq68qNja2vd12mT/iCzZdunRRdHR0s2/mP336dIuxpKSkuNU+kDyJL5S0J75ly5YpPz9f27dv1/Dhw33ZTY95Gl9UVJQGDBgg6UoSeeTIEeXl5QVd4cjd+I4dO6YTJ07o9ttvdyxrSJxjYmJ09OjRoEqC4V++OF/effddffHFF+rdu7ejfW1trR5++GE999xzOnHiRECuiYGK1Up6erpqamp04sQJDRo0qP3BWfDXe+G1116rLl26qKSkROPHjw+bsbXSNFYrvh5bX8TapUsXxcTEaOjQoU7bDBkyRO+9956kK3nc5cuXVVFR4XQXgy9zo0DFaiU9PV2SVFJS4pNrpq9fw++++66OHj2q//7v/3ZaHo7na0uxWgnF8/Xrr7/Wr3/9a7366quaPHmypCtFsOLiYi1btkyZmZleO1/5jqMg07VrVw0ePLjVh91uV0ZGhioqKlRUVOTY9s0331RdXZ3jzcwV5soXpOvSpUu+CKcZX8dXVVWl2267TXa7XVu2bPF7Fd3f4xcM7Ha7Ro8erR07djiW1dXVaceOHcrIyLDcJiMjw6m9JG3btq3F9oHkSXyhxNP4nnnmGT355JPaunWr02fhg423xq+urs5v75PucDe+wYMH6+DBgyouLnY8fvjDH+p73/ueiouLg+777uBfvjhfZsyYoQMHDji95lJTU/XII4/o//7v/yQpINfEQMVqpbi4WFFRUc0+IuJN/novPHXqlL788kv16NFDUviMrZWmsVrx9dj6Ila73a7vfOc7Onr0qFObf/zjH+rTp48kafTo0YqNjXU67tGjR1VaWuqz3ChQsVpp+Kh3a2PfHr5+Da9du1ajR4/W9ddf77Q8HM/XlmK1Eorna3V1taqrqxUV5VzWiY6Odvxh0Gvnq8tfo42gM3HiRDNy5EizZ88e895775mBAwc6/VziqVOnzKBBg8yePXuMMcYcO3bMPPXUU2bfvn3m5MmTZteuXeb22283nTt3bvNnmwPB3fgqKytNenq6GTZsmCkpKXH6acWamppAhdEid+Mz5spPS+7fv9+sWbPGSDLvvPOO2b9/v/nyyy8DEYLDxo0bTVxcnFm/fr05fPiwmTdvnklKSjLl5eXGGGNmzJhhfvWrXzna79q1y8TExJhly5aZI0eOmOzsbBMbG2sOHjwYqBBa5W58ly5dMvv37zf79+83PXr0ML/85S/N/v37zSeffBKoEFrlbnz5+fnGbrebv/zlL07n2blz5wIVQqvcje+pp54yf/vb38yxY8fM4cOHzbJly0xMTIxZs2ZNoEJolbvxNcWvqqExf5wvVr9k09Y10RcCEevu3bvN8uXLTXFxsTl27JjZsGGD6dq1q5k5c6bP4mzg7XjPnTtnfvnLX5rCwkJz/Phxs337djNq1CgzcOBAc/HiRcd+wmFsXYk1UGPri9fxpk2bTGxsrPnDH/5gPvnkE/PCCy+Y6Oho8+677zra3H///aZ3797mzTffNPv27TMZGRkmIyMj7GItKSkxS5YsMfv27TPHjx83r732mrn22mvNzTffHHKxGnPl/0sdO3Y0v//97y2PGw7na4PWYg2n83XcuHHmuuuuMzt37jT//Oc/TUFBgYmPjzcrV650tPHG+UrhKIR9+eWX5u677zZXX321SUhIMHPmzHH6j9vx48eNJLNz505jjDGfffaZmTRpkunWrZuJjY01vXr1Mvfcc4/5+OOPAxRB69yNr+En6q0ex48fD0wQrXA3PmOMyc7OtoyvoKDA/wE08cILL5jevXsbu91ubrzxRvP+++871o0bN87MmjXLqf3LL79svvWtbxm73W6uu+468/rrr/u5x+5xJ76GsWv6GDdunP877iJ34uvTp49lfNnZ2f7vuIvcie83v/mNGTBggImPjzfJyckmIyPDbNy4MQC9dp27519jFI7QlK/PF6vCUVvXRF/xd6xFRUUmPT3dJCYmmvj4eDNkyBDz1FNPORVafMmb8X711VfmtttuM127djWxsbGmT58+Jisry/EfoAbhMLauxBrIsfXF63jt2rWOdtdff73ZvHmz0/qvv/7aPPDAAyY5Odl07NjR/PjHPzZlZWU+i7GBv2MtLS01N998s+ncubOJi4szAwYMMI888oiprKz0aZzG+CbW1atXmw4dOpiKigrLY4bD+dqgtVjD6XwtKyszs2fPNqmpqSY+Pt4MGjTI/Pu//7upq6tztPHG+WozxhjX708CAAAAAABApOA7jgAAAAAAAGCJwhEAAAAAAAAsUTgCAAAAAACAJQpHAAAAAAAAsEThCAAAAAAAAJYoHAEAAAAAAMAShSMAAAAAAABYonAEAAAAAAAASxSOAAAAAAAAYInCEQAAAAAAACxROAIAAAAAAIAlCkcAAAAAAACw9P8B9hRu4mTopYUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot ascending weights\n", + "\n", + "fig, axs = plt.subplots(3, 2, figsize = (14, 20))\n", + "\n", + "axs[0, 0].set_title(\"Ascending weights - Class\")\n", + "clrbar = axs[0, 0].imshow(arrays_ascending[\"Class\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_ascending[\"Class\"], ax = axs[0, 0], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[1, 0].set_title(\"Ascending weights - W+\")\n", + "clrbar = axs[1, 0].imshow(arrays_ascending[\"W+\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_ascending[\"W+\"], ax = axs[1, 0], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[1, 1].set_title(\"Ascending weights - S_W+\")\n", + "clrbar = axs[1, 1].imshow(arrays_ascending[\"S_W+\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_ascending[\"S_W+\"], ax = axs[1, 1], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[2, 0].set_title(\"Ascending weights - Generalized W+\")\n", + "clrbar = axs[2, 0].imshow(arrays_ascending[\"Generalized W+\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_ascending[\"Generalized W+\"], ax = axs[2, 0], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[2, 1].set_title(\"Ascending weights - Generalized S_W+\")\n", + "clrbar = axs[2, 1].imshow(arrays_ascending[\"Generalized S_W+\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_ascending[\"Generalized S_W+\"], ax = axs[2, 1], transform = raster_meta[\"transform\"], cmap=colormap_name)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI0AAAYSCAYAAAC1ZxuLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxNd/7H8ffNTklsWYQgtastZUTsJW1qjDLTlrZKULRTWmXaKdOS0BYtRVtbqeU301GdaVHdTK1VS+1aFK0iUZVYkxCVxM35/UFOXSchN5LcLK/n43Ef1/me7/d8P99zrtyTT77nHJthGIYAAAAAAACA67i5OgAAAAAAAAAUPSSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQA46NSpkzp16mQuHzt2TDabTYsWLXJZTAVl0aJFstlsOnbsWJ7b7tixI/8Dc6H+/furVq1arg4DAAAAQBFA0gilXtYv/1kvHx8fBQcHKyoqSm+//bYuXLjg6hBRzM2aNcvlSbeUlBSNGzdOzZo1U7ly5VSmTBk1btxYL774on799VeXxgYAAACgaPJwdQBAUTF+/HiFhoYqIyNDCQkJWr9+vZ577jlNnTpVK1asUNOmTV0dokvUrFlTv/32mzw9PV0dSr7r27evHnnkEXl7exdoP7NmzVKVKlXUv3//Au0nJ0eOHFFkZKTi4+P18MMPa8iQIfLy8tL333+v+fPna9myZfrxxx9dEhsAAACAooukEXBN165d1bJlS3N59OjRWrt2rf70pz/pgQce0IEDB1SmTBkXRugaWbOvSiJ3d3e5u7u7OowCdeXKFf3lL39RYmKi1q9fr3bt2jmsf+211/T666+7KDoAAAAARRmXpwE30blzZ40ZM0ZxcXF6//33HdYdPHhQDz30kCpVqiQfHx+1bNlSK1ascKiTkZGhcePGqW7duvLx8VHlypXVrl07rVq1yrKtXr16yd/fX2XKlFH9+vX10ksvOdQ5ceKEBg4cqMDAQHl7e+uuu+7SggULHOqsX79eNptN//nPf/Taa6+pevXq8vHxUZcuXXT48GHL+ObOnavatWurTJkyatWqlb755htLnezuadS/f3+VK1dOJ06cUM+ePVWuXDn5+/vr+eefl91ud2h/9uxZ9e3bV76+vqpQoYKio6P13Xff3fI+SUlJSXJ3d9fbb79tlp05c0Zubm6qXLmyDMMwy//6178qKCjIof3WrVt1//33y8/PT2XLllXHjh21adMmhzrZ3dMoMzNTsbGxCg4OVtmyZXXPPffohx9+UK1atbKdKZSWlqaRI0fK399fd9xxh/785z/r9OnT5vpatWpp//79+vrrr81LILPuGZXbz8ft+Pjjj/Xdd9/ppZdesiSMJMnX11evvfbaTbcxZcoUtWnTRpUrV1aZMmXUokULffTRR5Z6q1atUrt27VShQgWVK1dO9evX1z/+8Q+HOu+8847uuusulS1bVhUrVlTLli21ePHi2xskAAAAgAJB0gi4hb59+0qSvvrqK7Ns//79at26tQ4cOKBRo0bpzTff1B133KGePXtq2bJlZr3Y2FiNGzdO99xzj2bMmKGXXnpJNWrU0K5du8w633//vcLDw7V27VoNHjxYb731lnr27KlPP/3UrJOYmKjWrVtr9erVGjZsmN566y3VqVNHTzzxhKZPn26JedKkSVq2bJmef/55jR49Wt9++6369OnjUGf+/Pl68sknFRQUpDfeeENt27bVAw88oOPHj+dqv9jtdkVFRaly5cqaMmWKOnbsqDfffFNz584162RmZqp79+764IMPFB0drddee00nT55UdHT0LbdfoUIFNW7cWBs2bDDLNm7cKJvNpnPnzumHH34wy7/55hu1b9/eXF67dq06dOiglJQUxcTEaMKECUpKSlLnzp21bdu2m/Y7evRojRs3Ti1bttTkyZNVt25dRUVFKTU1Ndv6zzzzjL777jvFxMTor3/9qz799FMNGzbMXD99+nRVr15dDRo00L/+9S/961//MhOCufl83K6sRGbW5zgv3nrrLYWFhWn8+PGaMGGCPDw89PDDD+vzzz836+zfv19/+tOflJaWpvHjx+vNN9/UAw884JComzdvnp599lk1atRI06dP17hx49S8eXNt3bo17wMEAAAAUHAMoJRbuHChIcnYvn17jnX8/PyMsLAwc7lLly5GkyZNjMuXL5tlmZmZRps2bYy6deuaZc2aNTO6det20/47dOhglC9f3oiLi3Moz8zMNP/9xBNPGFWrVjXOnDnjUOeRRx4x/Pz8jEuXLhmGYRjr1q0zJBkNGzY00tLSzHpvvfWWIcnYu3evYRiGkZ6ebgQEBBjNmzd3qDd37lxDktGxY0ez7OjRo4YkY+HChWZZdHS0IckYP368QzxhYWFGixYtzOWPP/7YkGRMnz7dLLPb7Ubnzp0t28zO0KFDjcDAQHN55MiRRocOHYyAgABj9uzZhmEYxtmzZw2bzWa89dZb5n6rW7euERUV5bAPL126ZISGhhr33nuvWZZ17I8ePWoYhmEkJCQYHh4eRs+ePR3iiI2NNSQZ0dHRlraRkZEO/YwYMcJwd3c3kpKSzLK77rrLYZ9myc3n43aFhYUZfn5+ua4fHR1t1KxZ06Es6/OVJT093WjcuLHRuXNns2zatGmGJOP06dM5brtHjx7GXXfdletYAAAAALgWM42AXChXrpz5FLVz585p7dq16tWrly5cuKAzZ87ozJkzOnv2rKKiovTTTz/pxIkTkq7Oltm/f79++umnbLd7+vRpbdiwQQMHDlSNGjUc1tlsNkmSYRj6+OOP1b17dxmGYfZ35swZRUVFKTk52TIzZcCAAfLy8jKXs2bhHDlyRJK0Y8cOnTp1Sk899ZRDvf79+8vPzy/X++Wpp55yWG7fvr3ZhyStXLlSnp6eGjx4sFnm5uamoUOH5mr77du3V2Jiog4dOiTp6oyiDh06qH379ualdBs3bpRhGOYY9+zZo59++kmPPfaYzp49a+6r1NRUdenSRRs2bFBmZma2/a1Zs0ZXrlzR008/7VD+zDPP5BjjkCFDzGOVFbPdbldcXNwtx3erz0d+SElJUfny5W9rG9ffy+v8+fNKTk5W+/btHT53FSpUkCR98sknOe7fChUq6JdfftH27dtvKx4AAAAAhaNUJo02bNig7t27Kzg4WDabTcuXL3d6G4ZhaMqUKapXr568vb1VrVq1W94XBMXXxYsXzV+8Dx8+LMMwNGbMGPn7+zu8YmJiJEmnTp2SdPWJbElJSapXr56aNGmiF154Qd9//7253awES+PGjXPs+/Tp00pKStLcuXMt/Q0YMMChvyw3JqAqVqwo6eov/JLMhEbdunUd6nl6eurOO+/M1T7x8fGRv7+/pZ+sPrL6qVq1qsqWLetQr06dOrnqIysR9M033yg1NVW7d+9W+/bt1aFDBzNp9M0338jX11fNmjWTJDMBEx0dbdlf7733ntLS0pScnJxtf1n75cb4KlWqZO7DG91qX9/MrT4f2bHb7UpISHB4paen51jf19fXTHjm1WeffabWrVvLx8dHlSpVkr+/v2bPnu2wH3v37q22bdtq0KBBCgwM1COPPKL//Oc/DgmkF198UeXKlVOrVq1Ut25dDR061HKfKQAAAABFR6l8elpqaqqaNWumgQMH6i9/+UuetjF8+HB99dVXmjJlipo0aaJz587p3Llz+RwpioJffvlFycnJZiIh65fg559/XlFRUdm2yarboUMH/fzzz/rkk0/01Vdf6b333tO0adM0Z84cDRo0KFf9Z/X3+OOP53gvoKZNmzos5/REMOO6m0ffrsJ46lhwcLBCQ0O1YcMG1apVS4ZhKCIiQv7+/ho+fLji4uL0zTffqE2bNnJzu5oDz9pfkydPVvPmzbPdbrly5fItxtvZ13n5fBw/flyhoaEOZevWrTNvrn2jBg0aaPfu3Tp+/LhCQkJuGdONvvnmGz3wwAPq0KGDZs2apapVq8rT01MLFy50uIF1mTJltGHDBq1bt06ff/65Vq5cqQ8//FCdO3fWV199JXd3dzVs2FCHDh3SZ599ppUrV+rjjz/WrFmzNHbsWI0bN87p2AAAAAAUrFKZNOratau6du2a4/q0tDS99NJL+uCDD5SUlKTGjRvr9ddfN38pO3DggGbPnq19+/apfv36kmT5JQ4lx7/+9S9JMhNEWTNxPD09FRkZecv2lSpV0oABAzRgwABdvHhRHTp0UGxsrAYNGmRua9++fTm29/f3V/ny5WW323PVX27UrFlT0tVZOZ07dzbLMzIydPToUXPWTn70s27dOl26dMlhtlF2T3LLSfv27bVhwwaFhoaqefPmKl++vJo1ayY/Pz+tXLlSu3btckg41K5dW9LVGTbO7q+s/XL48GGH/9Nnz57N1cyhnFx/+dqNbvb5yE5QUJDl6Wo3O15ZNyJ///33NXr0aKdj//jjj+Xj46P//e9/8vb2NssXLlxoqevm5qYuXbqoS5cumjp1qiZMmKCXXnpJ69atM4/FHXfcod69e6t3795KT0/XX/7yF7322msaPXq0fHx8nI4PKE02bNigyZMna+fOnTp58qSWLVumnj173rTN+vXrNXLkSO3fv18hISF6+eWXs30SJAAAQHZK5eVptzJs2DBt2bJFS5Ys0ffff6+HH35Y999/v3nZy6effqo777xTn332mUJDQ1WrVi0NGjSImUYl0Nq1a/XKK68oNDTUfPpYQECAOnXqpHfffVcnT560tLn+cetnz551WFeuXDnVqVNHaWlpkq4mhDp06KAFCxYoPj7eoW7WTBV3d3c9+OCD+vjjj7NNLl3fX261bNlS/v7+mjNnjsOlTYsWLVJSUpLT28tJVFSUMjIyNG/ePLMsMzNTM2fOzPU22rdvr2PHjunDDz80L1dzc3NTmzZtNHXqVGVkZDg8Oa1FixaqXbu2pkyZoosXL1q2d7P91aVLF3l4eGj27NkO5TNmzMh1vNm54447st2vt/p8ZMfHx0eRkZEOr5wunZOkhx56SE2aNNFrr72mLVu2WNZfuHDBfJpbdtzd3WWz2WS3282yY8eOWS7rze7nX9ZMr6zx3DheLy8vNWrUSIZhKCMjI8cYAFyVNVM6tz9Djx49qm7duumee+7Rnj179Nxzz2nQoEH63//+V8CRAgCAkqJUzjS6mfj4eC1cuFDx8fEKDg6WdPUypJUrV2rhwoWaMGGCjhw5ori4OP33v//VP//5T9ntdo0YMUIPPfSQ1q5d6+IRIK++/PJLHTx4UFeuXFFiYqLWrl2rVatWqWbNmlqxYoXDLIiZM2eqXbt2atKkiQYPHqw777xTiYmJ2rJli3755Rd99913kqRGjRqpU6dOatGihSpVqqQdO3boo48+cngk+9tvv6127drp7rvv1pAhQxQaGqpjx47p888/1549eyRJkyZN0rp16xQeHq7BgwerUaNGOnfunHbt2qXVq1c7nbD09PTUq6++qieffFKdO3dW7969dfToUS1cuDDX9zTKjZ49e6pVq1b629/+psOHD6tBgwZasWKFGe/NZuBkyUoIHTp0SBMmTDDLO3TooC+//FLe3t76wx/+YJa7ubnpvffeU9euXXXXXXdpwIABqlatmk6cOKF169bJ19dXn376abZ9BQYGavjw4ebj4u+//3599913+vLLL1WlSpVcxZudFi1aaPbs2Xr11VdVp04dBQQEqHPnzrn6fNwuT09PLV26VJGRkerQoYN69eqltm3bytPTU/v379fixYtVsWLFHO/J1q1bN02dOlX333+/HnvsMZ06dUozZ85UnTp1HO6/NH78eG3YsEHdunVTzZo1derUKc2aNUvVq1dXu3btJEn33XefgoKC1LZtWwUGBurAgQOaMWOGunXrdts36wZKg1vNlL7RnDlzFBoaqjfffFOS1LBhQ23cuFHTpk3L8fJqAACA65E0usHevXtlt9tVr149h/K0tDRVrlxZ0tWZEmlpafrnP/9p1ps/f75atGihQ4cOmZesoXgZO3aspKuzHypVqqQmTZpo+vTpGjBggOUX2kaNGmnHjh0aN26cFi1apLNnzyogIEBhYWHmdiTp2Wef1YoVK/TVV18pLS1NNWvW1KuvvqoXXnjBrNOsWTN9++23GjNmjGbPnq3Lly+rZs2a6tWrl1knMDBQ27Zt0/jx47V06VLNmjVLlStX1l133aXXX389T+MdMmSI7Ha7Jk+erBdeeEFNmjTRihUrNGbMmDxtLzvu7u76/PPPNXz4cP3f//2f3Nzc9Oc//1kxMTFq27Ztri5Hql+/vgICAnTq1Ckz+SD9nkxq1aqVw2VTktSpUydt2bJFr7zyimbMmKGLFy8qKChI4eHhevLJJ2/a3+uvv66yZctq3rx5Wr16tSIiIvTVV1+pXbt2eb58auzYsYqLi9Mbb7yhCxcuqGPHjurcuXOuPh/5oU6dOtqzZ4+mTZumZcuWafny5crMzFSdOnU0aNAgPfvsszm27dy5s+bPn69JkybpueeeU2hoqF5//XUdO3bMIWn0wAMP6NixY1qwYIHOnDmjKlWqqGPHjho3bpz5RL4nn3xS//73vzV16lRdvHhR1atX17PPPquXX345X8cL4KotW7ZYLtONiorSc889l2ObtLQ0h9mOmZmZOnfunCpXrpznxDkAACh4hmHowoULCg4ONu/3mh9sRn7eGbcYstlsDvcE+PDDD9WnTx/t37/fcoPbcuXKKSgoSDExMZowYYLD5RS//fabypYtq6+++kr33ntvYQ4BKHaWL1+uP//5z9q4caPatm3r6nBuKSkpSRUrVtSrr75600u5AKCw3Hj+kp169eppwIABDvcz++KLL9StWzddunRJZcqUsbSJjY3lxvQAABRjx48fV/Xq1fNte8w0ukFYWJjsdrtOnTrlcJ+U67Vt21ZXrlzRzz//bN5098cff5T0+410AVz122+/OfxiYrfb9c4778jX11d33323CyPL3o3xStL06dMlKccnlAFASTF69GiNHDnSXE5OTlaNGjV0/Phx+fr6ujAyAABwMykpKQoJCcn32z6UyqTRxYsXHZ7edPToUe3Zs0eVKlVSvXr11KdPH/Xr109vvvmmwsLCdPr0aa1Zs0ZNmzZVt27dFBkZqbvvvlsDBw7U9OnTlZmZqaFDh+ree++1XNYGlHbPPPOMfvvtN0VERCgtLU1Lly7V5s2bNWHChGz/yu1qH374oRYtWqQ//vGPKleunDZu3KgPPvhA9913X7GYFQUAWYKCgpSYmOhQlpiYKF9f3xx//np7e1su+ZWuPpGSpBEAAEVffl9OXiqTRjt27NA999xjLmf9RS06OlqLFi3SwoUL9eqrr+pvf/ubTpw4oSpVqqh169b605/+JOnqjXY//fRTPfPMM+rQoYPuuOMOde3a1bzRJIDfde7cWW+++aY+++wzXb58WXXq1NE777yTrzd7zk9NmzaVh4eH3njjDaWkpJg3x3711VddHRoAOCUiIkJffPGFQ9mqVasUERHhoogAAEBxU+rvaQQAAFAcXD9TOiwsTFOnTtU999yjSpUqqUaNGho9erROnDihf/7zn5KuzqRu3Lixhg4dqoEDB2rt2rV69tln9fnnn+f66WkpKSny8/NTcnIyM40AACjCCuo7O/9uqQ0AAIACs2PHDoWFhSksLEzS1ZnS1z+18+TJk4qPjzfrh4aG6vPPP9eqVavUrFkzvfnmm3rvvfdynTACAABgphEAAACyxUwjAACKh4L6zi419zTKzMzUr7/+qvLly+f7jaEAAED+MQxDFy5cUHBwsNzcmBQNAADgKqUmafTrr78qJCTE1WEAAIBcOn78uKpXr+7qMAAAAEqtUpM0Kl++vKSrJ6BMrwYAoOhKSUlRSEiI+d0NAAAA1yg1SaOsS9J8fX1JGgEAUAxwOTkAAIBrcaMAAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFh4OFO5Vq1aiouLs5Q//fTTmjlzpqV80aJFGjBggEOZt7e3Ll++LEnKyMjQyy+/rC+++EJHjhyRn5+fIiMjNWnSJAUHB9+034kTJ2rUqFHOhF8obA1dHYGLHYwt+D4aFHwfxoEC7wIAAAAAgCLNqaTR9u3bZbfbzeV9+/bp3nvv1cMPP5xjG19fXx06dMhcttls5r8vXbqkXbt2acyYMWrWrJnOnz+v4cOH64EHHtCOHTsctjN+/HgNHjzYXC5fvrwzoQMAAAAAAMAJTiWN/P39HZYnTZqk2rVrq2PHjjm2sdlsCgoKynadn5+fVq1a5VA2Y8YMtWrVSvHx8apRo4ZZXr58+Ry3AwAAAAAAgPyV53sapaen6/3339fAgQMdZg/d6OLFi6pZs6ZCQkLUo0cP7d+//6bbTU5Ols1mU4UKFRzKJ02apMqVKyssLEyTJ0/WlStXbrqdtLQ0paSkOLwAAAAAAACQO07NNLre8uXLlZSUpP79++dYp379+lqwYIGaNm2q5ORkTZkyRW3atNH+/ftVvXp1S/3Lly/rxRdf1KOPPipfX1+z/Nlnn9Xdd9+tSpUqafPmzRo9erROnjypqVOn5tj3xIkTNW7cuLwODwAAAAAAoFSzGYZh5KVhVFSUvLy89Omnn+a6TUZGhho2bKhHH31Ur7zyimXdgw8+qF9++UXr1693SBrdaMGCBXryySd18eJFeXt7Z1snLS1NaWlp5nJKSopCQkKUnJx8023fLm6EHVvwfXAjbAAo0VJSUuTn51fg39m4NY4FAADFQ0F9Z+dpplFcXJxWr16tpUuXOtXO09NTYWFhOnz4sEN5RkaGevXqpbi4OK1du/aWAwwPD9eVK1d07Ngx1a9fP9s63t7eOSaUAAAAAAAAcHN5uqfRwoULFRAQoG7dujnVzm63a+/evapatapZlpUw+umnn7R69WpVrlz5ltvZs2eP3NzcFBAQ4HTsAAAAAAAAuDWnZxplZmZq4cKFio6OloeHY/N+/fqpWrVqmjhxoiRp/Pjxat26terUqaOkpCRNnjxZcXFxGjRokKSrCaOHHnpIu3bt0meffSa73a6EhARJUqVKleTl5aUtW7Zo69atuueee1S+fHlt2bJFI0aM0OOPP66KFSve7vgBAAAAAACQDaeTRqtXr1Z8fLwGDhxoWRcfHy83t98nL50/f16DBw9WQkKCKlasqBYtWmjz5s1q1KiRJOnEiRNasWKFJKl58+YO21q3bp06deokb29vLVmyRLGxsUpLS1NoaKhGjBihkSNHOhs6AAAAAAAAcinPN8IubgrrRo7cCDu24PvgRtgAUKJx8+Wig2MBAEDxUFDf2Xm6pxEAAAAAAABKtjw9PQ03kYeZNuuNL/M/jht0snUt8D4KTV5mMzk5O6nUzxgrBMzmAgAAAICijZlGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAACw9XB1DSrDe+dHUI2cpLXJ1sXQsgEhc5GOtc/X1O1pekh5xvUprZGro6guwZB1wdAQAAAAAUDcw0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWHi4OoCSppOtq6tDQH5oHOt8m315aPOQ801QsGwNXR1B9owDro4AAAAAQGnDTCMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFh4uDqAEqdBrPNtDuahDYqexrEF38e+PPTxUL5HARewNXR1BNkzDrg6AgAAAAAFhZlGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAACw9nKteqVUtxcXGW8qefflozZ860lC9atEgDBgxwKPP29tbly5clSRkZGXr55Zf1xRdf6MiRI/Lz81NkZKQmTZqk4OBgs825c+f0zDPP6NNPP5Wbm5sefPBBvfXWWypXrpwz4QPFX+NY59vsy0Obh5xvgtLJ1tD5NusPhOd/IDfoqK0F3gcAAABQ0jmVNNq+fbvsdru5vG/fPt177716+OGHc2zj6+urQ4cOmcs2m83896VLl7Rr1y6NGTNGzZo10/nz5zV8+HA98MAD2rFjh1mvT58+OnnypFatWqWMjAwNGDBAQ4YM0eLFi50JHwAAAAAAALnkVNLI39/fYXnSpEmqXbu2OnbsmGMbm82moKCgbNf5+flp1apVDmUzZsxQq1atFB8frxo1aujAgQNauXKltm/frpYtW0qS3nnnHf3xj3/UlClTHGYkAQAAAAAAIH/k+Z5G6enpev/99zVw4ECH2UM3unjxomrWrKmQkBD16NFD+/fvv+l2k5OTZbPZVKFCBUnSli1bVKFCBTNhJEmRkZFyc3PT1q05X36QlpamlJQUhxcAAEBxNnPmTNWqVUs+Pj4KDw/Xtm3bblp/+vTpql+/vsqUKaOQkBCNGDHCvE0AAADAreQ5abR8+XIlJSWpf//+OdapX7++FixYoE8++UTvv/++MjMz1aZNG/3yyy/Z1r98+bJefPFFPfroo/L19ZUkJSQkKCAgwKGeh4eHKlWqpISEhBz7njhxovz8/MxXSEiI84MEAAAoIj788EONHDlSMTEx2rVrl5o1a6aoqCidOnUq2/qLFy/WqFGjFBMTowMHDmj+/Pn68MMP9Y9//KOQIwcAAMVVnpNG8+fPV9euXW96eVhERIT69eun5s2bq2PHjlq6dKn8/f317rvvWupmZGSoV69eMgxDs2fPzmtYptGjRys5Odl8HT9+/La3CQAA4CpTp07V4MGDNWDAADVq1Ehz5sxR2bJltWDBgmzrb968WW3bttVjjz2mWrVq6b777tOjjz56y9lJAAAAWfKUNIqLi9Pq1as1aNAgp9p5enoqLCxMhw8fdijPShjFxcVp1apV5iwjSQoKCrL8Be3KlSs6d+5cjvdKkq4+pc3X19fhBQAAUBylp6dr586dioyMNMvc3NwUGRmpLVu2ZNumTZs22rlzp5kkOnLkiL744gv98Y9/zLEfLu8HAADXy1PSaOHChQoICFC3bt2came327V3715VrVrVLMtKGP30009avXq1Kleu7NAmIiJCSUlJ2rlzp1m2du1aZWZmKjy84B/bDAAA4GpnzpyR3W5XYGCgQ3lgYGCOl+s/9thjGj9+vNq1aydPT0/Vrl1bnTp1uunlaVzeDwAArud00igzM1MLFy5UdHS0PDwcH77Wr18/jR492lweP368vvrqKx05ckS7du3S448/rri4OHOGUkZGhh566CHt2LFD//73v2W325WQkKCEhASlp6dLkho2bKj7779fgwcP1rZt27Rp0yYNGzZMjzzyCE9OAwAAyMH69es1YcIEzZo1S7t27dLSpUv1+eef65VXXsmxDZf3AwCA63ncuoqj1atXKz4+XgMHDrSsi4+Pl5vb73mo8+fPa/DgwUpISFDFihXVokULbd68WY0aNZIknThxQitWrJAkNW/e3GFb69atU6dOnSRJ//73vzVs2DB16dJFbm5uevDBB/X22287GzoAAECxVKVKFbm7uysxMdGhPDExMcfL9ceMGaO+ffuaf6xr0qSJUlNTNWTIEL300ksO52xZvL295e3tnf8DAAAAxZLTSaP77rtPhmFku279+vUOy9OmTdO0adNy3FatWrVy3Nb1KlWqpMWLFzsVJwAAQEnh5eWlFi1aaM2aNerZs6ekq7O/16xZo2HDhmXb5tKlS5bEkLu7uyTl6vwLAADA6aQRAAAACt/IkSMVHR2tli1bqlWrVpo+fbpSU1M1YMAASVdvE1CtWjVNnDhRktS9e3dNnTpVYWFhCg8P1+HDhzVmzBh1797dTB4BAADcDEkjAACAYqB37946ffq0xo4dq4SEBDVv3lwrV640b459420CXn75ZdlsNr388ss6ceKE/P391b17d7322muuGgIAAChmbEYpmZ+ckpIiPz8/JScny9fXt8D6sdlinW/UIA9tDuahDQrUeuNLp9t0snUtgEjywb5Y5+o/VCBRoIRaf6BkPPmyU8OthdKPcaBQuilSCus7G7fGsQAAoHgoqO9sp5+eBgAAAAAAgJKPpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwMLD1QGUNOuNL/PQyvk2nWxdnWvQINbpPnQwD20KQ17G4qyiOnagBOjUcGuB97H+QHiR7CMvY7c1dLpJoTAOuDoCAAAAFDRmGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACw8XB1ASdPJ1tXpNuuNL53vqEGsc/UPOlk/L33koZ8YjctDH863GdfAcKp+Xo5JXo59kdU41rn6+5ysL0kPOd8EyK1ODbc63Wb9gfACiOT2+8jLWAqDraFz9Y0DBRMHAAAACg4zjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYerg4AUidb1zy0inWuegMn6xeScQ0M5xsdjM33OG6Ut2MCoDjr1HCrU/XXHwgvoEgAAACAooGZRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsPBwpnKtWrUUFxdnKX/66ac1c+ZMS/miRYs0YMAAhzJvb29dvnzZXF66dKnmzJmjnTt36ty5c9q9e7eaN2/u0KZTp076+uuvHcqefPJJzZkzx5nwC0eDWOfbHMxDm6LK2fEX0bGvN750uk0nW9cCiKQE+ygPbR7K9ygAAAAAADlwKmm0fft22e12c3nfvn2699579fDDD+fYxtfXV4cOHTKXbTabw/rU1FS1a9dOvXr10uDBg3PczuDBgzV+/HhzuWzZss6EDgAAAAAAACc4lTTy9/d3WJ40aZJq166tjh075tjGZrMpKCgox/V9+/aVJB07duymfZctW/am2wEAAAAAAED+yfM9jdLT0/X+++9r4MCBltlD17t48aJq1qypkJAQ9ejRQ/v3789Tf//+979VpUoVNW7cWKNHj9alS5duWj8tLU0pKSkOLwAAAAAAAOSOUzONrrd8+XIlJSWpf//+OdapX7++FixYoKZNmyo5OVlTpkxRmzZttH//flWvXj3XfT322GOqWbOmgoOD9f333+vFF1/UoUOHtHTp0hzbTJw4UePGjXNmSAAAAAAAALgmz0mj+fPnq2vXrgoODs6xTkREhCIiIszlNm3aqGHDhnr33Xf1yiuv5LqvIUOGmP9u0qSJqlatqi5duujnn39W7dq1s20zevRojRw50lxOSUlRSEhIrvsEAAAAAAAozfKUNIqLi9Pq1atvOtMnO56engoLC9Phw4fz0q0pPDxcknT48OEck0be3t7y9va+rX4AAAAAAABKqzzd02jhwoUKCAhQt27dnGpnt9u1d+9eVa1aNS/dmvbs2SNJt70dAAAAAAAAZM/pmUaZmZlauHChoqOj5eHh2Lxfv36qVq2aJk6cKEkaP368WrdurTp16igpKUmTJ09WXFycBg0aZLY5d+6c4uPj9euvv0qSDh06JEkKCgpSUFCQfv75Zy1evFh//OMfVblyZX3//fcaMWKEOnTooKZNm+Z54AAAAAAAAMiZ00mj1atXKz4+XgMHDrSsi4+Pl5vb75OXzp8/r8GDByshIUEVK1ZUixYttHnzZjVq1Miss2LFCg0YMMBcfuSRRyRJMTExio2NlZeXl1avXq3p06crNTVVISEhevDBB/Xyyy87GzoAAAAAAAByyemk0X333SfDMLJdt379eofladOmadq0aTfdXv/+/W/6BLaQkBB9/fXXzoYJAAAAAACA25CnexoBAAAAAACgZCNpBAAAAAAAAAunL0/DLRyMLZx+GhRSPwWtpIyjtGscWzj97HOyn7zExWcSAAAAACQx0wgAAAAAAADZIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALD1cHUOI0iHV1BMXLwdhC6Wa98aVT9TvZujrfSV6OfSGNv8RoHOtc/X1O1i9pHnJ1ACVbp4ZbnW6z/kB4gbfJS1wAAABAdphpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAABQTMycOVO1atWSj4+PwsPDtW3btpvWT0pK0tChQ1W1alV5e3urXr16+uKLLwopWgAAUNzx9DQAAIBi4MMPP9TIkSM1Z84chYeHa/r06YqKitKhQ4cUEBBgqZ+enq57771XAQEB+uijj1StWjXFxcWpQoUKhR88AAAolkgaAQAAFANTp07V4MGDNWDAAEnSnDlz9Pnnn2vBggUaNWqUpf6CBQt07tw5bd68WZ6enpKkWrVqFWbIAACgmOPyNAAAgCIuPT1dO3fuVGRkpFnm5uamyMhIbdmyJds2K1asUEREhIYOHarAwEA1btxYEyZMkN1uz7GftLQ0paSkOLwAAEDpRdIIAACgiDtz5ozsdrsCAwMdygMDA5WQkJBtmyNHjuijjz6S3W7XF198oTFjxujNN9/Uq6++mmM/EydOlJ+fn/kKCQnJ13EAAIDihaQRAABACZSZmamAgADNnTtXLVq0UO/evfXSSy9pzpw5ObYZPXq0kpOTzdfx48cLMWIAAFDUcE8jAACAIq5KlSpyd3dXYmKiQ3liYqKCgoKybVO1alV5enrK3d3dLGvYsKESEhKUnp4uLy8vSxtvb295e3vnb/AAAKDYImlUWhyMdXUE2YrROKfb3GO0crpNJ1tXp9s4rYju41KtcazzbfbloU1RVRifybzsr4fyPQqXWH8gvFD66dRwa6H0g6LNy8tLLVq00Jo1a9SzZ09JV2cSrVmzRsOGDcu2Tdu2bbV48WJlZmbKze3q5PIff/xRVatWzTZhBAAAcCMuTwMAACgGRo4cqXnz5un//u//dODAAf31r39Vamqq+TS1fv36afTo0Wb9v/71rzp37pyGDx+uH3/8UZ9//rkmTJigoUOHumoIAACgmGGmEQAAQDHQu3dvnT59WmPHjlVCQoKaN2+ulStXmjfHjo+PN2cUSVJISIj+97//acSIEWratKmqVaum4cOH68UXX3TVEAAAQDFD0ggAAKCYGDZsWI6Xo61fv95SFhERoW+//baAowIAACUVl6cBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwMLD1QGUOAdjXR1B9hrEOt+mEMZyj9HK6TadbF0LIJIbFNH9hYIX09jmdJtx+4wCiCQf7It1dQTZ+8jJ+g8VSBQu0anhVleHAAAAAOQaM40AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWHs5UrlWrluLi4izlTz/9tGbOnGkpX7RokQYMGOBQ5u3trcuXL5vLS5cu1Zw5c7Rz506dO3dOu3fvVvPmzR3aXL58WX/729+0ZMkSpaWlKSoqSrNmzVJgYKAz4ReOBrHOtzmYhzbO9pOXPgpBJ1tXV4fgWnn5vDiriB77PCmqn/vGTvazz8n6efVQIfTxUSH0URg/I/OgU8OtBd4HAAAA4EpOzTTavn27Tp48ab5WrVolSXr44YdzbOPr6+vQ5sakU2pqqtq1a6fXX389x22MGDFCn376qf773//q66+/1q+//qq//OUvzoQOAAAAAAAAJzg108jf399hedKkSapdu7Y6duyYYxubzaagoKAc1/ft21eSdOzYsWzXJycna/78+Vq8eLE6d+4sSVq4cKEaNmyob7/9Vq1bt3ZmCAAAAAAAAMiFPN/TKD09Xe+//74GDhwom82WY72LFy+qZs2aCgkJUY8ePbR//36n+tm5c6cyMjIUGRlpljVo0EA1atTQli1bcmyXlpamlJQUhxcAAAAAAAByJ89Jo+XLlyspKUn9+/fPsU79+vW1YMECffLJJ3r//feVmZmpNm3a6Jdffsl1PwkJCfLy8lKFChUcygMDA5WQkJBju4kTJ8rPz898hYSE5LpPAAAAAACA0i7PSaP58+era9euCg4OzrFORESE+vXrp+bNm6tjx45aunSp/P399e677+a121wbPXq0kpOTzdfx48cLvE8AAAAAAICSwql7GmWJi4vT6tWrtXTpUqfaeXp6KiwsTIcPH851m6CgIKWnpyspKclhtlFiYuJN75Xk7e0tb29vp+IDAAAAAADAVXmaabRw4UIFBASoW7duTrWz2+3au3evqlatmus2LVq0kKenp9asWWOWHTp0SPHx8YqIiHCqfwAAAAAAAOSO0zONMjMztXDhQkVHR8vDw7F5v379VK1aNU2cOFGSNH78eLVu3Vp16tRRUlKSJk+erLi4OA0aNMhsc+7cOcXHx+vXX3+VdDUhJF2dYRQUFCQ/Pz898cQTGjlypCpVqiRfX18988wzioiI4MlpAAAAAAAABcTppNHq1asVHx+vgQMHWtbFx8fLze33yUvnz5/X4MGDlZCQoIoVK6pFixbavHmzGjVqZNZZsWKFBgwYYC4/8sgjkqSYmBjFxsZKkqZNmyY3Nzc9+OCDSktLU1RUlGbNmuVs6AAAAAAAAMglp5NG9913nwzDyHbd+vXrHZanTZumadOm3XR7/fv3v+kT2CTJx8dHM2fO1MyZM50JFQAAAAAAAHmU56enAQAAAAAAoOQiaQQAAAAAAAALpy9Pwy0cjHW6SYzG5aEf59qMU4zzfcA5DWJdHUHxUhj7Ky99OPl/S5K0Lw/9OOuhgu+iyMrL/i3N+wsAAADIJ8w0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACAhYerAyhpjBnjnG5jGxZTAJG4SINY5+ofdLJ+YclLXM6OvbAU1biKqHH7jILv5KGC7yJP8vK5fygPbT5yvgkAAACAwsdMIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgIWHqwMoaWzDYpxuY8wYVyj9FIqDsa6OIF+sN750uk2nhrH5HwgK30OuDiAfFcb/x7z00djJ+vvy0MdHzjcpUcceAAAAyAfMNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFh4uDqAkifa6Ra2Yc63cd7/FUIfhWO98WWB99Gp4dYC7wOF4GCsqyPIXoPYotlPUd1fjWOdb1NY+xgAAAAowZhpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAxcTMmTNVq1Yt+fj4KDw8XNu2bctVuyVLlshms6lnz54FGyAAAChRSBoBAAAUAx9++KFGjhypmJgY7dq1S82aNVNUVJROnTp103bHjh3T888/r/bt2xdSpAAAoKQgaQQAAFAMTJ06VYMHD9aAAQPUqFEjzZkzR2XLltWCBQtybGO329WnTx+NGzdOd955ZyFGCwAASgKSRgAAAEVcenq6du7cqcjISLPMzc1NkZGR2rJlS47txo8fr4CAAD3xxBO56ictLU0pKSkOLwAAUHqRNAIAACjizpw5I7vdrsDAQIfywMBAJSQkZNtm48aNmj9/vubNm5frfiZOnCg/Pz/zFRIScltxAwCA4o2kEQAAQAlz4cIF9e3bV/PmzVOVKlVy3W706NFKTk42X8ePHy/AKAEAQFHn4UzlWrVqKS4uzlL+9NNPa+bMmZbyRYsWacCAAQ5l3t7eunz5srlsGIZiYmI0b948JSUlqW3btpo9e7bq1q17034nTpyoUaNGORN+KRedhzb/l+9RWDSIdbpJp4bOtwGKvYOxro6geMnL/srDzyOgsFSpUkXu7u5KTEx0KE9MTFRQUJCl/s8//6xjx46pe/fuZllmZqYkycPDQ4cOHVLt2rUt7by9veXt7Z3P0QMAgOLKqZlG27dv18mTJ83XqlWrJEkPP/xwjm18fX0d2tyY/HnjjTf09ttva86cOdq6davuuOMORUVFOSSWpKvX5F+/nWeeecaZ0AEAAIotLy8vtWjRQmvWrDHLMjMztWbNGkVERFjqN2jQQHv37tWePXvM1wMPPKB77rlHe/bs4bIzAACQK07NNPL393dYnjRpkmrXrq2OHTvm2MZms2X7FzDp6iyj6dOn6+WXX1aPHj0kSf/85z8VGBio5cuX65FHHjHrli9fPsftAAAAlHQjR45UdHS0WrZsqVatWmn69OlKTU01Z3X369dP1apV08SJE+Xj46PGjRs7tK9QoYIkWcoBAABykud7GqWnp+v999/XwIEDZbPZcqx38eJF1axZUyEhIerRo4f2799vrjt69KgSEhIcngTi5+en8PBwy5NAJk2apMqVKyssLEyTJ0/WlStXbhofT/8AAAAlSe/evTVlyhSNHTtWzZs31549e7Ry5Urz5tjx8fE6efKki6MEAAAliVMzja63fPlyJSUlqX///jnWqV+/vhYsWKCmTZsqOTlZU6ZMUZs2bbR//35Vr17dfNrHrZ4E8uyzz+ruu+9WpUqVtHnzZo0ePVonT57U1KlTc+x74sSJGjduXF6HBwAAUOQMGzZMw4YNy3bd+vXrb9p20aJF+R8QAAAo0fKcNJo/f766du2q4ODgHOtEREQ4XGffpk0bNWzYUO+++65eeeWVXPc1cuRI899NmzaVl5eXnnzySU2cODHHmzWOHj3aoV1KSgrX7wMAAAAAAORSni5Pi4uL0+rVqzVo0CCn2nl6eiosLEyHDx+WJPMeRbl9EkiW8PBwXblyRceOHcuxjre3t3x9fR1eAAAAAAAAyJ08JY0WLlyogIAAdevWzal2drtde/fuVdWqVSVJoaGhCgoKcngSSEpKirZu3Zrtk0Cy7NmzR25ubgoICMhL+AAAAAAAALgFpy9Py8zM1MKFCxUdHS0PD8fm1z+1Q5LGjx+v1q1bq06dOkpKStLkyZMVFxdnzlCy2Wx67rnn9Oqrr6pu3boKDQ3VmDFjFBwcrJ49e0qStmzZoq1bt+qee+5R+fLltWXLFo0YMUKPP/64KlaseJvDBwAAAAAAQHacThqtXr1a8fHxGjhwoGVdfHy83Nx+n7x0/vx5DR48WAkJCapYsaJatGihzZs3q1GjRmadv//970pNTdWQIUOUlJSkdu3aaeXKlfLx8ZF09TKzJUuWKDY2VmlpaQoNDdWIESMc7lcEAAAAAACA/GUzDMNwdRCFISUlRX5+fkpOTi7Q+xvZbEcLbNuF7/8KvosGsQXfB0qvg7GujiB7efncF9WxlCT8PCpQxoHc1y2s72zcGscCAIDioaC+s/N0TyMAAAAAAACUbCSNAAAAAAAAYOH0PY1wc4YRWij9FM5lcNF5aOPkJW2FdckNl52UDCXlEq2SMg4UilYHvnaq/raGHQsoEgAAAJQ2zDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYeLg6AOSNYYS6OoRs2WzRTrb4vwKJo7iIOWhzqv64BkYBReICB2NdHQFQLGxr2NHVIQAAAKCUYqYRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsPFwdAEoWwwh1skVsQYRhYWtYCJ0cjHW6yTjF5H8cxUWDWOfb5GEfo5TKy+cLAAAAgANmGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACw8XB0AUBiMA4XRS6zTLWw259sAuRWjcU7VH6eYAorkNjWIdXUEAAAAQKnETCMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFg4lTSqVauWbDab5TV06NBs6y9atMhS18fHx6GOYRgaO3asqlatqjJlyigyMlI//fSTQ51z586pT58+8vX1VYUKFfTEE0/o4sWLTg4VAAAAAAAAueXhTOXt27fLbreby/v27dO9996rhx9+OMc2vr6+OnTokLlss9kc1r/xxht6++239X//938KDQ3VmDFjFBUVpR9++MFMMPXp00cnT57UqlWrlJGRoQEDBmjIkCFavHixM+EDRY5hxLo6hHxha+jqCJCdcYpxqn5J+TwCAAAAyB9OJY38/f0dlidNmqTatWurY8eOObax2WwKCgrKdp1hGJo+fbpefvll9ejRQ5L0z3/+U4GBgVq+fLkeeeQRHThwQCtXrtT27dvVsmVLSdI777yjP/7xj5oyZYqCg4OdGQIAAAAAAAByIc/3NEpPT9f777+vgQMHWmYPXe/ixYuqWbOmQkJC1KNHD+3fv99cd/ToUSUkJCgyMtIs8/PzU3h4uLZs2SJJ2rJliypUqGAmjCQpMjJSbm5u2rp1a479pqWlKSUlxeEFAAAAAACA3Mlz0mj58uVKSkpS//79c6xTv359LViwQJ988onef/99ZWZmqk2bNvrll18kSQkJCZKkwMBAh3aBgYHmuoSEBAUEBDis9/DwUKVKlcw62Zk4caL8/PzMV0hISF6GCQAAAAAAUCrlOWk0f/58de3a9aaXh0VERKhfv35q3ry5OnbsqKVLl8rf31/vvvtuXrvNtdGjRys5Odl8HT9+vMD7BAAAAAAAKCmcuqdRlri4OK1evVpLly51qp2np6fCwsJ0+PBhSTLvdZSYmKiqVaua9RITE9W8eXOzzqlTpxy2c+XKFZ07dy7HeyVJkre3t7y9vZ2KDwAAAAAAAFflaabRwoULFRAQoG7dujnVzm63a+/evWaCKDQ0VEFBQVqzZo1ZJyUlRVu3blVERISkq7OVkpKStHPnTrPO2rVrlZmZqfDw8LyEDwAAAAAAgFtweqZRZmamFi5cqOjoaHl4ODbv16+fqlWrpokTJ0qSxo8fr9atW6tOnTpKSkrS5MmTFRcXp0GDBkm6+mS15557Tq+++qrq1q2r0NBQjRkzRsHBwerZs6ckqWHDhrr//vs1ePBgzZkzRxkZGRo2bJgeeeQRnpwGAAAAAABQQJxOGq1evVrx8fEaOHCgZV18fLzc3H6fvHT+/HkNHjxYCQkJqlixolq0aKHNmzerUaNGZp2///3vSk1N1ZAhQ5SUlKR27dpp5cqV8vHxMev8+9//1rBhw9SlSxe5ubnpwQcf1Ntvv+1s6AAAAAAAAMglm2EYhquDKAwpKSny8/NTcnKyfH19XR0OUKLYGhZSRwdjC6mj0skwYl0dAiCJ7+yihGMBAEDxUFDf2Xl+ehoAAAAAAABKLpJGAAAAAAAAsHD6nkYAcCPjQGH1FFtYHQEAAABAqcdMIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAIBiYubMmapVq5Z8fHwUHh6ubdu25Vh33rx5at++vSpWrKiKFSsqMjLypvUBAABuRNIIAACgGPjwww81cuRIxcTEaNeuXWrWrJmioqJ06tSpbOuvX79ejz76qNatW6ctW7YoJCRE9913n06cOFHIkQMAgOLKZhiG4eogCkNKSor8/PyUnJwsX19fV4cDAABywHd29sLDw/WHP/xBM2bMkCRlZmYqJCREzzzzjEaNGnXL9na7XRUrVtSMGTPUr1+/XPXJsQAAoHgoqO9sj3zbUhGXlRtLSUlxcSQAAOBmsr6rS8nftXIlPT1dO3fu1OjRo80yNzc3RUZGasuWLbnaxqVLl5SRkaFKlSrlWCctLU1paWnmMudNAACUbqUmaXThwgVJUkhIiIsjAQAAuXHhwgX5+fm5Oowi4cyZM7Lb7QoMDHQoDwwM1MGDB3O1jRdffFHBwcGKjIzMsc7EiRM1bty424oVAACUHKUmaRQcHKzjx4+rfPnystlsrg6n0KSkpCgkJETHjx8vldPKS/P4GTtjL21jl0r3+EvS2A3D0IULFxQcHOzqUEqMSZMmacmSJVq/fr18fHxyrDd69GiNHDnSXM76XAEAgNKp1CSN3NzcVL16dVeH4TK+vr7F/peI21Gax8/YGXtpVJrHX1LGzgwjR1WqVJG7u7sSExMdyhMTExUUFHTTtlOmTNGkSZO0evVqNW3a9KZ1vb295e3tfdvxAgCAkoGnpwEAABRxXl5eatGihdasWWOWZWZmas2aNYqIiMix3RtvvKFXXnlFK1euVMuWLQsjVAAAUIKUmplGAAAAxdnIkSMVHR2tli1bqlWrVpo+fbpSU1M1YMAASVK/fv1UrVo1TZw4UZL0+uuva+zYsVq8eLFq1aqlhIQESVK5cuVUrlw5l40DAAAUHySNSjhvb2/FxMSU2qnmpXn8jJ2xl0alefyleeylRe/evXX69GmNHTtWCQkJat68uVauXGneHDs+Pl5ubr9PIp89e7bS09P10EMPOWwnJiZGsbGxhRk6AAAopmwGz7MFAABANlJSUuTn56fk5OQSca8sAABKqoL6zuaeRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGRcykSZNks9n03HPPmWVz585Vp06d5OvrK5vNpqSkJEu7c+fOqU+fPvL19VWFChX0xBNP6OLFiw51vv/+e7Vv314+Pj4KCQnRG2+8YdnOf//7XzVo0EA+Pj5q0qSJvvjiC4f1hmFo7Nixqlq1qsqUKaPIyEj99NNPLh17rVq1ZLPZHF6TJk0q1mM/d+6cnnnmGdWvX19lypRRjRo19Oyzzyo5OdmhXXx8vLp166ayZcsqICBAL7zwgq5cueJQZ/369br77rvl7e2tOnXqaNGiRZb+Z86cqVq1asnHx0fh4eHatm2bw/rLly9r6NChqly5ssqVK6cHH3xQiYmJ+TL22xn/jcfdZrNpyZIlxWr82X3un3zySdWuXVtlypSRv7+/evTooYMHDzq0KwnHPq9jL6nHPYthGOratatsNpuWL1/usK4kHHcAAAAUIwaKjG3bthm1atUymjZtagwfPtwsnzZtmjFx4kRj4sSJhiTj/Pnzlrb333+/0axZM+Pbb781vvnmG6NOnTrGo48+aq5PTk42AgMDjT59+hj79u0zPvjgA6NMmTLGu+++a9bZtGmT4e7ubrzxxhvGDz/8YLz88suGp6ensXfvXrPOpEmTDD8/P2P58uXGd999ZzzwwANGaGio8dtvv7ls7DVr1jTGjx9vnDx50nxdvHixWI997969xl/+8hdjxYoVxuHDh401a9YYdevWNR588EGz3ZUrV4zGjRsbkZGRxu7du40vvvjCqFKlijF69GizzpEjR4yyZcsaI0eONH744QfjnXfeMdzd3Y2VK1eadZYsWWJ4eXkZCxYsMPbv328MHjzYqFChgpGYmGjWeeqpp4yQkBBjzZo1xo4dO4zWrVsbbdq0ua1x3+74DcMwJBkLFy50OPbXH4+iPv6cPvfvvvuu8fXXXxtHjx41du7caXTv3t0ICQkxrly5YhhGyTj2eR27YZTc455l6tSpRteuXQ1JxrJly8zyknDcUfwkJycbkozk5GRXhwIAAG6ioL6zSRoVERcuXDDq1q1rrFq1yujYsWO2v0isW7cu28TJDz/8YEgytm/fbpZ9+eWXhs1mM06cOGEYhmHMmjXLqFixopGWlmbWefHFF4369euby7169TK6devmsO3w8HDjySefNAzDMDIzM42goCBj8uTJ5vqkpCTD29vb+OCDD1wydsO4mjSaNm1ajtsv7mPP8p///Mfw8vIyMjIyDMMwjC+++MJwc3MzEhISzDqzZ882fH19zbH+/e9/N+666y6H7fTu3duIiooyl1u1amUMHTrUXLbb7UZwcLAxceJEc5yenp7Gf//7X7POgQMHDEnGli1b8jx2w7i98RuGYfml+kZFefzOjP27774zJBmHDx82DKP4H/vbGbthlOzjvnv3bqNatWrGyZMnLeMs7scdxRNJIwAAioeC+s7m8rQiYujQoerWrZsiIyOdbrtlyxZVqFBBLVu2NMsiIyPl5uamrVu3mnU6dOggLy8vs05UVJQOHTqk8+fPm3Vu7D8qKkpbtmyRJB09elQJCQkOdfz8/BQeHm7WyYvbGXuWSZMmqXLlygoLC9PkyZMdLtcoKWNPTk6Wr6+vPDw8zJibNGmiwMBAh5hTUlK0f//+XI0rPT1dO3fudKjj5uamyMhIs87OnTuVkZHhUKdBgwaqUaPGbY1dur3xX7+NKlWqqFWrVlqwYIEMwzDXFeXx53bsqampWrhwoUJDQxUSEmKOqzgf+9sZ+/XbKGnH/dKlS3rsscc0c+ZMBQUFWdYX9+MOAACA4sfj1lVQ0JYsWaJdu3Zp+/bteWqfkJCggIAAhzIPDw9VqlRJCQkJZp3Q0FCHOlm/eCQkJKhixYpKSEhw+GUkq87127i+XXZ1nHW7Y5ekZ599VnfffbcqVaqkzZs3a/To0Tp58qSmTp1qxl3cx37mzBm98sorGjJkiFmWU8zXx5tTnZSUFP322286f/687HZ7tnWy7iOTkJAgLy8vVahQwVInr2OXbn/8kjR+/Hh17txZZcuW1VdffaWnn35aFy9e1LPPPmvGXhTHn5uxz5o1S3//+9+Vmpqq+vXra9WqVWbiszgf+9sdu1Ryj/uIESPUpk0b9ejRI9v1xfm4AwAAoHgiaeRix48f1/Dhw7Vq1Sr5+Pi4OpxClV9jHzlypPnvpk2bysvLS08++aQmTpwob2/v/Ag13zkz9pSUFHXr1k2NGjVSbGxs4QRYwPJr/GPGjDH/HRYWptTUVE2ePNlMHhRFuR17nz59dO+99+rkyZOaMmWKevXqpU2bNhXrnxP5NfaSeNxXrFihtWvXavfu3S6IDgAAAMgel6e52M6dO3Xq1Cndfffd8vDwkIeHh77++mu9/fbb8vDwkN1uv+U2goKCdOrUKYeyK1eu6Ny5c+YlDkFBQZYn32Qt36rO9euvb5ddHWfkx9izEx4eritXrujYsWNm3MV17BcuXND999+v8uXLa9myZfL09DS3cTvj8vX1VZkyZVSlShW5u7vfcuzp6emWJ9fldez5Nf7shIeH65dfflFaWlqRHX9ux+7n56e6deuqQ4cO+uijj3Tw4EEtW7bspuPKWleSx56dknDcV61apZ9//lkVKlQw10vSgw8+qE6dOt10XFnriurYAQAAUHyRNHKxLl26aO/evdqzZ4/5atmypfr06aM9e/bI3d39ltuIiIhQUlKSdu7caZatXbtWmZmZCg8PN+ts2LBBGRkZZp1Vq1apfv36qlixollnzZo1DttetWqVIiIiJEmhoaEKCgpyqJOSkqKtW7eadQp77NnZs2eP3NzczEv2iuvYU1JSdN9998nLy0srVqywzE6IiIjQ3r17HRKGq1atkq+vrxo1apSrcXl5ealFixYOdTIzM7VmzRqzTosWLeTp6elQ59ChQ4qPj8/T2PNr/NnZs2ePKlasaM4wK4rjz8vn3rj60AIzKVJcj31+jD07JeG4v/TSS/r+++8d1kvStGnTtHDhQnNcxfG4AwAAoBjL19tqI1/c+ESdkydPGrt37zbmzZtnSDI2bNhg7N692zh79qxZ5/777zfCwsKMrVu3Ghs3bjTq1q1rPProo+b6pKQkIzAw0Ojbt6+xb98+Y8mSJUbZsmUtj5338PAwpkyZYhw4cMCIiYnJ9rHzFSpUMD755BPj+++/N3r06JEvj53P69g3b95sTJs2zdizZ4/x888/G++//77h7+9v9OvXr1iPPTk52QgPDzeaNGliHD582OHR4jc+dv2+++4z9uzZY6xcudLw9/fP9vHbL7zwgnHgwAFj5syZ2T5+29vb21i0aJHxww8/GEOGDDEqVKjg8ISmp556yqhRo4axdu1aY8eOHUZERIQRERGRL+PO6/hXrFhhzJs3z9i7d6/x008/GbNmzTLKli1rjB07ttiN//qx//zzz8aECROMHTt2GHFxccamTZuM7t27G5UqVTIfiV6Sjr2zYy+pxz07uuHpaSXpuKP44OlpAAAUDwX1nU3SqAi68ReJmJgYQ5LltXDhQrPO2bNnjUcffdQoV66c4evrawwYMMC4cOGCw3a/++47o127doa3t7dRrVo1Y9KkSZa+//Of/xj16tUzvLy8jLvuusv4/PPPHdZnZmYaY8aMMQIDAw1vb2+jS5cuxqFDh1w29p07dxrh4eGGn5+f4ePjYzRs2NCYMGGCcfny5WI99nXr1mU7bknG0aNHzTbHjh0zunbtapQpU8aoUqWK8be//c3hkfRZ22revLnh5eVl3HnnnQ6fmyzvvPOOUaNGDcPLy8to1aqV8e233zqs/+2334ynn37aqFixolG2bFnjz3/+s3Hy5Ml8G3texv/ll18azZs3N8qVK2fccccdRrNmzYw5c+YYdru92I3/+rGfOHHC6Nq1qxEQEGB4enoa1atXNx577DHj4MGDDm1KyrF3duwl9bhn58akkWGUnOOO4oOkEQAAxUNBfWfbDOO65xQDAAAA16SkpMjPz0/Jycny9fV1dTgAACAHBfWdXaqennb58mWlp6e7OgwAAHALXl5exfppgQAAACVBqUkaXb58WWXK+Eu66OpQAADALQQFBeno0aMkjgAAAFyo1CSNrs4wuihphKQ7rpVmPb7bI4f3m633zEWd/Fp/qzY3fwy5KevBRDl16XaTde45lOdlfU7rPLOpe7O43XOxPrfbuFXcN9t3t7tvzHrXrhT1sDu829yvXF30sMv9Wpm7R+a19yvX3q+Vu117V/bvHtfe3Szrr/WhTLPc3VL3isM23K+re7XejetvHcOt6jgfQ871bhxrTn3/vs1b1bPus9zGeet9dusYbnlsrz2+3v3KtT7sxrVlObzbrnala11Z3+3XXjeWObOc9Z5TX/Z83tatlnO7rRu34Uxs+bmtW8SWca3ttUNtWb5id2yS9RzJGzeVU/n162+2LrfbyE0faZKmJSQoPT2dpBEAAIALlZqk0e+8JWWdgOaUfMnNck5Jo4JYzm2bHNhy+e527aWbvN+YRLnx/VaJk+xyYLdKZt3O+txu45YJnVz0kZe2Du83TxrZPO2yZZWZ71fXuV1bdnNzTBy43ZCcsCaLck6k5JwkuVUSJffr87+PrHf3m/Tllstt2K7Vc3No9/u77Ybt2Myy3/872G7Ypm54N67Vu7E86z0rVsOhvruM6/6deUNf197t196vXIszp6RRTsmKmyVZctPG2fL83FZ25e7Xrb9xR2e1yenn3o3btN2w/safpVn1s2O7YfnGuwoaOZTnFJshZVxLLF071Mqw3bB8reqtEjy5Wb5V3Vttw+MW692v+zcAAABcz+3WVQAAAAAAAFDakDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACAhYerAyh8afp92PZr71nLV26xnHHdsue1f3veUOfG9/xYf6s2Wcs5MHL5nnntpWzebdfe7TcsZ70rh+UbY8ip3+vd2Ld7DvXtN6y/sfyKft9F7jesu7E8p93vfsN7docrt9vIab1Z79oAPewO74b71c+h4WGXkVXmkXnt/eq6zGvlNrdr78r+PdPcATe+X7lW7/qdeK0v8/2KQxvjWl3D3PaVG5azf89ab5dd7tf+feN75g3LbubyFbPt1eXMm9bzuK6e+w3rcur7923eql5WH7/HcLP+s9tGVn2PHGPI+f33fxvXtmFc2+bVd3f7tfcr19ZfO9TXPk7muy3rkF/J4f33j4Ju+AjkfjnrPae+7Pm8rVst53ZbN27Dmdhyu61bvef0M/m694xrPzquHWrL8o0hZMi58uvX32xdbreRmz7SBAAAgKKg1CSNvLy8FBQUpISEaa4OxXVu/GUExUJWrixDv//CBQAlXVBQkLy8vFwdBgAAQKlWapJGPj4+Onr0qNLT010dSo5SUlIUEhKi48ePy9fX19XhFGvsy/zBfswf7Mf8wX7MH8VlP3p5ecnHx8fVYQAAAJRqpSZpJF1NHBWHE1BfX98ifSJfnLAv8wf7MX+wH/MH+zF/sB8BAABwK9wIGwAAAAAAABYkjQAAAAAAAGBB0qgI8fb2VkxMjLy9vV0dSrHHvswf7Mf8wX7MH+zH/MF+BAAAQG7ZDMMwbl0NAAAApU1KSor8/PyUnJzMPbAAACjCCuo7m5lGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkZFwMSJE/WHP/xB5cuXV0BAgHr27KlDhw65Oqxib9KkSbLZbHruuedcHUqxc+LECT3++OOqXLmyypQpoyZNmmjHjh2uDqtYsdvtGjNmjEJDQ1WmTBnVrl1br7zyinj2wK1t2LBB3bt3V3BwsGw2m5YvX+6w3jAMjR07VlWrVlWZMmUUGRmpn376yTXBFmE3248ZGRl68cUX1aRJE91xxx0KDg5Wv3799Ouvv7ouYAAAABQ5JI2KgK+//lpDhw7Vt99+q1WrVikjI0P33XefUlNTXR1asbV9+3a9++67atq0qatDKXbOnz+vtm3bytPTU19++aV++OEHvfnmm6pYsaKrQytWXn/9dc2ePVszZszQgQMH9Prrr+uNN97QO++84+rQirzU1FQ1a9ZMM2fOzHb9G2+8obfffltz5szR1q1bdccddygqKkqXL18u5EiLtpvtx0uXLmnXrl0aM2aMdu3apaVLl+rQoUN64IEHXBApAAAAiiqbwZ+9i5zTp08rICBAX3/9tTp06ODqcIqdixcv6u6779asWbP06quvqnnz5po+fbqrwyo2Ro0apU2bNumbb75xdSjF2p/+9CcFBgZq/vz5ZtmDDz6oMmXK6P3333dhZMWLzWbTsmXL1LNnT0lXZxkFBwfrb3/7m55//nlJUnJysgIDA7Vo0SI98sgjLoy26LpxP2Zn+/btatWqleLi4lSjRo3CCw5FWkE9vhcAAOSvgvrOZqZREZScnCxJqlSpkosjKZ6GDh2qbt26KTIy0tWhFEsrVqxQy5Yt9fDDDysgIEBhYWGaN2+eq8Mqdtq0aaM1a9boxx9/lCR999132rhxo7p27eriyIq3o0ePKiEhweH/t5+fn8LDw7VlyxYXRlb8JScny2azqUKFCq4OBQAAAEWEh6sDgKPMzEw999xzatu2rRo3buzqcIqdJUuWaNeuXdq+fburQym2jhw5otmzZ2vkyJH6xz/+oe3bt+vZZ5+Vl5eXoqOjXR1esTFq1CilpKSoQYMGcnd3l91u12uvvaY+ffq4OrRiLSEhQZIUGBjoUB4YGGiug/MuX76sF198UY8++iizSQAAAGAiaVTEDB06VPv27dPGjRtdHUqxc/z4cQ0fPlyrVq2Sj4+Pq8MptjIzM9WyZUtNmDBBkhQWFqZ9+/Zpzpw5JI2c8J///Ef//ve/tXjxYt11113as2ePnnvuOQUHB7MfUaRkZGSoV69eMgxDs2fPdnU4AAAAKEK4PK0IGTZsmD777DOtW7dO1atXd3U4xc7OnTt16tQp3X333fLw8JCHh4e+/vprvf322/Lw8JDdbnd1iMVC1apV1ahRI4eyhg0bKj4+3kURFU8vvPCCRo0apUceeURNmjRR3759NWLECE2cONHVoRVrQUFBkqTExESH8sTERHMdci8rYRQXF6dVq1YxywgAAAAOSBoVAYZhaNiwYVq2bJnWrl2r0NBQV4dULHXp0kV79+7Vnj17zFfLli3Vp08f7dmzR+7u7q4OsVho27atDh065FD2448/qmbNmi6KqHi6dOmS3Nwcf8S6u7srMzPTRRGVDKGhoQoKCtKaNWvMspSUFG3dulUREREujKz4yUoY/fTTT1q9erUqV67s6pAAAABQxHB5WhEwdOhQLV68WJ988onKly9v3pfDz89PZcqUcXF0xUf58uUt94G64447VLlyZe4P5YQRI0aoTZs2mjBhgnr16qVt27Zp7ty5mjt3rqtDK1a6d++u1157TTVq1NBdd92l3bt3a+rUqRo4cKCrQyvyLl68qMOHD5vLR48e1Z49e1SpUiXVqFFDzz33nF599VXVrVtXoaGhGjNmjIKDg2/6ZLDS6Gb7sWrVqnrooYe0a9cuffbZZ7Lb7eZ3T6VKleTl5eWqsAEAAFCE2AzDMFwdRGlns9myLV+4cKH69+9fuMGUMJ06dVLz5s01ffp0V4dSrHz22WcaPXq0fvrpJ4WGhmrkyJEaPHiwq8MqVi5cuKAxY8Zo2bJlOnXqlIKDg/Xoo49q7Nix/EJ+C+vXr9c999xjKY+OjtaiRYtkGIZiYmI0d+5cJSUlqV27dpo1a5bq1avngmiLrpvtx9jY2Bxnta5bt06dOnUq4OhQXBTU43sBAED+KqjvbJJGAAAAyBZJIwAAioeC+s7mnkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAADFxMyZM1WrVi35+PgoPDxc27Ztu2n9//73v2rQoIF8fHzUpEkTffHFF4UUKQAAKAlIGgEAABQDH374oUaOHKmYmBjt2rVLzZo1U1RUlE6dOpVt/c2bN+vRRx/VE088od27d6tnz57q2bOn9u3bV8iRAwCA4spmGIbh6iAAAABwc+Hh4frDH/6gGTNmSJIyMzMVEhKiZ555RqNGjbLU7927t1JTU/XZZ5+ZZa1bt1bz5s01Z86cXPWZkpIiPz8/JScny9fXN38GAgAA8l1BfWd75NuWAAAAUCDS09O1c+dOjR492ixzc3NTZGSktmzZkm2bLVu2aOTIkQ5lUVFRWr58eY79pKWlKS0tzVxOTk6WdPVEFAAAFF1Z39X5PS+IpBEAAEARd+bMGdntdgUGBjqUBwYG6uDBg9m2SUhIyLZ+QkJCjv1MnDhR48aNs5SHhITkIWoAAFDYzp49Kz8/v3zbHkkjAAAASJJGjx7tMDspKSlJNWvWVHx8fL6egMJ5KSkpCgkJ0fHjx7lU0IU4DkUHx6Lo4FgUDcnJyapRo4YqVaqUr9slaQQAAFDEValSRe7u7kpMTHQoT0xMVFBQULZtgoKCnKovSd7e3vL29raU+/n58YtAEeHr68uxKAI4DkUHx6Lo4FgUDW5u+fu8M56eBgAAUMR5eXmpRYsWWrNmjVmWmZmpNWvWKCIiIts2ERERDvUladWqVTnWBwAAuBEzjQAAAIqBkSNHKjo6Wi1btlSrVq00ffp0paamasCAAZKkfv36qVq1apo4caIkafjw4erYsaPefPNNdevWTUuWLNGOHTs0d+5cVw4DAAAUIySNAAAAioHevXvr9OnTGjt2rBISEtS8eXOtXLnSvNl1fHy8w5T0Nm3aaPHixXr55Zf1j3/8Q3Xr1tXy5cvVuHHjXPfp7e2tmJiYbC9ZQ+HiWBQNHIeig2NRdHAsioaCOg42I7+fxwYAAAAAAIBij3saAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAACUYjNnzlStWrXk4+Oj8PBwbdu27ab1//vf/6pBgwby8fFRkyZN9MUXXxRSpCWfM8di3rx5at++vSpWrKiKFSsqMjLylscOuePs/4ksS5Yskc1mU8+ePQs2wFLE2WORlJSkoUOHqmrVqvL29la9evX4GZUPnD0O06dPV/369VWmTBmFhIRoxIgRunz5ciFFW3Jt2LBB3bt3V3BwsGw2m5YvX37LNuvXr9fdd98tb29v1alTR4sWLXK6X5JGAAAApdSHH36okSNHKiYmRrt27VKzZs0UFRWlU6dOZVt/8+bNevTRR/XEE09o9+7d6tmzp3r27Kl9+/YVcuQlj7PHYv369Xr00Ue1bt06bdmyRSEhIbrvvvt04sSJQo68ZHH2OGQ5duyYnn/+ebVv376QIi35nD0W6enpuvfee3Xs2DF99NFHOnTokObNm6dq1aoVcuQli7PHYfHixRo1apRiYmJ04MABzZ8/Xx9++KH+8Y9/FHLkJU9qaqqaNWummTNn5qr+0aNH1a1bN91zzz3as2ePnnvuOQ0aNEj/+9//nOrXZhiGkZeAAQAAULyFh4frD3/4g2bMmCFJyszMVEhIiJ555hmNGjXKUr93795KTU3VZ599Zpa1bt1azZs315w5cwot7pLI2WNxI7vdrooVK2rGjBnq169fQYdbYuXlONjtdnXo0EEDBw7UN998o6SkpFzNAMDNOXss5syZo8mTJ+vgwYPy9PQs7HBLLGePw7Bhw3TgwAGtWbPGLPvb3/6mrVu3auPGjYUWd0lns9m0bNmym85sfPHFF/X55587/GHnkUceUVJSklauXJnrvphpBAAAUAqlp6dr586dioyMNMvc3NwUGRmpLVu2ZNtmy5YtDvUlKSoqKsf6yJ28HIsbXbp0SRkZGapUqVJBhVni5fU4jB8/XgEBAXriiScKI8xSIS/HYsWKFYqIiNDQoUMVGBioxo0ba8KECbLb7YUVdomTl+PQpk0b7dy507yE7ciRI/riiy/0xz/+sVBixu/y6zvbIz+DAgAAQPFw5swZ2e12BQYGOpQHBgbq4MGD2bZJSEjItn5CQkKBxVka5OVY3OjFF19UcHCw5RcE5F5ejsPGjRs1f/587dmzpxAiLD3yciyOHDmitWvXqk+fPvriiy90+PBhPf3008rIyFBMTExhhF3i5OU4PPbYYzpz5ozatWsnwzB05coVPfXUU1ye5gI5fWenpKTot99+U5kyZXK1HWYaAQAAAMXYpEmTtGTJEi1btkw+Pj6uDqfUuHDhgvr27at58+apSpUqrg6n1MvMzFRAQIDmzp2rFi1aqHfv3nrppZe4dLaQrV+/XhMmTNCsWbO0a9cuLV26VJ9//rleeeUVV4eGPGKmEQAAQClUpUoVubu7KzEx0aE8MTFRQUFB2bYJCgpyqj5yJy/HIsuUKVM0adIkrV69Wk2bNi3IMEs8Z4/Dzz//rGPHjql79+5mWWZmpiTJw8NDhw4dUu3atQs26BIqL/8nqlatKk9PT7m7u5tlDRs2VEJCgtLT0+Xl5VWgMZdEeTkOY8aMUd++fTVo0CBJUpMmTZSamqohQ4bopZdekpsb81YKS07f2b6+vrmeZSQx0wgAAKBU8vLyUosWLRxuVpqZmak1a9YoIiIi2zYREREO9SVp1apVOdZH7uTlWEjSG2+8oVdeeUUrV65Uy5YtCyPUEs3Z49CgQQPt3btXe/bsMV8PPPCA+aSikJCQwgy/RMnL/4m2bdvq8OHDZuJOkn788UdVrVqVhFEe5eU4XLp0yZIYykrk8QyuwpVv39kGAAAASqUlS5YY3t7exqJFi4wffvjBGDJkiFGhQgUjISHBMAzD6Nu3rzFq1Ciz/qZNmwwPDw9jypQpxoEDB4yYmBjD09PT2Lt3r6uGUGI4eywmTZpkeHl5GR999JFx8uRJ83XhwgVXDaFEcPY43Cg6Otro0aNHIUVbsjl7LOLj443y5csbw4YNMw4dOmR89tlnRkBAgPHqq6+6agglgrPHISYmxihfvrzxwQcfGEeOHDG++uoro3bt2kavXr1cNYQS48KFC8bu3buN3bt3G5KMqVOnGrt37zbi4uIMwzCMUaNGGX379jXrHzlyxChbtqzxwgsvGAcOHDBmzpxpuLu7GytXrnSqXy5PAwAAKKV69+6t06dPa+zYsUpISFDz5s21cuVK88aZ8fHxDn8xbtOmjRYvXqyXX35Z//jHP1S3bl0tX75cjRs3dtUQSgxnj8Xs2bOVnp6uhx56yGE7MTExio2NLczQSxRnjwMKjrPHIiQkRP/73/80YsQINW3aVNWqVdPw4cP14osvumoIJYKzx+Hll1+WzWbTyy+/rBMnTsjf31/du3fXa6+95qohlBg7duzQPffcYy6PHDlSkhQdHa1Fixbp5MmTio+PN9eHhobq888/14gRI/TWW2+pevXqeu+99xQVFeVUvzbDYI4YAAAAAAAAHJEmBwAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwC51qlTJ3Xq1MlcPnbsmGw2mxYtWuSymArKokWLZLPZdOzYsTy33bFjR/4HBgAAigTOi5xry3kRUDyRNAJuIutLLuvl4+Oj4OBgRUVF6e2339aFCxdcHSKKuVmzZrnk5PLUqVOy2WwaPny4Zd3w4cNls9kUExNjWdevXz95enrq0qVLhREmAKAI4bwIBc1V50VZTp8+reHDh6tBgwYqU6aMAgIC1KpVK7344ou6ePFirraxbds22Ww2TZs2zbKuR48estlsWrhwoWVdhw4dVK1atdseA5DfSBoBuTB+/Hj961//0uzZs/XMM89Ikp577jk1adJE33//vYujc52aNWvqt99+U9++fV0dSr7r27evfvvtN9WsWbNA+3HVyVFAQIDq1q2rjRs3WtZt2rRJHh4e2rRpU7brwsLCVLZs2cIIEwBQBHFelD3Oi26fK5NG586dU8uWLfXPf/5T3bp109tvv62RI0eqTp06mj17ts6cOZOr7dx9990qW7ZstudYmzdvzvYcKz09Xdu3b1fbtm3zZSxAfvJwdQBAcdC1a1e1bNnSXB49erTWrl2rP/3pT3rggQd04MABlSlTxoURukbWXxlLInd3d7m7u7s6jALVrl07/fOf/9TFixdVrlw5SVJqaqq+++479erVSytWrJDdbjf3w8mTJ3XkyBH16NHjptvN+gta//79C3oIAAAX4Lwoe5wXFW/z589XfHy8Nm3apDZt2jisS0lJkZeXV6624+HhofDwcEti6NChQzpz5owee+wxS0Jp586dunz5stq1a5fjdo8dO6bQ0FCtW7fO4bJIoKAx0wjIo86dO2vMmDGKi4vT+++/77Du4MGDeuihh1SpUiX5+PioZcuWWrFihUOdjIwMjRs3TnXr1pWPj48qV66sdu3aadWqVZZt9erVS/7+/ipTpozq16+vl156yaHOiRMnNHDgQAUGBsrb21t33XWXFixY4FBn/fr1stls+s9//qPXXntN1atXl4+Pj7p06aLDhw9bxjd37lzVrl1bZcqUUatWrfTNN99Y6mR37X7//v1Vrlw5nThxQj179lS5cuXk7++v559/Xna73aH92bNn1bdvX/n6+qpChQqKjo7Wd999d8v7ASQlJcnd3V1vv/22WXbmzBm5ubmpcuXKMgzDLP/rX/+qoKAgh/Zbt27V/fffLz8/P5UtW1YdO3a0fLFnd+1+ZmamYmNjFRwcrLJly+qee+7RDz/8oFq1amWbIElLS9PIkSPl7++vO+64Q3/+8591+vRpc32tWrW0f/9+ff311+ZU/6yTgNx+Pm5Hu3btZLfb9e233zrsmytXruj555/XxYsXtWfPHnNd1j662QkNAKB04ryI86Lifl70888/y93dXa1bt7as8/X1dSoh2K5dOyUmJjp8ljZt2iRfX18NGTLETCBdvy6rHVDUkDQCbkPW9OOvvvrKLNu/f79at26tAwcOaNSoUXrzzTd1xx13qGfPnlq2bJlZLzY2VuPGjdM999yjGTNm6KWXXlKNGjW0a9cus87333+v8PBwrV27VoMHD9Zbb72lnj176tNPPzXrJCYmqnXr1lq9erWGDRumt956S3Xq1NETTzyh6dOnW2KeNGmSli1bpueff16jR4/Wt99+qz59+jjUmT9/vp588kkFBQXpjTfeUNu2bfXAAw/o+PHjudovdrtdUVFRqly5sqZMmaKOHTvqzTff1Ny5c806mZmZ6t69uz744ANFR0frtdde08mTJxUdHX3L7VeoUEGNGzfWhg0bzLKNGzfKZrPp3Llz+uGHH8zyb775Ru3btzeX165dqw4dOiglJUUxMTGaMGGCkpKS1LlzZ23btu2m/Y4ePVrjxo1Ty5YtNXnyZNWtW1dRUVFKTU3Ntv4zzzyj7777TjExMfrrX/+qTz/9VMOGDTPXT58+XdWrV1eDBg30r3/9S//617/ME9/cfD5uV9aJyfV/7dq0aZPq1aunsLAwVa9e3eGkkRMaAMDNcF6UPc6Lrirq50U1a9aU3W7Xv/71r9veVk7nWK1bt1Z4eLg8PT21efNmh3Xly5dXs2bNbrtvIN8ZAHK0cOFCQ5Kxffv2HOv4+fkZYWFh5nKXLl2MJk2aGJcvXzbLMjMzjTZt2hh169Y1y5o1a2Z069btpv136NDBKF++vBEXF+dQnpmZaf77iSeeMKpWrWqcOXPGoc4jjzxi+Pn5GZcuXTIMwzDWrVtnSDIaNmxopKWlmfXeeustQ5Kxd+9ewzAMIz093QgICDCaN2/uUG/u3LmGJKNjx45m2dGjRw1JxsKFC82y6OhoQ5Ixfvx4h3jCwsKMFi1amMsff/yxIcmYPn26WWa3243OnTtbtpmdoUOHGoGBgebyyJEjjQ4dOhgBAQHG7NmzDcMwjLNnzxo2m8146623zP1Wt25dIyoqymEfXrp0yQgNDTXuvfdesyzr2B89etQwDMNISEgwPDw8jJ49ezrEERsba0gyoqOjLW0jIyMd+hkxYoTh7u5uJCUlmWV33XWXwz7NkpvPR34ICAgwunTpYi5HRUUZAwYMMAzDMHr16mU8/PDD5rqWLVs6fIZzkpvjBwAofjgv4ryoJJ8XJSQkGP7+/oYko0GDBsZTTz1lLF682CG+3EpJSTHc3d2NJ554wiyrX7++MW7cOMMwDKNVq1bGCy+8YK7z9/d32N/Zyfp8rVu3zul4gNvBTCPgNpUrV858Wsi5c+e0du1a9erVSxcuXNCZM2d05swZnT17VlFRUfrpp5904sQJSVf/KrR//3799NNP2W739OnT2rBhgwYOHKgaNWo4rLPZbJIkwzD08ccfq3v37jIMw+zvzJkzioqKUnJysuUvMAMGDHC4Jjvrr01HjhyRJO3YsUOnTp3SU0895VCvf//+8vPzy/V+eeqppxyW27dvb/YhSStXrpSnp6cGDx5slrm5uWno0KG52n779u2VmJioQ4cOSbr6l7MOHTqoffv25pTxjRs3yjAMc4x79uzRTz/9pMcee0xnz54191Vqaqq6dOmiDRs2KDMzM9v+1qxZoytXrujpp592KM+6AWh2hgwZYh6rrJjtdrvi4uJuOb5bfT7yS9u2bbV161bZ7XZlZmbq22+/Na/jb9u2rTm76NKlS9qzZ49lltGlS5ccPndZU60vXrzoUHb+/PkCHQcAoGjgvCh7nBcV/fOiwMBAfffdd3rqqad0/vx5zZkzR4899pgCAgL0yiuvOFzmdyvly5dX06ZNzZlGZ86c0aFDh7I9x/rxxx91+vRpyzlWTudSycnJDuXJycn5MXwgR6UyabRhwwZ1795dwcHBstlsWr58udPbMAxDU6ZMUb169eTt7a1q1arptddey/9gUeRdvHhR5cuXlyQdPnxYhmFozJgx8vf3d3hlPb781KlTkq4+eSQpKUn16tVTkyZN9MILLzg8cSTrRKJx48Y59n369GklJSVp7ty5lv4GDBjg0F+WG0+0KlasKEnmF1HWF3fdunUd6nl6eurOO+/M1T7x8fGRv7+/pZ/rEwdxcXGqWrWq5SlcderUyVUfWSc833zzjVJTU7V79261b99eHTp0ME+OvvnmG/n6+ppTfbNONKKjoy3767333lNaWlqOX7xZ++XG+CpVqmTuwxvdal/fzK0+H9mx2+1KSEhweKWnp9+0Tbt27cx7F+3bt0/JycnmkzvatGmjX3/9VceOHTPvdXTjCc0bb7xh2ZfS1ZPG68vCwsJuOWYARRvnT8gNzousOC+6qjicF1WtWlWzZ8/WyZMndejQIb399tvy9/fX2LFjNX/+/FvGeb127dqZ9y7avHmzw/2S2rRpo507dyotLS3Hy/+HDRvmcEzuvvtuSVLPnj0dym/1gBLgdpXKp6elpqaqWbNmGjhwoP7yl7/kaRvDhw/XV199pSlTpqhJkyY6d+6czp07l8+Roqj75ZdflJycbH5hZv015vnnn1dUVFS2bbLqdujQQT///LM++eQTffXVV3rvvfc0bdo0zZkzR4MGDcpV/1n9Pf744zle8960aVOH5ZyefOHMX09upTCerhEcHKzQ0FBt2LBBtWrVkmEYioiIkL+/v4YPH664uDh98803atOmjdzcrubHs/bX5MmT1bx582y3m/UUsfxwO/s6L5+P48ePKzQ01KHsVk/YuP6aey8vL1WqVEkNGjSQJDVv3tx8ZOzRo0cd6mfp16+fpezee+/VCy+8oPvuu88sK41P0QFKGs6fcCucF2WP86KrisN5URabzaZ69eqpXr166tatm+rWrat///vfuf4sSlfPmd555x1t2rRJmzdvVpMmTcz92aZNG6WlpWn79u3auHGjPDw8LDfg/vvf/67HH3/cXE5MTNTjjz+uKVOmONz7KKckHZBfSmXSqGvXruratWuO69PS0vTSSy/pgw8+UFJSkho3bqzXX3/d/AFz4MABzZ49W/v27VP9+vUlyfIDCaVD1o3ysk6Esv7i5OnpqcjIyFu2r1SpkgYMGKABAwbo4sWL6tChg2JjYzVo0CBzW/v27cuxvb+/v8qXLy+73Z6r/nKjZs2akq7+9alz585meUZGho4ePZpvN+irWbOm1q1bp0uXLjn8VS27J5bkpH379tqwYYNCQ0PVvHlz8waCfn5+WrlypXbt2qVx48aZ9WvXri3p6hMwnN1fWfvl8OHDDv/fz549e1uXXl0/TftGN/t8ZCcoKMjyFJFbHa+7777bTAx5e3srIiLCjMnDw0N/+MMftGnTJh09elQBAQGqV6+eQ/s777wz27+0NmrUKN8+kwCKBs6fcCucF91eP5wXuf68KDt33nmnKlasqJMnTzrV7vo/zG3ZssWcyS1dTfLVrFlTmzZt0qZNmxQWFmaZZdaoUSM1atTIXM56cl2LFi1ylfgC8kupvDztVoYNG6YtW7ZoyZIl+v777/Xwww/r/vvvN6dwfvrpp7rzzjv12WefKTQ0VLVq1dKgQYP4S1kps3btWr3yyisKDQ01n7IREBCgTp066d133832i+X6x4qePXvWYV25cuVUp04dpaWlSbp64tOhQwctWLBA8fHxDnWz/iLj7u6uBx98UB9//HG2J1HX95dbLVu2lL+/v+bMmeMwhXfRokVKSkpyens5iYqKUkZGhubNm2eWZWZmaubMmbneRvv27XXs2DF9+OGH5rRsNzc3tWnTRlOnTlVGRobDE0JatGih2rVra8qUKbp48aJlezfbX126dJGHh4dmz57tUD5jxoxcx5udO+64I9v9eqvPR3Z8fHwUGRnp8LrVX588PDwUHh5unrRkXWufpU2bNtqwYYO+/fZbh5MdALgR50+lG+dFt4fzoqtceV60devWbJ/8tm3bNp09e/b/2bvv+Cjq/I/j7w1pQBolIQQCREAQBSkeIZEmRUBUsGFBqoAKKsKdCicIAidREFEPsZyE34knlkNEz0Y9BQIiRQGRk5YoEkAgCUEIKd/fH5CVzSQku2R3U17PxyOPZWe+3/mWmd398NnZGXuyu6Tyz/5auXKlvv3220JjrKVLl2r37t3cmRZlWqU80+hiUlJSlJiYqJSUFEVFRUk6d0rt559/rsTERD3zzDPat2+fkpOT9f777+uf//yncnNzNW7cON1+++1atWqVl0cAd/jss8/0448/KicnR4cPH9aqVau0fPlyNWzYUMuWLVNgYKC97Lx589SxY0e1bNlSI0eO1GWXXabDhw8rKSlJv/zyi7777jtJ57496Nq1q9q1a6eaNWvq22+/1QcffOBw69GXXnpJHTt2VNu2bTVq1CjFxMTowIED+s9//qNt27ZJOner2NWrVys2NlYjR45UixYtdPz4cW3ZskUrVqxwOhj38/PTjBkzdP/996tbt2668847tX//fiUmJpb4t/sl0b9/f7Vv315//vOftWfPHjVv3lzLli2z9/di3zTlyw98du/erWeeeca+vHPnzvrss88UEBCgP/3pT/blPj4++sc//qE+ffroyiuv1LBhw1SvXj0dPHhQq1evVkhIiMNtey9Up04djR07Vs8//7xuvvlm9e7dW999950+++wz1a5du0T9LUy7du00f/58zZgxQ02aNFFERIS6detWouOjtHTs2FGrV6+WJEtiKD4+XjNnzrSXA4DCED9VLsRFxEUVMS5666239Pbbb+uWW25Ru3bt5O/vr127dmnBggUKDAzUX//6V6e32bFjR/sZeIXFWO+88469HFBmefhubWWOJPPhhx/an3/yySdGkqlevbrDn6+vrxkwYIAxxpiRI0caSWb37t32eps3bzaSzI8//ujpIcCN8m8Rmv/n7+9vIiMjTc+ePc2LL75oMjIyCq23d+9eM3jwYBMZGWn8/PxMvXr1zI033mg++OADe5kZM2aY9u3bm7CwMFO1alXTvHlz87e//c2cPXvWYVs7duwwt9xyiwkLCzOBgYGmWbNmZvLkyQ5lDh8+bMaMGWOio6ONn5+fiYyMNN27dzevv/66vUz+rWXff/99h7qF3R7WGGNeeeUVExMTYwICAsw111xjvvrqK9OlS5cS3Vq2evXqljmZMmWKKfiWc/ToUXPPPfeY4OBgExoaaoYOHWrWrVtnJJnFixcXOrcFRUREGEnm8OHD9mVr1641kkynTp0KrbN161Zz6623mlq1apmAgADTsGFDM2DAALNy5Up7mYK3ljXGmJycHDN58mQTGRlpqlatarp162Z27dplatWqZR544AFL3YK3JM7fBxfeKjU1NdX07dvXBAcHO9y6t6THR2n44osvjCTj6+trTp065bAu//a8kszGjRtLtL3CjicAFQvxU+VEXERcVJHjou+//9489thjpm3btqZmzZrG19fX1K1b19xxxx1my5YtLm3ztddeM5JMvXr1LOu2bNlify1duL+Kkn98XThfgCfYjCnFq7yVQzabTR9++KH69+8vSXr33Xc1cOBA7dy503KxtqCgIEVGRmrKlCl65plnlJ2dbV93+vRpVatWTV9++aV69uzpySEAFcrSpUt1yy23aO3ateXi51BpaWmqUaOGZsyYoSeffNLb3QEAjyB+AjyDuAiAt/HztALatGmj3NxcHTlyxOE3vxe69tprlZOTo71799ovIPe///1P0h8XhQNQvNOnTzvcVSs3N1cvv/yyQkJC7LcVLUsK9leS5s6dK0lckBBApUb8BFw64iIAZVGlTBplZmY63Ilg//792rZtm2rWrKnLL79cAwcO1ODBg/X888+rTZs2Onr0qFauXKlWrVqpb9++6tGjh9q2bavhw4dr7ty5ysvL05gxY9SzZ0/LnYUAFO3hhx/W6dOnFRcXp6ysLC1ZskTr16/XM888UyZv0f7uu+9q4cKFuuGGGxQUFKS1a9fqnXfe0fXXX18uvv0DgEtB/AS4F3FR2Xf69Gmlp6dftEzNmjXl7+/voR4BHuDt38d5Q/7vZwv+DRkyxBhjzNmzZ81TTz1lGjVqZPz8/EzdunXNLbfcYr7//nv7Ng4ePGhuvfVWExQUZOrUqWOGDh1qjh075qURAeXT22+/bdq2bWtCQkKMv7+/adGihXn55Ze93a0ibd682XTv3t3UqlXL+Pn5mfr165uxY8eakydPertrAOB2xE+AexEXlX0Fr+tV2B/XHEJFU+mvaQQAAAAAQHEOHTqknTt3XrRMu3btVKNGDQ/1CHA/kkYAAAAAAACwqDTXNMrLy9Ovv/6q4OBg2Ww2b3cHAAAUwRijkydPKioqSj4+Pt7uTqVG/AQAQPngrvip0iSNfv31V0VHR3u7GwAAoIR+/vln1a9f39vdqNSInwAAKF9KO36qNEmj4OBgSecmMCQkxMu9AQAARcnIyFB0dLT9sxveQ/wEAED54K74qdIkjfJPqQ4JCSHoAQCgHODnUN5H/AQAQPlS2vETFwoAAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgIWvM4UbNWqk5ORky/LRo0dr3rx5luULFy7UsGHDHJYFBATozJkzkqTs7GxNmjRJn376qfbt26fQ0FD16NFDCQkJioqKumi7M2fO1IQJE5zpvkfYbHO83QXv6jDe/W1scP8cG+OBcQAAKgXip+IFnzrq7S54VWZCuNvbCJrg/jk+Wd394wAAeJZTSaNNmzYpNzfX/nzHjh3q2bOn7rjjjiLrhISEaPfu3fbnNpvN/u/ff/9dW7Zs0eTJk3X11VfrxIkTGjt2rG6++WZ9++23DtuZNm2aRo4caX8eHBzsTNcBAAC8gvgJAACUV04ljcLDHb89SEhIUOPGjdWlS5ci69hsNkVGRha6LjQ0VMuXL3dY9ve//13t27dXSkqKGjRoYF8eHBxc5HYAAADKKuInAABQXrl8TaOzZ89q0aJFGj58uMO3XwVlZmaqYcOGio6OVr9+/bRz586Lbjc9PV02m01hYWEOyxMSElSrVi21adNGs2bNUk5OzkW3k5WVpYyMDIc/AAAAbyJ+AgAA5YlTZxpdaOnSpUpLS9PQoUOLLNOsWTMtWLBArVq1Unp6umbPnq34+Hjt3LlT9evXt5Q/c+aMnnjiCd19990KCQmxL3/kkUfUtm1b1axZU+vXr9fEiRN16NAhzZlT9LVtZs6cqaefftrV4QEAAJQ64icAAFCe2IwxxpWKvXr1kr+/vz7++OMS18nOztYVV1yhu+++W9OnT7esu+222/TLL79ozZo1DkFPQQsWLND999+vzMxMBQQEFFomKytLWVlZ9ucZGRmKjo5Wenr6Rbd9qbgQNhfCBgBcmoyMDIWGhrr9M9sbiJ8Kx4WwuRA2AODSuCt+culMo+TkZK1YsUJLlixxqp6fn5/atGmjPXv2OCzPzs7WgAEDlJycrFWrVhU7wNjYWOXk5OjAgQNq1qxZoWUCAgKKDIgAAAA8jfgJAACUNy5d0ygxMVERERHq27evU/Vyc3O1fft21a1b174sP+D56aeftGLFCtWqVavY7Wzbtk0+Pj6KiIhwuu8AAADeQPwEAADKG6fPNMrLy1NiYqKGDBkiX1/H6oMHD1a9evU0c+ZMSedu89qhQwc1adJEaWlpmjVrlpKTkzVixAhJ5wKe22+/XVu2bNEnn3yi3NxcpaamSpJq1qwpf39/JSUlaePGjbruuusUHByspKQkjRs3Tvfee69q1KhxqeMHAABwO+InAABQHjmdNFqxYoVSUlI0fPhwy7qUlBT5+Pxx8tKJEyc0cuRIpaamqkaNGmrXrp3Wr1+vFi1aSJIOHjyoZcuWSZJat27tsK3Vq1era9euCggI0OLFizV16lRlZWUpJiZG48aN0/jxXHMGAACUD8RPAACgPHL5QtjljacuqsmFsLkQNgDg0lTkC2GXN57aF1wImwthAwAujbs+s126phEAAAAAAAAqNpfunoaLcOVMmwOl3gurRh5ow1NcmWMnz06q9GeMeQBncwEA8rlyps1bM2xu6ImjQZMqzgn5rsyxs2cnVfYzxjyBs7kAeBpnGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxsxhjj7U54QkZGhkJDQ5Wenq6QkBC3tWOr67ZNe14jb3fAiyJdqLN0Tql3A55nzHhvdwGo9Dz1mY3ieWpfLLLZ3LZtTxs0qVKE1oUydzq/H4NjjrihJ/C0k9XDvd0FoNJz12c2ZxoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsfL3dgQqnkbc7gFKR6kKd/uOdr7N0jgsNwZ1strK5T4xx4fgCgHJi0CTj7S6gFNjedX4/mjttTtcJjjnidB24V/Cpo97uQqFOVg/3dheAco8zjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYOHr7Q5UOBvmOF+nw/jS7wc8L9WFOs7u+0gX2ljqwjGJMsdmK5v70RjevwBcuqAJR52uk5kQ7oaewNNs7xq3t2HutDldJzjmiBt6Ak8LPuX8e4snnKzO+xfKD840AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWPh6uwMAnJDqQp3+452vs3SOCw2hMrLZXDhWIl04Jp1kDrm9CQBAOWF71zhdx9xpc7pOcMwRp+ugcgo+ddTpOvODItzQE0f3GudfK6j4nDrTqFGjRrLZbJa/MWPGFFp+4cKFlrKBgYH29dnZ2XriiSfUsmVLVa9eXVFRURo8eLB+/fVXh+0cP35cAwcOVEhIiMLCwnTfffcpMzPTheECAAB4FvETAAAor5w602jTpk3Kzc21P9+xY4d69uypO+64o8g6ISEh2r17t/25zfZH1v7333/Xli1bNHnyZF199dU6ceKExo4dq5tvvlnffvutvdzAgQN16NAhLV++XNnZ2Ro2bJhGjRqlf/3rX850HwAAwOOInwAAQHnlVNIoPDzc4XlCQoIaN26sLl26FFnHZrMpMjKy0HWhoaFavny5w7K///3vat++vVJSUtSgQQPt2rVLn3/+uTZt2qRrrrlGkvTyyy/rhhtu0OzZsxUVFeXMEAAAADyK+AkAAJRXLl8I++zZs1q0aJGGDx/u8O1XQZmZmWrYsKGio6PVr18/7dy586LbTU9Pl81mU1hYmCQpKSlJYWFh9oBHknr06CEfHx9t3LixyO1kZWUpIyPD4Q8AAMCbiJ8AAEB54nLSaOnSpUpLS9PQoUOLLNOsWTMtWLBAH330kRYtWqS8vDzFx8frl19+KbT8mTNn9MQTT+juu+9WSEiIJCk1NVUREY4X/fL19VXNmjWVmlr0VYFnzpyp0NBQ+190dLTzgwQAAChFxE8AAKA8cTlp9Oabb6pPnz4XPb05Li5OgwcPVuvWrdWlSxctWbJE4eHheu211yxls7OzNWDAABljNH/+fFe7ZTdx4kSlp6fb/37++edL3iYAAMClIH4CAADliVPXNMqXnJysFStWaMmSJU7V8/PzU5s2bbRnzx6H5fkBT3JyslatWmX/lkySIiMjdeSI4+0rc3JydPz48SJ/6y9JAQEBCggIcKp/AAAA7kL8BAAAyhuXzjRKTExURESE+vbt61S93Nxcbd++XXXr1rUvyw94fvrpJ61YsUK1atVyqBMXF6e0tDRt3rzZvmzVqlXKy8tTbGysK90HAADwOOInAABQ3jh9plFeXp4SExM1ZMgQ+fo6Vh88eLDq1aunmTNnSpKmTZumDh06qEmTJkpLS9OsWbOUnJysESNGSDoX8Nx+++3asmWLPvnkE+Xm5tp/Z1+zZk35+/vriiuuUO/evTVy5Ei9+uqrys7O1kMPPaS77rqLO38AAIBygfgJAACUR04njVasWKGUlBQNHz7csi4lJUU+Pn+cvHTixAmNHDlSqampqlGjhtq1a6f169erRYsWkqSDBw9q2bJlkqTWrVs7bGv16tXq2rWrJOntt9/WQw89pO7du8vHx0e33XabXnrpJWe7DgAA4BXETwAAoDyyGWOMtzvhCRkZGQoNDVV6errDb/5Lm802x/lKHcaXfkeAfEVfuqJoS104joGSinT/e5455PYm4Eae+sxG8Ty1L4JPHXW6TmZCuBt6Apxj7rQ5XSc45kjxhQAXzQ+KKL7QJbq3cqQGKix3fWa7fPc0AAAAAAAAVFwu3T0NF+HKWUMbODupQjjgQp1GpdyHwqS6UKe/k8cXZyahjLHVLb7MJUv1zHFvDO/3qPhcOWsoaAJnJ1UEb81w/oyeQZPcfzaE7V3n23D27CTOTEJZs8jm/OvRWQ9meua4P1md9/vSwplGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACw8PV2ByqcAy7UiRxf2r2w2jDH+TodPNAvV7gyFmeV1bEDFUGqB17DnnhfdaUNF8Zus3lgvlxgDO+TKD1vzbA5X2mG81UGTTJOlQ+acNTpNjITwp2u4wmujMVZZXXsQEXwYOYRt7cxPyiiTLbhytiDT7n/Pc8VJ6uXv/dJzjQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABY2Iwxxtud8ISMjAyFhoYqPT1dISEhbmvHFudCpQMu1Emd41z5DuOdb2ODk2240k4j55twyWInxxLpwnw1cr5KhRHpQp2lLhxfgDu58rr3BGff78soY0o+v576zEbxPBY/TXa+zlszbE7XeTDziFPlMxPCnW4jaMJRp+s43c6MqU634YqgzDFOlZ8fFOF0G4MmVYr/ihTK3On8MRwc49wxDLibK697T3D2/b6sOlm95J8P7vrM5kwjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACAha+3OwBJjVypM9658hvmuNCIByx2oV8dnBy7Kxq5vwkAZUyqk+9HkR54LwJQpEGTjPOVEpwrHjThqPNteEBQ5hin62QmhLvQknPjd2mfACjXHsw84lT5+UERbuoJ3IUzjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYOHr7Q5UOBvmOF+nw/jS74e3ODv+sjr2Ay7UaVTKfajo+ruw75e68PoCAJR5QROOOl0nMyHcDT3xDmfHX1bH/tYMm9N1Bk0ybuhJxXVyf4TTdYJjjrihJwAqC6fONGrUqJFsNpvlb8yYMYWWX7hwoaVsYGCgQ5klS5bo+uuvV61atWSz2bRt2zbLdrp27WrZzgMPPOBM1wEAALyC+AkAAJRXTp1ptGnTJuXm5tqf79ixQz179tQdd9xRZJ2QkBDt3r3b/txmc/wG4tSpU+rYsaMGDBigkSNHFrmdkSNHatq0afbn1apVc6brAAAAXkH8BAAAyiunkkbh4Y6nwiYkJKhx48bq0qVLkXVsNpsiIyOLXD9o0CBJ0oEDBy7adrVq1S66HQAAgLKI+AkAAJRXLl8I++zZs1q0aJGGDx9u+fbrQpmZmWrYsKGio6PVr18/7dy506X23n77bdWuXVtXXXWVJk6cqN9///2i5bOyspSRkeHwBwAA4E3ETwAAoDxx+ULYS5cuVVpamoYOHVpkmWbNmmnBggVq1aqV0tPTNXv2bMXHx2vnzp2qX79+idu655571LBhQ0VFRen777/XE088od27d2vJkiVF1pk5c6aefvppZ4YEAADgVsRPAACgPHE5afTmm2+qT58+ioqKKrJMXFyc4uLi7M/j4+N1xRVX6LXXXtP06dNL3NaoUaPs/27ZsqXq1q2r7t27a+/evWrcuHGhdSZOnKjx4/+4O1NGRoaio6NL3CYAAEBpI34CAADliUtJo+TkZK1YseKi31QVxs/PT23atNGePXtcadYuNjZWkrRnz54ig56AgAAFBARcUjsAAAClhfgJAACUNy5d0ygxMVERERHq27evU/Vyc3O1fft21a1b15Vm7fJvK3up2wEAAPAU4icAAFDeOH2mUV5enhITEzVkyBD5+jpWHzx4sOrVq6eZM2dKkqZNm6YOHTqoSZMmSktL06xZs5ScnKwRI0bY6xw/flwpKSn69ddfJcl+e9nIyEhFRkZq7969+te//qUbbrhBtWrV0vfff69x48apc+fOatWqlcsDBwAA8BTiJwAAUB45nTRasWKFUlJSNHz4cMu6lJQU+fj8cfLSiRMnNHLkSKWmpqpGjRpq166d1q9frxYtWtjLLFu2TMOGDbM/v+uuuyRJU6ZM0dSpU+Xv768VK1Zo7ty5OnXqlKKjo3Xbbbdp0qRJznYdAADAK4ifAABAeWQzxhhvd8ITMjIyFBoaqvT0dIWEhLitHZttjvOVOowvvsyl2uBCvzzBE2OXnB9/pAv9auR8lQoj0kPtLC2jxzEqJ1feJ1yRWjGOe2NKPl+e+sxG8Ty1L4JPHXW6TmZCuBt64ihogvP98gRPjF1yfvzzgyKcbmPQpErxX5FCmTttHmknOOaIR9oBSsKV9wlXPJhZMY77k9VL/n7vrs9sl65pBAAAAAAAgIrNpbun4SLK6pkzZVVFGUdll+qhdvo7+fpypV8ckwDgcWX1zJmyqqKMo7KzveuZs6ycPaPJlX5xTAIVF2caAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALGzGGOPtTnhCRkaGQkNDlZ6erpCQELe1Y7PNcdu2K6QO4z3TzgEnyzdyoY0NLux7T42/sor0dge8bCnvR2VOpAde86llc78bU/Kxe+ozG8Xz1L4IPnXUbduuiDITwj3SzlszbE6VHzTJ+f9WBE1wft97avyVlbnTuf1e0QTHHPF2F1DA/KAIt7fxYGbZ3O8nq5f8/c5dn9mcaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAtfb3cAHtJhvLd7ULhGLtRZ46F2nFVW57gyS3WhTmSp98J7PHFMujJfS+eUeje8ItJDr/nUCjJfQDmUmRDu7S4UbsZUp6u8paedrjNoknG6jrPK7BxXYrZ3nd/v5k6bG3riHZ44Jl2Zr+CYI27oiefND4rwSDsPZlaM+SoLONMIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABg4evtDlQ4HcZ7uweF2zDH+TqeGMsaF+o0KuU+FKaszhfcL9CFOmdKvRelI9LbHShCfydfK0tdeD2WVakVaCxAKcpMCPd2FwoVNOGo03U8MZa39LTTdQZNMm7oiaOyOl9wP1vLKU7XMdudP449wdxp83YXCnVyf4RT5YNjjripJ573YGbFGUt5xJlGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC19nCjdq1EjJycmW5aNHj9a8efMsyxcuXKhhw4Y5LAsICNCZM2fsz5csWaJXX31Vmzdv1vHjx7V161a1bt3aoc6ZM2f05z//WYsXL1ZWVpZ69eqlV155RXXq1HGm+56xYY7zdTqMd387rrThCY283QEvc+V4cVZZ3feuKKvHfaqT5SPd0gurpR44vvp7YI498R7pilQPtIEKgfipeEETjjpdJzMh3O3tuNKGJwyaZLzdBa9y5XhxVlnd964oq8e97V3njmNzp81NPXEUHHPE7W2c3B/h9jY88R7pigcz3T+/KF1OnWm0adMmHTp0yP63fPlySdIdd9xRZJ2QkBCHOgWDplOnTqljx4569tlni9zGuHHj9PHHH+v999/Xf//7X/3666+69dZbnek6AACAVxA/AQCA8sqpM43Cwx2zlQkJCWrcuLG6dOlSZB2bzabIyKK/Vh80aJAk6cCBA4WuT09P15tvvql//etf6tatmyQpMTFRV1xxhTZs2KAOHTo4MwQAAACPIn4CAADllcvXNDp79qwWLVqk4cOHy2Yr+lTBzMxMNWzYUNHR0erXr5927tzpVDubN29Wdna2evToYV/WvHlzNWjQQElJSUXWy8rKUkZGhsMfAACANxE/AQCA8sTlpNHSpUuVlpamoUOHFlmmWbNmWrBggT766CMtWrRIeXl5io+P1y+//FLidlJTU+Xv76+wsDCH5XXq1FFqatEXEpk5c6ZCQ0Ptf9HR0SVuEwAAwB2InwAAQHnictLozTffVJ8+fRQVFVVkmbi4OA0ePFitW7dWly5dtGTJEoWHh+u1115ztdkSmzhxotLT0+1/P//8s9vbBAAAuBjiJwAAUJ44dU2jfMnJyVqxYoWWLFniVD0/Pz+1adNGe/bsKXGdyMhInT17VmlpaQ7flh0+fPiiv/UPCAhQQECAU/0DAABwF+InAABQ3rh0plFiYqIiIiLUt29fp+rl5uZq+/btqlu3bonrtGvXTn5+flq5cqV92e7du5WSkqK4uDin2gcAAPAW4icAAFDeOH2mUV5enhITEzVkyBD5+jpWHzx4sOrVq6eZM2dKkqZNm6YOHTqoSZMmSktL06xZs5ScnKwRI0bY6xw/flwpKSn69ddfJZ0LaKRz35BFRkYqNDRU9913n8aPH6+aNWsqJCREDz/8sOLi4rjzBwAAKBeInwAAQHnkdNJoxYoVSklJ0fDhwy3rUlJS5OPzx8lLJ06c0MiRI5WamqoaNWqoXbt2Wr9+vVq0aGEvs2zZMg0bNsz+/K677pIkTZkyRVOnTpUkvfDCC/Lx8dFtt92mrKws9erVS6+88oqzXQcAAPAK4icAAFAeOZ00uv7662WMKXTdmjVrHJ6/8MILeuGFFy66vaFDh170DiKSFBgYqHnz5mnevHnOdBUAAKBMIH4CAADlkct3TwMAAAAAAEDFRdIIAAAAAAAAFk7/PA3F6DDe+TqNXGinkZPtHHChDThnwxxv96B88cR8udKGs68tSSr67tWlZ2klPr48Mb8AvCozIdz5SjOmOt/ODCcrTHK+DTgnaMJRb3ehXPHEfLnShtOvLUnmTpvzlZwUHHPE7W2UVa7Mb7Aq73yhaJxpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC19vd6CimbLB5nSdp2Xc0BMv2TDHufIdxrunH5fKlX45O3ZPKav9KqvOeKCNpWV0n7hy3Lsylv5l9HUPwGumzHAhfppUceKnoAlHnSqfmRDupp5cGlf65ezYPaWs9qusMtufdnsbwTFH3N6GK1w57oMnOD+Wk/sjnK4DlAbONAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFjYjDHG253whIyMDIWGhio9PV0hISFua8cW53ydKRtsTtd5ukOl2G3ec8CFOqlzSrsXwKXpMN7bPSgdkR5qZymvYXcypuTHo6c+s1E8j8VPk52vM2WGC/HTJOInd3rLhX3yYOYRN/QEcF1mQri3u1AqzJ3Ovx5dERzDa9idTlYv+fHors9szjQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABY2Iwxxtud8ISMjAyFhoYqPT1dISEhbmvHZpvqtm1fkg5Tvd2D0nPAA22kzvFAI3C7DuO93YPCbSijx1dZnS9XlNU5rsSMKfnx5anPbBTPU/si+NRRt237UmQmhHu7C6XmrRk2t7fxYOYRt7cB9yurx33QBN4n3K2sznFldrJ6yY8vd31mc6YRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsfJ0p3KhRIyUnJ1uWjx49WvPmzbMsX7hwoYYNG+awLCAgQGfOnLE/N8ZoypQpeuONN5SWlqZrr71W8+fPV9OmTS/a7syZMzVhwgRnul+5bZjqfJ0OLtRx1oY57m8DqAg6jPd2D8oXV+aL9yO4CfFT+RU04ajTdTITwt3QE0eu9OvBCUfc0BOgbPPE67EicWW+XHk/QvniVNJo06ZNys3NtT/fsWOHevbsqTvuuKPIOiEhIdq9e7f9uc1mc1j/3HPP6aWXXtL//d//KSYmRpMnT1avXr30ww8/KDAw0F5u2rRpGjlypP15cHCwM10HAADwCuInAABQXjmVNAoPd8w8JiQkqHHjxurSpUuRdWw2myIjIwtdZ4zR3LlzNWnSJPXr10+S9M9//lN16tTR0qVLddddd9nLBgcHF7kdAACAsor4CQAAlFcuX9Po7NmzWrRokYYPH2759utCmZmZatiwoaKjo9WvXz/t3LnTvm7//v1KTU1Vjx497MtCQ0MVGxurpKQkh+0kJCSoVq1aatOmjWbNmqWcnJyL9i8rK0sZGRkOfwAAAN5E/AQAAMoTp840utDSpUuVlpamoUOHFlmmWbNmWrBggVq1aqX09HTNnj1b8fHx2rlzp+rXr6/U1FRJUp06dRzq1alTx75Okh555BG1bdtWNWvW1Pr16zVx4kQdOnRIc+YUff2JmTNn6umnn3Z1eAAAAKWO+AkAAJQnLieN3nzzTfXp00dRUVFFlomLi1NcXJz9eXx8vK644gq99tprmj59eonbGj/+jwuatmrVSv7+/rr//vs1c+ZMBQQEFFpn4sSJDvUyMjIUHR1d4jYBAABKG/ETAAAoT1z6eVpycrJWrFihESNGOFXPz89Pbdq00Z49eyTJ/hv7w4cPO5Q7fPjwRX9/Hxsbq5ycHB04cKDIMgEBAQoJCXH4AwAA8BbiJwAAUN64lDRKTExURESE+vbt61S93Nxcbd++XXXr1pUkxcTEKDIyUitXrrSXycjI0MaNGx2+YSto27Zt8vHxUUREhCvdBwAA8DjiJwAAUN44/fO0vLw8JSYmasiQIfL1daw+ePBg1atXTzNnzpR07javHTp0UJMmTZSWlqZZs2YpOTnZ/g2bzWbTo48+qhkzZqhp06b2W8ZGRUWpf//+kqSkpCRt3LhR1113nYKDg5WUlKRx48bp3nvvVY0aNS5x+AAAAO5H/AQAAMojp5NGK1asUEpKioYPH25Zl5KSIh+fP05eOnHihEaOHKnU1FTVqFFD7dq10/r169WiRQt7mccff1ynTp3SqFGjlJaWpo4dO+rzzz9XYGCgpHOnSS9evFhTp05VVlaWYmJiNG7cOIff2wMAAJRlxE8AAKA8shljjLc74QkZGRkKDQ1Venq6W3+fb7NNddu2Pa7DVPe3saHoO7gAl6xDGf3PkSvHfVkdS0XC+5FbGVPyY9hTn9konqf2RfCpo27btqdlJoS7vY2gCRVnvlD2eOIYdoUrx31ZHUtFwvuRe52sXvJj2F2f2S5d0wgAAAAAAAAVG0kjAAAAAAAAWDh9TSNcnDFTPdKOR34Gt8GFNpz9SZunfnLDz04qhoryE62KMg54RpCTx0sm73cof5w5/f5SeOJncJ74CY2nfnLDz04qhoryE62KMg54xvwg5+4U+mDmETf1pPzjTCMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAICFr7c7ANcYM9XbXSiUzTbVuQodnCxf0dw13rnyi+e4px/e0MHJsQOVVWYFet0DXnayeri3u1Co4AlHnSqfmVA2x+EpmUHznCoflDnGTT3xvMq+74GSejDziLe7UGFwphEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACx8vd0BVCzGTPV2Fwpls3mgkQ7jna9zoNR7UX5smON8HVfmGJWTK8cXAHjJyerhzlWY7p5+FBR8yv1tZCY4OXZJmjTVyQpHnW+jjAqa4PxYXJpjVEquHF+o+DjTCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYOHr7Q4AnmDMeG93oVC2OG/3ABVaIyfLH3BDH0rDhjne7gEAVEonq4e7v5HpzlexTS79bgB2M6Y6V36Sk+U9JGjCUW93ARUEZxoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsfJ0p3KhRIyUnJ1uWjx49WvPmzbMsX7hwoYYNG+awLCAgQGfOnLE/N8ZoypQpeuONN5SWlqZrr71W8+fPV9OmTe1ljh8/rocfflgff/yxfHx8dNttt+nFF19UUFCQM90HyhyT5GyN8e7oxiWz2eZ4uwsozAHnijt/PHpK2TzugZIifgJKl5nubI1wd3TjkgWfOurtLqAwk6Y6Vdz549FTyuZxj/LHqTONNm3apEOHDtn/li9fLkm64447iqwTEhLiUKdg0PTcc8/ppZde0quvvqqNGzeqevXq6tWrl0NgNHDgQO3cuVPLly/XJ598oq+++kqjRo1ypusAAABeQfwEAADKK6fONAoPd8xWJiQkqHHjxurSpUuRdWw2myIjIwtdZ4zR3LlzNWnSJPXr10+S9M9//lN16tTR0qVLddddd2nXrl36/PPPtWnTJl1zzTWSpJdfflk33HCDZs+eraioKGeGAAAA4FHETwAAoLxy+ZpGZ8+e1aJFizR8+HDZbLYiy2VmZqphw4aKjo5Wv379tHPnTvu6/fv3KzU1VT169LAvCw0NVWxsrJKSzv1OIikpSWFhYfaAR5J69OghHx8fbdy4sch2s7KylJGR4fAHAADgTcRPAACgPHE5abR06VKlpaVp6NChRZZp1qyZFixYoI8++kiLFi1SXl6e4uPj9csvv0iSUlNTJUl16tRxqFenTh37utTUVEVERDis9/X1Vc2aNe1lCjNz5kyFhoba/6Kjo10ZJgAAQKkhfgIAAOWJy0mjN998U3369Lno6c1xcXEaPHiwWrdurS5dumjJkiUKDw/Xa6+95mqzJTZx4kSlp6fb/37++We3twkAAHAxxE8AAKA8ceqaRvmSk5O1YsUKLVmyxKl6fn5+atOmjfbs2SNJ9t/qHz58WHXr1rWXO3z4sFq3bm0vc+TIEYft5OTk6Pjx40X+1l86d5eRgIAAp/oHAADgLsRPAACgvHHpTKPExERFRESob9++TtXLzc3V9u3b7QFOTEyMIiMjtXLlSnuZjIwMbdy4UXFxcZLOfduWlpamzZs328usWrVKeXl5io2NdaX7AAAAHkf8BAAAyhunzzTKy8tTYmKihgwZIl9fx+qDBw9WvXr1NHPmTEnStGnT1KFDBzVp0kRpaWmaNWuWkpOTNWLECEnn7gzy6KOPasaMGWratKliYmI0efJkRUVFqX///pKkK664Qr1799bIkSP16quvKjs7Ww899JDuuusu7vwBAADKBeInAABQHjmdNFqxYoVSUlI0fPhwy7qUlBT5+Pxx8tKJEyc0cuRIpaamqkaNGmrXrp3Wr1+vFi1a2Ms8/vjjOnXqlEaNGqW0tDR17NhRn3/+uQIDA+1l3n77bT300EPq3r27fHx8dNttt+mll15ytusAAABeQfwEAADKI5sxxni7E56QkZGh0NBQpaenKyQkxNvdASoUm22OZxrqMN4z7VRSJsnbPQDO4TO77GBfAO4TfOqoR9rJTAj3SDuVlZnu7R4A57jrM9vlu6cBAAAAAACg4nLp7mkAcCFjOAMIAADAGSere+gMIM6EAXAJONMIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWvt7ugKcYYyRJGRkZXu4JAAC4mPzP6vzPbngP8RMAAOWDu+KnSpM0OnnypCQpOjrayz0BAAAlcfLkSYWGhnq7G5Ua8RMAAOVLacdPNlNJvsbLy8vTr7/+quDgYNlsNm93x2MyMjIUHR2tn3/+WSEhId7ujsdV5vEzdsZe2cYuVe7xV6SxG2N08uRJRUVFyceHX9J7E/FT+X89uaIyj5+xM3bGXrlUpPG7K36qNGca+fj4qH79+t7uhteEhISU+xfBpajM42fsjL0yqszjryhj5wyjsoH4qWK8nlxVmcfP2Bl7ZVOZxy5VnPG7I37i6zsAAAAAAABYkDQCAAAAAACABUmjCi4gIEBTpkxRQECAt7viFZV5/IydsVdGlXn8lXnsQGmr7K+nyjx+xs7YK5vKPHaJ8ZdEpbkQNgAAAAAAAEqOM40AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0qiMSUhIkM1m06OPPmpf9vrrr6tr164KCQmRzWZTWlqapd7x48c1cOBAhYSEKCwsTPfdd58yMzMdynz//ffq1KmTAgMDFR0dreeee86ynffff1/NmzdXYGCgWrZsqU8//dRhvTFGTz31lOrWrauqVauqR48e+umnn7w69kaNGslmszn8JSQklOuxHz9+XA8//LCaNWumqlWrqkGDBnrkkUeUnp7uUC8lJUV9+/ZVtWrVFBERoccee0w5OTkOZdasWaO2bdsqICBATZo00cKFCy3tz5s3T40aNVJgYKBiY2P1zTffOKw/c+aMxowZo1q1aikoKEi33XabDh8+XCpjv5TxF9zvNptNixcvLlfjL+y4v//++9W4cWNVrVpV4eHh6tevn3788UeHehVh37s69oq63/MZY9SnTx/ZbDYtXbrUYV1F2O+AOxA/ET9JlSt+qsyxU2Hjl4ifiJ+In9zGoMz45ptvTKNGjUyrVq3M2LFj7ctfeOEFM3PmTDNz5kwjyZw4ccJSt3fv3ubqq682GzZsMF9//bVp0qSJufvuu+3r09PTTZ06dczAgQPNjh07zDvvvGOqVq1qXnvtNXuZdevWmSpVqpjnnnvO/PDDD2bSpEnGz8/PbN++3V4mISHBhIaGmqVLl5rvvvvO3HzzzSYmJsacPn3aa2Nv2LChmTZtmjl06JD9LzMzs1yPffv27ebWW281y5YtM3v27DErV640TZs2Nbfddpu9Xk5OjrnqqqtMjx49zNatW82nn35qateubSZOnGgvs2/fPlOtWjUzfvx488MPP5iXX37ZVKlSxXz++ef2MosXLzb+/v5mwYIFZufOnWbkyJEmLCzMHD582F7mgQceMNHR0WblypXm22+/NR06dDDx8fGXNO5LHb8xxkgyiYmJDvv+wv1R1sdf1HH/2muvmf/+979m//79ZvPmzeamm24y0dHRJicnxxhTMfa9q2M3puLu93xz5swxffr0MZLMhx9+aF9eEfY74A7ET8RPlS1+qsyxU1HjN4b4ifiJ+MldSBqVESdPnjRNmzY1y5cvN126dCn0hbB69epCP/h/+OEHI8ls2rTJvuyzzz4zNpvNHDx40BhjzCuvvGJq1KhhsrKy7GWeeOIJ06xZM/vzAQMGmL59+zpsOzY21tx///3GGGPy8vJMZGSkmTVrln19WlqaCQgIMO+8845Xxm7MuaDnhRdeKHL75X3s+d577z3j7+9vsrOzjTHGfPrpp8bHx8ekpqbay8yfP9+EhITYx/r444+bK6+80mE7d955p+nVq5f9efv27c2YMWPsz3Nzc01UVJSZOXOmfZx+fn7m/ffft5fZtWuXkWSSkpJcHrsxlzZ+Y4zlQ6Ggsjx+Z8b+3XffGUlmz549xpjyv+8vZezGVOz9vnXrVlOvXj1z6NAhyzjL+34H3IH4ifipssVPlTl2Mob4ifiJ+Mkb+HlaGTFmzBj17dtXPXr0cLpuUlKSwsLCdM0119iX9ejRQz4+Ptq4caO9TOfOneXv728v06tXL+3evVsnTpywlynYfq9evZSUlCRJ2r9/v1JTUx3KhIaGKjY21l7GFZcy9nwJCQmqVauW2rRpo1mzZjmcblhRxp6enq6QkBD5+vra+9yyZUvVqVPHoc8ZGRnauXNnicZ19uxZbd682aGMj4+PevToYS+zefNmZWdnO5Rp3ry5GjRocEljly5t/Bduo3bt2mrfvr0WLFggY4x9XVkef0nHfurUKSUmJiomJkbR0dH2cZXnfX8pY79wGxVtv//++++65557NG/ePEVGRlrWl/f9DrgD8RPxU3EqWvxUmWOn/L4TPxE/XYj4yf18iy8Cd1u8eLG2bNmiTZs2uVQ/NTVVERERDst8fX1Vs2ZNpaam2svExMQ4lMl/4aSmpqpGjRpKTU11eDHll7lwGxfWK6yMsy517JL0yCOPqG3btqpZs6bWr1+viRMn6tChQ5ozZ4693+V97L/99pumT5+uUaNG2ZcV1ecL+1tUmYyMDJ0+fVonTpxQbm5uoWXyfwedmpoqf39/hYWFWcq4Onbp0scvSdOmTVO3bt1UrVo1ffnllxo9erQyMzP1yCOP2PteFsdfkrG/8sorevzxx3Xq1Ck1a9ZMy5cvtwfu5XnfX+rYpYq738eNG6f4+Hj169ev0PXleb8D7kD8RPxUnIoWP1Xm2EkifiJ+In7yFpJGXvbzzz9r7NixWr58uQIDA73dHY8qrbGPHz/e/u9WrVrJ399f999/v2bOnKmAgIDS6Gqpc2bsGRkZ6tu3r1q0aKGpU6d6poNuVlrjnzx5sv3fbdq00alTpzRr1iz7h19ZVNKxDxw4UD179tShQ4c0e/ZsDRgwQOvWrSvX7xOlNfaKuN+XLVumVatWaevWrV7oHVD+ED8RP1W2+Kkyx04S8RPxE/GTN/HzNC/bvHmzjhw5orZt28rX11e+vr7673//q5deekm+vr7Kzc0tdhuRkZE6cuSIw7KcnBwdP37cfopeZGSk5crt+c+LK3Ph+gvrFVbGGaUx9sLExsYqJydHBw4csPe7vI795MmT6t27t4KDg/Xhhx/Kz8/Pvo1LGVdISIiqVq2q2rVrq0qVKsWO/ezZs5Y7r7g69tIaf2FiY2P1yy+/KCsrq8yOv6RjDw0NVdOmTdW5c2d98MEH+vHHH/Xhhx9edFz56yry2AtTEfb78uXLtXfvXoWFhdnXS9Jtt92mrl27XnRc+evK6tgBdyB+In6qbPFTZY6dnBk/8RPxk0T8VNpIGnlZ9+7dtX37dm3bts3+d80112jgwIHatm2bqlSpUuw24uLilJaWps2bN9uXrVq1Snl5eYqNjbWX+eqrr5SdnW0vs3z5cjVr1kw1atSwl1m5cqXDtpcvX664uDhJUkxMjCIjIx3KZGRkaOPGjfYynh57YbZt2yYfHx/7KefldewZGRm6/vrr5e/vr2XLllmy63Fxcdq+fbtDwLt8+XKFhISoRYsWJRqXv7+/2rVr51AmLy9PK1eutJdp166d/Pz8HMrs3r1bKSkpLo29tMZfmG3btqlGjRr2b0jL4vhdOe7NuZsW2D/Uy+u+L42xF6Yi7Pcnn3xS33//vcN6SXrhhReUmJhoH1d53O+AOxA/ET9VtvipMsdOJR1/QcRPxE/54yqP+71M8c71t3ExBa8If+jQIbN161bzxhtvGEnmq6++Mlu3bjXHjh2zl+ndu7dp06aN2bhxo1m7dq1p2rSpwy1j09LSTJ06dcygQYPMjh07zOLFi021atUst0319fU1s2fPNrt27TJTpkwp9LapYWFh5qOPPjLff/+96devX6ncNtXVsa9fv9688MILZtu2bWbv3r1m0aJFJjw83AwePLhcjz09Pd3Exsaali1bmj179jjcGrPgbUOvv/56s23bNvP555+b8PDwQm8f+dhjj5ldu3aZefPmFXr7yICAALNw4ULzww8/mFGjRpmwsDCHOww88MADpkGDBmbVqlXm22+/NXFxcSYuLq5Uxu3q+JctW2beeOMNs337dvPTTz+ZV155xVSrVs089dRT5W78F45979695plnnjHffvutSU5ONuvWrTM33XSTqVmzpv2WnhVp3zs79oq63wujIm4ZWxH2O+AOxE8lHzvxU8V4L63MsVPB8RM/ET/lI34qfSSNyqCCL4QpU6YYSZa/xMREe5ljx46Zu+++2wQFBZmQkBAzbNgwc/LkSYftfvfdd6Zjx44mICDA1KtXzyQkJFjafu+998zll19u/P39zZVXXmn+85//OKzPy8szkydPNnXq1DEBAQGme/fuZvfu3V4b++bNm01sbKwJDQ01gYGB5oorrjDPPPOMOXPmTLkee/4tcgv7279/v73OgQMHTJ8+fUzVqlVN7dq1zZ///GeH26rmb6t169bG39/fXHbZZQ7HTb6XX37ZNGjQwPj7+5v27dubDRs2OKw/ffq0GT16tKlRo4apVq2aueWWW8yhQ4dKbeyujP+zzz4zrVu3NkFBQaZ69erm6quvNq+++qrJzc0td+O/cOwHDx40ffr0MREREcbPz8/Ur1/f3HPPPebHH390qFNR9r2zY6+o+70wBYMeYyrOfgfcgfip5GMnfqoY76WVOXYqOH7iJ+KnfMRPpc9mzAX32avgzpw5o7Nnz3q7GwAAoBj+/v7l+sKlFQnxEwAA5YM74qdKc/e0M2fOqGrVcEmZ3u4KAAAoRmRkpPbv30/iyMuInwAAKD/cET9VmqTRuW/IMiWNk1T9/NL8uwn4FvF4sfV+JShTWuuLq3PxuyLY5V8jragmfS6yrkoRy11ZX9Q6v0LKXqzfVUqwvqTbKK7fF5u7S50be7nzJ/355jo82qrknHvqm6sq55dV8c07/5hz/vH8cp/zjyr80ff8o49l/fk2lGdfXsVSNsdhG1UuKHuuXMH1xfehuDLO96HocgXHWlTbf2yzuHLWOStpP4ufs+L7UOy+PX8njSo559vINeefy+HRdq4pnW/K+ph7/q/gMmee5z8W1VZuKW+ruOcl3VbBbTjTt9LcVjF9yz5f9/yutjzPyXWskn9J24KbKmr5hesvtq6k2yhJG1mSXkhN1dmzZ0kaedmlx09FrSvN+KmkdUshfiosdrpYk5cSI5S07qXET8XFRaUZP5V2bFlY/FRI7CTJLfFTYXHAhY+lGT8VHb+VXvxUfOxSevFTwTlzR/xUdPtuiJ9c/ax3JRZwZyyW/7wUY5Ri++bOWKzg8gJ13BE/uRL3OFOusOFcuM5d8VOlSRr9IUBS/gQWFTyU5HlRQY87npe0ThFsJXz00R/BT1GPBYOAgo8lCWyKC3pKc31Jt1FsQFKCNlyp6/B48aSRzS9Xtvxl9sdz63zOP/fxcfzg8ynw4Vp0sGH9gC86SVJcEqXk60u/jfzHKhdpy6eE27CdL+fjUO+PR1uB7djsy/54OdgKbFMFHs35cgWX5z/m99U4lK8ic8G/8wq0df4x9/xjzvl+FhX0FPVhe7EkS0nqOLu8NLdV2PIqF6wvONH5dYp63yu4TVuB9QXfS/PLF8ZW4HnBH4ibIpYX1TcjZZ8PjM7vamXbCjw/X7S4AKUkz4srW9w2fItZX+WCf6OscTV+KmpdacZLl9pGEQqLlwqLnUry6Er85M74KH99cbFJacZPpRl7OTwWnTSy+RWMm0ovfio+OVJ68VPxMculx0+FxU6Oj6UXP/kWKOuO+Kmw2MnxsRTjp0uNUZyp585YrGAbBeMkd8RPJYmdLqybz5X4ycexjDviJ1diq5KUKyx+Krib3Bk/+RRfBAAAAAAAAJUNSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACAha+3O+B5Wfpj2LnnH/Of5xTzPPuC537n/+1XoEzBx9JYX1yd/OdFMCV8zDv/p0Iebecfcws8z39UEc8L9qGodi9UsO0qRZTPLbC+4PIc/TFFVQqsK7i8qOmvUuCxsN1V0m0Utd5e7vwAfXMdHk2Vc8eh8c2VyV/mm3f+8dy6vPPLbT7nH1X4Y559Ago+5pwvd+Eknm/L/pjjUMecL2vs284p8Lzwx/z1ucpVlfP/LviYV+C5j/15jr3uued5Fy3ne0G5KgXWFdX2H9ssrlx+G3/04WLtF7aN/PK+Rfah6Mc//m3Ob8Oc3+a5xyq55x9zzq8/v6vPH072R1v+Ls8p4vGPQ0EFDoGSP89/LKqt3FLeVnHPS7qtgttwpm8l3VZxj0W9J1/wmH3+reP8rrY8L9iFbDm3/ML1F1tX0m2UpI0soexxNX7KLrDOHfFTSeuWQvxUVAzjjvjJFPG8NOOnwmInyT3xk7PxkSvxUyGxk+NjacZPhcVOfzyWZvx0Yex0bmpKP34qPnYpvfjJt5D2L6xbGvFT8bFUKcZPrsYNrsQ87ozF8p9f6racmQdXt+VK/FRgmTviJ1fiHmfKXbi8sHXuip8qTdLI399fkZGRSk19wdtd8Z6CLyaUC/mxXrb+eFMAgIouMjJS/v7+3u5GpWeMUVBQkDIziZ+In8qPC2OnCx8BoKJzR/xkM8YU/B6jwjpz5ozOnj3r7W4UKiMjQ9HR0fr5558VEhLi7e54DfNwDvNwDvNwDvNwDvNwTmWZB39/fwUGBnq7G5VeRkaGQkNDK/zxVtZUltd5WcTcewfz7j3MvXe4a97dET9VmjONJCkwMLDMB6AhISG8WMU85GMezmEezmEezmEezmEe4Ekcb97BvHsPc+8dzLv3MPfeUR7mnQthAwAAAAAAwIKkEQAAAAAAACxIGpURAQEBmjJligICArzdFa9iHs5hHs5hHs5hHs5hHs5hHuBJHG/ewbx7D3PvHcy79zD33lGe5r1SXQgbAAAAAAAAJcOZRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGHnL8+HENHDhQISEhCgsL03333afMzMyLln/44YfVrFkzVa1aVQ0aNNAjjzyi9PR0h3I2m83yt3jxYncPp8TmzZunRo0aKTAwULGxsfrmm28uWv79999X8+bNFRgYqJYtW+rTTz91WG+M0VNPPaW6deuqatWq6tGjh3766Sd3DqFUODMPb7zxhjp16qQaNWqoRo0a6tGjh6X80KFDLfu9d+/e7h7GJXNmHhYuXGgZY2BgoEOZynA8dO3atdDXed++fe1lyuPx8NVXX+mmm25SVFSUbDabli5dWmydNWvWqG3btgoICFCTJk20cOFCSxln33O8zdl5WLJkiXr27Knw8HCFhIQoLi5OX3zxhUOZqVOnWo6H5s2bu3EUKO9K+7MaJVPasQFKztXPisWLF8tms6l///7u7WAF5ey8p6WlacyYMapbt64CAgJ0+eWX837jImfnfu7cufb/h0ZHR2vcuHE6c+aMh3pbMbgr1vUKA4/o3bu3ufrqq82GDRvM119/bZo0aWLuvvvuIstv377d3HrrrWbZsmVmz549ZuXKlaZp06bmtttucygnySQmJppDhw7Z/06fPu3u4ZTI4sWLjb+/v1mwYIHZuXOnGTlypAkLCzOHDx8utPy6detMlSpVzHPPPWd++OEHM2nSJOPn52e2b99uL5OQkGBCQ0PN0qVLzXfffWduvvlmExMTU2bGXBhn5+Gee+4x8+bNM1u3bjW7du0yQ4cONaGhoeaXX36xlxkyZIjp3bu3w34/fvy4p4bkEmfnITEx0YSEhDiMMTU11aFMZTgejh075jAHO3bsMFWqVDGJiYn2MuXxePj000/Nk08+aZYsWWIkmQ8//PCi5fft22eqVatmxo8fb3744Qfz8ssvmypVqpjPP//cXsbZuS0LnJ2HsWPHmmeffdZ888035n//+5+ZOHGi8fPzM1u2bLGXmTJlirnyyisdjoejR4+6eSQor9zxWY3iuSM2QMm4+lmxf/9+U69ePdOpUyfTr18/z3S2AnF23rOyssw111xjbrjhBrN27Vqzf/9+s2bNGrNt2zYP97z8c3bu3377bRMQEGDefvtts3//fvPFF1+YunXrmnHjxnm45+WbO2JdbyFp5AE//PCDkWQ2bdpkX/bZZ58Zm81mDh48WOLtvPfee8bf399kZ2fbl5XkAPSW9u3bmzFjxtif5+bmmqioKDNz5sxCyw8YMMD07dvXYVlsbKy5//77jTHG5OXlmcjISDNr1iz7+rS0NBMQEGDeeecdN4ygdDg7DwXl5OSY4OBg83//93/2ZUOGDCl3AYuz85CYmGhCQ0OL3F5lPR5eeOEFExwcbDIzM+3LyuPxcKGSvI89/vjj5sorr3RYduedd5pevXrZn1/q3Hqbq+/nLVq0ME8//bT9+ZQpU8zVV19deh1DhVban9UoGXfEBigZV+Y+JyfHxMfHm3/84x/l/jPXW5yd9/nz55vLLrvMnD171lNdrLCcnfsxY8aYbt26OSwbP368ufbaa93az4qstGJdb+HnaR6QlJSksLAwXXPNNfZlPXr0kI+PjzZu3Fji7aSnpyskJES+vr4Oy8eMGaPatWurffv2WrBggYwxpdZ3V509e1abN29Wjx497Mt8fHzUo0cPJSUlFVonKSnJobwk9erVy15+//79Sk1NdSgTGhqq2NjYIrfpba7MQ0G///67srOzVbNmTYfla9asUUREhJo1a6YHH3xQx44dK9W+lyZX5yEzM1MNGzZUdHS0+vXrp507d9rXVdbj4c0339Rdd92l6tWrOywvT8eDK4p7fyiNuS2P8vLydPLkScv7w08//aSoqChddtllGjhwoFJSUrzUQ5Rl7visRvHcGRvg4lyd+2nTpikiIkL33XefJ7pZ4bgy78uWLVNcXJzGjBmjOnXq6KqrrtIzzzyj3NxcT3W7QnBl7uPj47V582b7T9j27dunTz/9VDfccINH+lxZleXPV9/ii+BSpaamKiIiwmGZr6+vatasqdTU1BJt47ffftP06dM1atQoh+XTpk1Tt27dVK1aNX355ZcaPXq0MjMz9cgjj5Ra/13x22+/KTc3V3Xq1HFYXqdOHf3444+F1klNTS20fP4c5T9erExZ48o8FPTEE08oKirK4U2kd+/euvXWWxUTE6O9e/fqr3/9q/r06aOkpCRVqVKlVMdQGlyZh2bNmmnBggVq1aqV0tPTNXv2bMXHx2vnzp2qX79+pTwevvnmG+3YsUNvvvmmw/Lydjy4oqj3h4yMDJ0+fVonTpy45NdaeTR79mxlZmZqwIAB9mWxsbFauHChmjVrpkOHDunpp59Wp06dtGPHDgUHB3uxtyhr3PFZjeK5KzZA8VyZ+7Vr1+rNN9/Utm3bPNDDismVed+3b59WrVqlgQMH6tNPP9WePXs0evRoZWdna8qUKZ7odoXgytzfc889+u2339SxY0cZY5STk6MHHnhAf/3rXz3R5UqruFi3atWqXuoZSaNLMmHCBD377LMXLbNr165LbicjI0N9+/ZVixYtNHXqVId1kydPtv+7TZs2OnXqlGbNmuX1pBFKR0JCghYvXqw1a9Y4XAT6rrvusv+7ZcuWatWqlRo3bqw1a9aoe/fu3uhqqYuLi1NcXJz9eXx8vK644gq99tprmj59uhd75j1vvvmmWrZsqfbt2zssrwzHA6z+9a9/6emnn9ZHH33k8MVEnz597P9u1aqVYmNj1bBhQ7333nt8Sw5UAEXFBih9J0+e1KBBg/TGG2+odu3a3u5OpZKXl6eIiAi9/vrrqlKlitq1a6eDBw9q1qxZJI3cbM2aNXrmmWf0yiuvKDY2Vnv27NHYsWM1ffp0h/97ovIgaXQJ/vznP2vo0KEXLXPZZZcpMjJSR44ccViek5Oj48ePKzIy8qL1T548qd69eys4OFgffvih/Pz8Llo+NjZW06dPV1ZWlgICAko0DneoXbu2qlSposOHDzssP3z4cJFjjoyMvGj5/MfDhw+rbt26DmVat25dir0vPa7MQ77Zs2crISFBK1asUKtWrS5a9rLLLlPt2rW1Z8+eMpkkuJR5yOfn56c2bdpoz549kirf8XDq1CktXrxY06ZNK7adsn48uKKo94eQkBBVrVpVVapUueRjrDxZvHixRowYoffff7/YMw3CwsJ0+eWX2187QD53fFajeJ6KDWDl7Nzv3btXBw4c0E033WRflpeXJ+ncrwZ2796txo0bu7fTFYArx3zdunXl5+fncMb0FVdcodTUVJ09e1b+/v5u7XNF4crcT548WYMGDdKIESMknftC8tSpUxo1apSefPJJ+fhwhRt3KC7W9Sb2+CUIDw9X8+bNL/rn7++vuLg4paWlafPmzfa6q1atUl5enmJjY4vcfkZGhq6//nr5+/tr2bJlJfo2adu2bapRo4ZXE0aS5O/vr3bt2mnlypX2ZXl5eVq5cqXD2SMXiouLcygvScuXL7eXj4mJUWRkpEOZjIwMbdy4schtepsr8yBJzz33nKZPn67PP//c4VpYRfnll1907Ngxh+RJWeLqPFwoNzdX27dvt4+xMh0P0rlbXGdlZenee+8ttp2yfjy4orj3h9I4xsqLd955R8OGDdM777yjvn37Fls+MzNTe/furVDHA0qHOz6rUTxPxQawcnbumzdvru3bt2vbtm32v5tvvlnXXXedtm3bpujoaE92v9xy5Zi/9tprtWfPHnuSTpL+97//qW7duiSMnODK3P/++++WxFB+8q4sXDu3oirTn69evhB3pdG7d2/Tpk0bs3HjRrN27VrTtGlTc/fdd9vX//LLL6ZZs2Zm48aNxhhj0tPTTWxsrGnZsqXZs2ePw62Tc3JyjDHGLFu2zLzxxhtm+/bt5qeffjKvvPKKqVatmnnqqae8MsaCFi9ebAICAszChQvNDz/8YEaNGmXCwsLst00fNGiQmTBhgr38unXrjK+vr5k9e7bZtWuXmTJliuU2vgkJCSYsLMx89NFH5vvvvzf9+vUrF7dYd2YeEhISjL+/v/nggw8c9vvJkyeNMcacPHnS/OUvfzFJSUlm//79ZsWKFaZt27amadOm5syZM14ZY0k4Ow9PP/20+eKLL8zevXvN5s2bzV133WUCAwPNzp077WUqw/GQr2PHjubOO++0LC+vx8PJkyfN1q1bzdatW40kM2fOHLN161aTnJxsjDFmwoQJZtCgQfby+bchfeyxx8yuXbvMvHnzLLchLW5uyyJn5+Htt982vr6+Zt68eQ7vD2lpafYyf/7zn82aNWvM/v37zbp160yPHj1M7dq1zZEjRzw+PpR97visRvFKOzZAybn6OZyPu6e5xtl5T0lJMcHBweahhx4yu3fvNp988omJiIgwM2bM8NYQyi1n537KlCkmODjYvPPOO2bfvn3myy+/NI0bNzYDBgzw1hDKJXfEut5C0shDjh07Zu6++24TFBRkQkJCzLBhwxw+6Pfv328kmdWrVxtjjFm9erWRVOjf/v37jTHGfPbZZ6Z169YmKCjIVK9e3Vx99dXm1VdfNbm5uV4YYeFefvll06BBA+Pv72/at29vNmzYYF/XpUsXM2TIEIfy7733nrn88suNv7+/ufLKK81//vMfh/V5eXlm8uTJpk6dOiYgIMB0797d7N692xNDuSTOzEPDhg0L3e9Tpkwxxhjz+++/m+uvv96Eh4cbPz8/07BhQzNy5Mgy/R/jfM7Mw6OPPmovW6dOHXPDDTeYLVu2OGyvMhwPxhjz448/Gknmyy+/tGyrvB4PRb3H5Y99yJAhpkuXLpY6rVu3Nv7+/uayyy4ziYmJlu1ebG7LImfnoUuXLhctb8y527PWrVvX+Pv7m3r16pk777zT7Nmzx7MDQ7lS2p/VKJnSjA3gHGeP+QuRNHKds/O+fv16ExsbawICAsxll11m/va3v9m/PIdznJn77OxsM3XqVNO4cWMTGBhooqOjzejRo82JEyc83/FyzF2xrjfYjOEcMwAAAAAAADjimkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGgJt07dpVXbt2tT8/cOCAbDabFi5c6LU+ucvChQtls9l04MABl+t+++23pd8xXJI1a9bIZrNpzZo19mVDhw5Vo0aNPNqPivzaAYDKgrjIubrERWUPcREqK5JGKDX5H3L5f4GBgYqKilKvXr300ksv6eTJk97uIsq5V155xesfkBkZGfrb3/6ma665RqGhoQoICFDDhg1155136j//+Y9X+1aZffPNN7LZbHrhhRcs6/r16yebzabExETLus6dO6tevXqe6CKASoa4CO5GXITiHDhwQMOGDVPjxo0VGBioyMhIde7cWVOmTCnxNt577z3ZbDZ9+OGHlnVXX321bDabVq9ebVnXoEEDxcfHX1L/UTaQNEKpmzZtmt566y3Nnz9fDz/8sCTp0UcfVcuWLfX99997uXfe07BhQ50+fVqDBg3ydldK3aBBg3T69Gk1bNjQre14Ozjas2eP2rRpoylTpigmJkbTp0/X/PnzNXz4cB04cEA33nij3nrrLa/1zxPeeOMN7d6929vdsGjbtq2qVaumtWvXWtatX79evr6+WrduncPys2fPatOmTbr22ms91U0AlRBxUeGIiy4dcZH3ldW4SPpj/3zxxRe6++679fe//11jxoxRrVq19Oyzz5Z4Ox07dpQkS4yVkZGhHTt2FBpj/fzzz/r555/tdVG++Xq7A6h4+vTpo2uuucb+fOLEiVq1apVuvPFG3Xzzzdq1a5eqVq3qxR56R/63jBVRlSpVVKVKFW93w61ycnJ0yy236PDhw/rvf/9rSTRMmTJFX375pXJzc73Uw+KdOnVK1atXv6Rt+Pn5lVJvSpevr69iY2MtQcvu3bv122+/6Z577rEEO5s3b9aZM2cuGtAcOHBAMTExWr16tcPPKgCgpIiLCkdcVL4RF51TVuMiSXrhhReUmZmpbdu2WRKYR44cKfF2oqKiFBMTY4mjkpKSZIzRHXfcYVmX//xiMdaaNWt03XXXaf/+/R7/iR+cw5lG8Ihu3bpp8uTJSk5O1qJFixzW/fjjj7r99ttVs2ZNBQYG6pprrtGyZcscymRnZ+vpp59W06ZNFRgYqFq1aqljx45avny5ZVsDBgxQeHi4qlatqmbNmunJJ590KHPw4EENHz5cderUUUBAgK688kotWLDAoUz+b5bfe+89/e1vf1P9+vUVGBio7t27a8+ePZbxvf7662rcuLGqVq2q9u3b6+uvv7aUKez3x0OHDlVQUJAOHjyo/v37KygoSOHh4frLX/5i+ZA9duyYBg0apJCQEIWFhWnIkCH67rvviv1Nc1pamqpUqaKXXnrJvuy3336Tj4+PatWqJWOMffmDDz6oyMhIh/obN25U7969FRoaqmrVqqlLly6W/5gX9tv9vLw8TZ06VVFRUapWrZquu+46/fDDD2rUqJGGDh1q6WdWVpbGjx+v8PBwVa9eXbfccouOHj1qX9+oUSPt3LlT//3vf+2n+uf/J76kx8eleP/997Vjxw5Nnjy5yDNTrr/+evXp08dhWVpamh599FFFR0crICBATZo00bPPPqu8vDx7mfxjY/bs2fZjKSAgQH/605+0adMmSzslec3k75P//ve/Gj16tCIiIlS/fn1JUnJyskaPHq1mzZqpatWqqlWrlu64444SXXuh4G/3u3bt6vDziwv/LjwuSzIP+eWGDh2q0NBQ+3GelpZWbL+kc4HJ4cOHHV6j69atU0hIiEaNGmVPIF24Lr8eAHgScRFxEXERcZG746K9e/eqfv36hZ7xFhERUaJt5OvYsaO2bt2q06dP25etW7dOV155pfr06aMNGzY49H3dunWy2WyczV1BcKYRPGbQoEH661//qi+//FIjR46UJO3cuVPXXnut6tWrpwkTJqh69ep677331L9/f/373//WLbfcIkmaOnWqZs6cqREjRqh9+/bKyMjQt99+qy1btqhnz56SpO+//16dOnWSn5+fRo0apUaNGmnv3r36+OOP9be//U2SdPjwYXXo0EE2m00PPfSQwsPD9dlnn+m+++5TRkaGHn30UYc+JyQkyMfHR3/5y1+Unp6u5557TgMHDtTGjRvtZd58803df//9io+P16OPPqp9+/bp5ptvVs2aNRUdHV3svOTm5qpXr16KjY3V7NmztWLFCj3//PNq3LixHnzwQUnnAo2bbrpJ33zzjR588EE1b95cH330kYYMGVLs9sPCwnTVVVfpq6++0iOPPCLpXPbfZrPp+PHj+uGHH3TllVdKkr7++mt16tTJXnfVqlXq06eP2rVrpylTpsjHx0eJiYnq1q2bvv76a7Vv377IdidOnKjnnntON910k3r16qXvvvtOvXr10pkzZwot//DDD6tGjRqaMmWKDhw4oLlz5+qhhx7Su+++K0maO3euHn74YQUFBdkD3jp16kgq2fFxqT7++GNJ0r333lviOr///ru6dOmigwcP6v7771eDBg20fv16TZw4UYcOHdLcuXMdyv/rX//SyZMndf/998tms+m5557Trbfeqn379tm/ySrpaybf6NGjFR4erqeeekqnTp2SJG3atEnr16/XXXfdpfr16+vAgQOaP3++unbtqh9++EHVqlUr8RiffPJJjRgxwmHZokWL9MUXX9gDkpLOgzFG/fr109q1a/XAAw/oiiuu0Icfflii41xyPH26SZMmks4FLR06dFBsbKz8/Py0fv163XzzzfZ1wcHBuvrqq0s8XgAoLcRFhSMuOoe4iLjoUuOihg0basWKFVq1apW6detW4jEUpmPHjnrrrbe0ceNGe3Jy3bp1io+PV3x8vNLT07Vjxw61atXKvq558+aqVavWJbWLMsIApSQxMdFIMps2bSqyTGhoqGnTpo39effu3U3Lli3NmTNn7Mvy8vJMfHy8adq0qX3Z1Vdfbfr27XvR9jt37myCg4NNcnKyw/K8vDz7v++77z5Tt25d89tvvzmUueuuu0xoaKj5/fffjTHGrF692kgyV1xxhcnKyrKXe/HFF40ks337dmOMMWfPnjURERGmdevWDuVef/11I8l06dLFvmz//v1GkklMTLQvGzJkiJFkpk2b5tCfNm3amHbt2tmf//vf/zaSzNy5c+3LcnNzTbdu3SzbLMyYMWNMnTp17M/Hjx9vOnfubCIiIsz8+fONMcYcO3bM2Gw28+KLL9rnrWnTpqZXr14Oc/j777+bmJgY07NnT/uy/H2/f/9+Y4wxqampxtfX1/Tv39+hH1OnTjWSzJAhQyx1e/To4dDOuHHjTJUqVUxaWpp92ZVXXukwp/lKcnxcqjZt2piwsDDL8szMTHP06FH7X3p6un3d9OnTTfXq1c3//vc/hzoTJkwwVapUMSkpKcaYP46NWrVqmePHj9vLffTRR0aS+fjjj+3LSvqayZ/Xjh07mpycHIf284/zCyUlJRlJ5p///Kd9Wf7rYPXq1fZlQ4YMMQ0bNixqmsy6deuMn5+fGT58uNPzsHTpUiPJPPfcc/YyOTk5plOnTiU6zjMyMkyVKlXMfffdZ1/WrFkz8/TTTxtjjGnfvr157LHH7OvCw8MdjuPC5O+bC+cAAEqCuIi4iLiIuMibcdGOHTtM1apVjSTTunVrM3bsWLN06VJz6tSpi9YrzM6dO40kM336dGOMMdnZ2aZ69erm//7v/4wxxtSpU8fMmzfPGPNHPDZy5MiLbjN/PvNfJyi7+HkaPCooKMh+t5Djx49r1apVGjBggE6ePKnffvtNv/32m44dO6ZevXrpp59+0sGDByWd+1Zo586d+umnnwrd7tGjR/XVV19p+PDhatCggcM6m80m6Vy2/t///rduuukmGWPs7f3222/q1auX0tPTtWXLFoe6w4YNk7+/v/15/rdN+/btkyR9++23OnLkiB544AGHcvmnkZbUAw884PC8U6dO9jYk6fPPP5efn5/9m0hJ8vHx0ZgxY0q0/U6dOunw4cP2C/V9/fXX6ty5szp16mQ/ZXzt2rUyxtjHuG3bNv3000+65557dOzYMftcnTp1St27d9dXX31lOYU238qVK5WTk6PRo0c7LM+/AGhhRo0aZd9X+X3Ozc1VcnJyseMr7vgoDRkZGQoKCrIsf/LJJxUeHm7/u+eee+zr3n//fXXq1Ek1atRwON569Oih3NxcffXVVw7buvPOO1WjRg3784LHmzOvmXwjR460XFfhwmtnZGdn69ixY2rSpInCwsIsrwFnpKam6vbbb1fr1q31yiuvOD0Pn376qXx9fe3fJEvnrgtxsePmQsHBwWrVqpX9d/S//fabdu/ebb9zx7XXXmv/CcH//vc/HT161PLTtMzMTIc+njhxQpKUnp7usDw9Pd3FWQKAPxAXFY64iLhIIi661Ljoyiuv1LZt23TvvffqwIEDevHFF9W/f3/VqVNHb7zxhlNjueKKK1SrVi17jPXdd9/p1KlT9hgrPj7eHmMlJSUpNzfXEmMVFUudOHHCYXlmZqZTfYP7Vcqk0VdffaWbbrpJUVFRstlsWrp0qdPbMMZo9uzZuvzyyxUQEKB69erZT/VF0TIzMxUcHCzp3BX9jTGaPHmyw4dLeHi4/TaQ+RdpmzZtmtLS0nT55ZerZcuWeuyxxxzuOJL/4XHVVVcV2fbRo0eVlpam119/3dLesGHDHNrLVzDQyv/gyv+PZP4Hd9OmTR3K+fn56bLLLivRnAQGBio8PNzSTn4b+e3UrVvXcnps/k9wipP/Ifv111/r1KlT2rp1qzp16qTOnTvbg6Ovv/5aISEh9p/q5AcaQ4YMsczXP/7xD2VlZRX5H+f8eSnYv5o1azp8+F+ouLm+mOKOj8Lk5uYqNTXV4e/s2bNFlg8ODi70Q2z06NFavny5li9fbj8tPN9PP/2kzz//3DJ/PXr0kOT88ebMayZfTEyMpc+nT5/WU089Zf8dfe3atRUeHq60tDSXkyE5OTkaMGCAcnNztWTJEgUEBDg9D/nHecEgtFmzZiXuR8eOHe3XLlq/fr2qVKmiDh06SDoX0GzevFlZWVlFXs8o/+cZ+X9t27aVJPXv399heb9+/ZycIaD8I34qfcRFVsRF5xAXEReVRlx0+eWX66233tJvv/2m77//Xs8884x8fX01atQorVixosTbsdlsio+Pt1+7aN26dYqIiLAf0xcmjYqKsfr16+cw3v79+0s6dwfcC5c/9NBDJe4XPKNSXtPo1KlTuvrqqzV8+HDdeuutLm1j7Nix+vLLLzV79my1bNlSx48f1/Hjx0u5pxXLL7/8ovT0dPubS/63MX/5y1/Uq1evQuvkl+3cubP27t2rjz76SF9++aX+8Y9/6IUXXtCrr75q+d1wUfLbu/fee4v8LXD+73DzFXXnC3PBRRIvlSfurpF/14OvvvpKjRo1kjFGcXFxCg8P19ixY5WcnKyvv/5a8fHx8vE5l0vOn69Zs2apdevWhW63sG+YXHUpc+3K8fHzzz9bAoeL3SGrefPm2rZtmw4ePKh69erZl19++eW6/PLLJclyF5i8vDz17NlTjz/+eKHbzK+Xr7g5cOY1k6+wO/I8/PDDSkxM1KOPPqq4uDiFhobKZrPprrvuKvJb0uI89thjSkpK0ooVK+wXlszn7Dxcio4dO+rll1/WunXrtH79erVs2dJ+nMbHxysrK0ubNm3S2rVr5evra08o5Xv88ccdrs9w+PBh3XvvvZo9e7bDtY+KCvKBioz4qXQRFxWOuOgc4iLiotJUpUoVtWzZUi1btlRcXJyuu+46vf322/ZEVUl07NhRH3/8sbZv326/nlG++Ph4PfbYYzp48KDWrl2rqKgoS6L4+eefd0h6fvfdd/rLX/6iRYsWOSQYo6KiLmGkcIdKmTTq06eP5Ur+F8rKytKTTz6pd955R2lpabrqqqv07LPP2t80d+3apfnz52vHjh32TG9hWWs4euuttyTJ/qae/0bi5+dXojesmjVratiwYRo2bJgyMzPVuXNnTZ06VSNGjLBva8eOHUXWDw8PV3BwsHJzc516g7yY/LsR/PTTTw4XmMvOztb+/ftL7QK7DRs21OrVq/X77787fKtW2B1LitKpUyd99dVXiomJUevWre0XAA4NDdXnn3+uLVu26Omnn7aXb9y4sSQpJCTE6fnKn5c9e/Y4vDaOHTtWom/IinLhadoFXez4KExkZKTlLiIX21833nijFi9erLfffrvID/mCGjdurMzMzFI73px9zRTlgw8+0JAhQ/T888/bl505c6bEd+MoaPHixZo7d67mzp2rLl26WNaXdB4aNmyolStXKjMz0yHwzv/5QElceDHspKQkh7t2REVFqWHDhlq3bp3WrVunNm3aWL6lbtGihVq0aGF/nn/nlHbt2hUZOAOVBfFT6SIuurR2iIuIi4iLXHPNNddIkg4dOuRUvQtjrHXr1jlcKL9du3YKCAjQmjVrtHHjRt1www2W+u3atXN47ut7LhVx7bXXOtyBDmVPpfx5WnEeeughJSUlafHixfr+++91xx13qHfv3vbTUj/++GNddtll+uSTTxQTE6NGjRppxIgRlfabspJYtWqVpk+frpiYGA0cOFDSuVs9du3aVa+99lqhb1oX3lb02LFjDuuCgoLUpEkTZWVlSToX+HTu3FkLFixQSkqKQ9n8byOqVKmi2267Tf/+978LDaIubK+krrnmGoWHh+vVV191OIV34cKFLn/QFKZXr17Kzs52+P1xXl6e5s2bV+JtdOrUSQcOHNC7775rPy3bx8dH8fHxmjNnjrKzsx3uENKuXTs1btxYs2fPLvT044vNV/fu3eXr66v58+c7LP/73/9e4v4Wpnr16oXOa3HHR2ECAwPVo0cPh7+LnT0yYMAAtWjRQtOnT9eGDRsKLVPw278BAwYoKSlJX3zxhaVsWlqacnJyimyvMM68Zi6mSpUqlr6+/PLLltsZl8SOHTs0YsQI3XvvvRo7dmyhZUo6DzfccINycnIcjpvc3Fy9/PLLJe5P/rfHK1eu1LfffuvwLZh07puwpUuXavfu3ZbTpgFcGuKnkiMuujTERecQFxEXXczXX3+t7Oxsy/JPP/1UknM/c5POvb4DAwP19ttv6+DBgw4xVkBAgNq2bat58+bp1KlTxFgVTKU80+hiUlJSlJiYqJSUFPupcX/5y1/0+eefKzExUc8884z27dun5ORkvf/++/rnP/+p3NxcjRs3TrfffrtWrVrl5RF432effaYff/xROTk5Onz4sFatWqXly5erYcOGWrZsmcOpqvPmzVPHjh3VsmVLjRw5UpdddpkOHz6spKQk/fLLL/ruu+8knfv2v2vXrmrXrp1q1qypb7/9Vh988IHDb15feukldezYUW3bttWoUaMUExOjAwcO6D//+Y+2bdsm6dytYlevXq3Y2FiNHDlSLVq00PHjx7VlyxatWLHC6cDVz89PM2bM0P33369u3brpzjvv1P79+5WYmFji3+6XRP/+/dW+fXv9+c9/1p49e9S8eXMtW7bM3t+LfdOULz/w2b17t5555hn78s6dO+uzzz5TQECA/vSnP9mX+/j46B//+If69OmjK6+8UsOGDVO9evV08OBBrV69WiEhIfbbrRZUp04djR07Vs8//7xuvvlm9e7dW999950+++wz1a5du0T9LUy7du00f/58zZgxQ02aNFFERIS6detWouPjUvn5+enDDz9Ur1691LFjR916663q1KmTqlevroMHD2rZsmVKSUlR37597XUee+wxLVu2TDfeeKOGDh2qdu3a6dSpU9q+fbs++OADHThwQLVr13aqHyV9zVzMjTfeqLfeekuhoaFq0aKF/fRpV26Lmn/di86dO2vRokUO6+Lj43XZZZeVeB5uuukmXXvttZowYYIOHDigFi1aaMmSJU5fTyD/trCSHM40yu/TO++8Yy8HoHQQPxWNuIi4iLjoHOIiz8ZFzz77rDZv3qxbb73V/lPTLVu26J///Kdq1qzpcKZQSfj7++tPf/qTvv76awUEBFjOHIqPj7efrUWMVcF46jZtZZUk8+GHH9qff/LJJ0aSqV69usOfr6+vGTBggDHGmJEjRxpJZvfu3fZ6mzdvNpLMjz/+6OkhlBn5t7LM//P39zeRkZGmZ8+e5sUXXzQZGRmF1tu7d68ZPHiwiYyMNH5+fqZevXrmxhtvNB988IG9zIwZM0z79u1NWFiYqVq1qmnevLn529/+Zs6ePeuwrR07dphbbrnFhIWFmcDAQNOsWTMzefJkhzKHDx82Y8aMMdHR0cbPz89ERkaa7t27m9dff91eJv8WkO+//75D3cJuD2uMMa+88oqJiYkxAQEB5pprrjFfffWV6dKlS4luLVu9enXLnEyZMsUUfHkePXrU3HPPPSY4ONiEhoaaoUOHmnXr1hlJZvHixYXObUERERFGkjl8+LB92dq1a40k06lTp0LrbN261dx6662mVq1aJiAgwDRs2NAMGDDArFy50l6m4K1ljTl3S9DJkyebyMhIU7VqVdOtWzeza9cuU6tWLfPAAw9Y6ha8JXFhtzVNTU01ffv2NcHBwQ637i3p8VEa0tLSzLRp00ybNm1MUFCQ8ff3N9HR0eb22293uAVsvpMnT5qJEyeaJk2aGH9/f1O7dm0THx9vZs+ebe9f/rExa9YsS31JZsqUKQ7LSvKauditnk+cOGGGDRtmateubYKCgkyvXr3Mjz/+aBo2bOhw29+S3Fq2YcOGDq/7C/8uPNZLMg/GnLvF8aBBg0xISIgJDQ01gwYNMlu3bi3RrWXzvfbaa0aSqVevnmXdli1b7P278HVQlPx9c+EcACB+KgniIuIi4iLiIm/GRevWrTNjxowxV111lQkNDTV+fn6mQYMGZujQoWbv3r0XrVuUiRMnGkkmPj7esm7JkiVGkgkODjY5OTnFbit/Pi98naBsshlTileuK4dsNps+/PBD+9Xb3333XQ0cOFA7d+60XHwtKChIkZGRmjJlip555hmH0/1Onz6tatWq6csvv1TPnj09OQRUYkuXLtUtt9yitWvXWs6oKIvS0tJUo0YNzZgxQ08++aS3uwMAcBHxE8oi4iIAKH38PK2ANm3aKDc3V0eOHHH4HfOFrr32WuXk5Gjv3r32i+L973//k/THhe6A0nb69GmHOz7k/6Y5JCTEflvwsqRgfyVp7ty5ksQFhQGggiF+gqcRFwGAZ1TKpFFmZqbD3RX279+vbdu2qWbNmrr88ss1cOBADR48WM8//7zatGmjo0ePauXKlWrVqpX69u2rHj16qG3btho+fLjmzp2rvLw8jRkzRj179nTLLRIB6dztQE+fPq24uDhlZWVpyZIlWr9+vZ555plCbx/qbe+++64WLlyoG264QUFBQVq7dq3eeecdXX/99eXi2z8AgCPiJ5QlxEXApcvMzCz0wu4XCg8Pt5xBikrG27+P84b8308W/Mv/zerZs2fNU089ZRo1amT8/PxM3bp1zS233GK+//57+zYOHjxobr31VhMUFGTq1Kljhg4dao4dO+alEaEyePvtt03btm1NSEiI8ff3Ny1atDAvv/yyt7tVpM2bN5vu3bubWrVqGT8/P1O/fn0zduxYc/LkSW93DQDgAuInlCXERcCly79e2MX+uOYQKv01jQAAAAAAqGz27dunffv2XbRMx44dHe7yiMqHpBEAAAAAAAAsfLzdAQAAAAAAAJQ9leZC2Hl5efr1118VHBwsm83m7e4AAIAiGGN08uRJRUVFyceH77e8ifgJAIDywV3xU6VJGv3666+Kjo72djcAAEAJ/fzzz6pfv763u1GpET8BAFC+lHb8VGmSRsHBwZLOTWBISIiXewMAAIqSkZGh6Oho+2c3vIf4CQCA8sFd8VOlSRrln1IdEhJC0AMAQDnAz6G8j/gJAIDypbTjJy4UAAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALkkYAAAAAAACwIGkEAAAAAAAAC5JGAAAAAAAAsCBpBAAAAAAAAAuSRgAAAAAAALAgaQQAAAAAAAALX2cKN2rUSMnJyZblo0eP1rx58yzLFy5cqGHDhjksCwgI0JkzZyRJ2dnZmjRpkj799FPt27dPoaGh6tGjhxISEhQVFXXRdmfOnKkJEyY4032PsNmmersLKAXGTPV2FwAAFQTxU/GInyoG4icAqHicShpt2rRJubm59uc7duxQz549dccddxRZJyQkRLt377Y/t9ls9n///vvv2rJliyZPnqyrr75aJ06c0NixY3XzzTfr22+/ddjOtGnTNHLkSPvz4OBgZ7oOAADgFcRPAACgvHIqaRQeHu7wPCEhQY0bN1aXLl2KrGOz2RQZGVnoutDQUC1fvtxh2d///ne1b99eKSkpatCggX15cHBwkdsBAAAoq4ifAABAeeXyNY3Onj2rRYsWafjw4Q7ffhWUmZmphg0bKjo6Wv369dPOnTsvut309HTZbDaFhYU5LE9ISFCtWrXUpk0bzZo1Szk5ORfdTlZWljIyMhz+AAAAvIn4CQAAlCdOnWl0oaVLlyotLU1Dhw4tskyzZs20YMECtWrVSunp6Zo9e7bi4+O1c+dO1a9f31L+zJkzeuKJJ3T33XcrJCTEvvyRRx5R27ZtVbNmTa1fv14TJ07UoUOHNGfOnCLbnjlzpp5++mlXhwcAAFDqiJ8AAEB5YjPGGFcq9urVS/7+/vr4449LXCc7O1tXXHGF7r77bk2fPt2y7rbbbtMvv/yiNWvWOAQ9BS1YsED333+/MjMzFRAQUGiZrKwsZWVl2Z9nZGQoOjpa6enpF932peJCjhUDF3IEAO/JyMhQaGio2z+zvYH4qXDETxUD8RMAeI+74ieXzjRKTk7WihUrtGTJEqfq+fn5qU2bNtqzZ4/D8uzsbA0YMEDJyclatWpVsQOMjY1VTk6ODhw4oGbNmhVaJiAgoMiACAAAwNOInwAAQHnj0jWNEhMTFRERob59+zpVLzc3V9u3b1fdunXty/IDnp9++kkrVqxQrVq1it3Otm3b5OPjo4iICKf7DgAA4A3ETwAAoLxx+kyjvLw8JSYmasiQIfL1daw+ePBg1atXTzNnzpR07javHTp0UJMmTZSWlqZZs2YpOTlZI0aMkHQu4Ln99tu1ZcsWffLJJ8rNzVVqaqokqWbNmvL391dSUpI2btyo6667TsHBwUpKStK4ceN07733qkaNGpc6fgAAALcjfgIAAOWR00mjFStWKCUlRcOHD7esS0lJkY/PHycvnThxQiNHjlRqaqpq1Kihdu3aaf369WrRooUk6eDBg1q2bJkkqXXr1g7bWr16tbp27aqAgAAtXrxYU6dOVVZWlmJiYjRu3DiNHz/e2a4DAAB4BfETAAAoj1y+EHZ546mLanIhx4qBCzkCgPdU5AthlzfET3AG8RMAeI+7PrNduqYRAAAAAAAAKjaX7p4GVHR84+l+fBsJAEDFQvzkfsRPADyNM40AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWvt7uAIDKyWab6u0uFMqYqd7uAgAAQKGInwB4GmcaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALEgaAQAAAAAAwIKkEQAAAAAAACxIGgEAAAAAAMCCpBEAAAAAAAAsSBoBAAAAAADAgqQRAAAAAAAALHy93QEAKEtstqne7kKhjJnq7S4AAAAUivgJqLg40wgAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABYkjQAAAAAAAGBB0ggAAAAAAAAWJI0AAAAAAABgQdIIAAAAAAAAFiSNAAAAAAAAYEHSCAAAAAAAABa+3u4AAKB4NttUb3ehUMZM9XYXAAAACkX8BFw6zjQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABYkDQCAAAAAACABUkjAAAAAAAAWJA0AgAAAAAAgAVJIwAAAAAAAFiQNAIAAAAAAIAFSSMAAAAAAABY+DpTuFGjRkpOTrYsHz16tObNm2dZvnDhQg0bNsxhWUBAgM6cOSNJys7O1qRJk/Tpp59q3759Cg0NVY8ePZSQkKCoqCh7nePHj+vhhx/Wxx9/LB8fH91222168cUXFRQU5Ez3AQClzGab6u0uFMqYqd7uAmBH/AQAuBDxE8oTp5JGmzZtUm5urv35jh071LNnT91xxx1F1gkJCdHu3bvtz202m/3fv//+u7Zs2aLJk/+/vfuPjqK+9z/+2mSzCVQ2CZBfYPghIIIVQTiEUCpWo4gcS2+5IkoBQUCPUBXuqcpXNICtSYUjXi1U64XQXlSuthFppVR+aK2CiEhq+CEVhMQfLJ4KSQhKfn6+f5Cs2UyWZDe72Wz2+ThnzzAzn5l5v2c2u2/emew+oiuvvFKnT5/Wfffdpx//+Mf64IMP3OOmTp2qEydOaOvWraqqqtLMmTM1d+5cvfjii76EDwAA0OaonwAAQLjyqWmUlJTkMZ+bm6t+/fpp7NixXrex2WxKTU1tcl18fLy2bt3qsew3v/mNRo4cqeLiYvXq1UuHDh3Sli1btGfPHo0YMUKS9Mwzz+imm27SihUrPH6jBgAA0N5QPwEAgHDl92caVVZWav369Zo1a5bHb78aKy8vV+/evZWenq6JEyfqwIEDF9xvaWmpbDabEhISJEm7du1SQkKCu+CRpKysLEVFRWn37t1e91NRUaGysjKPBwAAQChRPwEAgHDid9No48aNKikp0R133OF1zMCBA7V27Vq99tprWr9+vWprazV69Gh9/vnnTY4/d+6cHnzwQd12221yOp2SJJfLpeTkZI9xdrtdXbt2lcvl8nrsnJwcxcfHux/p6em+JwkAABBA1E8AACCc+N00WrNmjcaPH3/B25szMzM1ffp0DR06VGPHjlV+fr6SkpL03HPPWcZWVVVp8uTJMsbot7/9rb9huS1atEilpaXux2effdbqfQIAALQG9RMAAAgnPn2mUb2ioiJt27ZN+fn5Pm0XExOjYcOG6ciRIx7L6wueoqIi7dixw/1bMklKTU3VV1995TG+urpap06d8vq3/tL5bxmJjY31KT4AAIBgoX4CAADhxq87jfLy8pScnKwJEyb4tF1NTY0KCwuVlpbmXlZf8HzyySfatm2bunXr5rFNZmamSkpKtHfvXveyHTt2qLa2VhkZGf6EDwAA0OaonwAAQLjx+U6j2tpa5eXlacaMGbLbPTefPn26evbsqZycHEnSsmXLNGrUKPXv318lJSVavny5ioqKNHv2bEnnC57//M//1Icffqi//OUvqqmpcf+dfdeuXeVwODRo0CDdeOONmjNnjp599llVVVVp/vz5mjJlCt/8AQAAwgL1EwAACEc+N422bdum4uJizZo1y7KuuLhYUVHf3bx0+vRpzZkzRy6XS4mJiRo+fLh27typwYMHS5K++OILbdq0SZI0dOhQj329+eabuuaaayRJL7zwgubPn6/rrrtOUVFRmjRpkp5++mlfQwcAAAgJ6icAABCObMYYE+og2kJZWZni4+NVWlrq8Tf/gWazLQnavgEALWPMklCHgFZoq/dsNI/6CQAiB/VTeAvWe7bf354GAAAAAACAjoumEQAAAAAAACx8/kwjAADau470py7cKg4AANoC9ROawp1GAAAAAAAAsKBpBAAAAAAAAAuaRgAAAAAAALCgaQQAAAAAAAALmkYAAAAAAACwoGkEAAAAAAAAC5pGAAAAAAAAsKBpBAAAAAAAAAuaRgAAAAAAALCgaQQAAAAAAAALmkYAAAAAAACwsIc6AAAA4J3NtiTUITTJmCWhDgEAAKBJ1E+Bw51GAAAAAAAAsKBpBAAAAAAAAAuaRgAAAAAAALCgaQQAAAAAAAALmkYAAAAAAACwoGkEAAAAAAAAC5pGAAAAAAAAsKBpBAAAAAAAAAuaRgAAAAAAALCgaQQAAAAAAAALmkYAAAAAAACwoGkEAAAAAAAAC3uoA0Bky9bSNjnOUmW3yXEAIFLYbEt8Gm+Mb+MBeEf9BADhKRzrJ+40AgAAAAAAgAVNIwAAAAAAAFjQNAIAAAAAAIAFTSMAAAAAAABY0DQCAAAAAACABU0jAAAAAAAAWNA0AgAAAAAAgAVNIwAAAAAAAFjQNAIAAAAAAIAFTSMAAAAAAABY0DQCAAAAAACABU0jAAAAAAAAWNhDHQAi21JlhzoEAACAsEL9BABoK9xpBAAAAAAAAAuaRgAAAAAAALCgaQQAAAAAAAALmkYAAAAAAACwoGkEAAAAAAAAC5pGAAAAAAAAsKBpBAAAAAAAAAuaRgAAAAAAALCgaQQAAAAAAAALmkYAAAAAAACwoGkEAAAAAAAAEpUIjAAAODhJREFUC5+aRn369JHNZrM85s2b1+T4devWWcbGxcV5jMnPz9cNN9ygbt26yWazqaCgwLKfa665xrKfu+++25fQAQAAQoL6CQAAhCu7L4P37Nmjmpoa9/z+/ft1/fXX65ZbbvG6jdPp1OHDh93zNpvNY/3Zs2c1ZswYTZ48WXPmzPG6nzlz5mjZsmXu+c6dO/sSOgAAQEhQPwEAgHDlU9MoKSnJYz43N1f9+vXT2LFjvW5js9mUmprqdf20adMkScePH7/gsTt37nzB/QAAALRH1E8AACBc+f2ZRpWVlVq/fr1mzZpl+e1XQ+Xl5erdu7fS09M1ceJEHThwwK/jvfDCC+revbu+//3va9GiRfrmm28uOL6iokJlZWUeDwAAgFCifgIAAOHEpzuNGtq4caNKSkp0xx13eB0zcOBArV27VkOGDFFpaalWrFih0aNH68CBA7r44otbfKzbb79dvXv3Vo8ePfTRRx/pwQcf1OHDh5Wfn+91m5ycHC1dutSXlAAAAIKK+gkAAIQTmzHG+LPhuHHj5HA49Oc//7nF21RVVWnQoEG67bbb9Nhjj3msO378uPr27at9+/Zp6NChF9zPjh07dN111+nIkSPq169fk2MqKipUUVHhni8rK1N6erpKS0vldDpbHLOvbLYlQds3AADhypglLR5bVlam+Pj4oL9nhwL1U9OonwAAsGoP9ZNfdxoVFRVp27ZtF/xNVVNiYmI0bNgwHTlyxJ/DumVkZEjSBYue2NhYxcbGtuo4AAAAgUL9BAAAwo1fn2mUl5en5ORkTZgwwaftampqVFhYqLS0NH8O61b/tbKt3Q8AAEBboX4CAADhxuc7jWpra5WXl6cZM2bIbvfcfPr06erZs6dycnIkScuWLdOoUaPUv39/lZSUaPny5SoqKtLs2bPd25w6dUrFxcX68ssvJcn99bKpqalKTU3V0aNH9eKLL+qmm25St27d9NFHH2nBggW6+uqrNWTIEL8TBwAAaCvUTwAAIBz53DTatm2biouLNWvWLMu64uJiRUV9d/PS6dOnNWfOHLlcLiUmJmr48OHauXOnBg8e7B6zadMmzZw50z0/ZcoUSVJ2draWLFkih8Ohbdu26amnntLZs2eVnp6uSZMmafHixb6GDgAAEBLUTwAAIBz5/UHY4aatPlSTD3IEAMCqPXyQI3xH/QQAQOi0h/rJr880AgAAAAAAQMdG0wgAAAAAAAAWNI0AAAAAAABgQdMIAAAAAAAAFjSNAAAAAAAAYEHTCAAAAAAAABY0jQAAAAAAAGBB0wgAAAAAAAAWNI0AAAAAAABgQdMIAAAAAAAAFjSNAAAAAAAAYEHTCAAAAAAAABY0jQAAAAAAAGBB0wgAAAAAAAAWNI0AAAAAAABgQdMIAAAAAAAAFjSNAAAAAAAAYEHTCAAAAAAAABY0jQAAAAAAAGBB0wgAAAAAAAAWNI0AAAAAAABgQdMIAAAAAAAAFjSNAAAAAAAAYEHTCAAAAAAAABY0jQAAAAAAAGBB0wgAAAAAAAAWNI0AAAAAAABgYQ91AIhs2Vrq8zZLlR2ESAAAAMID9RMAoK1wpxEAAAAAAAAsaBoBAAAAAADAgqYRAAAAAAAALGgaAQAAAAAAwIKmEQAAAAAAACxoGgEAAAAAAMCCphEAAAAAAAAsaBoBAAAAAADAgqYRAAAAAAAALGgaAQAAAAAAwIKmEQAAAAAAACxoGgEAAAAAAMDCHuoAENmWKjvUIQAesrXU5214HgMA2hLvO2hvqJ+Ajos7jQAAAAAAAGBB0wgAAAAAAAAWNI0AAAAAAABgQdMIAAAAAAAAFjSNAAAAAAAAYEHTCAAAAAAAABY0jQAAAAAAAGBB0wgAAAAAAAAWNI0AAAAAAABgQdMIAAAAAAAAFjSNAAAAAAAAYEHTCAAAAAAAABY+NY369Okjm81mecybN6/J8evWrbOMjYuL8xiTn5+vG264Qd26dZPNZlNBQYFlP+fOndO8efPUrVs3XXTRRZo0aZJOnjzpS+gAAAAhQf0EAADClU9Noz179ujEiRPux9atWyVJt9xyi9dtnE6nxzZFRUUe68+ePasxY8bo17/+tdd9LFiwQH/+85/1yiuv6O9//7u+/PJL/fSnP/UldAAAgJCgfgIAAOHK7svgpKQkj/nc3Fz169dPY8eO9bqNzWZTamqq1/XTpk2TJB0/frzJ9aWlpVqzZo1efPFFXXvttZKkvLw8DRo0SO+9955GjRrlSwoAAABtivoJAACEK78/06iyslLr16/XrFmzZLPZvI4rLy9X7969lZ6erokTJ+rAgQM+HWfv3r2qqqpSVlaWe9lll12mXr16adeuXV63q6ioUFlZmccDAAAglKifAABAOPG7abRx40aVlJTojjvu8Dpm4MCBWrt2rV577TWtX79etbW1Gj16tD7//PMWH8flcsnhcCghIcFjeUpKilwul9ftcnJyFB8f736kp6e3+JgAAADBQP0EAADCid9NozVr1mj8+PHq0aOH1zGZmZmaPn26hg4dqrFjxyo/P19JSUl67rnn/D1siy1atEilpaXux2effRb0YwIAAFwI9RMAAAgnPn2mUb2ioiJt27ZN+fn5Pm0XExOjYcOG6ciRIy3eJjU1VZWVlSopKfH4bdnJkycv+Lf+sbGxio2N9Sk+AACAYKF+AgAA4cavO43y8vKUnJysCRMm+LRdTU2NCgsLlZaW1uJthg8frpiYGG3fvt297PDhwyouLlZmZqZPxwcAAAgV6icAABBufL7TqLa2Vnl5eZoxY4bsds/Np0+frp49eyonJ0eStGzZMo0aNUr9+/dXSUmJli9frqKiIs2ePdu9zalTp1RcXKwvv/xS0vmCRjr/G7LU1FTFx8frzjvv1MKFC9W1a1c5nU79/Oc/V2ZmJt/8AQAAwgL1EwAACEc+N422bdum4uJizZo1y7KuuLhYUVHf3bx0+vRpzZkzRy6XS4mJiRo+fLh27typwYMHu8ds2rRJM2fOdM9PmTJFkpSdna0lS5ZIklauXKmoqChNmjRJFRUVGjdunFavXu1r6AAAACFB/QQAAMKRzRhjQh1EWygrK1N8fLxKS0vldDqDdhybbUnQ9g0g+LK11Odtlio7CJEAHYsxS1o8tq3es9E86icALUH9BARHe6if/P72NAAAAAAAAHRcNI0AAAAAAABg4fNnGiHw/Lmd01fc/gkAADoS6icAAIKPO40AAAAAAABgQdMIAAAAAAAAFjSNAAAAAAAAYEHTCAAAAAAAABY0jQAAAAAAAGBB0wgAAAAAAAAWNI0AAAAAAABgQdMIAAAAAAAAFjSNAAAAAAAAYEHTCAAAAAAAABY0jQAAAAAAAGBhD3UAHU22lvq8zVJlByESAP7g5xEA2h71ExDe+HkEOi7uNAIAAAAAAIAFTSMAAAAAAABY0DQCAAAAAACABU0jAAAAAAAAWNA0AgAAAAAAgAVNIwAAAAAAAFjQNAIAAAAAAIAFTSMAAAAAAABY0DQCAAAAAACABU0jAAAAAAAAWNA0AgAAAAAAgAVNIwAAAAAAAFjYQx1AR7NU2T5vk62lbXIcAACA9oj6CQCA9ok7jQAAAAAAAGBB0wgAAAAAAAAWNI0AAAAAAABgQdMIAAAAAAAAFjSNAAAAAAAAYEHTCAAAAAAAABY0jQAAAAAAAGBB0wgAAAAAAAAWNI0AAAAAAABgQdMIAAAAAAAAFjSNAAAAAAAAYEHTCAAAAAAAABb2UAcAaamyQx0CAABAWKF+AgAg+LjTCAAAAAAAABY0jQAAAAAAAGBB0wgAAAAAAAAWNI0AAAAAAABgQdMIAAAAAAAAFjSNAAAAAAAAYEHTCAAAAAAAABY0jQAAAAAAAGBB0wgAAAAAAAAWNI0AAAAAAABgQdMIAAAAAAAAFj41jfr06SObzWZ5zJs3r8nx69ats4yNi4vzGGOM0aOPPqq0tDR16tRJWVlZ+uSTT5o9bm5uro+pAgAAtD3qJwAAEK7svgzes2ePampq3PP79+/X9ddfr1tuucXrNk6nU4cPH3bP22w2j/VPPPGEnn76af3+979X37599cgjj2jcuHE6ePCgR4G0bNkyzZkzxz3fpUsXX0IHAAAICeonAAAQrnxqGiUlJXnM5+bmql+/fho7dqzXbWw2m1JTU5tcZ4zRU089pcWLF2vixImSpD/84Q9KSUnRxo0bNWXKFPfYLl26eN0PAABAe0X9BAAAwpXfn2lUWVmp9evXa9asWZbffjVUXl6u3r17Kz09XRMnTtSBAwfc644dOyaXy6WsrCz3svj4eGVkZGjXrl0e+8nNzVW3bt00bNgwLV++XNXV1ReMr6KiQmVlZR4PAACAUKJ+AgAA4cSnO40a2rhxo0pKSnTHHXd4HTNw4ECtXbtWQ4YMUWlpqVasWKHRo0frwIEDuvjii+VyuSRJKSkpHtulpKS410nSvffeq6uuukpdu3bVzp07tWjRIp04cUJPPvmk12Pn5ORo6dKl/qYHAAAQcNRPAAAgnNiMMcafDceNGyeHw6E///nPLd6mqqpKgwYN0m233abHHntMO3fu1A9+8AN9+eWXSktLc4+bPHmybDab/u///q/J/axdu1Z33XWXysvLFRsb2+SYiooKVVRUuOfLysqUnp6u0tJSOZ3OFsfsK5ttSdD2DQBAuDJmSYvHlpWVKT4+Pujv2aFA/dQ06icAAKzaQ/3k15+nFRUVadu2bZo9e7ZP28XExGjYsGE6cuSIJLn/xv7kyZMe406ePHnBv7/PyMhQdXW1jh8/7nVMbGysnE6nxwMAACBUqJ8AAEC48atplJeXp+TkZE2YMMGn7WpqalRYWOj+rVjfvn2Vmpqq7du3u8eUlZVp9+7dyszM9LqfgoICRUVFKTk52Z/wAQAA2hz1EwAACDc+f6ZRbW2t8vLyNGPGDNntnptPnz5dPXv2VE5OjqTzX/M6atQo9e/fXyUlJVq+fLmKiorcv2Gz2Wy6//779ctf/lIDBgxwf2Vsjx499JOf/ESStGvXLu3evVs/+tGP1KVLF+3atUsLFizQz372MyUmJrYyfQAAgOCjfgIAAOHI56bRtm3bVFxcrFmzZlnWFRcXKyrqu5uXTp8+rTlz5sjlcikxMVHDhw/Xzp07NXjwYPeYBx54QGfPntXcuXNVUlKiMWPGaMuWLYqLi5N0/jbpDRs2aMmSJaqoqFDfvn21YMECLVy40J98AQAA2hz1EwAACEd+fxB2uGmrD9XkgxwBALBqDx/kCN9RPwEAEDrtoX7y6zONAAAAAAAA0LHRNAIAAAAAAICFz59phAvz5fax1uA2bgAA0FFQPwEA0D5xpxEAAAAAAAAsaBoBAAAAAADAgqYRAAAAAAAALGgaAQAAAAAAwIKmEQAAAAAAACxoGgEAAAAAAMCCphEAAAAAAAAsaBoBAAAAAADAgqYRAAAAAAAALGgaAQAAAAAAwIKmEQAAAAAAACxoGgEAAAAAAMDCHuoA4B9jloQ6hCbZbEtCHUJYydZSn8YvVXaQIgEAoOOjfuoYqJ8AoO1wpxEAAAAAAAAsaBoBAAAAAADAgqYRAAAAAAAALGgaAQAAAAAAwIKmEQAAAAAAACxoGgEAAAAAAMCCphEAAAAAAAAsaBoBAAAAAADAgqYRAAAAAAAALGgaAQAAAAAAwIKmEQAAAAAAACzsoQ4AHYsxS0IdQpNstiWhDqFJS5Ud6hAAAECIUT/5hvoJANoOdxoBAAAAAADAgqYRAAAAAAAALGgaAQAAAAAAwIKmEQAAAAAAACxoGgEAAAAAAMCCphEAAAAAAAAsaBoBAAAAAADAgqYRAAAAAAAALGgaAQAAAAAAwIKmEQAAAAAAACxoGgEAAAAAAMCCphEAAAAAAAAs7KEOAGgLxiwJdQhNstmWhDoEdGDZWurT+KXKDlIkAIBwRP2ESET9BHjiTiMAAAAAAABY0DQCAAAAAACABU0jAAAAAAAAWNA0AgAAAAAAgAVNIwAAAAAAAFjQNAIAAAAAAIAFTSMAAAAAAABY0DQCAAAAAACABU0jAAAAAAAAWNA0AgAAAAAAgAVNIwAAAAAAAFj41DTq06ePbDab5TFv3rwmx69bt84yNi4uzmOMMUaPPvqo0tLS1KlTJ2VlZemTTz7xGHPq1ClNnTpVTqdTCQkJuvPOO1VeXu5jqgAAAG2P+gkAAIQruy+D9+zZo5qaGvf8/v37df311+uWW27xuo3T6dThw4fd8zabzWP9E088oaefflq///3v1bdvXz3yyCMaN26cDh486C6Qpk6dqhMnTmjr1q2qqqrSzJkzNXfuXL344ou+hA+0O8YsCXUIAWGzLQl1CGjCUmX7NL6jPB+B9ob6CQisjvJ+Rf3UPlE/AZ58aholJSV5zOfm5qpfv34aO3as121sNptSU1ObXGeM0VNPPaXFixdr4sSJkqQ//OEPSklJ0caNGzVlyhQdOnRIW7Zs0Z49ezRixAhJ0jPPPKObbrpJK1asUI8ePXxJAQAAoE1RPwEAgHDl92caVVZWav369Zo1a5blt18NlZeXq3fv3kpPT9fEiRN14MAB97pjx47J5XIpKyvLvSw+Pl4ZGRnatWuXJGnXrl1KSEhwFzySlJWVpaioKO3evdvrcSsqKlRWVubxAAAACCXqJwAAEE78bhpt3LhRJSUluuOOO7yOGThwoNauXavXXntN69evV21trUaPHq3PP/9ckuRyuSRJKSkpHtulpKS417lcLiUnJ3ust9vt6tq1q3tMU3JychQfH+9+pKen+5MmAABAwFA/AQCAcOJ302jNmjUaP378BW9vzszM1PTp0zV06FCNHTtW+fn5SkpK0nPPPefvYVts0aJFKi0tdT8+++yzoB8TAADgQqifAABAOPHpM43qFRUVadu2bcrPz/dpu5iYGA0bNkxHjhyRJPff6p88eVJpaWnucSdPntTQoUPdY7766iuP/VRXV+vUqVNe/9ZfkmJjYxUbG+tTfAAAAMFC/QQAAMKNX3ca5eXlKTk5WRMmTPBpu5qaGhUWFroLnL59+yo1NVXbt293jykrK9Pu3buVmZkp6fxv20pKSrR37173mB07dqi2tlYZGRn+hA8AANDmqJ8AAEC48flOo9raWuXl5WnGjBmy2z03nz59unr27KmcnBxJ0rJlyzRq1Cj1799fJSUlWr58uYqKijR79mxJ578Z5P7779cvf/lLDRgwwP2VsT169NBPfvITSdKgQYN04403as6cOXr22WdVVVWl+fPna8qUKXzzBwAACAvUTwAAIBz53DTatm2biouLNWvWLMu64uJiRUV9d/PS6dOnNWfOHLlcLiUmJmr48OHauXOnBg8e7B7zwAMP6OzZs5o7d65KSko0ZswYbdmyRXFxce4xL7zwgubPn6/rrrtOUVFRmjRpkp5++mlfQwcAAAgJ6icAABCObMYYE+og2kJZWZni4+NVWloqp9MZ6nCADsVmWxLqEBAAxiwJdQiAJN6z2xOuBRA81E8dA/UT2otgvWf7/e1pAAAAAAAA6LhoGgEAAAAAAMDC5880AoDGuC0XAADAN9RPAMIBdxoBAAAAAADAgqYRAAAAAAAALGgaAQAAAAAAwIKmEQAAAAAAACxoGgEAAAAAAMCCphEAAAAAAAAsaBoBAAAAAADAgqYRAAAAAAAALGgaAQAAAAAAwIKmEQAAAAAAACxoGgEAAAAAAMDCHuoA2ooxRpJUVlYW4kgAAMCF1L9X1793I3SonwAACA/Bqp8ipml05swZSVJ6enqIIwEAAC1x5swZxcfHhzqMiEb9BABAeAl0/WQzEfJrvNraWn355Zfq0qWLbDZbqMNpM2VlZUpPT9dnn30mp9MZ6nDaXCTnT+7kHmm5S5Gdf0fK3RijM2fOqEePHoqK4i/pQ4n6Kfx/nvwRyfmTO7mTe2TpSPkHq36KmDuNoqKidPHFF4c6jJBxOp1h/0PQGpGcP7mTeySK5Pw7Su7cYdQ+UD91jJ8nf0Vy/uRO7pEmknOXOk7+waif+PUdAAAAAAAALGgaAQAAAAAAwIKmUQcXGxur7OxsxcbGhjqUkIjk/Mmd3CNRJOcfybkDgRbpP0+RnD+5k3ukieTcJfJviYj5IGwAAAAAAAC0HHcaAQAAAAAAwIKmEQAAAAAAACxoGgEAAAAAAMCCphEAAAAAAAAsaBq1M7m5ubLZbLr//vvdy373u9/pmmuukdPplM1mU0lJiWW7U6dOaerUqXI6nUpISNCdd96p8vJyjzEfffSRfvjDHyouLk7p6el64oknLPt55ZVXdNlllykuLk5XXHGFNm/e7LHeGKNHH31UaWlp6tSpk7KysvTJJ5+ENPc+ffrIZrN5PHJzc8M691OnTunnP/+5Bg4cqE6dOqlXr1669957VVpa6rFdcXGxJkyYoM6dOys5OVm/+MUvVF1d7THmrbfe0lVXXaXY2Fj1799f69atsxx/1apV6tOnj+Li4pSRkaH333/fY/25c+c0b948devWTRdddJEmTZqkkydPBiT31uTf+LrbbDZt2LAhrPJv6nl/1113qV+/furUqZOSkpI0ceJEffzxxx7bdYRr72/uHfW61zPGaPz48bLZbNq4caPHuo5w3YFgoH6ifpIiq36K5Nqpqfwl6ifqJ+qnoDFoN95//33Tp08fM2TIEHPfffe5l69cudLk5OSYnJwcI8mcPn3asu2NN95orrzySvPee++Zf/zjH6Z///7mtttuc68vLS01KSkpZurUqWb//v3mpZdeMp06dTLPPfece8y7775roqOjzRNPPGEOHjxoFi9ebGJiYkxhYaF7TG5uromPjzcbN240//znP82Pf/xj07dvX/Ptt9+GLPfevXubZcuWmRMnTrgf5eXlYZ17YWGh+elPf2o2bdpkjhw5YrZv324GDBhgJk2a5N6uurrafP/73zdZWVlm3759ZvPmzaZ79+5m0aJF7jGffvqp6dy5s1m4cKE5ePCgeeaZZ0x0dLTZsmWLe8yGDRuMw+Ewa9euNQcOHDBz5swxCQkJ5uTJk+4xd999t0lPTzfbt283H3zwgRk1apQZPXp0q/Jubf7GGCPJ5OXleVz7htejvefv7Xn/3HPPmb///e/m2LFjZu/evebmm2826enpprq62hjTMa69v7kb03Gve70nn3zSjB8/3kgyr776qnt5R7juQDBQP1E/RVr9FMm1k7f8jaF+on6ifgoWmkbtxJkzZ8yAAQPM1q1bzdixY5v8QXjzzTebfOM/ePCgkWT27NnjXvbXv/7V2Gw288UXXxhjjFm9erVJTEw0FRUV7jEPPvigGThwoHt+8uTJZsKECR77zsjIMHfddZcxxpja2lqTmppqli9f7l5fUlJiYmNjzUsvvRSS3I05X/SsXLnS6/7DPfd6L7/8snE4HKaqqsoYY8zmzZtNVFSUcblc7jG//e1vjdPpdOf6wAMPmMsvv9xjP7feeqsZN26ce37kyJFm3rx57vmamhrTo0cPk5OT484zJibGvPLKK+4xhw4dMpLMrl27/M7dmNblb4yxvCk01p7z9yX3f/7zn0aSOXLkiDEm/K99a3I3pmNf93379pmePXuaEydOWPIM9+sOBAP1E/VTpNVPkVw7GUP9RP1E/RQK/HlaOzFv3jxNmDBBWVlZPm+7a9cuJSQkaMSIEe5lWVlZioqK0u7du91jrr76ajkcDveYcePG6fDhwzp9+rR7TOPjjxs3Trt27ZIkHTt2TC6Xy2NMfHy8MjIy3GP80Zrc6+Xm5qpbt24aNmyYli9f7nG7YUfJvbS0VE6nU3a73R3zFVdcoZSUFI+Yy8rKdODAgRblVVlZqb1793qMiYqKUlZWlnvM3r17VVVV5THmsssuU69evVqVu9S6/Bvuo3v37ho5cqTWrl0rY4x7XXvOv6W5nz17Vnl5eerbt6/S09PdeYXztW9N7g330dGu+zfffKPbb79dq1atUmpqqmV9uF93IBion6ifmtPR6qdIrp3qY6d+on5qiPop+OzND0GwbdiwQR9++KH27Nnj1/Yul0vJyckey+x2u7p27SqXy+Ue07dvX48x9T84LpdLiYmJcrlcHj9M9WMa7qPhdk2N8VVrc5eke++9V1dddZW6du2qnTt3atGiRTpx4oSefPJJd9zhnvu///1vPfbYY5o7d657mbeYG8brbUxZWZm+/fZbnT59WjU1NU2Oqf87aJfLJYfDoYSEBMsYf3OXWp+/JC1btkzXXnutOnfurDfeeEP33HOPysvLde+997pjb4/5tyT31atX64EHHtDZs2c1cOBAbd261V24h/O1b23uUse97gsWLNDo0aM1ceLEJteH83UHgoH6ifqpOR2tfork2kmifqJ+on4KFZpGIfbZZ5/pvvvu09atWxUXFxfqcNpUoHJfuHCh+99DhgyRw+HQXXfdpZycHMXGxgYi1IDzJfeysjJNmDBBgwcP1pIlS9omwCALVP6PPPKI+9/Dhg3T2bNntXz5cvebX3vU0tynTp2q66+/XidOnNCKFSs0efJkvfvuu2H9OhGo3Dvidd+0aZN27Nihffv2hSA6IPxQP1E/RVr9FMm1k0T9RP1E/RRK/HlaiO3du1dfffWVrrrqKtntdtntdv3973/X008/Lbvdrpqammb3kZqaqq+++spjWXV1tU6dOuW+RS81NdXyye31882Nabi+4XZNjfFFIHJvSkZGhqqrq3X8+HF33OGa+5kzZ3TjjTeqS5cuevXVVxUTE+PeR2vycjqd6tSpk7p3767o6Ohmc6+srLR884q/uQcq/6ZkZGTo888/V0VFRbvNv6W5x8fHa8CAAbr66qv1xz/+UR9//LFeffXVC+ZVv64j596UjnDdt27dqqNHjyohIcG9XpImTZqka6655oJ51a9rr7kDwUD9RP0UafVTJNdOvuRP/UT9JFE/BRpNoxC77rrrVFhYqIKCAvdjxIgRmjp1qgoKChQdHd3sPjIzM1VSUqK9e/e6l+3YsUO1tbXKyMhwj3n77bdVVVXlHrN161YNHDhQiYmJ7jHbt2/32PfWrVuVmZkpSerbt69SU1M9xpSVlWn37t3uMW2de1MKCgoUFRXlvuU8XHMvKyvTDTfcIIfDoU2bNlm665mZmSosLPQoeLdu3Sqn06nBgwe3KC+Hw6Hhw4d7jKmtrdX27dvdY4YPH66YmBiPMYcPH1ZxcbFfuQcq/6YUFBQoMTHR/RvS9pi/P897c/5LC9xv6uF67QORe1M6wnV/+OGH9dFHH3msl6SVK1cqLy/PnVc4XncgGKifqJ8irX6K5Nqppfk3Rv1E/VSfVzhe93YlNJ+/jQtp/InwJ06cMPv27TPPP/+8kWTefvtts2/fPvP111+7x9x4441m2LBhZvfu3eadd94xAwYM8PjK2JKSEpOSkmKmTZtm9u/fbzZs2GA6d+5s+dpUu91uVqxYYQ4dOmSys7Ob/NrUhIQE89prr5mPPvrITJw4MSBfm+pv7jt37jQrV640BQUF5ujRo2b9+vUmKSnJTJ8+PaxzLy0tNRkZGeaKK64wR44c8fhqzMZfG3rDDTeYgoICs2XLFpOUlNTk10f+4he/MIcOHTKrVq1q8usjY2Njzbp168zBgwfN3LlzTUJCgsc3DNx9992mV69eZseOHeaDDz4wmZmZJjMzMyB5+5v/pk2bzPPPP28KCwvNJ598YlavXm06d+5sHn300bDLv2HuR48eNY8//rj54IMPTFFRkXn33XfNzTffbLp27er+Ss+OdO19zb2jXvemyMtXxnaE6w4EA/VTy3OnfuoYr6WRXDs1zp/6ifqpHvVT4NE0aoca/yBkZ2cbSZZHXl6ee8zXX39tbrvtNnPRRRcZp9NpZs6cac6cOeOx33/+859mzJgxJjY21vTs2dPk5uZajv3yyy+bSy+91DgcDnP55Zeb119/3WN9bW2teeSRR0xKSoqJjY011113nTl8+HDIct+7d6/JyMgw8fHxJi4uzgwaNMg8/vjj5ty5c2Gde/1X5Db1OHbsmHub48ePm/Hjx5tOnTqZ7t27m//6r//y+FrV+n0NHTrUOBwOc8kll3g8b+o988wzplevXsbhcJiRI0ea9957z2P9t99+a+655x6TmJhoOnfubP7jP/7DnDhxImC5+5P/X//6VzN06FBz0UUXme9973vmyiuvNM8++6ypqakJu/wb5v7FF1+Y8ePHm+TkZBMTE2Muvvhic/vtt5uPP/7YY5uOcu19zb2jXvemNC56jOk41x0IBuqnludO/dQxXksjuXZqnD/1E/VTPeqnwLMZ0+B79gAAAAAAAABF2LennTt3TpWVlaEOAwAANMPhcIT1t910JNRPAACEh2DUTxHTNDp37pw6dUqSVB7qUAAAQDNSU1N17NgxGkchRv0EAED4CEb9FDFNo/O/ISuXtEDS9+qW1n8Fpd3L9ELrY1owJlDrm9vmwl+l6Vb/wfreDhl1gXXRXpb7s97bupgmxl4o7ugWrG/pPpqL+0LnrrXnxj2u7i9F7TUeU1t09flZe42i65ZF22vrptV107rlUXVTNT21102jLOvrjqFa9/Joy9hqj31ENxh7flzj9c3H0NwY32PwPq5xrt6O/d0+mxtnPWctjbP5c9Z8DM1e27qvX42urjtGjambl8fUdv5QqjuUdVpT92i8zJf5+qm3Y9UEeF/Nzbd0X4334UtsgdxXM7FV1W1bd6kt89U1npvUfw9S4115W95w/YXWtXQfLTlGhaSVLpcqKytpGoVY6+snb+sCWT+1dNsA1E9N1U4XOmRraoSWbtua+qm5uiiQ9VOga8um6qcmaidJQamfmqoDGk4DWT95r98CVz81X7sErn5qfM6CUT95P34Q6id/3+v9qQWCWYvVzwewRmk2tmDWYo2XN9omGPWTP3WPL+OaSqfhumDVTxHTNPpOrKT6E+iteGjJvLeiJxjzLd3GC1sLp1H6rvjxNm1cBDSetqSwaa7oCeT6lu6j2YKkBcfwZ1uP6YWbRraYGtnql7mn59dF1c1HRXm+8UU1enP1XmxY3+C9N0maa6K0fH3gj1E/jb7AsaJauA9b3bgoj+2+m9oa7cfmXvbdj4Ot0T7VaGrqxjVeXj+tj9V4jI+WafDv2kbHqpvW1E2r6+L0VvR4e7O9UJOlJdv4ujyQ+2pqeXSD9Y1PdP023l73Gu/T1mh949fS+vFNsTWab/ypgsbLcm+xGamqrjCqu9SqsjWarxvaXIHSkvnmxja3D3sz66Mb/Bvtjb/1k7d1gayXWnsML5qql5qqnVoy9ad+CmZ9VL++udokkPVTIGsvj6n3ppEtpnHdFLj6qfnmSODqp+ZrltbXT03VTp7TwNVP9kZjg1E/NVU7eU4DWD+1tkbxZbtg1mKNj9G4TgpG/dSS2qnhtvX8qZ+iPMcEo37yp7Zqybim6qfGlymY9VNU80MAAAAAAAAQaWgaAQAAAAAAwIKmEQAAAAAAACxoGgEAAAAAAMCCphEAAAAAAAAsaBoBAAAAAADAgqYRAAAAAAAALGgaAQAAAAAAwIKmEQAAAAAAACxoGgEAAAAAAMCCphEAAAAAAAAsaBoBAAAAAADAgqYRAAAAAAAALGgaAQAAAAAAwIKmEQAAAAAAACxoGgEAAAAAAMCCphEAAAAAAAAsaBoBAAAAAADAgqYRAAAAAAAALGgaAQAAAAAAwMIe6gDaXoW+S7umblo/X93MfFWD+Zi6f8c0GtN4Goj1zW1TP++FaeG0tu6hJqa2umlNo/n6qbzMN47B23EbanzsaC/jaxqtb7y8Wt+douhG6xov93b6oxtNm7pcLd2Ht/XucXUJ2ms8pib6/PPQ2Gtk6pfZa+um59fV1i23RdVN1fS01n0CGk+r68Y1PIl1x3JPqz22MXVjjXvf1Y3mm57Wr69RjaLr/t14WttoPso9X+3e9vx87QXH2RuMi260ztuxv9tnc+Pqj/FdDBc6flP7qB9v9xqD9+l3/zZ1+zB1+zw/ja6pm1bXra+71HVPJ/fUVn/Jq71Mv3sqqNFToOXz9VNvx6oJ8L6am2/pvhrvw5fYWrqv5qbeXpMbTKvqXjrqLrVlvnEIVfJtecP1F1rX0n205BgVQvvjb/1U1WhdMOqnlm4bgPrJWw0TjPrJeJkPZP3UVO0kBad+8rU+8qd+aqJ28pwGsn5qqnb6bhrI+qlh7XT+1AS+fmq+dglc/WRv4vgNtw1E/dR8LRXA+snfusGfmieYtVj9fGv35ct58Hdf/tRPjZYFo37yp+7xZVzD5U2tC1b9FDFNI4fDodTUVLlcK0MdSug0/mFCWKiv9ar03YsCAHR0qampcjgcoQ4j4lE/ifopDDWsnRpOAaCjC0b9ZDPGNP49Rod17tw5VVZW+rVtWVmZ0tPT9dlnn8npdAY4svDAOeAcSJwDiXMgcQ4kzoEU3HPgcDgUFxcX0H3CP62pn1oikn+WyD3yco/UvCVyJ3dybwvBqJ8i5k4jSYqLi2v1CXQ6nRH3ZG+Mc8A5kDgHEudA4hxInAOJc9DRBaJ+aolIfh6Re+TlHql5S+RO7pEn3HPng7ABAAAAAABgQdMIAAAAAAAAFjSNWig2NlbZ2dmKjY0NdSghwzngHEicA4lzIHEOJM6BxDlAYETy84jcIy/3SM1bIndyJ/dwFVEfhA0AAAAAAICW4U4jAAAAAAAAWNA0AgAAAAAAgAVNIwAAAAAAAFjQNAIAAAAAAIAFTaMGVq1apT59+iguLk4ZGRl6//33Lzj+lVde0WWXXaa4uDhdccUV2rx5cxtFGjy+nIPnn39eP/zhD5WYmKjExERlZWU1e87Cga/Pg3obNmyQzWbTT37yk+AG2AZ8PQclJSWaN2+e0tLSFBsbq0svvTTsfx58PQdPPfWUBg4cqE6dOik9PV0LFizQuXPn2ijawHv77bd18803q0ePHrLZbNq4cWOz27z11lu66qqrFBsbq/79+2vdunVBjzOYfD0H+fn5uv7665WUlCSn06nMzEz97W9/a5tgg8Cf50C9d999V3a7XUOHDg1afAgvvrym5ufna8SIEUpISND3vvc9DR06VP/7v//bhtEGViTXFb7kvm7dOtlsNo9HXFxcG0YbOJFcR/mS+zXXXGO55jabTRMmTGjDiAMnkmtHX3KvqqrSsmXL1K9fP8XFxenKK6/Uli1b2jDawImYetnAGGPMhg0bjMPhMGvXrjUHDhwwc+bMMQkJCebkyZNNjn/33XdNdHS0eeKJJ8zBgwfN4sWLTUxMjCksLGzjyAPH13Nw++23m1WrVpl9+/aZQ4cOmTvuuMPEx8ebzz//vI0jDxxfz0G9Y8eOmZ49e5of/vCHZuLEiW0TbJD4eg4qKirMiBEjzE033WTeeecdc+zYMfPWW2+ZgoKCNo48cHw9By+88IKJjY01L7zwgjl27Jj529/+ZtLS0syCBQvaOPLA2bx5s3n44YdNfn6+kWReffXVC47/9NNPTefOnc3ChQvNwYMHzTPPPGOio6PNli1b2ibgIPD1HNx3333m17/+tXn//ffNv/71L7No0SITExNjPvzww7YJOMB8zb/e6dOnzSWXXGJuuOEGc+WVVwY1RoQHX19T33zzTZOfn28OHjxojhw5Yp566qmwfT2J5LrC19zz8vKM0+k0J06ccD9cLlcbR916kVxH+Zr7119/7XG99+/fb6Kjo01eXl7bBh4AkVw7+pr7Aw88YHr06GFef/11c/ToUbN69WoTFxcXlvVSpNTLNI3qjBw50sybN889X1NTY3r06GFycnKaHD958mQzYcIEj2UZGRnmrrvuCmqcweTrOWisurradOnSxfz+978PVohB5885qK6uNqNHjzb/8z//Y2bMmBG2xV09X8/Bb3/7W3PJJZeYysrKtgox6Hw9B/PmzTPXXnutx7KFCxeaH/zgB0GNs6205E3wgQceMJdffrnHsltvvdWMGzcuiJG1HV+aJg0NHjzYLF26NPABtTFf8r/11lvN4sWLTXZ2Nk0jGGNaX18YY8ywYcPM4sWLgxFeUEVyXeFr7nl5eSY+Pr6NogueSK6jWvuzvnLlStOlSxdTXl4erBCDJpJrR19zT0tLM7/5zW88lv30pz81U6dODWqcwdaR62X+PE1SZWWl9u7dq6ysLPeyqKgoZWVladeuXU1us2vXLo/xkjRu3Div49s7f85BY998842qqqrUtWvXYIUZVP6eg2XLlik5OVl33nlnW4QZVP6cg02bNikzM1Pz5s1TSkqKvv/97+vxxx9XTU1NW4UdUP6cg9GjR2vv3r3uW3E//fRTbd68WTfddFObxNwedLTXxECora3VmTNnwvY10R95eXn69NNPlZ2dHepQ0E60tr4wxmj79u06fPiwrr766mCGGnCRXFf4m3t5ebl69+6t9PR0TZw4UQcOHGiLcAMmkuuoQPxfYs2aNZoyZYq+973vBSvMoIjk2tGf3CsqKix/etqpUye98847QY21PQjXetke6gDag3//+9+qqalRSkqKx/KUlBR9/PHHTW7jcrmaHO9yuYIWZzD5cw4ae/DBB9WjRw/LD0K48OccvPPOO1qzZo0KCgraIMLg8+ccfPrpp9qxY4emTp2qzZs368iRI7rnnntUVVUVlv9x9Occ3H777fr3v/+tMWPGyBij6upq3X333fp//+//tUXI7YK318SysjJ9++236tSpU4giC50VK1aovLxckydPDnUobeKTTz7RQw89pH/84x+y2ykvcJ6/9UVpaal69uypiooKRUdHa/Xq1br++uuDHW5ARXJd4U/uAwcO1Nq1azVkyBCVlpZqxYoVGj16tA4cOKCLL764LcJutUiuo1r7f4n3339f+/fv15o1a4IVYtBEcu3oT+7jxo3Tk08+qauvvlr9+vXT9u3blZ+fH3aNUn+Ea73MnUYIiNzcXG3YsEGvvvpq2H5ooa/OnDmjadOm6fnnn1f37t1DHU7I1NbWKjk5Wb/73e80fPhw3XrrrXr44Yf17LPPhjq0NvPWW2/p8ccf1+rVq/Xhhx8qPz9fr7/+uh577LFQh4YQefHFF7V06VK9/PLLSk5ODnU4QVdTU6Pbb79dS5cu1aWXXhrqcNABdOnSRQUFBdqzZ49+9atfaeHChXrrrbdCHVZQRXpdkZmZqenTp2vo0KEaO3as8vPzlZSUpOeeey7UoQUVddR5a9as0RVXXKGRI0eGOpQ2Ecm143//939rwIABuuyyy+RwODR//nzNnDlTUVG0JtorfhUoqXv37oqOjtbJkyc9lp88eVKpqalNbpOamurT+PbOn3NQb8WKFcrNzdW2bds0ZMiQYIYZVL6eg6NHj+r48eO6+eab3ctqa2slSXa7XYcPH1a/fv2CG3SA+fM8SEtLU0xMjKKjo93LBg0aJJfLpcrKSjkcjqDGHGj+nINHHnlE06ZN0+zZsyVJV1xxhc6ePau5c+fq4Ycfjog3QW+viU6ns93+1iRYNmzYoNmzZ+uVV14J2zsvfXXmzBl98MEH2rdvn+bPny/p/OuhMUZ2u11vvPGGrr322hBHiVDwt76IiopS//79JUlDhw7VoUOHlJOTo2uuuSaY4QZUJNcVrakr68XExGjYsGE6cuRIMEIMikiuo1pzzc+ePasNGzZo2bJlwQwxaCK5dvQn96SkJG3cuFHnzp3T119/rR49euihhx7SJZdc0hYhh1S41svh8WwMMofDoeHDh2v79u3uZbW1tdq+fbsyMzOb3CYzM9NjvCRt3brV6/j2zp9zIElPPPGEHnvsMW3ZskUjRoxoi1CDxtdzcNlll6mwsFAFBQXux49//GP96Ec/UkFBgdLT09sy/IDw53nwgx/8QEeOHHEXtpL0r3/9S2lpaWFT6DTkzzn45ptvLG/u9cWfMSZ4wbYjHe010V8vvfSSZs6cqZdeeilsvzLYH06n0/J6ePfdd2vgwIEqKChQRkZGqENEiPhbXzRWW1urioqKYIQYNJFcVwTiutfU1KiwsFBpaWnBCjPgIrmOas01f+WVV1RRUaGf/exnwQ4zKCK5dmzNdY+Li1PPnj1VXV2tP/3pT5o4cWKwww25sK2XQ/kp3O3Jhg0bTGxsrFm3bp05ePCgmTt3rklISHB/1ee0adPMQw895B7/7rvvGrvdblasWGEOHTpksrOzTUxMjCksLAxVCq3m6znIzc01DofD/PGPf/T4uswzZ86EKoVW8/UcNBbO33JSz9dzUFxcbLp06WLmz59vDh8+bP7yl7+Y5ORk88tf/jJUKbSar+cgOzvbdOnSxbz00kvm008/NW+88Ybp16+fmTx5cqhSaLUzZ86Yffv2mX379hlJ5sknnzT79u0zRUVFxhhjHnroITNt2jT3+PqvEP3FL35hDh06ZFatWhUWXyF6Ib6egxdeeMHY7XazatUqj9fEkpKSUKXQKr7m3xjfnoZ6vr6mPv744+aNN94wR48eNQcPHjQrVqwwdrvdPP/886FKwW+RXFf4mvvSpUvN3/72N3P06FGzd+9eM2XKFBMXF2cOHDgQqhT8Esl1lL/P9zFjxphbb721rcMNqEiuHX3N/b333jN/+tOfzNGjR83bb79trr32WtO3b19z+vTpEGXgv0ipl2kaNfDMM8+YXr16GYfDYUaOHGnee+8997qxY8eaGTNmeIx/+eWXzaWXXmocDoe5/PLLzeuvv97GEQeeL+egd+/eRpLlkZ2d3faBB5Cvz4OGwrm4a8jXc7Bz506TkZFhYmNjzSWXXGJ+9atfmerq6jaOOrB8OQdVVVVmyZIlpl+/fiYuLs6kp6ebe+65Jyzf/Oq9+eabTf581+c9Y8YMM3bsWMs2Q4cONQ6Hw1xyySUmLy+vzeMOJF/PwdixYy84Ptz48xxoiKYRGvLlNfXhhx82/fv3N3FxcSYxMdFkZmaaDRs2hCDqwIjkusKX3O+//3732JSUFHPTTTeZDz/8MARRt14k11G+5v7xxx8bSeaNN95o40gDL5JrR19yf+utt8ygQYNMbGys6datm5k2bZr54osvQhB160VKvWwzJozufwMAAAAAAECb4DONAAAAAAAAYEHTCAAAAAAAABY0jQAAAAAAAGBB0wgAAAAAAAAWNI0AAAAAAABgQdMIAAAAAAAAFjSNAAAAAAAAYEHTCAAAAAAAABY0jQAAAAAAAGBB0wgAAAAAAAAWNI0AAAAAAABgQdMIAAAAAAAAFv8fhh5TM4zltHwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot descending weights\n", + "\n", + "fig, axs = plt.subplots(3, 2, figsize = (14, 20))\n", + "\n", + "axs[0, 0].set_title(\"Descending weights - Class\")\n", + "clrbar = axs[0, 0].imshow(arrays_descending[\"Class\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_descending[\"Class\"], ax = axs[0, 0], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[1, 0].set_title(\"Descending weights - W+\")\n", + "clrbar = axs[1, 0].imshow(arrays_descending[\"W+\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_descending[\"W+\"], ax = axs[1, 0], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[1, 1].set_title(\"Descending weights - S_W+\")\n", + "clrbar = axs[1, 1].imshow(arrays_descending[\"S_W+\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_descending[\"S_W+\"], ax = axs[1, 1], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[2, 0].set_title(\"Descending weights - Generalized W+\")\n", + "clrbar = axs[2, 0].imshow(arrays_descending[\"Generalized W+\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_descending[\"Generalized W+\"], ax = axs[2, 0], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[2, 1].set_title(\"Descending weights - Generalized S_W+\")\n", + "clrbar = axs[2, 1].imshow(arrays_descending[\"Generalized S_W+\"], cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(arrays_descending[\"Generalized S_W+\"], ax = axs[2, 1], transform = raster_meta[\"transform\"], cmap=colormap_name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculating posterior probabilities / responses" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Say we have 2 different weight calculations that can be used for posterior probabilities calculations\n", + "# Make a list out of them:\n", + "output_arrays = [arrays_ascending, arrays_descending]\n", + "\n", + "# Then we can call calculate responses using any of the output Dataframes\n", + "# weights_ascending is now an output Dataframe from some weight calculations with correct deposit and pixel counts\n", + "posterior_array, posterior_array_std, posterior_confidence = weights_of_evidence_calculate_responses(output_arrays, nr_of_deposits, nr_of_pixels)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI0AAARSCAYAAAAtoADOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADH6ElEQVR4nOzdeXwTdf7H8Xd6cqYcbSmFch+CclRcC6iAWi5ZBUX5gSiXgC6e4Imr0qJrUVh1VcRjoeiiy64uIF4oFa+VgoAUOZQFhBaVcghtOaTQ9vv7AxpJp6VNaJImfT0fjzzCzHy/M9/PTNJ8+GQyYzPGGAEAAAAAAABnCPL1AAAAAAAAAFD1UDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AlBh8+fPl81m065du3w9lEqVlJQkm82mAwcOVNo6W7RooT/+8Y/ltvv8889ls9n0+eefO+aNGTNGLVq0cGpns9mUlJRU4W2PGTOm4oMFAABnRQ5UceRA5y5Q4kBgoGgEeFBxglH8qFGjhtq1a6c77rhDe/furfTtHTt2TElJSU4fvghMK1euVFJSknJycnw9FAAALMiB4Cn+lgNt2bJFSUlJAVdwRPUR4usBANXB9OnT1bJlSx0/flz//e9/NWfOHH344YfatGmTatWqVWnbOXbsmJKTkyVJffr0qbT1Frv55ps1fPhwhYeHV/q6q6tevXrpt99+U1hY2Fnb/fbbbwoJ+f1P9sqVK5WcnKwxY8aoXr16Tm23bt2qoCC+EwAA+B45EMpSXXKgLVu2KDk5WX369LGcRQX4A4pGgBcMHDhQF110kSRp/PjxatiwoZ555hm9++67GjFihI9HV76jR4+qdu3aCg4OVnBwcKWt99ixY5WaMBYrKChQUVFRuUlIVRAUFKQaNWqU264ibYqR0AIAqgpyoNKRA5EDAf6iapVhgWriiiuukCTt3LlT0qkP+Mcff1ytW7dWeHi4WrRooYcfflj5+flO/dauXav+/fsrMjJSNWvWVMuWLTVu3DhJ0q5duxQVFSVJSk5OdpwOfuZvwH/44Qddf/31atCggWrUqKGLLrpIS5cuddpG8enkX3zxhSZNmqTo6Gg1bdrUaVnJ02tfeuklnX/++QoPD1dsbKxuv/12yynDffr00QUXXKB169apV69eqlWrlh5++OEy99GYMWNUp04d/fjjj+rfv79q166t2NhYTZ8+XcYYR7tdu3bJZrNp1qxZeu655xz7cMuWLZKkFStW6LLLLlPt2rVVr149DR48WN9//32p2zxw4ICGDRsmu92uhg0b6u6779bx48ed2qSmpuqKK65QdHS0wsPD1bFjR82ZM6fMOD755BN17dpVNWrUUMeOHbVo0SKn5aX9nr80Zx7LpKQk3X///ZKkli1bOo518XEp7XfwOTk5uueeexQXF6fw8HC1adNGTz31lIqKipzaLVy4UN26dVPdunVlt9vVqVMn/e1vfzvr2AAAqChyIHKgYoGSA52t3/z583XDDTdIki6//HLHeItjNsboiSeeUNOmTVWrVi1dfvnl2rx5c7nbBLyJM40AH9ixY4ckqWHDhpJOffP2+uuv6/rrr9e9996r1atXKyUlRd9//70WL14sSdq3b5/69eunqKgoPfTQQ6pXr5527drl+ACOiorSnDlz9Kc//UnXXnutrrvuOklS586dJUmbN2/WJZdcoiZNmuihhx5S7dq19e9//1tDhgzRf/7zH1177bVOY5w0aZKioqL02GOP6ejRo2XGkpSUpOTkZCUmJupPf/qTtm7dqjlz5mjNmjX6+uuvFRoa6mj766+/auDAgRo+fLhuuukmNWrU6Kz7qbCwUAMGDFD37t319NNPa9myZZo2bZoKCgo0ffp0p7apqak6fvy4Jk6cqPDwcDVo0EBpaWkaOHCgWrVqpaSkJP3222964YUXdMkll+jbb7+1nCI8bNgwtWjRQikpKVq1apWef/55HTp0SG+88YajzZw5c3T++efrmmuuUUhIiN577z1NmjRJRUVFuv32253Wt23bNv3f//2fbrvtNo0ePVqpqam64YYbtGzZMvXt2/essZ/Nddddp//973/65z//qWeffVaRkZGS5EiYSzp27Jh69+6tn3/+WbfeequaNWumlStXaurUqdqzZ4+ee+45SdLy5cs1YsQIXXnllXrqqackSd9//72+/vpr3X333W6PFwCAYuRA5ECBlAOV169Xr16666679Pzzz+vhhx9Whw4dJMnx/Nhjj+mJJ57QVVddpauuukrffvut+vXrpxMnTri9j4BKZwB4TGpqqpFk0tLSzP79+83u3bvNwoULTcOGDU3NmjXNTz/9ZDIyMowkM378eKe+9913n5FkVqxYYYwxZvHixUaSWbNmTZnb279/v5Fkpk2bZll25ZVXmk6dOpnjx4875hUVFZmePXuatm3bWsZ86aWXmoKCglLj2blzpzHGmH379pmwsDDTr18/U1hY6Gj34osvGklm3rx5jnm9e/c2kszLL79c/o4zxowePdpIMnfeeafTeAcNGmTCwsLM/v37jTHG7Ny500gydrvd7Nu3z2kdXbt2NdHR0ebXX391zNuwYYMJCgoyo0aNcsybNm2akWSuueYap/6TJk0yksyGDRsc844dO2YZa//+/U2rVq2c5jVv3txIMv/5z38c83Jzc03jxo1NfHy8Y95nn31mJJnPPvvMKfbmzZs7ra/kcZ05c6bTsSi57dGjRzumH3/8cVO7dm3zv//9z6ndQw89ZIKDg01WVpYxxpi7777b2O12y3EHAMBV5EDkQNUhB6pIv7ffftsSpzG/v4YGDRpkioqKHPMffvhhI8kpDsCX+Hka4AWJiYmKiopSXFychg8frjp16mjx4sVq0qSJPvzwQ0nSlClTnPrce++9kqQPPvhAkhwX+nv//fd18uRJl7Z/8OBBrVixQsOGDdPhw4d14MABHThwQL/++qv69++vbdu26eeff3bqM2HChHJ/u5+WlqYTJ07onnvucbro4IQJE2S32x1jLxYeHq6xY8e6NPY77rjD8W+bzaY77rhDJ06cUFpamlO7oUOHOn3LtGfPHmVkZGjMmDFq0KCBY37nzp3Vt29fx34/U8lvye68805Jcmpbs2ZNx79zc3N14MAB9e7dWz/++KNyc3Od+sfGxjp9e2m32zVq1CitX79e2dnZFYq/Mrz99tu67LLLVL9+fcexP3DggBITE1VYWKgvv/xS0qnX2NGjR7V8+XKvjQ0AENjIgU4hBwrMHOhccqfi19Cdd94pm83mmH/PPfe4vC7Ak6pl0ejLL7/U1VdfrdjYWNlsNi1ZssTldRhjNGvWLLVr107h4eFq0qSJ/vKXv1T+YBEQZs+ereXLl+uzzz7Tli1bHL9Rl6TMzEwFBQWpTZs2Tn1iYmJUr149ZWZmSpJ69+6toUOHKjk5WZGRkRo8eLBSU1Mtv/kvzfbt22WM0aOPPqqoqCinx7Rp0ySdOvX7TC1btix3vcVja9++vdP8sLAwtWrVyrG8WJMmTVy6MGNQUJBatWrlNK9du3aSZLmmQMnxljU26dQpwQcOHLCcct62bVun6datWysoKMhpW19//bUSExMd1weIiopyXJegZMLUpk0bpyTgbOP3pG3btmnZsmWWY5+YmCjp92M/adIktWvXTgMHDlTTpk01btw4LVu2zGvjBFC1kT/BHeRAp5ADBWYOdC65U/FxKrnvo6KiVL9+fVfCBDyqWl7T6OjRo+rSpYvGjRvn+M2zq+6++2598sknmjVrljp16qSDBw/q4MGDlTxSBIqLL77YceeQspT8YC1t+TvvvKNVq1bpvffe08cff6xx48bpr3/9q1atWqU6deqU2bf4Qn/33XefI1ErqWTCdua3SZXFE+v05LpLHpMdO3boyiuv1HnnnadnnnlGcXFxCgsL04cffqhnn33WckHFqqKoqEh9+/bVAw88UOry4iQuOjpaGRkZ+vjjj/XRRx/po48+UmpqqkaNGqXXX3/dm0MGUAWRP8Ed5ECeW6cn100OVLEciNwJ1UG1LBoNHDhQAwcOLHN5fn6+/vznP+uf//yncnJydMEFF+ipp55Snz59JJ26uNmcOXO0adMmRwW/It9IAKVp3ry5ioqKtG3bNsdF8SRp7969ysnJUfPmzZ3ad+/eXd27d9df/vIXvfXWWxo5cqQWLlyo8ePHl5l0FX9TFRoa6vhmpbLGLklbt251+jbsxIkT2rlz5zlvq6ioSD/++KPjA12S/ve//0mS5QKOZxtbST/88IMiIyNVu3Ztp/nbtm1zei9v375dRUVFjm299957ys/P19KlS9WsWTNHu88++6zUMRR/u3nmcano+MtTXoJ9ptatW+vIkSMVOh5hYWG6+uqrdfXVV6uoqEiTJk3SK6+8okcffdSSVAOoXsifUNnIgcpGDlS2qpYDldevrPEWH6dt27Y5vYb279+vQ4cOVThGwNOq5c/TynPHHXcoPT1dCxcu1HfffacbbrhBAwYM0LZt2ySd+qPZqlUrvf/++2rZsqVatGih8ePH800Z3HLVVVdJkuPuDcWeeeYZSdKgQYMkSYcOHXK6zaokde3aVZIcp2fXqlVLkiy3eo2OjlafPn30yiuvaM+ePZYx7N+/362xJyYmKiwsTM8//7zT2ObOnavc3FzH2M/Fiy++6Pi3MUYvvviiQkNDdeWVV561X+PGjdW1a1e9/vrrTvtj06ZN+uSTTxz7/UyzZ892mn7hhRckyfGfpOLrG5wZa25urlJTU0sdwy+//OK484sk5eXl6Y033lDXrl0VExNz1vGXpzjZK3msSzNs2DClp6fr448/tizLyclRQUGBpFN3djlTUFCQ484zFfkJAIDqjfwJriIHOjtyoNJVpRyoIv3KGm9iYqJCQ0P1wgsvOO3Xku8HwNeq5ZlGZ5OVlaXU1FRlZWUpNjZW0qnTWZctW6bU1FQ9+eST+vHHH5WZmam3335bb7zxhgoLCzV58mRdf/31WrFihY8jgL/p0qWLRo8erVdffVU5OTnq3bu3vvnmG73++usaMmSILr/8cknS66+/rpdeeknXXnutWrdurcOHD+u1116T3W53fPjXrFlTHTt21L/+9S+1a9dODRo00AUXXKALLrhAs2fP1qWXXqpOnTppwoQJatWqlfbu3av09HT99NNP2rBhg8tjj4qK0tSpU5WcnKwBAwbommuu0datW/XSSy/pD3/4g2666aZz2jc1atTQsmXLNHr0aCUkJOijjz7SBx98oIcffrjMW6ueaebMmRo4cKB69OihW265xXG72YiICCUlJVna79y5U9dcc40GDBig9PR0LViwQDfeeKO6dOkiSerXr5/j26Rbb71VR44c0Wuvvabo6OhSE9F27drplltu0Zo1a9SoUSPNmzdPe/fuLTPBckW3bt0kSX/+8581fPhwhYaG6uqrr7Z8cyhJ999/v5YuXao//vGPGjNmjLp166ajR49q48aNeuedd7Rr1y5FRkY6/vN2xRVXqGnTpsrMzNQLL7ygrl27On0DDAAlkT/BHeRAZSMHKltVyoEq0q9r164KDg7WU089pdzcXIWHh+uKK65QdHS07rvvPqWkpOiPf/yjrrrqKq1fv14fffSRIiMjz3k/AZXGB3dsq1IkmcWLFzum33//fSPJ1K5d2+kREhJihg0bZowxZsKECUaS2bp1q6PfunXrjCTzww8/eDsEVGHFt2c92y1ijTHm5MmTJjk52bRs2dKEhoaauLg4M3XqVKdbw3777bdmxIgRplmzZiY8PNxER0ebP/7xj2bt2rVO61q5cqXp1q2bCQsLs9yidMeOHWbUqFEmJibGhIaGmiZNmpg//vGP5p133qnQmEvebrbYiy++aM477zwTGhpqGjVqZP70pz+ZQ4cOObXp3bu3Of/888vZY78bPXq0qV27ttmxY4fp16+fqVWrlmnUqJGZNm2a061ti283O3PmzFLXk5aWZi655BJTs2ZNY7fbzdVXX222bNni1Kb4drNbtmwx119/valbt66pX7++ueOOO8xvv/3m1Hbp0qWmc+fOpkaNGqZFixbmqaeeMvPmzbPsl+bNm5tBgwaZjz/+2HTu3NmEh4eb8847z7z99ttO63P3drPGnLqNbJMmTUxQUJDT9kvebtYYYw4fPmymTp1q2rRpY8LCwkxkZKTp2bOnmTVrljlx4oQxxph33nnH9OvXz0RHR5uwsDDTrFkzc+utt5o9e/aUum8BVF/kTygPOdDvyIECNweqaL/XXnvNtGrVygQHBzvFXFhYaJKTk03jxo1NzZo1TZ8+fcymTZtKjQPwFZsxJc71rGZsNpsWL16sIUOGSJL+9a9/aeTIkdq8ebPlVpt16tRRTEyMpk2bpieffNLplp+//fabatWqpU8++UR9+/b1ZghAQBozZozeeecdHTlyxNdDAQCUQP4EeA45EICqhJ+nlRAfH6/CwkLt27dPl112WaltLrnkEhUUFGjHjh1q3bq1pN8v7Fbygn0AAACBjvwJAIDAVC2LRkeOHNH27dsd0zt37lRGRoYaNGigdu3aaeTIkRo1apT++te/Kj4+Xvv379enn36qzp07a9CgQUpMTNSFF16ocePG6bnnnlNRUZFuv/129e3b1+kOBwAAAIGC/AkAgOqnWt49be3atYqPj1d8fLwkacqUKYqPj9djjz0mSUpNTdWoUaN07733qn379hoyZIjWrFnjuL1kUFCQ3nvvPUVGRqpXr14aNGiQOnTooIULF/osJgAAAE8ifwIAoPqp9tc0AgAAAAAAgFW1PNMIAAAAAAAAZ0fRCAAAAAAAABbV5kLYRUVF+uWXX1S3bl3ZbDZfDwcAAJTBGKPDhw8rNjZWQUF8v+VL5E8AAPgHT+VP1aZo9MsvvyguLs7XwwAAABW0e/duNW3a1NfDqNbInwAA8C+VnT9Vm6JR3bp1JZ3agXa73cejAQAAZcnLy1NcXJzjsxu+Q/4EAIB/8FT+VG2KRsWnVNvtdpIeAAD8AD+H8j3yJwAA/Etl509cKAAAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFiGuNG7RooUyMzMt8ydNmqTZs2db5s+fP19jx451mhceHq7jx49Lkk6ePKlHHnlEH374oX788UdFREQoMTFRM2bMUGxs7Fm3m5KSooceesiV4XuFzZbk6yH4VBczwOPb2GBb5vFtGJPk8W0AAKoH8qfyVff8SZFJnt/GAc9vg/wJAAKPS0WjNWvWqLCw0DG9adMm9e3bVzfccEOZfex2u7Zu3eqYttlsjn8fO3ZM3377rR599FF16dJFhw4d0t13361rrrlGa9eudVrP9OnTNWHCBMd03bp1XRk6AACAT5A/AQAAf+VS0SgqKsppesaMGWrdurV69+5dZh+bzaaYmJhSl0VERGj58uVO81588UVdfPHFysrKUrNmzRzz69atW+Z6AAAAqiryJwAA4K/cvqbRiRMntGDBAo0bN87p26+Sjhw5oubNmysuLk6DBw/W5s2bz7re3Nxc2Ww21atXz2n+jBkz1LBhQ8XHx2vmzJkqKCg463ry8/OVl5fn9AAAAPAl8icAAOBPXDrT6ExLlixRTk6OxowZU2ab9u3ba968eercubNyc3M1a9Ys9ezZU5s3b1bTpk0t7Y8fP64HH3xQI0aMkN1ud8y/6667dOGFF6pBgwZauXKlpk6dqj179uiZZ54pc9spKSlKTk52NzwAAIBKR/4EAAD8ic0YY9zp2L9/f4WFhem9996rcJ+TJ0+qQ4cOGjFihB5//HHLsqFDh+qnn37S559/7pT0lDRv3jzdeuutOnLkiMLDw0ttk5+fr/z8fMd0Xl6e4uLilJube9Z1n6vqfiFHLoQNADhXeXl5ioiI8Phnti+QP5WuuudPXAgbAHCuPJU/uXWmUWZmptLS0rRo0SKX+oWGhio+Pl7bt293mn/y5EkNGzZMmZmZWrFiRbkBJiQkqKCgQLt27VL79u1LbRMeHl5mQgQAAOBt5E8AAMDfuHVNo9TUVEVHR2vQoEEu9SssLNTGjRvVuHFjx7zihGfbtm1KS0tTw4YNy11PRkaGgoKCFB0d7fLYAQAAfIH8CQAA+BuXzzQqKipSamqqRo8erZAQ5+6jRo1SkyZNlJKSIunUbV67d++uNm3aKCcnRzNnzlRmZqbGjx8v6VTCc/311+vbb7/V+++/r8LCQmVnZ0uSGjRooLCwMKWnp2v16tW6/PLLVbduXaWnp2vy5Mm66aabVL9+/XONHwAAwOPInwAAgD9yuWiUlpamrKwsjRs3zrIsKytLQUG/n7x06NAhTZgwQdnZ2apfv766deumlStXqmPHjpKkn3/+WUuXLpUkde3a1Wldn332mfr06aPw8HAtXLhQSUlJys/PV8uWLTV58mRNmTLF1aEDAAD4BPkTAADwR25fCNvfeOuimtX9Qo5cCBsAcK4C+ULY/ob8yUu4EDYA4Bx56jPbrWsaAQAAAAAAILC5dfc0lM2dM228ceaMN84A8hZv7ONq/42nF/BtJADAwZ0zbbxw5oxXzgDyFi/sY/InzyN/AuBtnGkEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwsBljjK8H4Q15eXmKiIhQbm6u7Ha7x7ZjsyV5bN3e1sUM8PUQfGaDbZmvhwAfMSbJ10MAqj1vfWajfORPbohM8vUIfOdAkq9HAB8hfwJ8z1Of2ZxpBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsAjx9QACTRczwNdDQCVw5zhusC3zwEjgbTZbkq+HUCpjknw9BADwnMgkX48AlcGd43jAjT6ocsifgMDFmUYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALAI8fUAAs0G2zKX+3QxAzwwEnibN46jO68vBAabLcnXQyiVMUm+HgKAQHAgyfU+kW70QdXjjePozusLAYH8CTh3nGkEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwCHGlcYsWLZSZmWmZP2nSJM2ePdsyf/78+Ro7dqzTvPDwcB0/flySdPLkST3yyCP68MMP9eOPPyoiIkKJiYmaMWOGYmNjHX0OHjyoO++8U++9956CgoI0dOhQ/e1vf1OdOnVcGT7g97qYAS732WBb5oGRAKfYbEm+HkKpjEny9RAAB/InwMcik1zvc8CNPkAFkT/Bn7hUNFqzZo0KCwsd05s2bVLfvn11ww03lNnHbrdr69atjmmbzeb497Fjx/Ttt9/q0UcfVZcuXXTo0CHdfffduuaaa7R27VpHu5EjR2rPnj1avny5Tp48qbFjx2rixIl66623XBk+AACA15E/AQAAf+VS0SgqKsppesaMGWrdurV69+5dZh+bzaaYmJhSl0VERGj58uVO81588UVdfPHFysrKUrNmzfT9999r2bJlWrNmjS666CJJ0gsvvKCrrrpKs2bNcvpGDQAAoKohfwIAAP7K7WsanThxQgsWLNC4ceOcvv0q6ciRI2revLni4uI0ePBgbd68+azrzc3Nlc1mU7169SRJ6enpqlevniPhkaTExEQFBQVp9erVZa4nPz9feXl5Tg8AAABfIn8CAAD+xO2i0ZIlS5STk6MxY8aU2aZ9+/aaN2+e3n33XS1YsEBFRUXq2bOnfvrpp1LbHz9+XA8++KBGjBghu90uScrOzlZ0dLRTu5CQEDVo0EDZ2dllbjslJUURERGOR1xcnOtBAgAAVCLyJwAA4E/cLhrNnTtXAwcOPOvpzT169NCoUaPUtWtX9e7dW4sWLVJUVJReeeUVS9uTJ09q2LBhMsZozpw57g7LYerUqcrNzXU8du/efc7rBAAAOBfkTwAAwJ+4dE2jYpmZmUpLS9OiRYtc6hcaGqr4+Hht377daX5xwpOZmakVK1Y4viWTpJiYGO3bt8+pfUFBgQ4ePFjmb/2lU3cZCQ8Pd2l8AAAAnkL+BAAA/I1bZxqlpqYqOjpagwYNcqlfYWGhNm7cqMaNGzvmFSc827ZtU1pamho2bOjUp0ePHsrJydG6desc81asWKGioiIlJCS4M3wAAACvI38CAAD+xuUzjYqKipSamqrRo0crJMS5+6hRo9SkSROlpKRIkqZPn67u3burTZs2ysnJ0cyZM5WZmanx48dLOpXwXH/99fr222/1/vvvq7Cw0PE7+wYNGigsLEwdOnTQgAEDNGHCBL388ss6efKk7rjjDg0fPpw7fwAAAL9A/gQAAPyRy0WjtLQ0ZWVlady4cZZlWVlZCgr6/eSlQ4cOacKECcrOzlb9+vXVrVs3rVy5Uh07dpQk/fzzz1q6dKkkqWvXrk7r+uyzz9SnTx9J0ptvvqk77rhDV155pYKCgjR06FA9//zzrg4dAADAJ8ifAACAP7IZY4yvB+ENeXl5ioiIUG5urtNv/iubzZbkcp8uZkDlDwQ4bYNtma+HAHidMUm+HgLOgbc+s1G+qpw/KdKNPkBFHUjy9QgAryN/8m+e+sx2++5pAAAAAAAACFwUjQAAAAAAAGDh8jWNcHbu/NTMnZ8P8ZO2qqeqHkdvvSaBqsStn7pUUZwqjmrBnZ+aufPzIX7SVvVU1ePordckUIWQP6E0nGkEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAACLEF8PINBssC3z9RBK5c64upgBHhjJufPGPq6qsQOofmy2JF8PoVTGJPl6CAgkB5J8PYLSuTOuSDf6eIM39nFVjR1AtUP+VHk40wgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBhM8YYXw/CG/Ly8hQREaHc3FzZ7XaPbaerVrncZ4NtmQdG4qyLGeByH3fG5ep2hth6uLwNdyRrmse34c4+DhTeeA0D8G/GJFW4rbc+s1E+bx0LW5QbnQ4kVfYwrCLd2IY743JxO9MO2Fzfhhu8kT+5tY8DhTdewwD8WlXInzjTCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYBHi6wFA6mIGeHwbG2zLPL4NdyRrmst93NpfLsbvjWMCAADOQWSS57dxwAvbcIM7+ZNb+8vV+L1xTAAAXsWZRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsAhxpXGLFi2UmZlpmT9p0iTNnj3bMn/+/PkaO3as07zw8HAdP37cMb1o0SK9/PLLWrdunQ4ePKj169era9euTn369OmjL774wmnerbfeqpdfftmV4XvFBtsyl/t0MQM8MBLfcDX+qhp7dT+OAIDKQ/5UAQeSXO8T6UafqsrV+Ktq7NX9OAJAAHKpaLRmzRoVFhY6pjdt2qS+ffvqhhtuKLOP3W7X1q1bHdM2m81p+dGjR3XppZdq2LBhmjBhQpnrmTBhgqZPn+6YrlWrlitDBwAA8AnyJwAA4K9cKhpFRUU5Tc+YMUOtW7dW7969y+xjs9kUExNT5vKbb75ZkrRr166zbrtWrVpnXQ8AAEBVRP4EAAD8ldvXNDpx4oQWLFigcePGWb79OtORI0fUvHlzxcXFafDgwdq8ebNb23vzzTcVGRmpCy64QFOnTtWxY8fcHToAAIBPkD8BAAB/4tKZRmdasmSJcnJyNGbMmDLbtG/fXvPmzVPnzp2Vm5urWbNmqWfPntq8ebOaNm1a4W3deOONat68uWJjY/Xdd9/pwQcf1NatW7Vo0aIy++Tn5ys/P98xnZeXV+HtAQAAeAL5EwAA8CduF43mzp2rgQMHKjY2tsw2PXr0UI8ePRzTPXv2VIcOHfTKK6/o8ccfr/C2Jk6c6Ph3p06d1LhxY1155ZXasWOHWrduXWqflJQUJScnV3gbAAAAnkb+BAAA/IlbP0/LzMxUWlqaxo8f71K/0NBQxcfHa/v27e5s1iEhIUGSzrqeqVOnKjc31/HYvXv3OW0TAADgXJA/AQAAf+NW0Sg1NVXR0dEaNGiQS/0KCwu1ceNGNW7c2J3NOmRkZEjSWdcTHh4uu93u9AAAAPAV8icAAOBvXP55WlFRkVJTUzV69GiFhDh3HzVqlJo0aaKUlBRJ0vTp09W9e3e1adNGOTk5mjlzpjIzM52+YTt48KCysrL0yy+/SJLj9rIxMTGKiYnRjh079NZbb+mqq65Sw4YN9d1332ny5Mnq1auXOnfu7HbgAAAA3kL+BAAA/JHLRaO0tDRlZWVp3LhxlmVZWVkKCvr95KVDhw5pwoQJys7OVv369dWtWzetXLlSHTt2dLRZunSpxo4d65gePny4JGnatGlKSkpSWFiY0tLS9Nxzz+no0aOKi4vT0KFD9cgjj7g6dAAAAJ8gfwIAAP7IZowxvh6EN+Tl5SkiIkK5ubkePdXaZktyuU8XM6DyB1LCBtsyj2/DHd6IXfJO/N6KpSqqqq8vAFWHMUkVbuutz2yUryrnT4p0o4+rDnhhG+7wRuySd+L3VixVUVV9fQGoMqpC/uTWNY0AAAAAAAAQ2CgaAQAAAAAAwMLlaxrh7ALp51beEChxVHdV9XXvzrh4TQKADwTSz628IVDiqO6q6uvenXHxmgQCFmcaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALEJ8PYBAs8G2zNdD8CtdzACvbMfV4+LOuNw59t6KP1C4ur94PwKAnziQ5OsR+JfIJO9sx9Xj4s643Dn23oo/ULi6v3g/AjgDZxoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMAixNcDgHd0MQN8PYRSDbH1cLlPsqa53Mcb8VfVfVyduXNMNtiWeWAkvuGN12Qg7S8AsIhM8vUISjXtgM3lPu7kT16Jv4ru42rNnWNywI0+VZU3XpOBtL8Q8DjTCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYBHi6wEEmi5mgK+HUKoNtmUu9/FGLMma5nIfb4yrqu4veN40Jbvcx53XsTe48zoGAJ+ITPL1CEp3IMn1Pl6Ixa3PHW/s4yq6v+B5gZQ/ufU6BgIYZxoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsQlxp3KJFC2VmZlrmT5o0SbNnz7bMnz9/vsaOHes0Lzw8XMePH3dML1q0SC+//LLWrVungwcPav369eratatTn+PHj+vee+/VwoULlZ+fr/79++ull15So0aNXBm+V2ywLXO5TxczwOPbcWcb3lBVx+Ut7rxeXBVI+7iqvu5d3Y43jnsg8cbfSMCTyJ8q4ECS630i3ejj6nbc2YY3VNVxeYs7rxdXBdI+rqqve1e3443jHki88TcS1YJLZxqtWbNGe/bscTyWL18uSbrhhhvK7GO32536lEyajh49qksvvVRPPfVUmeuYPHmy3nvvPb399tv64osv9Msvv+i6665zZegAAAA+Qf4EAAD8lUtnGkVFRTlNz5gxQ61bt1bv3r3L7GOz2RQTE1Pm8ptvvlmStGvXrlKX5+bmau7cuXrrrbd0xRVXSJJSU1PVoUMHrVq1St27d3clBAAAAK8ifwIAAP7K7WsanThxQgsWLNC4ceNks9nKbHfkyBE1b95ccXFxGjx4sDZv3uzSdtatW6eTJ08qMTHRMe+8885Ts2bNlJ6eXma//Px85eXlOT0AAAB8ifwJAAD4E7eLRkuWLFFOTo7GjBlTZpv27dtr3rx5evfdd7VgwQIVFRWpZ8+e+umnnyq8nezsbIWFhalevXpO8xs1aqTs7Owy+6WkpCgiIsLxiIuLq/A2AQAAPIH8CQAA+BO3i0Zz587VwIEDFRsbW2abHj16aNSoUeratat69+6tRYsWKSoqSq+88oq7m62wqVOnKjc31/HYvXu3x7cJAABwNuRPAADAn7h0TaNimZmZSktL06JFi1zqFxoaqvj4eG3fvr3CfWJiYnTixAnl5OQ4fVu2d+/es/7WPzw8XOHh4S6NDwAAwFPInwAAgL9x60yj1NRURUdHa9CgQS71Kyws1MaNG9W4ceMK9+nWrZtCQ0P16aefOuZt3bpVWVlZ6tGjh0vbBwAA8BXyJwAA4G9cPtOoqKhIqampGj16tEJCnLuPGjVKTZo0UUpKiiRp+vTp6t69u9q0aaOcnBzNnDlTmZmZGj9+vKPPwYMHlZWVpV9++UXSqYRGOvUNWUxMjCIiInTLLbdoypQpatCggex2u+6880716NGDO38AAAC/QP4EAAD8kctFo7S0NGVlZWncuHGWZVlZWQoK+v3kpUOHDmnChAnKzs5W/fr11a1bN61cuVIdO3Z0tFm6dKnGjh3rmB4+fLgkadq0aUpKSpIkPfvsswoKCtLQoUOVn5+v/v3766WXXnJ16AAAAD5B/gQAAPyRy0Wjfv36yRhT6rLPP//cafrZZ5/Vs88+e9b1jRkz5qx3EJGkGjVqaPbs2Zo9e7YrQwUAAKgSyJ8AAIA/cvvuaQAAAAAAAAhcFI0AAAAAAABg4fLP03B2XcwAl/sMsbl+F5MhLrZfItfHBddssC3z9RD8ijf2lzvbGOKl7aDi2L9ANRCZ5HKXaQdslT+OEpKV5PFtVHsHknw9Av/ijf3lrWPCsfcs9i8qCWcaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAwmaMMb4ehDfk5eUpIiJCubm5stvtHttOks3mcp8lJt0DI/GNDbZlLrXvYgZ4aCTe52rsQFXjzvuR1z0qypikCrf11mc2yleV86fkyABKYQ8kudY+0sX2VZmrsQNVjTvvR173qKCqkD9xphEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMAixNcDCDRLTLrLfYbYenhlO97QxQzw9RAqxQbbMl8PAThn3ng/emMbvB+BwJccaVzuM+2AzSvb8YrIJF+PoHIcSPL1CIBz5433oze2wfsRlYQzjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABY2Y4zx9SC8IS8vTxEREcrNzZXdbvfYdmy2JI+t+1x0MQN8PYRKs8G2zNdDgJ+oqq/7qvoarqr7yx1VdR9XZ8YkVbittz6zUb7qnj8pMsnXI6g8B5J8PQL4i6r6uq+qr+Gqur/cUVX3cTVWFfInzjQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIBFiCuNW7RooczMTMv8SZMmafbs2Zb58+fP19ixY53mhYeH6/jx445pY4ymTZum1157TTk5Obrkkks0Z84ctW3b9qzbTUlJ0UMPPeTK8Ku1DbZlLvfpYgZ4YCTO3BkXUB154/0YSNzZX/w9gqeQP/mxA0mu94l0o4+r3BkXUB154/0YSNzZX/w9CnguFY3WrFmjwsJCx/SmTZvUt29f3XDDDWX2sdvt2rp1q2PaZrM5LX/66af1/PPP6/XXX1fLli316KOPqn///tqyZYtq1KjhaDd9+nRNmDDBMV23bl1Xhg4AAOAT5E8AAMBfuVQ0ioqKcpqeMWOGWrdurd69e5fZx2azKSYmptRlxhg999xzeuSRRzR48GBJ0htvvKFGjRppyZIlGj58uKNt3bp1y1wPAABAVUX+BAAA/JXb1zQ6ceKEFixYoHHjxlm+/TrTkSNH1Lx5c8XFxWnw4MHavHmzY9nOnTuVnZ2txMREx7yIiAglJCQoPT3daT0zZsxQw4YNFR8fr5kzZ6qgoOCs48vPz1deXp7TAwAAwJfInwAAgD9x6UyjMy1ZskQ5OTkaM2ZMmW3at2+vefPmqXPnzsrNzdWsWbPUs2dPbd68WU2bNlV2drYkqVGjRk79GjVq5FgmSXfddZcuvPBCNWjQQCtXrtTUqVO1Z88ePfPMM2VuOyUlRcnJye6GBwAAUOnInwAAgD9xu2g0d+5cDRw4ULGxsWW26dGjh3r06OGY7tmzpzp06KBXXnlFjz/+eIW3NWXKFMe/O3furLCwMN16661KSUlReHh4qX2mTp3q1C8vL09xcXEV3iYAAEBlI38CAAD+xK2fp2VmZiotLU3jx493qV9oaKji4+O1fft2SXL8xn7v3r1O7fbu3XvW398nJCSooKBAu3btKrNNeHi47Ha70wMAAMBXyJ8AAIC/catolJqaqujoaA0aNMilfoWFhdq4caMaN24sSWrZsqViYmL06aefOtrk5eVp9erVTt+wlZSRkaGgoCBFR0e7M3wAAACvI38CAAD+xuWfpxUVFSk1NVWjR49WSIhz91GjRqlJkyZKSUmRdOo2r927d1ebNm2Uk5OjmTNnKjMz0/ENm81m0z333KMnnnhCbdu2ddwyNjY2VkOGDJEkpaena/Xq1br88stVt25dpaena/LkybrppptUv379cwwfAADA88ifAACAP3K5aJSWlqasrCyNGzfOsiwrK0tBQb+fvHTo0CFNmDBB2dnZql+/vrp166aVK1eqY8eOjjYPPPCAjh49qokTJyonJ0eXXnqpli1bpho1akg6dZr0woULlZSUpPz8fLVs2VKTJ092+r09AABAVUb+BAAA/JHNGGN8PQhvyMvLU0REhHJzcz36+3ybLclj6/a2LmaAx7exwbbM49tA9eWN17A73HndV9VYAgl/jzzLmKQKt/XWZzbKR/7khsgkz2/jgBe2gerLG69hd7jzuq+qsQQS/h55VFXIn9y6phEAAAAAAAACG0UjAAAAAAAAWLh8TSOcnSunj50Lb5zG7Y2f0HjrJzf87CQwBMpPtAIlDgCoLIGUP3nlJzTe+skNPzsJDIHyE61AiQPwM5xpBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsAjx9QDgHmOSfD2EUtlsSS6172IGeGYgfmKakl1qn6xpHhqJ91X3Yw8A8L5AyZ8U6WL7AFOd86fqfuwBeB9nGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwCLE1wNAYDEmyddDKJVNyzy+jS5mgMt9lsjFPjbPx+EtG9yIxZ19jOrJndcXAPhKlc2fbF7YSGSSy12S5WKfA65vo8pyJxY39jGqqUB6r6DScKYRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqIRAAAAAAAALCgaAQAAAAAAwIKiEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAIsTXAwC8wZgkXw+hVF21ytdDQAAbYuvhUvslJt1DIzk3G2zLfD0EAKiWqmr+ZIvy9QgQyKYdsLnUPjnSeGgk5+hAkq9HgADBmUYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALBwqWjUokUL2Ww2y+P2228vtf38+fMtbWvUqOHUxhijxx57TI0bN1bNmjWVmJiobdu2ObU5ePCgRo4cKbvdrnr16umWW27RkSNHXAwVAADA+8ifAACAvwpxpfGaNWtUWFjomN60aZP69u2rG264ocw+drtdW7dudUzbbDan5U8//bSef/55vf7662rZsqUeffRR9e/fX1u2bHEkSCNHjtSePXu0fPlynTx5UmPHjtXEiRP11ltvuTJ8oMrJUHfXOhgX23uJzZbk6yGgFEtMukvtXX49eksVfd0DFUX+BFQus9/VHkkeGMW5I3+qmpIjjUvtXX89ekuSrweAAOFS0SgqKsppesaMGWrdurV69+5dZh+bzaaYmJhSlxlj9Nxzz+mRRx7R4MGDJUlvvPGGGjVqpCVLlmj48OH6/vvvtWzZMq1Zs0YXXXSRJOmFF17QVVddpVmzZik2NtaVEAAAALyK/AkAAPgrt69pdOLECS1YsEDjxo2zfPt1piNHjqh58+aKi4vT4MGDtXnzZseynTt3Kjs7W4mJiY55ERERSkhIUHr6qW/I09PTVa9ePUfCI0mJiYkKCgrS6tWry9xufn6+8vLynB4AAAC+RP4EAAD8idtFoyVLlignJ0djxowps0379u01b948vfvuu1qwYIGKiorUs2dP/fTTT5Kk7OxsSVKjRo2c+jVq1MixLDs7W9HR0U7LQ0JC1KBBA0eb0qSkpCgiIsLxiIuLcydMAACASkP+BAAA/InbRaO5c+dq4MCBZz29uUePHho1apS6du2q3r17a9GiRYqKitIrr7zi7mYrbOrUqcrNzXU8du/e7fFtAgAAnA35EwAA8CcuXdOoWGZmptLS0rRo0SKX+oWGhio+Pl7bt2+XJMdv9ffu3avGjRs72u3du1ddu3Z1tNm3b5/TegoKCnTw4MEyf+svSeHh4QoPD3dpfAAAAJ5C/gQAAPyNW2capaamKjo6WoMGDXKpX2FhoTZu3OhIcFq2bKmYmBh9+umnjjZ5eXlavXq1evToIenUt205OTlat26do82KFStUVFSkhIQEd4YPAADgdeRPAADA37h8plFRUZFSU1M1evRohYQ4dx81apSaNGmilJQUSdL06dPVvXt3tWnTRjk5OZo5c6YyMzM1fvx4SafuDHLPPffoiSeeUNu2bR23jI2NjdWQIUMkSR06dNCAAQM0YcIEvfzyyzp58qTuuOMODR8+nDt/AAAAv0D+BAAA/JHLRaO0tDRlZWVp3LhxlmVZWVkKCvr95KVDhw5pwoQJys7OVv369dWtWzetXLlSHTt2dLR54IEHdPToUU2cOFE5OTm69NJLtWzZMtWoUcPR5s0339Qdd9yhK6+8UkFBQRo6dKief/55V4cOAADgE+RPAADAH9mMMcbXg/CGvLw8RUREKDc3V3a73dfDAQKKzZbkle10MQO8sp3qKkPdfT0EQBKf2VUJxwLwHG/lT4r00naqKbPf1yMATvHUZ7bbd08DAAAAAABA4KJoBAAAAAAAAAuXr2kEACUZk+TrIQAAAPgV8icA/oAzjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYBHi6wF4izFGkpSXl+fjkQAAgLMp/qwu/uyG75A/AQDgHzyVP1WbotHhw4clSXFxcT4eCQAAqIjDhw8rIiLC18Oo1sifAADwL5WdP9lMNfkar6ioSL/88ovq1q0rm83m6+F4TV5enuLi4rR7927Z7XZfD8frqnP8xE7s1S12qXrHH0ixG2N0+PBhxcbGKiiIX9L7EvmT/7+f3FGd4yd2Yif26iWQ4vdU/lRtzjQKCgpS06ZNfT0Mn7Hb7X7/JjgX1Tl+Yif26qg6xx8osXOGUdVA/hQY7yd3Vef4iZ3Yq5vqHLsUOPF7In/i6zsAAAAAAABYUDQCAAAAAACABUWjABceHq5p06YpPDzc10PxieocP7ETe3VUneOvzrEDla26v5+qc/zETuzVTXWOXSL+iqg2F8IGAAAAAABAxXGmEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAgqJRFTNjxgzZbDbdc889jnmvvvqq+vTpI7vdLpvNppycHEu/gwcPauTIkbLb7apXr55uueUWHTlyxKnNd999p8suu0w1atRQXFycnn76act63n77bZ133nmqUaOGOnXqpA8//NBpuTFGjz32mBo3bqyaNWsqMTFR27Zt82nsLVq0kM1mc3rMmDHDr2M/ePCg7rzzTrVv3141a9ZUs2bNdNdddyk3N9epX1ZWlgYNGqRatWopOjpa999/vwoKCpzafP7557rwwgsVHh6uNm3aaP78+Zbtz549Wy1atFCNGjWUkJCgb775xmn58ePHdfvtt6thw4aqU6eOhg4dqr1791ZK7OcSf8njbrPZtHDhQr+Kv7TX/a233qrWrVurZs2aioqK0uDBg/XDDz849QuEY+9u7IF63IsZYzRw4EDZbDYtWbLEaVkgHHfAE8ifyJ+k6pU/VefcqbT4JfIn8ifyJ48xqDK++eYb06JFC9O5c2dz9913O+Y/++yzJiUlxaSkpBhJ5tChQ5a+AwYMMF26dDGrVq0yX331lWnTpo0ZMWKEY3lubq5p1KiRGTlypNm0aZP55z//aWrWrGleeeUVR5uvv/7aBAcHm6efftps2bLFPPLIIyY0NNRs3LjR0WbGjBkmIiLCLFmyxGzYsMFcc801pmXLlua3337zWezNmzc306dPN3v27HE8jhw54texb9y40Vx33XVm6dKlZvv27ebTTz81bdu2NUOHDnX0KygoMBdccIFJTEw069evNx9++KGJjIw0U6dOdbT58ccfTa1atcyUKVPMli1bzAsvvGCCg4PNsmXLHG0WLlxowsLCzLx588zmzZvNhAkTTL169czevXsdbW677TYTFxdnPv30U7N27VrTvXt307Nnz3OK+1zjN8YYSSY1NdXp2J95PKp6/GW97l955RXzxRdfmJ07d5p169aZq6++2sTFxZmCggJjTGAce3djNyZwj3uxZ555xgwcONBIMosXL3bMD4TjDngC+RP5U3XLn6pz7lRW/MaQP5E/kT95CkWjKuLw4cOmbdu2Zvny5aZ3796lvhE+++yzUj/4t2zZYiSZNWvWOOZ99NFHxmazmZ9//tkYY8xLL71k6tevb/Lz8x1tHnzwQdO+fXvH9LBhw8ygQYOc1p2QkGBuvfVWY4wxRUVFJiYmxsycOdOxPCcnx4SHh5t//vOfPondmFNJz7PPPlvm+v099mL//ve/TVhYmDl58qQxxpgPP/zQBAUFmezsbEebOXPmGLvd7oj1gQceMOeff77Tev7v//7P9O/f3zF98cUXm9tvv90xXVhYaGJjY01KSoojztDQUPP222872nz//fdGkklPT3c7dmPOLX5jjOVDoaSqHL8rsW/YsMFIMtu3bzfG+P+xP5fYjQns475+/XrTpEkTs2fPHkuc/n7cAU8gfyJ/qm75U3XOnYwhfyJ/In/yBX6eVkXcfvvtGjRokBITE13um56ernr16umiiy5yzEtMTFRQUJBWr17taNOrVy+FhYU52vTv319bt27VoUOHHG1Kbr9///5KT0+XJO3cuVPZ2dlObSIiIpSQkOBo445zib3YjBkz1LBhQ8XHx2vmzJlOpxsGSuy5ubmy2+0KCQlxjLlTp05q1KiR05jz8vK0efPmCsV14sQJrVu3zqlNUFCQEhMTHW3WrVunkydPOrU577zz1KxZs3OKXTq3+M9cR2RkpC6++GLNmzdPxhjHsqocf0VjP3r0qFJTU9WyZUvFxcU54vLnY38usZ+5jkA77seOHdONN96o2bNnKyYmxrLc34874AnkT+RP5Qm0/Kk6507FYyd/In86E/mT54WU3wSetnDhQn377bdas2aNW/2zs7MVHR3tNC8kJEQNGjRQdna2o03Lli2d2hS/cbKzs1W/fn1lZ2c7vZmK25y5jjP7ldbGVecauyTddddduvDCC9WgQQOtXLlSU6dO1Z49e/TMM884xu3vsR84cECPP/64Jk6c6JhX1pjPHG9ZbfLy8vTbb7/p0KFDKiwsLLVN8e+gs7OzFRYWpnr16lnauBu7dO7xS9L06dN1xRVXqFatWvrkk080adIkHTlyRHfddZdj7FUx/orE/tJLL+mBBx7Q0aNH1b59ey1fvtyRuPvzsT/X2KXAPe6TJ09Wz549NXjw4FKX+/NxBzyB/In8qTyBlj9V59xJIn8ifyJ/8hWKRj62e/du3X333Vq+fLlq1Kjh6+F4VWXFPmXKFMe/O3furLCwMN16661KSUlReHh4ZQy10rkSe15engYNGqSOHTsqKSnJOwP0sMqK/9FHH3X8Oz4+XkePHtXMmTMdH35VUUVjHzlypPr27as9e/Zo1qxZGjZsmL7++mu//jtRWbEH4nFfunSpVqxYofXr1/tgdID/IX8if6pu+VN1zp0k8ifyJ/InX+LnaT62bt067du3TxdeeKFCQkIUEhKiL774Qs8//7xCQkJUWFhY7jpiYmK0b98+p3kFBQU6ePCg4xS9mJgYy5Xbi6fLa3Pm8jP7ldbGFZURe2kSEhJUUFCgXbt2Ocbtr7EfPnxYAwYMUN26dbV48WKFhoY61nEucdntdtWsWVORkZEKDg4uN/YTJ05Y7rzibuyVFX9pEhIS9NNPPyk/P7/Kxl/R2CMiItS2bVv16tVL77zzjn744QctXrz4rHEVLwvk2EsTCMd9+fLl2rFjh+rVq+dYLklDhw5Vnz59zhpX8bKqGjvgCeRP5E/VLX+qzrmTK/GTP5E/SeRPlY2ikY9deeWV2rhxozIyMhyPiy66SCNHjlRGRoaCg4PLXUePHj2Uk5OjdevWOeatWLFCRUVFSkhIcLT58ssvdfLkSUeb5cuXq3379qpfv76jzaeffuq07uXLl6tHjx6SpJYtWyomJsapTV5enlavXu1o4+3YS5ORkaGgoCDHKef+GnteXp769eunsLAwLV261FJd79GjhzZu3OiU8C5fvlx2u10dO3asUFxhYWHq1q2bU5uioiJ9+umnjjbdunVTaGioU5utW7cqKyvLrdgrK/7SZGRkqH79+o5vSKti/O687s2pmxY4PtT99dhXRuylCYTj/uc//1nfffed03JJevbZZ5WamuqIyx+PO+AJ5E/kT9Utf6rOuVNF4y+J/In8qTgufzzuVYpvrr+Nsyl5Rfg9e/aY9evXm9dee81IMl9++aVZv369+fXXXx1tBgwYYOLj483q1avNf//7X9O2bVunW8bm5OSYRo0amZtvvtls2rTJLFy40NSqVcty29SQkBAza9Ys8/3335tp06aVetvUevXqmXfffdd89913ZvDgwZVy21R3Y1+5cqV59tlnTUZGhtmxY4dZsGCBiYqKMqNGjfLr2HNzc01CQoLp1KmT2b59u9OtMUveNrRfv34mIyPDLFu2zERFRZV6+8j777/ffP/992b27Nml3j4yPDzczJ8/32zZssVMnDjR1KtXz+kOA7fddptp1qyZWbFihVm7dq3p0aOH6dGjR6XE7W78S5cuNa+99prZuHGj2bZtm3nppZdMrVq1zGOPPeZ38Z8Z+44dO8yTTz5p1q5dazIzM83XX39trr76atOgQQPHLT0D6di7GnugHvfSqIxbxgbCcQc8gfyp4rGTPwXG39LqnDuVjJ/8ifypGPlT5aNoVAWVfCNMmzbNSLI8UlNTHW1+/fVXM2LECFOnTh1jt9vN2LFjzeHDh53Wu2HDBnPppZea8PBw06RJEzNjxgzLtv/973+bdu3ambCwMHP++eebDz74wGl5UVGRefTRR02jRo1MeHi4ufLKK83WrVt9Fvu6detMQkKCiYiIMDVq1DAdOnQwTz75pDl+/Lhfx158i9zSHjt37nT02bVrlxk4cKCpWbOmiYyMNPfee6/TbVWL19W1a1cTFhZmWrVq5fS6KfbCCy+YZs2ambCwMHPxxRebVatWOS3/7bffzKRJk0z9+vVNrVq1zLXXXmv27NlTabG7E/9HH31kunbtaurUqWNq165tunTpYl5++WVTWFjod/GfGfvPP/9sBg4caKKjo01oaKhp2rSpufHGG80PP/zg1CdQjr2rsQfqcS9NyaTHmMA57oAnkD9VPHbyp8D4W1qdc6eS8ZM/kT8VI3+qfDZjzrjPHgAAAAAAACCuaQQAAAAAAIBSUDQCAAAAAACARYivB+BNx48f14kTJ3w9DAAAUI6wsLAK3fkHnkf+BACAf/BE/lRtikbHjx9XzZpRko74eigAAKAcMTEx2rlzJ4UjHyN/AgDAf3gif6o2RaNT35AdkTRZUu3Tc0NPP4eU8Xy25aEVaFNZy8vrUzxdjuByNhl0lmXBZcx3Z3lZy0JLaXu2cQdXYHlF11HeuM+278513zjanb4mfUih07MtuODUZEihgk/PCw4pOv1ccPr59Pyg088q/Tnk9HOQZfnpbajIMT/Y0rbAaR3BZ7Q91a7k8vLHUF4b18dQdruSsZa17d/XWV476z6r6DjL32flj6HcY1t4+rng9DYKzelpOT3bTm1KpzdlfS48/Sg5z5Xp4ueytlVYyesqb7qi6yq5DlfGVpnrKmdsJ0/3PX2oLdMFhc5dTpaxqrLmn7n8bMsquo6KbCNf0rPZ2Tpx4gRFIx879/yprGWVmT9VtG8l5E+l5U5n2+S55AgV7Xsu+VN5eVFl5k+VnVuWlj+VkjtJ8kj+VFoecOZzZeZPZedvlZc/lZ+7VF7+VHKfeSJ/Knv7Hsif3P2sdycX8GQuVjxdiTlKuWPzZC5Wcn6JPp7In9zJe1xpV1o4Zy7zVP5UbYpGvwuXVLwDy0oeKjJdVtLjiemK9imDrYLPQfo9+SnruWQSUPK5IolNeUlPZS6v6DrKTUgqsA13+jo9n71oZAstlK14nuP51LKg09NBQc4ffEElPlzLTjasH/BlF0nKK6JUfHnlb6P4Ofgs2wqq4Dpsp9sFOfX7/dlWYj02x7zf3w62EutUiWdzul3J+cXPxWM1Tu2DZc74d1GJbZ1+Ljz9XHB6nGUlPWV92J6tyFKRPq7Or8x1lTY/+IzlJXd0cZ+y/u6VXKetxPKSf0uL25fGVmK65P1LTRnzyxqbkU6eToxOH2qdtJWYPt20vASlItPltS1vHSHlLA8+49+oatzNn8paVpn50rluowyl5Uul5U4VeXYnf/JkflS8vLzcpDLzp8rMvZyeyy4a2UJL5k2Vlz+VXxypvPyp/Jzl3POn0nIn5+fKy59CSrT1RP5UWu7k/FyJ+dO55iiu9PNkLlZyGyXzJE/kTxXJnc7sW8yd/CnIuY0n8id3cquKtCstfyp5mDyZP3EhbAAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIBFiK8H4H35+j3swtPPxdMF5UyfPGM69PS/Q0u0KflcGcvL61M8XQZTweei0w+V8mw7/VxYYrr4WWVMlxxDWds9U8ltB5fRvrDE8pLzC/T7Lgousazk/LJ2f3CJ59IOV0XXUdZyR7vTAYYUOj2b4FOvQxNSKFM8L6To9POpZUWn59uCTj+r9Ocixw4o+Vxwut2ZO/H0thzPBU59zOm2xrHughLTpT8XLy9UoYJP/7vkc1GJ6SDHdIGj76nporO2CzmjXXCJZWVt+/d1lteueBu/j+Fs2y9tHcXtQ8ocQ9nPv//bnF6HOb3OU8/BhaefC04vP32oT7+cHM+24kNeUMbz7y8FlXgJVHy6+LmsbRVW8rrKm67oukquw5WxVXRd5T2X9Tf5jOeTp/90nD7UlumSQzgp1+afufxsyyq6jopsI1+oetzNn06WWOaJ/KmifSshfyorh/FE/mTKmK7M/Km03EnyTP7kan7kTv5USu7k/FyZ+VNpudPvz5WZP52ZO53aNZWfP5Wfu1Re/hRSyvbP7FsZ+VP5uVQl5k/u5g3u5DyezMWKp891Xa7sB3fX5U7+VGKeJ/Ind/IeV9qdOb+0ZZ7Kn6pN0SgsLEwxMTHKzn7W10PxnZJvJviF4lzvpH7/owAAgS4mJkZhYWG+Hka1R/4k8ic/dGbudOYzAAQ6T+RPNmNMye8xAtbx48d14sSJSltfXl6e4uLitHv3btnt9kpbb1UQyLFJxOfPAjk2ifj8WSDHJnk/vrCwMNWoUcPj20H5Kjt/Kk2gv3+8jf1ZudiflY99WrnYn5XLn/enJ/KnanOmkSTVqFHDIwmo3W73uxdTRQVybBLx+bNAjk0iPn8WyLFJgR8frDyVP5WG11flYn9WLvZn5WOfVi72Z+Vif57ChbABAAAAAABgQdEIAAAAAAAAFhSNzkF4eLimTZum8PBwXw+l0gVybBLx+bNAjk0iPn8WyLFJgR8ffIvXV+Vif1Yu9mflY59WLvZn5WJ/OqtWF8IGAAAAAABAxXCmEQAAAAAAACwoGgEAAAAAAMCCohEAAAAAAAAsKBoBAAAAAADAoloXjWbPnq0WLVqoRo0aSkhI0DfffHPW9m+//bbOO+881ahRQ506ddKHH37otHzRokXq16+fGjZsKJvNpoyMDMs6+vTpI5vN5vS47bbbKjMsSZUb28mTJ/Xggw+qU6dOql27tmJjYzVq1Cj98ssvTus4ePCgRo4cKbvdrnr16umWW27RkSNHKj02X8XXokULy7GbMWNGlY9PkpKSknTeeeepdu3aql+/vhITE7V69WqnNt46fr6IzZ+P3Zluu+022Ww2Pffcc07z/fW9V1JZ8Xnr+FV2bGPGjLGMe8CAAU5t/PnYVSQ+b773UPX4Is8KZL7IfQKZL/KRQOaL/CCQ+eIzO9B54jX6/fff65prrlFERIRq166tP/zhD8rKyvJUCL5jqqmFCxeasLAwM2/ePLN582YzYcIEU69ePbN3795S23/99dcmODjYPP3002bLli3mkUceMaGhoWbjxo2ONm+88YZJTk42r732mpFk1q9fb1lP7969zYQJE8yePXscj9zc3CodW05OjklMTDT/+te/zA8//GDS09PNxRdfbLp16+a0ngEDBpguXbqYVatWma+++sq0adPGjBgxolJj82V8zZs3N9OnT3c6dkeOHKny8RljzJtvvmmWL19uduzYYTZt2mRuueUWY7fbzb59+xxtvHH8fBWbPx+7YosWLTJdunQxsbGx5tlnn3Va5q/vvYrG543j54nYRo8ebQYMGOA07oMHDzqtx5+PXUXi89Z7D1WPr/KsQOWr3CdQ+SofCVS+yg8Cla8+swOZJ/bp9u3bTYMGDcz9999vvv32W7N9+3bz7rvvlrlOf1Zti0YXX3yxuf322x3ThYWFJjY21qSkpJTaftiwYWbQoEFO8xISEsytt95qabtz586zFo3uvvvucxp7eTwZW7FvvvnGSDKZmZnGGGO2bNliJJk1a9Y42nz00UfGZrOZn3/++VzCsfBFfMac+s+PNz6svBFfbm6ukWTS0tKMMd47fr6IzRj/P3Y//fSTadKkidm0aZMllkB4750tPmO8c/w8Edvo0aPN4MGDy9ymvx+78uIzxnvvPVQ9vsqzApWvcp9A5at8JFD5Kj8IVL76zA5kntin//d//2duuukmzwy4iqmWP087ceKE1q1bp8TERMe8oKAgJSYmKj09vdQ+6enpTu0lqX///mW2P5s333xTkZGRuuCCCzR16lQdO3bM5XWUxVux5ebmymazqV69eo511KtXTxdddJGjTWJiooKCgir11FxfxVdsxowZatiwoeLj4zVz5kwVFBS4H0wpvBHfiRMn9OqrryoiIkJdunRxrMPTx89XsRXz12NXVFSkm2++Wffff7/OP//8Utfhz++98uIr5snj58nX5ueff67o6Gi1b99ef/rTn/Trr786rcOfj5109viKefq9h6rH13lWoPF17hNofJ2PBBpf5weBxtef2YHIE/u0qKhIH3zwgdq1a6f+/fsrOjpaCQkJWrJkicfi8KUQXw/AFw4cOKDCwkI1atTIaX6jRo30ww8/lNonOzu71PbZ2dkubfvGG29U8+bNFRsbq++++04PPvigtm7dqkWLFrkWRBm8Edvx48f14IMPasSIEbLb7Y51REdHO7ULCQlRgwYNXN5HZ+Or+CTprrvu0oUXXqgGDRpo5cqVmjp1qvbs2aNnnnnmHKP6nSfje//99zV8+HAdO3ZMjRs31vLlyxUZGelYh6ePn69ik/z72D311FMKCQnRXXfdVeY6/Pm9V158kuePn6diGzBggK677jq1bNlSO3bs0MMPP6yBAwcqPT1dwcHBfn/syotP8s57D1WPL/OsQOTL3CcQ+TIfCUS+zA8CkS8/swOVJ/bpvn37dOTIEc2YMUNPPPGEnnrqKS1btkzXXXedPvvsM/Xu3dszwfhItSwa+dLEiRMd/+7UqZMaN26sK6+8Ujt27FDr1q19OLKKOXnypIYNGyZjjObMmePr4VS6s8U3ZcoUx787d+6ssLAw3XrrrUpJSVF4eLi3h+qyyy+/XBkZGTpw4IBee+01DRs2TKtXr7b8p9UflRebvx67devW6W9/+5u+/fZb2Ww2Xw+n0lU0Pn89fsOHD3f8u1OnTurcubNat26tzz//XFdeeaUPR1Y5KhKfvx47oDoJ9NzOmwI51/KmQM9/fCHQcxJvKyoqkiQNHjxYkydPliR17dpVK1eu1MsvvxxwRaNq+fO0yMhIBQcHa+/evU7z9+7dq5iYmFL7xMTEuNS+ohISEiRJ27dvP6f1FPNkbMVJRWZmppYvX+70TVRMTIz27dvn1L6goEAHDx485310Jl/FV5qEhAQVFBRo165drgdSBk/GV7t2bbVp00bdu3fX3LlzFRISorlz5zrW4enj56vYSuMvx+6rr77Svn371KxZM4WEhCgkJESZmZm699571aJFC8c6/PW9V5H4SlPZx89bnwmtWrVSZGSk4++9Px+70pSMrzSeeO+h6qlKeVYgqEq5TyCoSvlIIKhK+UEgqEqf2YHCE/s0MjJSISEh6tixo1ObDh06BOTd06pl0SgsLEzdunXTp59+6phXVFSkTz/9VD169Ci1T48ePZzaS9Ly5cvLbF9RxbeLbdy48Tmtp5inYitOKrZt26a0tDQ1bNjQso6cnBytW7fOMW/FihUqKipyFMYqg6/iK01GRoaCgoIq9dsjb742i4qKlJ+f71iHp4+fr2Irjb8cu5tvvlnfffedMjIyHI/Y2Fjdf//9+vjjjx3r8Nf3XkXiK01lHz9vvTZ/+ukn/frrr46/9/587EpTMr7SeOK9h6qnKuVZgaAq5T6BoCrlI4GgKuUHgaAqfWYHCk/s07CwMP3hD3/Q1q1bndr873//U/PmzSs5girAxxfi9pmFCxea8PBwM3/+fLNlyxYzceJEU69ePZOdnW2MMebmm282Dz30kKP9119/bUJCQsysWbPM999/b6ZNm2a57d6vv/5q1q9fbz744AMjySxcuNCsX7/e7Nmzxxhz6rZ806dPN2vXrjU7d+407777rmnVqpXp1atXlY7txIkT5pprrjFNmzY1GRkZTrdqzM/Pd6xnwIABJj4+3qxevdr897//NW3btvXYraO9Hd/KlSvNs88+azIyMsyOHTvMggULTFRUlBk1alSVj+/IkSNm6tSpJj093ezatcusXbvWjB071oSHh5tNmzY51uON4+eL2Pz52JWmtLuH+Ot7ryLxeev4VXZshw8fNvfdd59JT083O3fuNGlpaebCCy80bdu2NcePH3esx1+PXUXi8+Z7D1WPL/KsQOar3C5Q+SrXClS+yn8Cla9ykkDmidfookWLTGhoqHn11VfNtm3bzAsvvGCCg4PNV1995fX4PK3aFo2MMeaFF14wzZo1M2FhYebiiy82q1atcizr3bu3GT16tFP7f//736Zdu3YmLCzMnH/++eaDDz5wWp6ammokWR7Tpk0zxhiTlZVlevXqZRo0aGDCw8NNmzZtzP33329yc3OrdGzFt7Yt7fHZZ5852v36669mxIgRpk6dOsZut5uxY8eaw4cPV3psvohv3bp1JiEhwURERJgaNWqYDh06mCeffNJjf2grM77ffvvNXHvttSY2NtaEhYWZxo0bm2uuucZ88803Tuvw1vHzdmz+fOxKU1rS5K/vvdKUjM+bx68yYzt27Jjp16+fiYqKMqGhoaZ58+ZmwoQJjuSkmL8eu4rE5+33Hqoeb+dZgc4XuV0g80WuFch8kf8EMl/kJIHOE6/RuXPnmjZt2pgaNWqYLl26mCVLlng6DJ+wGWOMN85oAgAAAAAAgP+oltc0AgAAAAAAwNlRNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAPADX375pa6++mrFxsbKZrNpyZIl5fb5/PPPdeGFFyo8PFxt2rTR/PnzPT5OAAAQOCgaAQAA+IGjR4+qS5cumj17doXa79y5U4MGDdLll1+ujIwM3XPPPRo/frw+/vhjD48UAAAECpsxxvh6EAAAAKg4m82mxYsXa8iQIWW2efDBB/XBBx9o06ZNjnnDhw9XTk6Oli1b5oVRAgAAfxfi6wEAAACg8qWnpysxMdFpXv/+/XXPPfeU2Sc/P1/5+fmO6aKiIh08eFANGzaUzWbz1FABAMA5Msbo8OHDio2NVVBQ5f2ojKIRAABAAMrOzlajRo2c5jVq1Eh5eXn67bffVLNmTUuflJQUJScne2uIAACgku3evVtNmzattPVRNAIAAIAkaerUqZoyZYpjOjc3V82aNdPu3btlt9t9ODIAAHA2eXl5iouLU926dSt1vRSNAAAAAlBMTIz27t3rNG/v3r2y2+2lnmUkSeHh4QoPD7fMt9vtFI0AAPADlf1zcu6eBgAAEIB69OihTz/91Gne8uXL1aNHDx+NCAAA+BuKRgAAAH7gyJEjysjIUEZGhiRp586dysjIUFZWlqRTPy0bNWqUo/1tt92mH3/8UQ888IB++OEHvfTSS/r3v/+tyZMn+2L4AADAD1E0AgAA8ANr165VfHy84uPjJUlTpkxRfHy8HnvsMUnSnj17HAUkSWrZsqU++OADLV++XF26dNFf//pX/f3vf1f//v19Mn4AAOB/bMYY4+tBAAAAoOrJy8tTRESEcnNzuaYRAABVmKc+sznTCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AAAAAAABgQdEIAAAAAAAAFhSNAAAAAAAAYEHRCAAAAAAAABYUjQAAAAAAAGBB0QgAAAAAAAAWFI0AnLP58+fLZrNp165dvh6KR82cOVOtWrVScHCwunbtKklq0aKFxowZU27f6rKPAAAAAAQOikaADxQXEIofNWrUULt27XTHHXdo7969lb69Y8eOKSkpSZ9//nmlr7u6+OSTT/TAAw/okksuUWpqqp588klfDwkAAAAAPCrE1wMAqrPp06erZcuWOn78uP773/9qzpw5+vDDD7Vp0ybVqlWr0rZz7NgxJScnS5L69OlTaestdvPNN2v48OEKDw+v9HVXFStWrFBQUJDmzp2rsLAwx/ytW7cqKIj6OwAAAIDAQ9EI8KGBAwfqoosukiSNHz9eDRs21DPPPKN3331XI0aM8PHoynf06FHVrl1bwcHBCg4OrrT1Hjt2rFKLZpVh3759qlmzplPBSFJAF8oAAAAAVG98PQ5UIVdccYUkaefOnZKkgoICPf7442rdurXCw8PVokULPfzww8rPz3fqt3btWvXv31+RkZGqWbOmWrZsqXHjxkmSdu3apaioKElScnKy4ydxSUlJjv4//PCDrr/+ejVo0EA1atTQRRddpKVLlzpto/gndV988YUmTZqk6OhoNW3a1GlZyev1vPTSSzr//PMVHh6u2NhY3X777crJyXFq06dPH11wwQVat26devXqpVq1aunhhx8+63764YcfNGzYMEVFRalmzZpq3769/vznPzu1Wb9+vQYOHCi73a46deroyiuv1KpVq0qN6euvv9aUKVMUFRWl2rVr69prr9X+/fsd7Ww2m1JTU3X06FHH/ps/f76k0q9ptHnzZl1xxRWqWbOmmjZtqieeeEJFRUWlxvLRRx/psssuU+3atVW3bl0NGjRImzdvdmozZswY1alTRz///LOGDBmiOnXqKCoqSvfdd58KCwud2hYVFelvf/ubOnXqpBo1aigqKkoDBgzQ2rVrndotWLBA3bp1U82aNdWgQQMNHz5cu3fvPut+BwAAAFC9cKYRUIXs2LFDktSwYUNJp84+ev3113X99dfr3nvv1erVq5WSkqLvv/9eixcvlnTqDJh+/fopKipKDz30kOrVq6ddu3Zp0aJFkqSoqCjNmTNHf/rTn3TttdfquuuukyR17txZ0qkCxyWXXKImTZrooYceUu3atfXvf/9bQ4YM0X/+8x9de+21TmOcNGmSoqKi9Nhjj+no0aNlxpKUlKTk5GQlJibqT3/6k7Zu3ao5c+ZozZo1+vrrrxUaGupo++uvv2rgwIEaPny4brrpJjVq1KjM9X733Xe67LLLFBoaqokTJ6pFixbasWOH3nvvPf3lL39xxHTZZZfJbrfrgQceUGhoqF555RX16dNHX3zxhRISEpzWeeedd6p+/fqaNm2adu3apeeee0533HGH/vWvf0mS/vGPf+jVV1/VN998o7///e+SpJ49e5Y6vuzsbF1++eUqKChw7M9XX31VNWvWtLT9xz/+odGjR6t///566qmndOzYMc2ZM0eXXnqp1q9frxYtWjjaFhYWqn///kpISNCsWbOUlpamv/71r2rdurX+9Kc/Odrdcsstmj9/vgYOHKjx48eroKBAX331lVatWuU4q+0vf/mLHn30UQ0bNkzjx4/X/v379cILL6hXr15av3696tWrV+b+BwAAAFCNGABel5qaaiSZtLQ0s3//frN7926zcOFC07BhQ1OzZk3z008/mYyMDCPJjB8/3qnvfffdZySZFStWGGOMWbx4sZFk1qxZU+b29u/fbySZadOmWZZdeeWVplOnTub48eOOeUVFRaZnz56mbdu2ljFfeumlpqCgoNR4du7caYwxZt++fSYsLMz069fPFBYWOtq9+OKLRpKZN2+eY17v3r2NJPPyyy+Xv+OMMb169TJ169Y1mZmZTvOLiooc/x4yZIgJCwszO3bscMz75ZdfTN26dU2vXr0s405MTHTqP3nyZBMcHGxycnIc80aPHm1q165tGU/z5s3N6NGjHdP33HOPkWRWr17tmLdv3z4TERHhtI8OHz5s6tWrZyZMmOC0vuzsbBMREeE0f/To0UaSmT59ulPb+Ph4061bN8f0ihUrjCRz1113WcZZHN+uXbtMcHCw+ctf/uK0fOPGjSYkJMQyH0D1lpubaySZ3NxcXw8FAACchac+s/l5GuBDiYmJioqKUlxcnIYPH646depo8eLFatKkiT788ENJ0pQpU5z63HvvvZKkDz74QJIcZ4W8//77OnnypEvbP3jwoFasWKFhw4bp8OHDOnDggA4cOKBff/1V/fv317Zt2/Tzzz879ZkwYUK51y9KS0vTiRMndM899zhdJHrChAmy2+2OsRcLDw/X2LFjyx3v/v379eWXX2rcuHFq1qyZ0zKbzSbp1Bk5n3zyiYYMGaJWrVo5ljdu3Fg33nij/vvf/yovL8+p78SJEx39Jemyyy5TYWGhMjMzyx1TSR9++KG6d++uiy++2DEvKipKI0eOdGq3fPly5eTkaMSIEY79fuDAAQUHByshIUGfffaZZd233Xab0/Rll12mH3/80TH9n//8RzabTdOmTbP0LY5v0aJFKioq0rBhw5y2GxMTo7Zt25a6XQAAAADVU7UsGn355Ze6+uqrFRsbK5vNpiVLlri8DmOMZs2apXbt2ik8PFxNmjRx/DQGqKjZs2dr+fLl+uyzz7Rlyxb9+OOP6t+/vyQpMzNTQUFBatOmjVOfmJgY1atXz1HQ6N27t4YOHark5GRFRkZq8ODBSk1NtVz3qDTbt2+XMUaPPvqooqKinB7FhYd9+/Y59WnZsmW56y0eW/v27Z3mh4WFqVWrVpZiTJMmTSwXmC5NcYHkggsuKLPN/v37dezYMcu2JalDhw4qKiqyXLunZAGqfv36kqRDhw6VO6aSMjMz1bZtW8v8kuPZtm2bpFPXsSq57z/55BPLfi++PlHJcZ45xh07dig2NlYNGjQoc3zbtm2TMUZt27a1bPf777+3bBcAAABA9VUtr2l09OhRdenSRePGjXNc38VVd999tz755BPNmjVLnTp10sGDB3Xw4MFKHikC3cUXX+y4zkxZzjwDpqzl77zzjlatWqX33ntPH3/8scaNG6e//vWvWrVqlerUqVNm3+KLM993332OYlVJJYtWpV2b51x5Yp2uKOvMKWOMx7ZZvO//8Y9/KCYmxrI8JMT5z3Nl3Z2uqKhINptNH330UanrPNvrBQAAAED1Ui2LRgMHDtTAgQPLXJ6fn68///nP+uc//6mcnBxdcMEFeuqpp9SnTx9J0vfff685c+Zo06ZNjrMHKnL2BeCK5s2bq6ioSNu2bVOHDh0c8/fu3aucnBw1b97cqX337t3VvXt3/eUvf9Fbb72lkSNHauHChRo/fnyZhafin2+FhoYqMTGxUscuSVu3bnX6idiJEye0c+dOt7dVvK5NmzaV2SYqKkq1atXS1q1bLct++OEHBQUFKS4uzq3tV0Tz5s0dZxGdqeR4WrduLUmKjo6utH3funVrffzxxzp48GCZZxu1bt1axhi1bNlS7dq1q5TtAgAAAAhM1fLnaeW54447lJ6eroULF+q7777TDTfcoAEDBjj+I/jee++pVatWev/999WyZUu1aNFC48eP50wjVKqrrrpKkvTcc885zX/mmWckSYMGDZJ06idUJc+I6dq1qyQ5fqJWq1YtSbLc7j46Olp9+vTRK6+8oj179ljGcOZt512RmJiosLAwPf/8805jmzt3rnJzcx1jd1VUVJR69eqlefPmKSsry2lZ8XaCg4PVr18/vfvuu9q1a5dj+d69e/XWW2/p0ksvld1ud2v7FXHVVVdp1apV+uabbxzz9u/frzfffNOpXf/+/WW32/Xkk0+Wei0qd/b90KFDZYxRcnKyZVnx/rnuuusUHBys5ORky+vGGKNff/3V5e0CAAAACEzV8kyjs8nKylJqaqqysrIUGxsr6dRPd5YtW6bU1FQ9+eST+vHHH5WZmam3335bb7zxhgoLCzV58mRdf/31WrFihY8jQKDo0qWLRo8erVdffVU5OTnq3bu3vvnmG73++usaMmSILr/8cknS66+/rpdeeknXXnutWrdurcOHD+u1116T3W53FJ5q1qypjh076l//+pfatWunBg0a6IILLtAFF1yg2bNn69JLL1WnTp00YcIEtWrVSnv37lV6erp++uknbdiwweWxR0VFaerUqUpOTtaAAQN0zTXXaOvWrXrppZf0hz/8QTfddJPb++X555/XpZdeqgsvvFATJ05Uy5YttWvXLn3wwQfKyMiQJD3xxBNavny5Lr30Uk2aNEkhISF65ZVXlJ+fr6efftrtbVfEAw88oH/84x8aMGCA7r77btWuXVuvvvqqmjdvru+++87Rzm63a86cObr55pt14YUXavjw4YqKilJWVpY++OADXXLJJXrxxRdd2vbll1+um2++Wc8//7y2bdumAQMGqKioSF999ZUuv/xy3XHHHWrdurWeeOIJTZ06Vbt27dKQIUNUt25d7dy5U4sXL9bEiRN13333VfZuAQAAAOCHKBqVsHHjRhUWFlp+tpGfn6+GDRtKOnVNkPz8fL3xxhuOdnPnzlW3bt20devWUi/AC7jj73//u1q1aqX58+dr8eLFiomJ0dSpU53ujlVcTFq4cKH27t2riIgIXXzxxXrzzTedfjb597//XXfeeacmT56sEydOaNq0abrgggvUsWNHrV27VsnJyZo/f75+/fVXRUdHKz4+Xo899pjbY09KSlJUVJRefPFFTZ48WQ0aNNDEiRP15JNPKjQ01O31dunSRatWrdKjjz6qOXPm6Pjx42revLmGDRvmaHP++efrq6++0tSpU5WSkqKioiIlJCRowYIFSkhIcHvbFdG4cWN99tlnuvPOOzVjxgw1bNhQt912m2JjY3XLLbc4tb3xxhsVGxurGTNmaObMmcrPz1eTJk102WWXVehucqVJTU1V586dNXfuXN1///2KiIjQRRddpJ49ezraPPTQQ2rXrp2effZZx1lJcXFx6tevn6655hr3gwcAAAAQUGzGk1d69QM2m02LFy/WkCFDJEn/+te/NHLkSG3evNlykdg6deooJiZG06ZNs/yk5LffflOtWrX0ySefqG/fvt4MAQAAwCPy8vIUERGh3Nxcj/60FwAAnBtPfWZzplEJ8fHxKiws1L59+3TZZZeV2uaSSy5RQUGBduzY4biY7f/+9z9JslycGAAAAAAAwB9Vy6LRkSNHtH37dsf0zp07lZGRoQYNGqhdu3YaOXKkRo0apb/+9a+Kj4/X/v379emnn6pz584aNGiQEhMTdeGFF2rcuHF67rnnVFRUpNtvv119+/blbkQAAAAAACAgVMu7p61du1bx8fGKj4+XJE2ZMsXp+i2pqakaNWqU7r33XrVv315DhgzRmjVr1KxZM0lSUFCQ3nvvPUVGRqpXr14aNGiQOnTooIULF/osJgAAAAAAgMpU7a9pBAAAgNJxTSMAAPyDpz6zq+WZRgAAAAAAADg7ikYAAAAAAACwqDYXwi4qKtIvv/yiunXrymaz+Xo4AACgDMYYHT58WLGxsQoK4vstAAAAX6k2RaNffvlFcXFxvh4GAACooN27d6tp06a+HgYAAEC1VW2KRnXr1pV0KgHlQo4AAFRdeXl5iouLc3x2AwAAwDeqTdGo+CdpdrudohEAAH6An5MDAAD4FhcKAAAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAAAgAVFIwAAAAAAAFhQNAIAAAAAAIBFiCuNW7RooczMTMv8SZMmafbs2Zb58+fP19ixY53mhYeH6/jx45KkkydP6pFHHtGHH36oH3/8UREREUpMTNSMGTMUGxt71u2mpKTooYcecmX4XpFXw+brIfjUM/me38aUcM9vw37ceH4jAAAAAABUYS4VjdasWaPCwkLH9KZNm9S3b1/dcMMNZfax2+3aunWrY9pm+72ocuzYMX377bd69NFH1aVLFx06dEh33323rrnmGq1du9ZpPdOnT9eECRMc03Xr1nVl6AAAAAAAAHCBS0WjqKgop+kZM2aodevW6t27d5l9bDabYmJiSl0WERGh5cuXO8178cUXdfHFFysrK0vNmjVzzK9bt26Z6wEAAAAAAEDlcvuaRidOnNCCBQs0btw4p7OHSjpy5IiaN2+uuLg4DR48WJs3bz7renNzc2Wz2VSvXj2n+TNmzFDDhg0VHx+vmTNnqqCg4Kzryc/PV15entMDAAAAAAAAFePSmUZnWrJkiXJycjRmzJgy27Rv317z5s1T586dlZubq1mzZqlnz57avHmzmjZtaml//PhxPfjggxoxYoTsdrtj/l133aULL7xQDRo00MqVKzV16lTt2bNHzzzzTJnbTklJUXJysrvhAQAAAAAAVGs2Y4xbV/zt37+/wsLC9N5771W4z8mTJ9WhQweNGDFCjz/+uGXZ0KFD9dNPP+nzzz93KhqVNG/ePN166606cuSIwsNLvypyfn6+8vN/vypzXl6e4uLilJube9Z1nysuhO35bXAhbAAIbHl5eYqIiPD4ZzbKx7EAAMA/eOoz260zjTIzM5WWlqZFixa51C80NFTx8fHavn270/yTJ09q2LBhyszM1IoVK8oNMCEhQQUFBdq1a5fat29fapvw8PAyC0oAAAAAAAA4O7euaZSamqro6GgNGjTIpX6FhYXauHGjGjdu7JhXXDDatm2b0tLS1LBhw3LXk5GRoaCgIEVHR7s8dgAAAAAAAJTP5TONioqKlJqaqtGjRyskxLn7qFGj1KRJE6WkpEiSpk+fru7du6tNmzbKycnRzJkzlZmZqfHjx0s6VTC6/vrr9e233+r9999XYWGhsrOzJUkNGjRQWFiY0tPTtXr1al1++eWqW7eu0tPTNXnyZN10002qX7/+ucYPAAAAAACAUrhcNEpLS1NWVpbGjRtnWZaVlaWgoN9PXjp06JAmTJig7Oxs1a9fX926ddPKlSvVsWNHSdLPP/+spUuXSpK6du3qtK7PPvtMffr0UXh4uBYuXKikpCTl5+erZcuWmjx5sqZMmeLq0AEAAAAAAFBBbl8I299460KOXAjb89vgQtgAENi4+HLVwbEAAMA/eOoz261rGgEAAAAAACCwuXX3NJTNnTNtvHHmjDfOAPIWb+zj6n7GmDdwNhcAAAAAVG2caQQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALCgaAQAAAAAAAALikYAAAAAAACwoGgEAAAAAAAAC4pGAAAAAAAAsKBoBAAAAAAAAAuKRgAAAAAAALAI8fUAAs2UcF+PoHTujOuZ/Mofh6+4GktVPY6BJK+GzddDKJX9uPH1EAAAAACgSuBMIwAAAAAAAFhQNAIAAAAAAIAFRSMAAAAAAABYUDQCAAAAAACABUUjAAAAAAAAWFA0AgAAAAD8f3t3Hx1Vde9//DNJyAQqE0BIAhgJBUSoQBBKCD5QaxCRReFeq4D8CPKoV7BIWgUqEEGvoUKRqlGUy0O7EPFhIXKFmxaCaJUUMEAFRCoCCVomipAMREkg2b8/hJHJSUhmSGYyk/drrVnDOWfvc7777CFDPpw5AwAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFhEBLqAULOoJNAVoDb4Mo9p9tqvA/7nirIFuoRKOc6aQJcAAAAAoIHhSiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAQJDIzMxUQkKCoqKilJSUpB07dly2/eLFi9W5c2c1btxY8fHxmjZtms6ePeunagEAQLAjNAIAAAgCr7/+utLS0pSenq5du3apR48eGjhwoL7++utK269evVozZsxQenq6Dhw4oGXLlun111/X73//ez9XDgAAghWhEQAAQBBYtGiRJk6cqLFjx6pr165asmSJmjRpouXLl1faftu2bbrpppt03333KSEhQXfccYdGjhxZ7dVJAAAAFxEaAQAA1HOlpaXKzc1VSkqKe11YWJhSUlKUk5NTaZ9+/fopNzfXHRIdPnxYGzdu1F133VXlcUpKSuRyuTweAACg4YoIdAEAAAC4vBMnTqisrEyxsbEe62NjY/XZZ59V2ue+++7TiRMndPPNN8sYo/Pnz+vBBx+87MfTMjIyNHfu3FqtHQAABC+uNAIAAAhBW7du1dNPP60XX3xRu3bt0tq1a7VhwwY9+eSTVfaZOXOmioqK3I9jx475sWIAAFDfcKVRLUuze99nUUnt1wH/88c8+vL6QmhwRdkCXUKlHGdNoEsAGoSWLVsqPDxcBQUFHusLCgoUFxdXaZ/Zs2dr9OjRmjBhgiSpW7duKi4u1qRJk/T4448rLMz6f4d2u112O282AADgB1xpBAAAUM9FRkaqV69eys7Odq8rLy9Xdna2kpOTK+3z3XffWYKh8PBwSZIxBL4AAKB6XGkEAAAQBNLS0jRmzBj17t1bffr00eLFi1VcXKyxY8dKklJTU9W2bVtlZGRIkoYMGaJFixapZ8+eSkpK0qFDhzR79mwNGTLEHR4BAABcDqERAABAEBg+fLi++eYbzZkzR06nU4mJicrKynLfHDs/P9/jyqJZs2bJZrNp1qxZ+uqrr9SqVSsNGTJE//3f/x2oIQAAgCBjMw3k+mSXy6Xo6GgVFRXJ4XDU3XF8uO8I9zRCTXFPI9Q33NMIdcFf79moHnMBAEBwqKv3bO5pBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYBHhTeOEhATl5eVZ1j/00EPKzMy0rF+5cqXGjh3rsc5ut+vs2bOSpHPnzmnWrFnauHGjDh8+rOjoaKWkpGj+/Plq06aNu8/Jkyf18MMP63//938VFhamu+++W3/605901VVXeVM+EPQWlXjfJ81e+3UAF7mibIEuoVKOsybQJQAAAABBz6vQaOfOnSorK3Mv79u3TwMGDNA999xTZR+Hw6GDBw+6l222H3/B+O6777Rr1y7Nnj1bPXr00KlTpzR16lT96le/0scff+xuN2rUKB0/flybNm3SuXPnNHbsWE2aNEmrV6/2pnwAAAAAAADUkFehUatWrTyW58+frw4dOqh///5V9rHZbIqLi6t0W3R0tDZt2uSx7oUXXlCfPn2Un5+va6+9VgcOHFBWVpZ27typ3r17S5Kef/553XXXXVq4cKHHFUkAAAAAAACoHT7f06i0tFSrVq3SuHHjPK4equjMmTNq166d4uPjNXToUO3fv/+y+y0qKpLNZlOzZs0kSTk5OWrWrJk7MJKklJQUhYWFafv27VXup6SkRC6Xy+MBAAAAAACAmvE5NFq3bp0KCwt1//33V9mmc+fOWr58ud555x2tWrVK5eXl6tevn7788stK2589e1bTp0/XyJEj5XA4JElOp1MxMTEe7SIiItSiRQs5nc4qj52RkaHo6Gj3Iz4+3vtBAgAAAAAANFA+h0bLli3ToEGDLvvxsOTkZKWmpioxMVH9+/fX2rVr1apVK7388suWtufOndO9994rY4xeeuklX8tymzlzpoqKityPY8eOXfE+AQAAAAAAGgqv7ml0UV5enjZv3qy1a9d61a9Ro0bq2bOnDh065LH+YmCUl5enLVu2uK8ykqS4uDh9/fXXHu3Pnz+vkydPVnmvJOmHb2mz2/naKAAAAAAAAF/4dKXRihUrFBMTo8GDB3vVr6ysTHv37lXr1q3d6y4GRp9//rk2b96sq6++2qNPcnKyCgsLlZub6163ZcsWlZeXKykpyZfyAQAAAAAAUA2vrzQqLy/XihUrNGbMGEVEeHZPTU1V27ZtlZGRIUmaN2+e+vbtq44dO6qwsFALFixQXl6eJkyYIOmHwOjXv/61du3apXfffVdlZWXu+xS1aNFCkZGR6tKli+68805NnDhRS5Ys0blz5zRlyhSNGDGCb04DAAAAAACoI16HRps3b1Z+fr7GjRtn2Zafn6+wsB8vXjp16pQmTpwop9Op5s2bq1evXtq2bZu6du0qSfrqq6+0fv16SVJiYqLHvt577z394he/kCS9+uqrmjJlim6//XaFhYXp7rvv1nPPPedt6QAAAAAAAKghmzHGBLoIf3C5XIqOjlZRUZHHPZNq/ThRNq/7LCqpg0KAC9K4tRcaIMfZBvHWFrL89Z6N6jEXAAAEh7p6z/b529MAAAAAAAAQugiNAAAAAAAAYOH1PY1web581MyXjw/xkbb6p77Oo79ek0B94stHhesrPmoHAACAQOFKIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWEYEuINSk2QNdQeV8qWtRSe3XURv8cY7r69gBNDyuKFugS6iU46wJdAkAAACoY1xpBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWEYEuINQsKvG+T5q97vv4qy5vjzNX6V4fY64PYymyz/WqvT/GXp95OxZfzheA4OaKsnnV3nHW1FElAAAAqCtcaQQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFhGBLgDSopK6P0aave6P4Ysi+1yv+/jjfPnjGAAAAAAA1GdcaQQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAIsKbxgkJCcrLy7Osf+ihh5SZmWlZv3LlSo0dO9Zjnd1u19mzZ93La9eu1ZIlS5Sbm6uTJ09q9+7dSkxM9Ojzi1/8Qu+//77HugceeEBLlizxpny/SLN732dRSe3XESjejr++jr2hzyMAAAAAAF6FRjt37lRZWZl7ed++fRowYIDuueeeKvs4HA4dPHjQvWyz2Ty2FxcX6+abb9a9996riRMnVrmfiRMnat68ee7lJk2aeFM6AAAAAAAAvOBVaNSqVSuP5fnz56tDhw7q379/lX1sNpvi4uKq3D569GhJ0tGjRy977CZNmlx2PwAAAAAAAKg9Pt/TqLS0VKtWrdK4ceMsVw9d6syZM2rXrp3i4+M1dOhQ7d+/36fjvfrqq2rZsqVuuOEGzZw5U999952vpQMAAAAAAKAaXl1pdKl169apsLBQ999/f5VtOnfurOXLl6t79+4qKirSwoUL1a9fP+3fv1/XXHNNjY913333qV27dmrTpo0++eQTTZ8+XQcPHtTatWur7FNSUqKSkh9vMuNyuWp8PAAAAAAAgIbO59Bo2bJlGjRokNq0aVNlm+TkZCUnJ7uX+/Xrpy5duujll1/Wk08+WeNjTZo0yf3nbt26qXXr1rr99tv1xRdfqEOHDpX2ycjI0Ny5c2t8DAAAAAAAAPzIp4+n5eXlafPmzZowYYJX/Ro1aqSePXvq0KFDvhzWLSkpSZIuu5+ZM2eqqKjI/Th27NgVHRMAAAAAAKAh8Sk0WrFihWJiYjR48GCv+pWVlWnv3r1q3bq1L4d127NnjyRddj92u10Oh8PjAQAAAAAAgJrx+uNp5eXlWrFihcaMGaOICM/uqampatu2rTIyMiRJ8+bNU9++fdWxY0cVFhZqwYIFysvL87hC6eTJk8rPz9e///1vSdLBgwclSXFxcYqLi9MXX3yh1atX66677tLVV1+tTz75RNOmTdOtt96q7t27+zxwAAAAAAAAVM3r0Gjz5s3Kz8/XuHHjLNvy8/MVFvbjxUunTp3SxIkT5XQ61bx5c/Xq1Uvbtm1T165d3W3Wr1+vsWPHupdHjBghSUpPT9cTTzyhyMhIbd68WYsXL1ZxcbHi4+N19913a9asWd6WDgAAAAAAgBqyGWNMoIvwB5fLpejoaBUVFdXpR9VcUTav+ywqqb7NlUqz1/0xfOGPsUv+Gb+/xlIf1dfXF4D6w3G25v/c8Nd7NqrHXAAAEBzq6j3bp3saAQAAAAAAILQRGgEAAAAAAMDC63sa4fJC6eNW/hAq42jo6uvr3pe6eE0CAAAAwA+40ggAAAAAAAAWhEYAAAAAAACwIDQCAAAIEpmZmUpISFBUVJSSkpK0Y8eOy7YvLCzU5MmT1bp1a9ntdl133XXauHGjn6oFAADBjnsaAQAABIHXX39daWlpWrJkiZKSkrR48WINHDhQBw8eVExMjKV9aWmpBgwYoJiYGL311ltq27at8vLy1KxZM/8XDwAAghKhEQAAQBBYtGiRJk6cqLFjx0qSlixZog0bNmj58uWaMWOGpf3y5ct18uRJbdu2TY0aNZIkJSQk+LNkAAAQ5Ph4GgAAQD1XWlqq3NxcpaSkuNeFhYUpJSVFOTk5lfZZv369kpOTNXnyZMXGxuqGG27Q008/rbKysiqPU1JSIpfL5fEAAAANF6ERAABAPXfixAmVlZUpNjbWY31sbKycTmelfQ4fPqy33npLZWVl2rhxo2bPnq0//vGPeuqpp6o8TkZGhqKjo92P+Pj4Wh0HAAAILoRGAAAAIai8vFwxMTF65ZVX1KtXLw0fPlyPP/64lixZUmWfmTNnqqioyP04duyYHysGAAD1Dfc0AgAAqOdatmyp8PBwFRQUeKwvKChQXFxcpX1at26tRo0aKTw83L2uS5cucjqdKi0tVWRkpKWP3W6X3W6v3eIBAEDQ4kojAACAei4yMlK9evVSdna2e115ebmys7OVnJxcaZ+bbrpJhw4dUnl5uXvdv/71L7Vu3brSwAgAAKAiQiMAAIAgkJaWpqVLl+rPf/6zDhw4oP/6r/9ScXGx+9vUUlNTNXPmTHf7//qv/9LJkyc1depU/etf/9KGDRv09NNPa/LkyYEaAgAACDJ8PA0AACAIDB8+XN98843mzJkjp9OpxMREZWVluW+OnZ+fr7CwH/8/MD4+Xn/96181bdo0de/eXW3bttXUqVM1ffr0QA0BAAAEGZsxxgS6CH9wuVyKjo5WUVGRHA5H3R0nylZn+w5Fi0r8c5w0L2/P4Etd3h7D1+Og5nyZEwB1w3G25v/c8Nd7NqrHXAAAEBzq6j2bj6cBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsIgIdAHwj0Ulga6gcnOV7nWfIvtcr/v4Y/z19Rw3ZL7MSZq99usIFH+8JkPpfAEAAADwxJVGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGAREegCQs2ikkBXULk0u/d9/DGWIvtcr/v4o676er5Q96JL0r3u48vr2B98eR0DAAAAwEVcaQQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFhHeNE5ISFBeXp5l/UMPPaTMzEzL+pUrV2rs2LEe6+x2u86ePeteXrt2rZYsWaLc3FydPHlSu3fvVmJiokefs2fP6re//a3WrFmjkpISDRw4UC+++KJiY2O9Kd8v0uze91lUUvfH8eUY/lBf6/IXX14v3gqlc1xfX/feHscf8x5K/PEzEgAAAICVV1ca7dy5U8ePH3c/Nm3aJEm65557quzjcDg8+lQMnYqLi3XzzTfrD3/4Q5X7mDZtmv73f/9Xb775pt5//339+9//1n/+5396UzoAAAAAAAC84NWVRq1atfJYnj9/vjp06KD+/ftX2cdmsykuLq7K7aNHj5YkHT16tNLtRUVFWrZsmVavXq1f/vKXkqQVK1aoS5cu+sc//qG+fft6MwQAAAAAAADUgM/3NCotLdWqVas0btw42Wy2KtudOXNG7dq1U3x8vIYOHar9+/d7dZzc3FydO3dOKSkp7nXXX3+9rr32WuXk5FTZr6SkRC6Xy+MBAAAAAACAmvE5NFq3bp0KCwt1//33V9mmc+fOWr58ud555x2tWrVK5eXl6tevn7788ssaH8fpdCoyMlLNmjXzWB8bGyun01llv4yMDEVHR7sf8fHxNT4mAAAAAABAQ+dzaLRs2TINGjRIbdq0qbJNcnKyUlNTlZiYqP79+2vt2rVq1aqVXn75ZV8PW2MzZ85UUVGR+3Hs2LE6PyYAAAAAAECo8OqeRhfl5eVp8+bNWrt2rVf9GjVqpJ49e+rQoUM17hMXF6fS0lIVFhZ6XG1UUFBw2Xsl2e122e18fQ4AAAAAAIAvfLrSaMWKFYqJidHgwYO96ldWVqa9e/eqdevWNe7Tq1cvNWrUSNnZ2e51Bw8eVH5+vpKTk706PgAAAAAAAGrG6yuNysvLtWLFCo0ZM0YREZ7dU1NT1bZtW2VkZEiS5s2bp759+6pjx44qLCzUggULlJeXpwkTJrj7nDx5Uvn5+fr3v/8t6YdASPrhCqO4uDhFR0dr/PjxSktLU4sWLeRwOPTwww8rOTmZb04DAAAAAACoI16HRps3b1Z+fr7GjRtn2Zafn6+wsB8vXjp16pQmTpwop9Op5s2bq1evXtq2bZu6du3qbrN+/XqNHTvWvTxixAhJUnp6up544glJ0rPPPquwsDDdfffdKikp0cCBA/Xiiy96WzoAAAAAAABqyOvQ6I477pAxptJtW7du9Vh+9tln9eyzz152f/fff/9lv4FNkqKiopSZmanMzExvSgUAAAAAAICPfP72NAAAAAAAAIQuQiMAAAAAAABYeP3xNFzeohLv+8xVuvd9vDxOuuZ6fQx4J80e6AqCiz/Oly/H8Pbvlq/HQc1xfgEAAIDA4EojAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAAC0IjAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABYRgS4g1MxVutd90jW3DioJjDS7d+0XldRNHVfKl7q8Hbu/1Ne66qsie+j8ffRWKL3uAQAAAFw5rjQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAIuIQBcQatI11+s+c5Xul+P4w6KSQFdQO9Lsga4AuHL++Pvoj2Pw9xEAAAAIDK40AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAABAkMjMzlZCQoKioKCUlJWnHjh016rdmzRrZbDYNGzasbgsEAAAhJSLQBYSaNLsPfTS39gupYFFJnR/Cb3w5x2iY6uvr3l+vYW+PU1/Ply918XMCoej1119XWlqalixZoqSkJC1evFgDBw7UwYMHFRMTU2W/o0eP6ne/+51uueUWP1YLAABCAVcaAQAABIFFixZp4sSJGjt2rLp27aolS5aoSZMmWr58eZV9ysrKNGrUKM2dO1c//elP/VgtAAAIBYRGAAAA9Vxpaalyc3OVkpLiXhcWFqaUlBTl5ORU2W/evHmKiYnR+PHja3SckpISuVwujwcAAGi4CI0AAADquRMnTqisrEyxsbEe62NjY+V0Oivt8+GHH2rZsmVaunRpjY+TkZGh6Oho9yM+Pv6K6gYAAMGN0AgAACDEnD59WqNHj9bSpUvVsmXLGvebOXOmioqK3I9jx47VYZUAAKC+40bYAAAA9VzLli0VHh6ugoICj/UFBQWKi4uztP/iiy909OhRDRkyxL2uvLxckhQREaGDBw+qQ4cOln52u112O3eSBwAAP+BKIwAAgHouMjJSvXr1UnZ2tntdeXm5srOzlZycbGl//fXXa+/evdqzZ4/78atf/Uq33Xab9uzZw8fOAABAjXClEQAAQBBIS0vTmDFj1Lt3b/Xp00eLFy9WcXGxxo4dK0lKTU1V27ZtlZGRoaioKN1www0e/Zs1ayZJlvUAAABVITQCAAAIAsOHD9c333yjOXPmyOl0KjExUVlZWe6bY+fn5yssjIvIAQBA7SE0AgAACBJTpkzRlClTKt22devWy/ZduXJl7RcEAABCGv8dBQAAAAAAAAtCIwAAAAAAAFh49fG0hIQE5eXlWdY/9NBDyszMtKxfuXKl++aMF9ntdp09e9a9bIxRenq6li5dqsLCQt1000166aWX1KlTp8seNyMjQzNmzPCm/AYtzYdvz11UUvt1VORLXUBD5I+/j6HEl/PFzyMAAADAk1eh0c6dO1VWVuZe3rdvnwYMGKB77rmnyj4Oh0MHDx50L9tsNo/tzzzzjJ577jn9+c9/Vvv27TV79mwNHDhQn376qaKiotzt5s2bp4kTJ7qXmzZt6k3pAAAAAAAA8IJXoVGrVq08lufPn68OHTqof//+Vfax2WyKi4urdJsxRosXL9asWbM0dOhQSdJf/vIXxcbGat26dRoxYoS7bdOmTavcDwAAAAAAAGqXz/c0Ki0t1apVqzRu3DjL1UOXOnPmjNq1a6f4+HgNHTpU+/fvd287cuSInE6nUlJS3Ouio6OVlJSknJwcj/3Mnz9fV199tXr27KkFCxbo/Pnzl62vpKRELpfL4wEAAAAAAICa8epKo0utW7dOhYWFuv/++6ts07lzZy1fvlzdu3dXUVGRFi5cqH79+mn//v265ppr5HQ6JUmxsbEe/WJjY93bJOk3v/mNbrzxRrVo0ULbtm3TzJkzdfz4cS1atKjKY2dkZGju3Lm+Dg8AAAAAAKBB8zk0WrZsmQYNGqQ2bdpU2SY5OVnJycnu5X79+qlLly56+eWX9eSTT9b4WGlpae4/d+/eXZGRkXrggQeUkZEhu73yO5fOnDnTo5/L5VJ8fHyNjwkAAAAAANCQ+fTxtLy8PG3evFkTJkzwql+jRo3Us2dPHTp0SJLc9ygqKCjwaFdQUHDZ+xclJSXp/PnzOnr0aJVt7Ha7HA6HxwMAAAAAAAA141NotGLFCsXExGjw4MFe9SsrK9PevXvVunVrSVL79u0VFxen7OxsdxuXy6Xt27d7XKFU0Z49exQWFqaYmBhfygcAAAAAAEA1vP54Wnl5uVasWKExY8YoIsKze2pqqtq2bauMjAxJ0rx589S3b1917NhRhYWFWrBggfLy8txXKNlsNj3yyCN66qmn1KlTJ7Vv316zZ89WmzZtNGzYMElSTk6Otm/frttuu01NmzZVTk6Opk2bpv/3//6fmjdvfoXDBwAAAAAAQGW8Do02b96s/Px8jRs3zrItPz9fYWE/Xrx06tQpTZw4UU6nU82bN1evXr20bds2de3a1d3mscceU3FxsSZNmqTCwkLdfPPNysrKUlRUlKQfPma2Zs0aPfHEEyopKVH79u01bdo0j/sVAQAAAAAAoHbZjDEm0EX4g8vlUnR0tIqKiur0/kauKFud7dvfFpXU/THSKr+POVAr/PEa9oUvr/v6OpZQws+juuU4W/N/bvjrPRvVYy4AAAgOdfWe7dM9jQAAAAAAABDaCI0AAAAAAABg4fU9jXB53lx+fyX88TE4f3yExl8fueFjJ6EhVD6iFSrjAAAAABDauNIIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwiAl0AfOM4awJdQqXSomxetV9UUkeFBInoknSv2hfZ59ZRJf7X0OceAAAAAOo7rjQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYBER6AIQWhxnjVftn6ibMixcUbY6P8aiEu/7pGtu7RcSJNLs3vfx5RyjYfLl9QUAAADAE1caAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAAC0IjAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIBFRKALAPzBcdbU+TGe8KWPzVbbZQBuc5XuVft0za2jSq5Mmj3QFQAAAAANE1caAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWgEAAAAAAAAC0IjAAAAAAAAWBAaAQAAAAAAwILQCAAAAAAAABaERgAAAAAAALDwKjRKSEiQzWazPCZPnlxp+5UrV1raRkVFebQxxmjOnDlq3bq1GjdurJSUFH3++ecebU6ePKlRo0bJ4XCoWbNmGj9+vM6cOePlUAEAAAAAAFBTEd403rlzp8rKytzL+/bt04ABA3TPPfdU2cfhcOjgwYPuZZvN5rH9mWee0XPPPac///nPat++vWbPnq2BAwfq008/dQdMo0aN0vHjx7Vp0yadO3dOY8eO1aRJk7R69WpvygfqnSeMCXQJtcIVZau+EfwuXXO9ah8qr0cAAAAAtcOr0KhVq1Yey/Pnz1eHDh3Uv3//KvvYbDbFxcVVus0Yo8WLF2vWrFkaOnSoJOkvf/mLYmNjtW7dOo0YMUIHDhxQVlaWdu7cqd69e0uSnn/+ed11111auHCh2rRp480QAAAAAAAAUAM+39OotLRUq1at0rhx4yxXD13qzJkzateuneLj4zV06FDt37/fve3IkSNyOp1KSUlxr4uOjlZSUpJycnIkSTk5OWrWrJk7MJKklJQUhYWFafv27VUet6SkRC6Xy+MBAAAAAACAmvE5NFq3bp0KCwt1//33V9mmc+fOWr58ud555x2tWrVK5eXl6tevn7788ktJktPplCTFxsZ69IuNjXVvczqdiomJ8dgeERGhFi1auNtUJiMjQ9HR0e5HfHy8L8MEAAAAAABokHwOjZYtW6ZBgwZd9uNhycnJSk1NVWJiovr376+1a9eqVatWevnll309bI3NnDlTRUVF7sexY8fq/JgAAAAAAAChwqt7Gl2Ul5enzZs3a+3atV71a9SokXr27KlDhw5JkvteRwUFBWrdurW7XUFBgRITE91tvv76a4/9nD9/XidPnqzyXkmSZLfbZbfbvaoPAAAAAAAAP/DpSqMVK1YoJiZGgwcP9qpfWVmZ9u7d6w6I2rdvr7i4OGVnZ7vbuFwubd++XcnJyZJ+uFqpsLBQubm57jZbtmxReXm5kpKSfCkfAAAAAAAA1fD6SqPy8nKtWLFCY8aMUUSEZ/fU1FS1bdtWGRkZkqR58+apb9++6tixowoLC7VgwQLl5eVpwoQJkn74ZrVHHnlETz31lDp16qT27dtr9uzZatOmjYYNGyZJ6tKli+68805NnDhRS5Ys0blz5zRlyhSNGDGCb04DAAAAAACoI16HRps3b1Z+fr7GjRtn2Zafn6+wsB8vXjp16pQmTpwop9Op5s2bq1evXtq2bZu6du3qbvPYY4+puLhYkyZNUmFhoW6++WZlZWUpKirK3ebVV1/VlClTdPvttyssLEx33323nnvuOW9LBwAAAAAAQA3ZjDEm0EX4g8vlUnR0tIqKiuRwOAJdDhBSXFE2vxxnUYlfDtNgPdEw3g4QBHjPrj+YCwAAgkNdvWf7/O1pAAAAAAAACF2ERgAAAAAAALDw+p5GAFCR46x/Ptb0hF+OAgAAAACQuNIIAAAAAAAAlSA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAQSIzM1MJCQmKiopSUlKSduzYUWXbpUuX6pZbblHz5s3VvHlzpaSkXLY9AABARYRGAAAAQeD1119XWlqa0tPTtWvXLvXo0UMDBw7U119/XWn7rVu3auTIkXrvvfeUk5Oj+Ph43XHHHfrqq6/8XDkAAAhWNmOMCXQR/uByuRQdHa2ioiI5HI5AlwMAAKrAe3blkpKS9POf/1wvvPCCJKm8vFzx8fF6+OGHNWPGjGr7l5WVqXnz5nrhhReUmppao2MyFwAABIe6es+OqLU91XMXszGXyxXgSgAAwOVcfK9uIP+vVSOlpaXKzc3VzJkz3evCwsKUkpKinJycGu3ju+++07lz59SiRYsq25SUlKikpMS9zL+bAABo2BpMaHT69GlJUnx8fIArAQAANXH69GlFR0cHuox64cSJEyorK1NsbKzH+tjYWH322Wc12sf06dPVpk0bpaSkVNkmIyNDc+fOvaJaAQBA6GgwoVGbNm107NgxNW3aVDabLdDl+I3L5VJ8fLyOHTvWIC8rb8jjZ+yMvaGNXWrY4w+lsRtjdPr0abVp0ybQpYSM+fPna82aNdq6dauioqKqbDdz5kylpaW5ly++rgAAQMPUYEKjsLAwXXPNNYEuI2AcDkfQ/xJxJRry+Bk7Y2+IGvL4Q2XsXGHkqWXLlgoPD1dBQYHH+oKCAsXFxV2278KFCzV//nxt3rxZ3bt3v2xbu90uu91+xfUCAIDQwLenAQAA1HORkZHq1auXsrOz3evKy8uVnZ2t5OTkKvs988wzevLJJ5WVlaXevXv7o1QAABBCGsyVRgAAAMEsLS1NY8aMUe/evdWnTx8tXrxYxcXFGjt2rCQpNTVVbdu2VUZGhiTpD3/4g+bMmaPVq1crISFBTqdTknTVVVfpqquuCtg4AABA8CA0CnF2u13p6ekN9lLzhjx+xs7YG6KGPP6GPPaGYvjw4frmm280Z84cOZ1OJSYmKisry31z7Pz8fIWF/XgR+UsvvaTS0lL9+te/9thPenq6nnjiCX+WDgAAgpTN8H22AAAAqITL5VJ0dLSKiopC4l5ZAACEqrp6z+aeRgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAAAABgQWhUz8yfP182m02PPPKIe90rr7yiX/ziF3I4HLLZbCosLLT0O3nypEaNGiWHw6FmzZpp/PjxOnPmjEebTz75RLfccouioqIUHx+vZ555xrKfN998U9dff72ioqLUrVs3bdy40WO7MUZz5sxR69at1bhxY6WkpOjzzz8P6NgTEhJks9k8HvPnzw/qsZ88eVIPP/ywOnfurMaNG+vaa6/Vb37zGxUVFXn0y8/P1+DBg9WkSRPFxMTo0Ucf1fnz5z3abN26VTfeeKPsdrs6duyolStXWo6fmZmphIQERUVFKSkpSTt27PDYfvbsWU2ePFlXX321rrrqKt19990qKCiolbFfyfgrzrvNZtOaNWuCavyVve4feOABdejQQY0bN1arVq00dOhQffbZZx79QmHufR17qM77RcYYDRo0SDabTevWrfPYFgrzDgAAgCBiUG/s2LHDJCQkmO7du5upU6e61z/77LMmIyPDZGRkGEnm1KlTlr533nmn6dGjh/nHP/5h/v73v5uOHTuakSNHurcXFRWZ2NhYM2rUKLNv3z7z2muvmcaNG5uXX37Z3eajjz4y4eHh5plnnjGffvqpmTVrlmnUqJHZu3evu838+fNNdHS0WbdunfnnP/9pfvWrX5n27dub77//PmBjb9eunZk3b545fvy4+3HmzJmgHvvevXvNf/7nf5r169ebQ4cOmezsbNOpUydz9913u/udP3/e3HDDDSYlJcXs3r3bbNy40bRs2dLMnDnT3ebw4cOmSZMmJi0tzXz66afm+eefN+Hh4SYrK8vdZs2aNSYyMtIsX77c7N+/30ycONE0a9bMFBQUuNs8+OCDJj4+3mRnZ5uPP/7Y9O3b1/Tr1++Kxn2l4zfGGElmxYoVHnN/6XzU9/FX9bp/+eWXzfvvv2+OHDlicnNzzZAhQ0x8fLw5f/68MSY05t7XsRsTuvN+0aJFi8ygQYOMJPP222+714fCvCP4FBUVGUmmqKgo0KUAAIDLqKv3bEKjeuL06dOmU6dOZtOmTaZ///6V/iLx3nvvVRqcfPrpp0aS2blzp3vd//3f/xmbzWa++uorY4wxL774omnevLkpKSlxt5k+fbrp3Lmze/nee+81gwcP9th3UlKSeeCBB4wxxpSXl5u4uDizYMEC9/bCwkJjt9vNa6+9FpCxG/NDaPTss89Wuf9gH/tFb7zxhomMjDTnzp0zxhizceNGExYWZpxOp7vNSy+9ZBwOh3usjz32mPnZz37msZ/hw4ebgQMHupf79OljJk+e7F4uKyszbdq0MRkZGe5xNmrUyLz55pvuNgcOHDCSTE5Ojs9jN+bKxm+MsfxSXVF9Hr83Y//nP/9pJJlDhw4ZY4J/7q9k7MaE9rzv3r3btG3b1hw/ftwyzmCfdwQnQiMAAIJDXb1n8/G0emLy5MkaPHiwUlJSvO6bk5OjZs2aqXfv3u51KSkpCgsL0/bt291tbr31VkVGRrrbDBw4UAcPHtSpU6fcbSoef+DAgcrJyZEkHTlyRE6n06NNdHS0kpKS3G18cSVjv2j+/Pm6+uqr1bNnTy1YsMDj4xqhMvaioiI5HA5FRES4a+7WrZtiY2M9ana5XNq/f3+NxlVaWqrc3FyPNmFhYUpJSXG3yc3N1blz5zzaXH/99br22muvaOzSlY3/0n20bNlSffr00fLly2WMcW+rz+Ov6diLi4u1YsUKtW/fXvHx8e5xBfPcX8nYL91HqM37d999p/vuu0+ZmZmKi4uzbA/2eQcAAEDwiai+CeramjVrtGvXLu3cudOn/k6nUzExMR7rIiIi1KJFCzmdTneb9u3be7S5+IuH0+lU8+bN5XQ6PX4Zudjm0n1c2q+yNt660rFL0m9+8xvdeOONatGihbZt26aZM2fq+PHjWrRokbvuYB/7iRMn9OSTT2rSpEnudVXVfGm9VbVxuVz6/vvvderUKZWVlVXa5uJ9ZJxOpyIjI9WsWTNLG1/HLl35+CVp3rx5+uUvf6kmTZrob3/7mx566CGdOXNGv/nNb9y118fx12TsL774oh577DEVFxerc+fO2rRpkzv4DOa5v9KxS6E779OmTVO/fv00dOjQSrcH87wDAAAgOBEaBdixY8c0depUbdq0SVFRUYEux69qa+xpaWnuP3fv3l2RkZF64IEHlJGRIbvdXhul1jpvxu5yuTR48GB17dpVTzzxhH8KrGO1Nf7Zs2e7/9yzZ08VFxdrwYIF7vCgPqrp2EeNGqUBAwbo+PHjWrhwoe6991599NFHQf1zorbGHorzvn79em3ZskW7d+8OQHUAAABA5fh4WoDl5ubq66+/1o033qiIiAhFRETo/fff13PPPaeIiAiVlZVVu4+4uDh9/fXXHuvOnz+vkydPuj/iEBcXZ/nmm4vL1bW5dPul/Spr443aGHtlkpKSdP78eR09etRdd7CO/fTp07rzzjvVtGlTvf3222rUqJF7H1cyLofDocaNG6tly5YKDw+vduylpaWWb67zdey1Nf7KJCUl6csvv1RJSUm9HX9Nxx4dHa1OnTrp1ltv1VtvvaXPPvtMb7/99mXHdXFbKI+9MqEw75s2bdIXX3yhZs2aubdL0t13361f/OIXlx3XxW31dewAAAAIXoRGAXb77bdr79692rNnj/vRu3dvjRo1Snv27FF4eHi1+0hOTlZhYaFyc3Pd67Zs2aLy8nIlJSW523zwwQc6d+6cu82mTZvUuXNnNW/e3N0mOzvbY9+bNm1ScnKyJKl9+/aKi4vzaONyubR9+3Z3G3+PvTJ79uxRWFiY+yN7wTp2l8ulO+64Q5GRkVq/fr3l6oTk5GTt3bvXIzDctGmTHA6HunbtWqNxRUZGqlevXh5tysvLlZ2d7W7Tq1cvNWrUyKPNwYMHlZ+f79PYa2v8ldmzZ4+aN2/uvsKsPo7fl9e9+eFLC9yhSLDOfW2MvTKhMO+PP/64PvnkE4/tkvTss89qxYoV7nEF47wDAAAgiNXqbbVRKyp+o87x48fN7t27zdKlS40k88EHH5jdu3ebb7/91t3mzjvvND179jTbt283H374oenUqZMZOXKke3thYaGJjY01o0ePNvv27TNr1qwxTZo0sXztfEREhFm4cKE5cOCASU9Pr/Rr55s1a2beeecd88knn5ihQ4fWytfO+zr2bdu2mWeffdbs2bPHfPHFF2bVqlWmVatWJjU1NajHXlRUZJKSkky3bt3MoUOHPL5avOLXrt9xxx1mz549Jisry7Rq1arSr99+9NFHzYEDB0xmZmalX79tt9vNypUrzaeffmomTZpkmjVr5vENTQ8++KC59tprzZYtW8zHH39skpOTTXJycq2M29fxr1+/3ixdutTs3bvXfP755+bFF180TZo0MXPmzAm68V869i+++MI8/fTT5uOPPzZ5eXnmo48+MkOGDDEtWrRwfyV6KM29t2MP1XmvjCp8e1oozTuCB9+eBgBAcKir92xCo3qo4i8S6enpRpLlsWLFCnebb7/91owcOdJcddVVxuFwmLFjx5rTp0977Pef//ynufnmm43dbjdt27Y18+fPtxz7jTfeMNddd52JjIw0P/vZz8yGDRs8tpeXl5vZs2eb2NhYY7fbze23324OHjwYsLHn5uaapKQkEx0dbaKiokyXLl3M008/bc6ePRvUY3/vvfcqHbckc+TIEXefo0ePmkGDBpnGjRubli1bmt/+9rceX0l/cV+JiYkmMjLS/PSnP/V43Vz0/PPPm2uvvdZERkaaPn36mH/84x8e27///nvz0EMPmebNm5smTZqY//iP/zDHjx+vtbH7Mv7/+7//M4mJieaqq64yP/nJT0yPHj3MkiVLTFlZWdCN/9Kxf/XVV2bQoEEmJibGNGrUyFxzzTXmvvvuM5999plHn1CZe2/HHqrzXpmKoZExoTPvCB6ERgAABIe6es+2GXPJ9xQDAAAAF7hcLkVHR6uoqEgOhyPQ5QAAgCrU1Xs29zQCAAAAAACABaERAAAAAAAALCICXYA/nT17VqWlpYEuAwAAVCMyMrJG35oIAACAutNgQqOzZ8+qceNWks4EuhQAAFCNuLg4HTlyhOAIAAAggBpMaPTDFUZnJE2T9JMLaxtdeI6o4vly2xvVoE1tba+uz8XlaoRXc8iwy2wLr2K9L9ur2taokraXqzu8Bttruo/q6r7cubvSc+Nud+Ge9BFlHs+28PM/LEaUKfzCuvCI8gvP5y88X1gfduFZlT9HXHgOs2y/cAyVu9eHW9qe99hH+CVtf2hXcXv1NVTXxvsaqm5XcaxVHfvHfVbXznrOalpn9ees+hqqnduyC8/nLxyjzFxYlsez7YdD6cKhrM9lFx4V13mzfPG5qmOV1fK+qluu6b4q7sOb2mpzX9XUdu5C3wtTbVk+X+bZ5VwVu6pq/aXbL7etpvuoyTFKJD3rdKq0tJTQCAAAIIAaTGj0I7uki/8ArSp8qclyVaFRXSzXtE8VbDV8DtOPd7mq6rliiFLxubrgpLIMrLow60q213Qf1QY6NTiGL309ni8fGtkalcl2cZ37+YdtYReWw8I8g4OwCuGENSyqOkipOiSpLkSp+fbaP8bF5/DLHCushvuwXWgX5tHvx2dbhf3Y3Ot+/Otgq7BPVXg2F9pVXH/x+WKtxqN9uMwlfy6vcKwLz2UXns9fqLOq0KiqsOJyIUtN+ni7vjb3Vdn68Eu2VzzRF/tU9XOv4j5tFbZX/Fl6sX1lbBWWK35/qalifVW1GenchWDpwlTrnK3C8oWm1QU8NVmurm11+4ioZnv4JX8GAABA4HEjbAAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwIDQCAAAAAACABaERAAAAAAAALAiNAAAAAAAAYEFoBAAAAAAAAAtCIwAAAAAAAFgQGgEAAAAAAMCC0AgAAAAAAAAWhEYAAAAAAACwiAh0Af5Xoh+HXXbh+eLy+WqWz12y3OjCnxtVaFPxuTa2V9fn4nIVTA2fyy88VMmz7cJzWYXli8+qYrliDVUd91IVjx1eRfuyCtsrrj+vH09ReIVtFddXdfrDKzxXNl013UdV293tLgwwoszj2YT/8Do0EWUyF9dFlF94/mFb+YX1trALz6r8udx9Aio+n7/Q7tKTeOFY7ufzHn3MhbbGve/zFZYrf764vUxlCr/w54rP5RWWw9zL5919f1guv2y7iEvahVfYVtWxf9xnde0uHuPHGi53/Mr2cbF9RJU1VP3845/NhX2YC/v84Tm87MLz+QvbL0z1hZeT+9l2ccrPV/H840tBFV4CNV+++FzVscpqeV/VLdd0XxX34U1tNd1Xdc9V/Uy+5PnchR8dF6baslyxhHPybv2l2y+3rab7qMkxSgQAAID6oMGERpGRkYqLi5PT+WygSwmcir+MIChczMrO6cdfuAAg1MXFxSkyMjLQZQAAADRoDSY0ioqK0pEjR1RaWhroUmqNy+VSfHy8jh07JofDEehyQgrntm5wXusG57XucG7rRk3Oa2RkpKKiovxcGQAAAC7VYEIj6YfgKBT/AepwOPhlpo5wbusG57VucF7rDue2bnBeAQAA6jduhA0AAAAAAAALQiMAAAAAAABYEBoFMbvdrvT0dNnt9kCXEnI4t3WD81o3OK91h3NbNzivAAAAwcFmjDHVNwMAAEBD43K5FB0draKiIu4/BQBAPVZX79lcaQQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRG9dgHH3ygIUOGqE2bNrLZbFq3bl21fbZu3aobb7xRdrtdHTt21MqVK+u8zmDj7Xldu3atBgwYoFatWsnhcCg5OVl//etf/VNskPHlNXvRRx99pIiICCUmJtZZfcHKl/NaUlKixx9/XO3atZPdbldCQoKWL19e98UGEV/O66uvvqoePXqoSZMmat26tcaNG6dvv/227osNIhkZGfr5z3+upk2bKiYmRsOGDdPBgwer7ffmm2/q+uuvV1RUlLp166aNGzf6oVoAAABcDqFRPVZcXKwePXooMzOzRu2PHDmiwYMH67bbbtOePXv0yCOPaMKECQQcFXh7Xj/44AMNGDBAGzduVG5urm677TYNGTJEu3fvruNKg4+35/aiwsJCpaam6vbbb6+jyoKbL+f13nvvVXZ2tpYtW6aDBw/qtddeU+fOneuwyuDj7Xn96KOPlJqaqvHjx2v//v168803tWPHDk2cOLGOKw0u77//viZPnqx//OMf2rRpk86dO6c77rhDxcXFVfbZtm2bRo4cqfHjx2v37t0aNmyYhg0bpn379vmxcgAAAFRkM8aYQBeB6tlsNr399tsaNmxYlW2mT5+uDRs2ePwje8SIESosLFRWVpYfqgw+NTmvlfnZz36m4cOHa86cOXVTWAjw5tyOGDFCnTp1Unh4uNatW6c9e/bUeX3BqibnNSsrSyNGjNDhw4fVokUL/xUXxGpyXhcuXKiXXnpJX3zxhXvd888/rz/84Q/68ssv/VBlcPrmm28UExOj999/X7feemulbYYPH67i4mK9++677nV9+/ZVYmKilixZ4q9SUYm6+vpeAABQu+rqPZsrjUJITk6OUlJSPNYNHDhQOTk5AaooNJWXl+v06dP8Ml5LVqxYocOHDys9PT3QpYSM9evXq3fv3nrmmWfUtm1bXXfddfrd736n77//PtClBbXk5GQdO3ZMGzdulDFGBQUFeuutt3TXXXcFurR6raioSJIu+zOT9y8AAID6KSLQBaD2OJ1OxcbGeqyLjY2Vy+XS999/r8aNGweostCycOFCnTlzRvfee2+gSwl6n3/+uWbMmKG///3viojgx1FtOXz4sD788ENFRUXp7bff1okTJ/TQQw/p22+/1YoVKwJdXtC66aab9Oqrr2r48OE6e/aszp8/ryFDhnj9ccyGpLy8XI888ohuuukm3XDDDVW2q+r9y+l01nWJAAAAuAyuNAK8sHr1as2dO1dvvPGGYmJiAl1OUCsrK9N9992nuXPn6rrrrgt0OSGlvLxcNptNr776qvr06aO77rpLixYt0p///GeuNroCn376qaZOnao5c+YoNzdXWVlZOnr0qB588MFAl1ZvTZ48Wfv27dOaNWsCXQoAAAB8wH/th5C4uDgVFBR4rCsoKJDD4eAqo1qwZs0aTZgwQW+++ablYxTw3unTp/Xxxx9r9+7dmjJliqQfwg5jjCIiIvS3v/1Nv/zlLwNcZXBq3bq12rZtq+joaPe6Ll26yBijL7/8Up06dQpgdcErIyNDN910kx599FFJUvfu3fWTn/xEt9xyi5566im1bt06wBXWL1OmTNG7776rDz74QNdcc81l21b1/hUXF1eXJQIAAKAaXGkUQpKTk5Wdne2xbtOmTUpOTg5QRaHjtdde09ixY/Xaa69p8ODBgS4nJDgcDu3du1d79uxxPx588EF17txZe/bsUVJSUqBLDFo33XST/v3vf+vMmTPudf/6178UFhZW7S/vqNp3332nsDDPt83w8HBJEt8p8SNjjKZMmaK3335bW7ZsUfv27avtw/sXAABA/cSVRvXYmTNndOjQIffykSNHtGfPHrVo0ULXXnutZs6cqa+++kp/+ctfJEkPPvigXnjhBT322GMaN26ctmzZojfeeEMbNmwI1BDqJW/P6+rVqzVmzBj96U9/UlJSkvseG40bN/a4kgPenduwsDDLPU5iYmIUFRV12XufNETevmbvu+8+Pfnkkxo7dqzmzp2rEydO6NFHH9W4ceO46vAS3p7XIUOGaOLEiXrppZc0cOBAHT9+XI888oj69OmjNm3aBGoY9c7kyZO1evVqvfPOO2ratKn7Z2Z0dLT79Zeamqq2bdsqIyNDkjR16lT1799ff/zjHzV48GCtWbNGH3/8sV555ZWAjQMAAACSDOqt9957z0iyPMaMGWOMMWbMmDGmf//+lj6JiYkmMjLS/PSnPzUrVqzwe931nbfntX///pdtjx/58pq9VHp6uunRo4dfag0mvpzXAwcOmJSUFNO4cWNzzTXXmLS0NPPdd9/5v/h6zJfz+txzz5muXbuaxo0bm9atW5tRo0aZL7/80v/F12OVnVNJHu9H/fv3t/wMfeONN8x1111nIiMjzc9+9jOzYcMG/xaOShUVFRlJpqioKNClAACAy6ir92ybMVxTDwAAACuXy6Xo6GgVFRXJ4XAEuhwAAFCFunrP5p5GAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAgSGRmZiohIUFRUVFKSkrSjh07Ltv+zTff1PXXX6+oqCh169ZNGzdu9FOlAAAgFBAaAQAABIHXX39daWlpSk9P165du9SjRw8NHDhQX3/9daXtt23bppEjR2r8+PHavXu3hg0bpmHDhmnfvn1+rhwAAAQrmzHGBLoIAAAAXF5SUpJ+/vOf64UXXpAklZeXKz4+Xg8//LBmzJhhaT98+HAVFxfr3Xffda/r27evEhMTtWTJkhod0+VyKTo6WkVFRXI4HLUzEAAAUOvq6j07otb2BAAAgDpRWlqq3NxczZw5070uLCxMKSkpysnJqbRPTk6O0tLSPNYNHDhQ69atq/I4JSUlKikpcS8XFRVJ+uEfogAAoP66+F5d29cFERoBAADUcydOnFBZWZliY2M91sfGxuqzzz6rtI/T6ay0vdPprPI4GRkZmjt3rmV9fHy8D1UDAAB/+/bbbxUdHV1r+yM0AgAAgCRp5syZHlcnFRYWql27dsrPz6/Vf4DCey6XS/Hx8Tp27BgfFQwg5qH+YC7qD+aifigqKtK1116rFi1a1Op+CY0AAADquZYtWyo8PFwFBQUe6wsKChQXF1dpn7i4OK/aS5Ldbpfdbresj46O5heBesLhcDAX9QDzUH8wF/UHc1E/hIXV7ved8e1pAAAA9VxkZKR69eql7Oxs97ry8nJlZ2crOTm50j7Jycke7SVp06ZNVbYHAACoiCuNAAAAgkBaWprGjBmj3r17q0+fPlq8eLGKi4s1duxYSVJqaqratm2rjIwMSdLUqVPVv39//fGPf9TgwYO1Zs0affzxx3rllVcCOQwAABBECI0AAACCwPDhw/XNN99ozpw5cjqdSkxMVFZWlvtm1/n5+R6XpPfr10+rV6/WrFmz9Pvf/16dOnXSunXrdMMNN9T4mHa7Xenp6ZV+ZA3+xVzUD8xD/cFc1B/MRf1QV/NgM7X9fWwAAAAAAAAIetzTCAAAAAAAABaERgAAAAAAALAgNAIAAAAAAIAFoREAAAAAAAAsCI0AAAAasMzMTCUkJCgqKkpJSUnasWPHZdu/+eabuv766xUVFaVu3bpp48aNfqo09HkzF0uXLtUtt9yi5s2bq3nz5kpJSal27lAz3v6duGjNmjWy2WwaNmxY3RbYgHg7F4WFhZo8ebJat24tu92u6667jp9RtcDbeVi8eLE6d+6sxo0bKz4+XtOmTdPZs2f9VG3o+uCDDzRkyBC1adNGNptN69atq7bP1q1bdeONN8put6tjx45auXKl18clNAIAAGigXn/9daWlpSk9PV27du1Sjx49NHDgQH399deVtt+2bZtGjhyp8ePHa/fu3Ro2bJiGDRumffv2+bny0OPtXGzdulUjR47Ue++9p5ycHMXHx+uOO+7QV1995efKQ4u383DR0aNH9bvf/U633HKLnyoNfd7ORWlpqQYMGKCjR4/qrbfe0sGDB7V06VK1bdvWz5WHFm/nYfXq1ZoxY4bS09N14MABLVu2TK+//rp+//vf+7ny0FNcXKwePXooMzOzRu2PHDmiwYMH67bbbtOePXv0yCOPaMKECfrrX//q1XFtxhjjS8EAAAAIbklJSfr5z3+uF154QZJUXl6u+Ph4Pfzww5oxY4al/fDhw1VcXKx3333Xva5v375KTEzUkiVL/FZ3KPJ2LioqKytT8+bN9cILLyg1NbWuyw1ZvsxDWVmZbr31Vo0bN05///vfVVhYWKMrAHB53s7FkiVLtGDBAn322Wdq1KiRv8sNWd7Ow5QpU3TgwAFlZ2e71/32t7/V9u3b9eGHH/qt7lBns9n09ttvX/bKxunTp2vDhg0e/7EzYsQIFRYWKisrq8bH4kojAACABqi0tFS5ublKSUlxrwsLC1NKSopycnIq7ZOTk+PRXpIGDhxYZXvUjC9zUdF3332nc+fOqUWLFnVVZsjzdR7mzZunmJgYjR8/3h9lNgi+zMX69euVnJysyZMnKzY2VjfccIOefvpplZWV+avskOPLPPTr10+5ubnuj7AdPnxYGzdu1F133eWXmvGj2nrPjqjNogAAABAcTpw4obKyMsXGxnqsj42N1WeffVZpH6fTWWl7p9NZZ3U2BL7MRUXTp09XmzZtLL8goOZ8mYcPP/xQy5Yt0549e/xQYcPhy1wcPnxYW7Zs0ahRo7Rx40YdOnRIDz30kM6dO6f09HR/lB1yfJmH++67TydOnNDNN98sY4zOnz+vBx98kI+nBUBV79kul0vff/+9GjduXKP9cKURAAAAEMTmz5+vNWvW6O2331ZUVFSgy2kwTp8+rdGjR2vp0qVq2bJloMtp8MrLyxUTE6NXXnlFvXr10vDhw/X444/z0Vk/27p1q55++mm9+OKL2rVrl9auXasNGzboySefDHRp8BFXGgEAADRALVu2VHh4uAoKCjzWFxQUKC4urtI+cXFxXrVHzfgyFxctXLhQ8+fP1+bNm9W9e/e6LDPkeTsPX3zxhY4ePaohQ4a415WXl0uSIiIidPDgQXXo0KFuiw5RvvydaN26tRo1aqTw8HD3ui5dusjpdKq0tFSRkZF1WnMo8mUeZs+erdGjR2vChAmSpG7duqm4uFiTJk3S448/rrAwrlvxl6resx0OR42vMpK40ggAAKBBioyMVK9evTxuVlpeXq7s7GwlJydX2ic5OdmjvSRt2rSpyvaoGV/mQpKeeeYZPfnkk8rKylLv3r39UWpI83Yerr/+eu3du1d79uxxP371q1+5v6koPj7en+WHFF/+Ttx00006dOiQO7iTpH/9619q3bo1gZGPfJmH7777zhIMXQzy+A4u/6q192wDAACABmnNmjXGbreblStXmk8//dRMmjTJNGvWzDidTmOMMaNHjzYzZsxwt//oo49MRESEWbhwoTlw4IBJT083jRo1Mnv37g3UEEKGt3Mxf/58ExkZad566y1z/Phx9+P06dOBGkJI8HYeKhozZowZOnSon6oNbd7ORX5+vmnatKmZMmWKOXjwoHn33XdNTEyMeeqppwI1hJDg7Tykp6ebpk2bmtdee80cPnzY/O1vfzMdOnQw9957b6CGEDJOnz5tdu/ebXbv3m0kmUWLFpndu3ebvLw8Y4wxM2bMMKNHj3a3P3z4sGnSpIl59NFHzYEDB0xmZqYJDw83WVlZXh2Xj6cBAAA0UMOHD9c333yjOXPmyOl0KjExUVlZWe4bZ+bn53v8j3G/fv20evVqzZo1S7///e/VqVMnrVu3TjfccEOghhAyvJ2Ll156SaWlpfr1r3/tsZ/09HQ98cQT/iw9pHg7D6g73s5FfHy8/vrXv2ratGnq3r272rZtq6lTp2r69OmBGkJI8HYeZs2aJZvNplmzZumrr75Sq1atNGTIEP33f/93oIYQMj7++GPddttt7uW0tDRJ0pgxY7Ry5UodP35c+fn57u3t27fXhg0bNG3aNP3pT3/SNddco//5n//RwIEDvTquzRiuEQMAAAAAAIAnYnIAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsCA0AgAAAAAAgAWhEQAAAAAAACwIjQAAAAAAAGBBaAQAAAAAAAALQiMAAAAAAABYEBoBAAAAAADAgtAIAAAAAAAAFoRGAAAAAAAAsPj/3sL4KBYdFPsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot posterior probabilities weights\n", + "\n", + "fig, axs = plt.subplots(2, 2, figsize = (14, 14))\n", + "\n", + "axs[0, 0].set_title(\"Posterior probabilities\")\n", + "clrbar = axs[0, 0].imshow(posterior_array, cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(posterior_array, ax = axs[0, 0], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[0, 1].set_title(\"Posterior probabilities std\")\n", + "clrbar = axs[0, 1].imshow(posterior_array_std, cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(posterior_array_std, ax = axs[0, 1], transform = raster_meta[\"transform\"], cmap=colormap_name)\n", + "\n", + "axs[1, 0].set_title(\"Posterior confidence\")\n", + "clrbar = axs[1, 0].imshow(posterior_confidence, cmap=colormap_name)\n", + "plt.colorbar(clrbar, orientation=\"horizontal\", pad = 0.05)\n", + "show(posterior_confidence, ax = axs[1, 0], transform = raster_meta[\"transform\"], cmap=colormap_name)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "save = True\n", + "\n", + "posterior_raster = \"../tests/data/local/results/posterior_raster_asc_desc.tif\"\n", + "posterior_raster_std = \"../tests/data/local/results/posterior_raster_std_asc_desc.tif\"\n", + "posterior_raster_conf = \"../tests/data/local/results/posterior_raster_confidence_asc_desc.tif\"\n", + "\n", + "raster_meta[\"dtype\"] = np.float32\n", + "\n", + "if save:\n", + " with rasterio.open(posterior_raster, \"w\", **raster_meta) as dest:\n", + " dest.write(posterior_array, 1)\n", + " with rasterio.open(posterior_raster_std, \"w\", **raster_meta) as dest:\n", + " dest.write(posterior_array_std, 1)\n", + " with rasterio.open(posterior_raster_conf, \"w\", **raster_meta) as dest:\n", + " dest.write(posterior_confidence, 1)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "eis_toolkit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tests/data/remote/wofe/wofe_deposits.cpg b/tests/data/remote/wofe/wofe_deposits.cpg new file mode 100644 index 00000000..3ad133c0 --- /dev/null +++ b/tests/data/remote/wofe/wofe_deposits.cpg @@ -0,0 +1 @@ +UTF-8 \ No newline at end of file diff --git a/tests/data/remote/wofe/wofe_deposits.dbf b/tests/data/remote/wofe/wofe_deposits.dbf new file mode 100644 index 00000000..de1da7b1 Binary files /dev/null and b/tests/data/remote/wofe/wofe_deposits.dbf differ diff --git a/tests/data/remote/wofe/wofe_deposits.prj b/tests/data/remote/wofe/wofe_deposits.prj new file mode 100644 index 00000000..ca0f4916 --- /dev/null +++ b/tests/data/remote/wofe/wofe_deposits.prj @@ -0,0 +1 @@ +PROJCS["EUREF_FIN_TM35FIN",GEOGCS["GCS_EUREF_FIN",DATUM["D_ETRS_1989",SPHEROID["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",27.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]] \ No newline at end of file diff --git a/tests/data/remote/wofe/wofe_deposits.sbn b/tests/data/remote/wofe/wofe_deposits.sbn new file mode 100644 index 00000000..43b3a22c Binary files /dev/null and b/tests/data/remote/wofe/wofe_deposits.sbn differ diff --git a/tests/data/remote/wofe/wofe_deposits.sbx b/tests/data/remote/wofe/wofe_deposits.sbx new file mode 100644 index 00000000..f0541936 Binary files /dev/null and b/tests/data/remote/wofe/wofe_deposits.sbx differ diff --git a/tests/data/remote/wofe/wofe_deposits.shp b/tests/data/remote/wofe/wofe_deposits.shp new file mode 100644 index 00000000..74cb43a0 Binary files /dev/null and b/tests/data/remote/wofe/wofe_deposits.shp differ diff --git a/tests/data/remote/wofe/wofe_deposits.shx b/tests/data/remote/wofe/wofe_deposits.shx new file mode 100644 index 00000000..00f5cc69 Binary files /dev/null and b/tests/data/remote/wofe/wofe_deposits.shx differ diff --git a/tests/data/remote/wofe/wofe_deposits.xml b/tests/data/remote/wofe/wofe_deposits.xml new file mode 100644 index 00000000..2da08739 --- /dev/null +++ b/tests/data/remote/wofe/wofe_deposits.xml @@ -0,0 +1,2 @@ + +20230816144621001.0ISO 19139 Metadata Implementation SpecificationTRUERasterToPoint wofe_dep_rst_int.tif E:\EIS2022\Data\TestData_wofe_fns\wofe_dep.shp ValueAddField wofe_dep1s TPFID LONG # # # # NULLABLE NON_REQUIRED #CalculateField wofe_dep1s TPFID !FID! PYTHON_9.3 #CalculateField wofe_dep1s TPFID !FID! PYTHON_9.3 #CalculateField wofe_dep1s TPFID !FID! PYTHON_9.3 #CalculateField wofe_dep1s TPFID !FID! PYTHON_9.3 #CalculateField wofe_dep1s TPFID !FID! PYTHON_9.3 #CalculateField wofe_dep1s TPFID !FID! PYTHON_9.3 #CalculateField wofe_dep1s TPFID !FID! PYTHON_9.3 #CalculateField wofe_dep1s Dep_ID 1 VB #CalculateField Dep1s TPFID !FID! PYTHON_9.3 #CalculateField Dep1s TPFID !FID! PYTHON_9.3 #CalculateField Dep1s TPFID !FID! PYTHON_9.3 #CalculateField Dep1s TPFID !FID! PYTHON_9.3 #CalculateField Dep1s TPFID !FID! PYTHON_9.3 #CalculateField Dep1s TPFID !FID! PYTHON_9.3 #CalculateField Dep1s TPFID !FID! PYTHON_9.3 # diff --git a/tests/data/remote/wofe/wofe_evidence_raster.tif b/tests/data/remote/wofe/wofe_evidence_raster.tif new file mode 100644 index 00000000..03a40bb0 Binary files /dev/null and b/tests/data/remote/wofe/wofe_evidence_raster.tif differ diff --git a/tests/prediction/weights_of_evidence_test.py b/tests/prediction/weights_of_evidence_test.py new file mode 100644 index 00000000..de282040 --- /dev/null +++ b/tests/prediction/weights_of_evidence_test.py @@ -0,0 +1,40 @@ +from pathlib import Path + +import geopandas as gpd +import numpy as np +import pytest +import rasterio + +from eis_toolkit import exceptions +from eis_toolkit.prediction.weights_of_evidence import weights_of_evidence_calculate_weights + +test_dir = Path(__file__).parent.parent +EVIDENCE_PATH = test_dir.joinpath("../tests/data/remote/wofe/wofe_evidence_raster.tif") +DEPOSIT_PATH = test_dir.joinpath("../tests/data/remote/wofe/wofe_deposits.shp") + +evidence_raster = rasterio.open(EVIDENCE_PATH) +deposits = gpd.read_file(DEPOSIT_PATH) + + +def test_weights_of_evidence(): + """Test that weights of evidence works as intended.""" + df, rasters, raster_meta, _, _ = weights_of_evidence_calculate_weights(evidence_raster, deposits) + + np.testing.assert_equal(df.shape[1], 10) # 10 columns for unique weights + np.testing.assert_equal(df.shape[0], 8) # 8 classes in the test data + np.testing.assert_equal(len(rasters), 3) # 3 rasters should be generated with default rasters_to_generate + np.testing.assert_equal(raster_meta, evidence_raster.meta) + + +def test_too_high_studentized_contrast_threshold(): + """Tests that too high studentized contrast threshold for reclassification raises the correct exception.""" + with pytest.raises(exceptions.ClassificationFailedException): + weights_of_evidence_calculate_weights( + evidence_raster, deposits, weights_type="ascending", studentized_contrast_threshold=2 + ) + + +def test_invalid_choice_in_rasters_to_generate(): + """Tests that invalid metric/column in rasters to generate raises the correct exception.""" + with pytest.raises(exceptions.InvalidColumnException): + weights_of_evidence_calculate_weights(evidence_raster, deposits, arrays_to_generate=["invalid_metric"])